xref: /openbmc/linux/net/ipv4/ipmr.c (revision ed84ef1c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	IP multicast routing support for mrouted 3.6/3.8
4  *
5  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6  *	  Linux Consultancy and Custom Driver Development
7  *
8  *	Fixes:
9  *	Michael Chastain	:	Incorrect size of copying.
10  *	Alan Cox		:	Added the cache manager code
11  *	Alan Cox		:	Fixed the clone/copy bug and device race.
12  *	Mike McLagan		:	Routing by source
13  *	Malcolm Beattie		:	Buffer handling fixes.
14  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
15  *	SVR Anand		:	Fixed several multicast bugs and problems.
16  *	Alexey Kuznetsov	:	Status, optimisations and more.
17  *	Brad Parker		:	Better behaviour on mrouted upcall
18  *					overflow.
19  *      Carlos Picoto           :       PIMv1 Support
20  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
21  *					Relax this requirement to work with older peers.
22  */
23 
24 #include <linux/uaccess.h>
25 #include <linux/types.h>
26 #include <linux/cache.h>
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/kernel.h>
31 #include <linux/fcntl.h>
32 #include <linux/stat.h>
33 #include <linux/socket.h>
34 #include <linux/in.h>
35 #include <linux/inet.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/igmp.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mroute.h>
42 #include <linux/init.h>
43 #include <linux/if_ether.h>
44 #include <linux/slab.h>
45 #include <net/net_namespace.h>
46 #include <net/ip.h>
47 #include <net/protocol.h>
48 #include <linux/skbuff.h>
49 #include <net/route.h>
50 #include <net/icmp.h>
51 #include <net/udp.h>
52 #include <net/raw.h>
53 #include <linux/notifier.h>
54 #include <linux/if_arp.h>
55 #include <linux/netfilter_ipv4.h>
56 #include <linux/compat.h>
57 #include <linux/export.h>
58 #include <linux/rhashtable.h>
59 #include <net/ip_tunnels.h>
60 #include <net/checksum.h>
61 #include <net/netlink.h>
62 #include <net/fib_rules.h>
63 #include <linux/netconf.h>
64 #include <net/rtnh.h>
65 
66 #include <linux/nospec.h>
67 
68 struct ipmr_rule {
69 	struct fib_rule		common;
70 };
71 
72 struct ipmr_result {
73 	struct mr_table		*mrt;
74 };
75 
76 /* Big lock, protecting vif table, mrt cache and mroute socket state.
77  * Note that the changes are semaphored via rtnl_lock.
78  */
79 
80 static DEFINE_RWLOCK(mrt_lock);
81 
82 /* Multicast router control variables */
83 
84 /* Special spinlock for queue of unresolved entries */
85 static DEFINE_SPINLOCK(mfc_unres_lock);
86 
87 /* We return to original Alan's scheme. Hash table of resolved
88  * entries is changed only in process context and protected
89  * with weak lock mrt_lock. Queue of unresolved entries is protected
90  * with strong spinlock mfc_unres_lock.
91  *
92  * In this case data path is free of exclusive locks at all.
93  */
94 
95 static struct kmem_cache *mrt_cachep __ro_after_init;
96 
97 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
98 static void ipmr_free_table(struct mr_table *mrt);
99 
100 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
101 			  struct net_device *dev, struct sk_buff *skb,
102 			  struct mfc_cache *cache, int local);
103 static int ipmr_cache_report(struct mr_table *mrt,
104 			     struct sk_buff *pkt, vifi_t vifi, int assert);
105 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
106 				 int cmd);
107 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
108 static void mroute_clean_tables(struct mr_table *mrt, int flags);
109 static void ipmr_expire_process(struct timer_list *t);
110 
111 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
112 #define ipmr_for_each_table(mrt, net)					\
113 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list,	\
114 				lockdep_rtnl_is_held() ||		\
115 				list_empty(&net->ipv4.mr_tables))
116 
117 static struct mr_table *ipmr_mr_table_iter(struct net *net,
118 					   struct mr_table *mrt)
119 {
120 	struct mr_table *ret;
121 
122 	if (!mrt)
123 		ret = list_entry_rcu(net->ipv4.mr_tables.next,
124 				     struct mr_table, list);
125 	else
126 		ret = list_entry_rcu(mrt->list.next,
127 				     struct mr_table, list);
128 
129 	if (&ret->list == &net->ipv4.mr_tables)
130 		return NULL;
131 	return ret;
132 }
133 
134 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
135 {
136 	struct mr_table *mrt;
137 
138 	ipmr_for_each_table(mrt, net) {
139 		if (mrt->id == id)
140 			return mrt;
141 	}
142 	return NULL;
143 }
144 
145 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
146 			   struct mr_table **mrt)
147 {
148 	int err;
149 	struct ipmr_result res;
150 	struct fib_lookup_arg arg = {
151 		.result = &res,
152 		.flags = FIB_LOOKUP_NOREF,
153 	};
154 
155 	/* update flow if oif or iif point to device enslaved to l3mdev */
156 	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
157 
158 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
159 			       flowi4_to_flowi(flp4), 0, &arg);
160 	if (err < 0)
161 		return err;
162 	*mrt = res.mrt;
163 	return 0;
164 }
165 
166 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
167 			    int flags, struct fib_lookup_arg *arg)
168 {
169 	struct ipmr_result *res = arg->result;
170 	struct mr_table *mrt;
171 
172 	switch (rule->action) {
173 	case FR_ACT_TO_TBL:
174 		break;
175 	case FR_ACT_UNREACHABLE:
176 		return -ENETUNREACH;
177 	case FR_ACT_PROHIBIT:
178 		return -EACCES;
179 	case FR_ACT_BLACKHOLE:
180 	default:
181 		return -EINVAL;
182 	}
183 
184 	arg->table = fib_rule_get_table(rule, arg);
185 
186 	mrt = ipmr_get_table(rule->fr_net, arg->table);
187 	if (!mrt)
188 		return -EAGAIN;
189 	res->mrt = mrt;
190 	return 0;
191 }
192 
193 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
194 {
195 	return 1;
196 }
197 
198 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
199 	FRA_GENERIC_POLICY,
200 };
201 
202 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
203 			       struct fib_rule_hdr *frh, struct nlattr **tb,
204 			       struct netlink_ext_ack *extack)
205 {
206 	return 0;
207 }
208 
209 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
210 			     struct nlattr **tb)
211 {
212 	return 1;
213 }
214 
215 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
216 			  struct fib_rule_hdr *frh)
217 {
218 	frh->dst_len = 0;
219 	frh->src_len = 0;
220 	frh->tos     = 0;
221 	return 0;
222 }
223 
224 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
225 	.family		= RTNL_FAMILY_IPMR,
226 	.rule_size	= sizeof(struct ipmr_rule),
227 	.addr_size	= sizeof(u32),
228 	.action		= ipmr_rule_action,
229 	.match		= ipmr_rule_match,
230 	.configure	= ipmr_rule_configure,
231 	.compare	= ipmr_rule_compare,
232 	.fill		= ipmr_rule_fill,
233 	.nlgroup	= RTNLGRP_IPV4_RULE,
234 	.policy		= ipmr_rule_policy,
235 	.owner		= THIS_MODULE,
236 };
237 
238 static int __net_init ipmr_rules_init(struct net *net)
239 {
240 	struct fib_rules_ops *ops;
241 	struct mr_table *mrt;
242 	int err;
243 
244 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
245 	if (IS_ERR(ops))
246 		return PTR_ERR(ops);
247 
248 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
249 
250 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
251 	if (IS_ERR(mrt)) {
252 		err = PTR_ERR(mrt);
253 		goto err1;
254 	}
255 
256 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
257 	if (err < 0)
258 		goto err2;
259 
260 	net->ipv4.mr_rules_ops = ops;
261 	return 0;
262 
263 err2:
264 	ipmr_free_table(mrt);
265 err1:
266 	fib_rules_unregister(ops);
267 	return err;
268 }
269 
270 static void __net_exit ipmr_rules_exit(struct net *net)
271 {
272 	struct mr_table *mrt, *next;
273 
274 	rtnl_lock();
275 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
276 		list_del(&mrt->list);
277 		ipmr_free_table(mrt);
278 	}
279 	fib_rules_unregister(net->ipv4.mr_rules_ops);
280 	rtnl_unlock();
281 }
282 
283 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
284 			   struct netlink_ext_ack *extack)
285 {
286 	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
287 }
288 
289 static unsigned int ipmr_rules_seq_read(struct net *net)
290 {
291 	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
292 }
293 
294 bool ipmr_rule_default(const struct fib_rule *rule)
295 {
296 	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
297 }
298 EXPORT_SYMBOL(ipmr_rule_default);
299 #else
300 #define ipmr_for_each_table(mrt, net) \
301 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
302 
303 static struct mr_table *ipmr_mr_table_iter(struct net *net,
304 					   struct mr_table *mrt)
305 {
306 	if (!mrt)
307 		return net->ipv4.mrt;
308 	return NULL;
309 }
310 
311 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
312 {
313 	return net->ipv4.mrt;
314 }
315 
316 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
317 			   struct mr_table **mrt)
318 {
319 	*mrt = net->ipv4.mrt;
320 	return 0;
321 }
322 
323 static int __net_init ipmr_rules_init(struct net *net)
324 {
325 	struct mr_table *mrt;
326 
327 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
328 	if (IS_ERR(mrt))
329 		return PTR_ERR(mrt);
330 	net->ipv4.mrt = mrt;
331 	return 0;
332 }
333 
334 static void __net_exit ipmr_rules_exit(struct net *net)
335 {
336 	rtnl_lock();
337 	ipmr_free_table(net->ipv4.mrt);
338 	net->ipv4.mrt = NULL;
339 	rtnl_unlock();
340 }
341 
342 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
343 			   struct netlink_ext_ack *extack)
344 {
345 	return 0;
346 }
347 
348 static unsigned int ipmr_rules_seq_read(struct net *net)
349 {
350 	return 0;
351 }
352 
353 bool ipmr_rule_default(const struct fib_rule *rule)
354 {
355 	return true;
356 }
357 EXPORT_SYMBOL(ipmr_rule_default);
358 #endif
359 
360 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
361 				const void *ptr)
362 {
363 	const struct mfc_cache_cmp_arg *cmparg = arg->key;
364 	struct mfc_cache *c = (struct mfc_cache *)ptr;
365 
366 	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
367 	       cmparg->mfc_origin != c->mfc_origin;
368 }
369 
370 static const struct rhashtable_params ipmr_rht_params = {
371 	.head_offset = offsetof(struct mr_mfc, mnode),
372 	.key_offset = offsetof(struct mfc_cache, cmparg),
373 	.key_len = sizeof(struct mfc_cache_cmp_arg),
374 	.nelem_hint = 3,
375 	.obj_cmpfn = ipmr_hash_cmp,
376 	.automatic_shrinking = true,
377 };
378 
379 static void ipmr_new_table_set(struct mr_table *mrt,
380 			       struct net *net)
381 {
382 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
383 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
384 #endif
385 }
386 
387 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
388 	.mfc_mcastgrp = htonl(INADDR_ANY),
389 	.mfc_origin = htonl(INADDR_ANY),
390 };
391 
392 static struct mr_table_ops ipmr_mr_table_ops = {
393 	.rht_params = &ipmr_rht_params,
394 	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
395 };
396 
397 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
398 {
399 	struct mr_table *mrt;
400 
401 	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
402 	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
403 		return ERR_PTR(-EINVAL);
404 
405 	mrt = ipmr_get_table(net, id);
406 	if (mrt)
407 		return mrt;
408 
409 	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
410 			      ipmr_expire_process, ipmr_new_table_set);
411 }
412 
413 static void ipmr_free_table(struct mr_table *mrt)
414 {
415 	del_timer_sync(&mrt->ipmr_expire_timer);
416 	mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
417 				 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
418 	rhltable_destroy(&mrt->mfc_hash);
419 	kfree(mrt);
420 }
421 
422 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
423 
424 /* Initialize ipmr pimreg/tunnel in_device */
425 static bool ipmr_init_vif_indev(const struct net_device *dev)
426 {
427 	struct in_device *in_dev;
428 
429 	ASSERT_RTNL();
430 
431 	in_dev = __in_dev_get_rtnl(dev);
432 	if (!in_dev)
433 		return false;
434 	ipv4_devconf_setall(in_dev);
435 	neigh_parms_data_state_setall(in_dev->arp_parms);
436 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
437 
438 	return true;
439 }
440 
441 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
442 {
443 	struct net_device *tunnel_dev, *new_dev;
444 	struct ip_tunnel_parm p = { };
445 	int err;
446 
447 	tunnel_dev = __dev_get_by_name(net, "tunl0");
448 	if (!tunnel_dev)
449 		goto out;
450 
451 	p.iph.daddr = v->vifc_rmt_addr.s_addr;
452 	p.iph.saddr = v->vifc_lcl_addr.s_addr;
453 	p.iph.version = 4;
454 	p.iph.ihl = 5;
455 	p.iph.protocol = IPPROTO_IPIP;
456 	sprintf(p.name, "dvmrp%d", v->vifc_vifi);
457 
458 	if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
459 		goto out;
460 	err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
461 			SIOCADDTUNNEL);
462 	if (err)
463 		goto out;
464 
465 	new_dev = __dev_get_by_name(net, p.name);
466 	if (!new_dev)
467 		goto out;
468 
469 	new_dev->flags |= IFF_MULTICAST;
470 	if (!ipmr_init_vif_indev(new_dev))
471 		goto out_unregister;
472 	if (dev_open(new_dev, NULL))
473 		goto out_unregister;
474 	dev_hold(new_dev);
475 	err = dev_set_allmulti(new_dev, 1);
476 	if (err) {
477 		dev_close(new_dev);
478 		tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
479 				SIOCDELTUNNEL);
480 		dev_put(new_dev);
481 		new_dev = ERR_PTR(err);
482 	}
483 	return new_dev;
484 
485 out_unregister:
486 	unregister_netdevice(new_dev);
487 out:
488 	return ERR_PTR(-ENOBUFS);
489 }
490 
491 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
492 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
493 {
494 	struct net *net = dev_net(dev);
495 	struct mr_table *mrt;
496 	struct flowi4 fl4 = {
497 		.flowi4_oif	= dev->ifindex,
498 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
499 		.flowi4_mark	= skb->mark,
500 	};
501 	int err;
502 
503 	err = ipmr_fib_lookup(net, &fl4, &mrt);
504 	if (err < 0) {
505 		kfree_skb(skb);
506 		return err;
507 	}
508 
509 	read_lock(&mrt_lock);
510 	dev->stats.tx_bytes += skb->len;
511 	dev->stats.tx_packets++;
512 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
513 	read_unlock(&mrt_lock);
514 	kfree_skb(skb);
515 	return NETDEV_TX_OK;
516 }
517 
518 static int reg_vif_get_iflink(const struct net_device *dev)
519 {
520 	return 0;
521 }
522 
523 static const struct net_device_ops reg_vif_netdev_ops = {
524 	.ndo_start_xmit	= reg_vif_xmit,
525 	.ndo_get_iflink = reg_vif_get_iflink,
526 };
527 
528 static void reg_vif_setup(struct net_device *dev)
529 {
530 	dev->type		= ARPHRD_PIMREG;
531 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
532 	dev->flags		= IFF_NOARP;
533 	dev->netdev_ops		= &reg_vif_netdev_ops;
534 	dev->needs_free_netdev	= true;
535 	dev->features		|= NETIF_F_NETNS_LOCAL;
536 }
537 
538 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
539 {
540 	struct net_device *dev;
541 	char name[IFNAMSIZ];
542 
543 	if (mrt->id == RT_TABLE_DEFAULT)
544 		sprintf(name, "pimreg");
545 	else
546 		sprintf(name, "pimreg%u", mrt->id);
547 
548 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
549 
550 	if (!dev)
551 		return NULL;
552 
553 	dev_net_set(dev, net);
554 
555 	if (register_netdevice(dev)) {
556 		free_netdev(dev);
557 		return NULL;
558 	}
559 
560 	if (!ipmr_init_vif_indev(dev))
561 		goto failure;
562 	if (dev_open(dev, NULL))
563 		goto failure;
564 
565 	dev_hold(dev);
566 
567 	return dev;
568 
569 failure:
570 	unregister_netdevice(dev);
571 	return NULL;
572 }
573 
574 /* called with rcu_read_lock() */
575 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
576 		     unsigned int pimlen)
577 {
578 	struct net_device *reg_dev = NULL;
579 	struct iphdr *encap;
580 
581 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
582 	/* Check that:
583 	 * a. packet is really sent to a multicast group
584 	 * b. packet is not a NULL-REGISTER
585 	 * c. packet is not truncated
586 	 */
587 	if (!ipv4_is_multicast(encap->daddr) ||
588 	    encap->tot_len == 0 ||
589 	    ntohs(encap->tot_len) + pimlen > skb->len)
590 		return 1;
591 
592 	read_lock(&mrt_lock);
593 	if (mrt->mroute_reg_vif_num >= 0)
594 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
595 	read_unlock(&mrt_lock);
596 
597 	if (!reg_dev)
598 		return 1;
599 
600 	skb->mac_header = skb->network_header;
601 	skb_pull(skb, (u8 *)encap - skb->data);
602 	skb_reset_network_header(skb);
603 	skb->protocol = htons(ETH_P_IP);
604 	skb->ip_summed = CHECKSUM_NONE;
605 
606 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
607 
608 	netif_rx(skb);
609 
610 	return NET_RX_SUCCESS;
611 }
612 #else
613 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
614 {
615 	return NULL;
616 }
617 #endif
618 
619 static int call_ipmr_vif_entry_notifiers(struct net *net,
620 					 enum fib_event_type event_type,
621 					 struct vif_device *vif,
622 					 vifi_t vif_index, u32 tb_id)
623 {
624 	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
625 				     vif, vif_index, tb_id,
626 				     &net->ipv4.ipmr_seq);
627 }
628 
629 static int call_ipmr_mfc_entry_notifiers(struct net *net,
630 					 enum fib_event_type event_type,
631 					 struct mfc_cache *mfc, u32 tb_id)
632 {
633 	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
634 				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
635 }
636 
637 /**
638  *	vif_delete - Delete a VIF entry
639  *	@mrt: Table to delete from
640  *	@vifi: VIF identifier to delete
641  *	@notify: Set to 1, if the caller is a notifier_call
642  *	@head: if unregistering the VIF, place it on this queue
643  */
644 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
645 		      struct list_head *head)
646 {
647 	struct net *net = read_pnet(&mrt->net);
648 	struct vif_device *v;
649 	struct net_device *dev;
650 	struct in_device *in_dev;
651 
652 	if (vifi < 0 || vifi >= mrt->maxvif)
653 		return -EADDRNOTAVAIL;
654 
655 	v = &mrt->vif_table[vifi];
656 
657 	if (VIF_EXISTS(mrt, vifi))
658 		call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
659 					      mrt->id);
660 
661 	write_lock_bh(&mrt_lock);
662 	dev = v->dev;
663 	v->dev = NULL;
664 
665 	if (!dev) {
666 		write_unlock_bh(&mrt_lock);
667 		return -EADDRNOTAVAIL;
668 	}
669 
670 	if (vifi == mrt->mroute_reg_vif_num)
671 		mrt->mroute_reg_vif_num = -1;
672 
673 	if (vifi + 1 == mrt->maxvif) {
674 		int tmp;
675 
676 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
677 			if (VIF_EXISTS(mrt, tmp))
678 				break;
679 		}
680 		mrt->maxvif = tmp+1;
681 	}
682 
683 	write_unlock_bh(&mrt_lock);
684 
685 	dev_set_allmulti(dev, -1);
686 
687 	in_dev = __in_dev_get_rtnl(dev);
688 	if (in_dev) {
689 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
690 		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
691 					    NETCONFA_MC_FORWARDING,
692 					    dev->ifindex, &in_dev->cnf);
693 		ip_rt_multicast_event(in_dev);
694 	}
695 
696 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
697 		unregister_netdevice_queue(dev, head);
698 
699 	dev_put(dev);
700 	return 0;
701 }
702 
703 static void ipmr_cache_free_rcu(struct rcu_head *head)
704 {
705 	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
706 
707 	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
708 }
709 
710 static void ipmr_cache_free(struct mfc_cache *c)
711 {
712 	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
713 }
714 
715 /* Destroy an unresolved cache entry, killing queued skbs
716  * and reporting error to netlink readers.
717  */
718 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
719 {
720 	struct net *net = read_pnet(&mrt->net);
721 	struct sk_buff *skb;
722 	struct nlmsgerr *e;
723 
724 	atomic_dec(&mrt->cache_resolve_queue_len);
725 
726 	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
727 		if (ip_hdr(skb)->version == 0) {
728 			struct nlmsghdr *nlh = skb_pull(skb,
729 							sizeof(struct iphdr));
730 			nlh->nlmsg_type = NLMSG_ERROR;
731 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
732 			skb_trim(skb, nlh->nlmsg_len);
733 			e = nlmsg_data(nlh);
734 			e->error = -ETIMEDOUT;
735 			memset(&e->msg, 0, sizeof(e->msg));
736 
737 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
738 		} else {
739 			kfree_skb(skb);
740 		}
741 	}
742 
743 	ipmr_cache_free(c);
744 }
745 
746 /* Timer process for the unresolved queue. */
747 static void ipmr_expire_process(struct timer_list *t)
748 {
749 	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
750 	struct mr_mfc *c, *next;
751 	unsigned long expires;
752 	unsigned long now;
753 
754 	if (!spin_trylock(&mfc_unres_lock)) {
755 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
756 		return;
757 	}
758 
759 	if (list_empty(&mrt->mfc_unres_queue))
760 		goto out;
761 
762 	now = jiffies;
763 	expires = 10*HZ;
764 
765 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
766 		if (time_after(c->mfc_un.unres.expires, now)) {
767 			unsigned long interval = c->mfc_un.unres.expires - now;
768 			if (interval < expires)
769 				expires = interval;
770 			continue;
771 		}
772 
773 		list_del(&c->list);
774 		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
775 		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
776 	}
777 
778 	if (!list_empty(&mrt->mfc_unres_queue))
779 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
780 
781 out:
782 	spin_unlock(&mfc_unres_lock);
783 }
784 
785 /* Fill oifs list. It is called under write locked mrt_lock. */
786 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
787 				   unsigned char *ttls)
788 {
789 	int vifi;
790 
791 	cache->mfc_un.res.minvif = MAXVIFS;
792 	cache->mfc_un.res.maxvif = 0;
793 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
794 
795 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
796 		if (VIF_EXISTS(mrt, vifi) &&
797 		    ttls[vifi] && ttls[vifi] < 255) {
798 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
799 			if (cache->mfc_un.res.minvif > vifi)
800 				cache->mfc_un.res.minvif = vifi;
801 			if (cache->mfc_un.res.maxvif <= vifi)
802 				cache->mfc_un.res.maxvif = vifi + 1;
803 		}
804 	}
805 	cache->mfc_un.res.lastuse = jiffies;
806 }
807 
808 static int vif_add(struct net *net, struct mr_table *mrt,
809 		   struct vifctl *vifc, int mrtsock)
810 {
811 	struct netdev_phys_item_id ppid = { };
812 	int vifi = vifc->vifc_vifi;
813 	struct vif_device *v = &mrt->vif_table[vifi];
814 	struct net_device *dev;
815 	struct in_device *in_dev;
816 	int err;
817 
818 	/* Is vif busy ? */
819 	if (VIF_EXISTS(mrt, vifi))
820 		return -EADDRINUSE;
821 
822 	switch (vifc->vifc_flags) {
823 	case VIFF_REGISTER:
824 		if (!ipmr_pimsm_enabled())
825 			return -EINVAL;
826 		/* Special Purpose VIF in PIM
827 		 * All the packets will be sent to the daemon
828 		 */
829 		if (mrt->mroute_reg_vif_num >= 0)
830 			return -EADDRINUSE;
831 		dev = ipmr_reg_vif(net, mrt);
832 		if (!dev)
833 			return -ENOBUFS;
834 		err = dev_set_allmulti(dev, 1);
835 		if (err) {
836 			unregister_netdevice(dev);
837 			dev_put(dev);
838 			return err;
839 		}
840 		break;
841 	case VIFF_TUNNEL:
842 		dev = ipmr_new_tunnel(net, vifc);
843 		if (IS_ERR(dev))
844 			return PTR_ERR(dev);
845 		break;
846 	case VIFF_USE_IFINDEX:
847 	case 0:
848 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
849 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
850 			if (dev && !__in_dev_get_rtnl(dev)) {
851 				dev_put(dev);
852 				return -EADDRNOTAVAIL;
853 			}
854 		} else {
855 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
856 		}
857 		if (!dev)
858 			return -EADDRNOTAVAIL;
859 		err = dev_set_allmulti(dev, 1);
860 		if (err) {
861 			dev_put(dev);
862 			return err;
863 		}
864 		break;
865 	default:
866 		return -EINVAL;
867 	}
868 
869 	in_dev = __in_dev_get_rtnl(dev);
870 	if (!in_dev) {
871 		dev_put(dev);
872 		return -EADDRNOTAVAIL;
873 	}
874 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
875 	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
876 				    dev->ifindex, &in_dev->cnf);
877 	ip_rt_multicast_event(in_dev);
878 
879 	/* Fill in the VIF structures */
880 	vif_device_init(v, dev, vifc->vifc_rate_limit,
881 			vifc->vifc_threshold,
882 			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
883 			(VIFF_TUNNEL | VIFF_REGISTER));
884 
885 	err = dev_get_port_parent_id(dev, &ppid, true);
886 	if (err == 0) {
887 		memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
888 		v->dev_parent_id.id_len = ppid.id_len;
889 	} else {
890 		v->dev_parent_id.id_len = 0;
891 	}
892 
893 	v->local = vifc->vifc_lcl_addr.s_addr;
894 	v->remote = vifc->vifc_rmt_addr.s_addr;
895 
896 	/* And finish update writing critical data */
897 	write_lock_bh(&mrt_lock);
898 	v->dev = dev;
899 	if (v->flags & VIFF_REGISTER)
900 		mrt->mroute_reg_vif_num = vifi;
901 	if (vifi+1 > mrt->maxvif)
902 		mrt->maxvif = vifi+1;
903 	write_unlock_bh(&mrt_lock);
904 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
905 	return 0;
906 }
907 
908 /* called with rcu_read_lock() */
909 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
910 					 __be32 origin,
911 					 __be32 mcastgrp)
912 {
913 	struct mfc_cache_cmp_arg arg = {
914 			.mfc_mcastgrp = mcastgrp,
915 			.mfc_origin = origin
916 	};
917 
918 	return mr_mfc_find(mrt, &arg);
919 }
920 
921 /* Look for a (*,G) entry */
922 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
923 					     __be32 mcastgrp, int vifi)
924 {
925 	struct mfc_cache_cmp_arg arg = {
926 			.mfc_mcastgrp = mcastgrp,
927 			.mfc_origin = htonl(INADDR_ANY)
928 	};
929 
930 	if (mcastgrp == htonl(INADDR_ANY))
931 		return mr_mfc_find_any_parent(mrt, vifi);
932 	return mr_mfc_find_any(mrt, vifi, &arg);
933 }
934 
935 /* Look for a (S,G,iif) entry if parent != -1 */
936 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
937 						__be32 origin, __be32 mcastgrp,
938 						int parent)
939 {
940 	struct mfc_cache_cmp_arg arg = {
941 			.mfc_mcastgrp = mcastgrp,
942 			.mfc_origin = origin,
943 	};
944 
945 	return mr_mfc_find_parent(mrt, &arg, parent);
946 }
947 
948 /* Allocate a multicast cache entry */
949 static struct mfc_cache *ipmr_cache_alloc(void)
950 {
951 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
952 
953 	if (c) {
954 		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
955 		c->_c.mfc_un.res.minvif = MAXVIFS;
956 		c->_c.free = ipmr_cache_free_rcu;
957 		refcount_set(&c->_c.mfc_un.res.refcount, 1);
958 	}
959 	return c;
960 }
961 
962 static struct mfc_cache *ipmr_cache_alloc_unres(void)
963 {
964 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
965 
966 	if (c) {
967 		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
968 		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
969 	}
970 	return c;
971 }
972 
973 /* A cache entry has gone into a resolved state from queued */
974 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
975 			       struct mfc_cache *uc, struct mfc_cache *c)
976 {
977 	struct sk_buff *skb;
978 	struct nlmsgerr *e;
979 
980 	/* Play the pending entries through our router */
981 	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
982 		if (ip_hdr(skb)->version == 0) {
983 			struct nlmsghdr *nlh = skb_pull(skb,
984 							sizeof(struct iphdr));
985 
986 			if (mr_fill_mroute(mrt, skb, &c->_c,
987 					   nlmsg_data(nlh)) > 0) {
988 				nlh->nlmsg_len = skb_tail_pointer(skb) -
989 						 (u8 *)nlh;
990 			} else {
991 				nlh->nlmsg_type = NLMSG_ERROR;
992 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
993 				skb_trim(skb, nlh->nlmsg_len);
994 				e = nlmsg_data(nlh);
995 				e->error = -EMSGSIZE;
996 				memset(&e->msg, 0, sizeof(e->msg));
997 			}
998 
999 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1000 		} else {
1001 			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1002 		}
1003 	}
1004 }
1005 
1006 /* Bounce a cache query up to mrouted and netlink.
1007  *
1008  * Called under mrt_lock.
1009  */
1010 static int ipmr_cache_report(struct mr_table *mrt,
1011 			     struct sk_buff *pkt, vifi_t vifi, int assert)
1012 {
1013 	const int ihl = ip_hdrlen(pkt);
1014 	struct sock *mroute_sk;
1015 	struct igmphdr *igmp;
1016 	struct igmpmsg *msg;
1017 	struct sk_buff *skb;
1018 	int ret;
1019 
1020 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1021 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1022 	else
1023 		skb = alloc_skb(128, GFP_ATOMIC);
1024 
1025 	if (!skb)
1026 		return -ENOBUFS;
1027 
1028 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1029 		/* Ugly, but we have no choice with this interface.
1030 		 * Duplicate old header, fix ihl, length etc.
1031 		 * And all this only to mangle msg->im_msgtype and
1032 		 * to set msg->im_mbz to "mbz" :-)
1033 		 */
1034 		skb_push(skb, sizeof(struct iphdr));
1035 		skb_reset_network_header(skb);
1036 		skb_reset_transport_header(skb);
1037 		msg = (struct igmpmsg *)skb_network_header(skb);
1038 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1039 		msg->im_msgtype = assert;
1040 		msg->im_mbz = 0;
1041 		if (assert == IGMPMSG_WRVIFWHOLE) {
1042 			msg->im_vif = vifi;
1043 			msg->im_vif_hi = vifi >> 8;
1044 		} else {
1045 			msg->im_vif = mrt->mroute_reg_vif_num;
1046 			msg->im_vif_hi = mrt->mroute_reg_vif_num >> 8;
1047 		}
1048 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1049 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1050 					     sizeof(struct iphdr));
1051 	} else {
1052 		/* Copy the IP header */
1053 		skb_set_network_header(skb, skb->len);
1054 		skb_put(skb, ihl);
1055 		skb_copy_to_linear_data(skb, pkt->data, ihl);
1056 		/* Flag to the kernel this is a route add */
1057 		ip_hdr(skb)->protocol = 0;
1058 		msg = (struct igmpmsg *)skb_network_header(skb);
1059 		msg->im_vif = vifi;
1060 		msg->im_vif_hi = vifi >> 8;
1061 		skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1062 		/* Add our header */
1063 		igmp = skb_put(skb, sizeof(struct igmphdr));
1064 		igmp->type = assert;
1065 		msg->im_msgtype = assert;
1066 		igmp->code = 0;
1067 		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1068 		skb->transport_header = skb->network_header;
1069 	}
1070 
1071 	rcu_read_lock();
1072 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1073 	if (!mroute_sk) {
1074 		rcu_read_unlock();
1075 		kfree_skb(skb);
1076 		return -EINVAL;
1077 	}
1078 
1079 	igmpmsg_netlink_event(mrt, skb);
1080 
1081 	/* Deliver to mrouted */
1082 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1083 	rcu_read_unlock();
1084 	if (ret < 0) {
1085 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1086 		kfree_skb(skb);
1087 	}
1088 
1089 	return ret;
1090 }
1091 
1092 /* Queue a packet for resolution. It gets locked cache entry! */
1093 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1094 				 struct sk_buff *skb, struct net_device *dev)
1095 {
1096 	const struct iphdr *iph = ip_hdr(skb);
1097 	struct mfc_cache *c;
1098 	bool found = false;
1099 	int err;
1100 
1101 	spin_lock_bh(&mfc_unres_lock);
1102 	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1103 		if (c->mfc_mcastgrp == iph->daddr &&
1104 		    c->mfc_origin == iph->saddr) {
1105 			found = true;
1106 			break;
1107 		}
1108 	}
1109 
1110 	if (!found) {
1111 		/* Create a new entry if allowable */
1112 		c = ipmr_cache_alloc_unres();
1113 		if (!c) {
1114 			spin_unlock_bh(&mfc_unres_lock);
1115 
1116 			kfree_skb(skb);
1117 			return -ENOBUFS;
1118 		}
1119 
1120 		/* Fill in the new cache entry */
1121 		c->_c.mfc_parent = -1;
1122 		c->mfc_origin	= iph->saddr;
1123 		c->mfc_mcastgrp	= iph->daddr;
1124 
1125 		/* Reflect first query at mrouted. */
1126 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1127 
1128 		if (err < 0) {
1129 			/* If the report failed throw the cache entry
1130 			   out - Brad Parker
1131 			 */
1132 			spin_unlock_bh(&mfc_unres_lock);
1133 
1134 			ipmr_cache_free(c);
1135 			kfree_skb(skb);
1136 			return err;
1137 		}
1138 
1139 		atomic_inc(&mrt->cache_resolve_queue_len);
1140 		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1141 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1142 
1143 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1144 			mod_timer(&mrt->ipmr_expire_timer,
1145 				  c->_c.mfc_un.unres.expires);
1146 	}
1147 
1148 	/* See if we can append the packet */
1149 	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1150 		kfree_skb(skb);
1151 		err = -ENOBUFS;
1152 	} else {
1153 		if (dev) {
1154 			skb->dev = dev;
1155 			skb->skb_iif = dev->ifindex;
1156 		}
1157 		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1158 		err = 0;
1159 	}
1160 
1161 	spin_unlock_bh(&mfc_unres_lock);
1162 	return err;
1163 }
1164 
1165 /* MFC cache manipulation by user space mroute daemon */
1166 
1167 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1168 {
1169 	struct net *net = read_pnet(&mrt->net);
1170 	struct mfc_cache *c;
1171 
1172 	/* The entries are added/deleted only under RTNL */
1173 	rcu_read_lock();
1174 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1175 				   mfc->mfcc_mcastgrp.s_addr, parent);
1176 	rcu_read_unlock();
1177 	if (!c)
1178 		return -ENOENT;
1179 	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1180 	list_del_rcu(&c->_c.list);
1181 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1182 	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1183 	mr_cache_put(&c->_c);
1184 
1185 	return 0;
1186 }
1187 
1188 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1189 			struct mfcctl *mfc, int mrtsock, int parent)
1190 {
1191 	struct mfc_cache *uc, *c;
1192 	struct mr_mfc *_uc;
1193 	bool found;
1194 	int ret;
1195 
1196 	if (mfc->mfcc_parent >= MAXVIFS)
1197 		return -ENFILE;
1198 
1199 	/* The entries are added/deleted only under RTNL */
1200 	rcu_read_lock();
1201 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1202 				   mfc->mfcc_mcastgrp.s_addr, parent);
1203 	rcu_read_unlock();
1204 	if (c) {
1205 		write_lock_bh(&mrt_lock);
1206 		c->_c.mfc_parent = mfc->mfcc_parent;
1207 		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1208 		if (!mrtsock)
1209 			c->_c.mfc_flags |= MFC_STATIC;
1210 		write_unlock_bh(&mrt_lock);
1211 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1212 					      mrt->id);
1213 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1214 		return 0;
1215 	}
1216 
1217 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1218 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1219 		return -EINVAL;
1220 
1221 	c = ipmr_cache_alloc();
1222 	if (!c)
1223 		return -ENOMEM;
1224 
1225 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1226 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1227 	c->_c.mfc_parent = mfc->mfcc_parent;
1228 	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1229 	if (!mrtsock)
1230 		c->_c.mfc_flags |= MFC_STATIC;
1231 
1232 	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1233 				  ipmr_rht_params);
1234 	if (ret) {
1235 		pr_err("ipmr: rhtable insert error %d\n", ret);
1236 		ipmr_cache_free(c);
1237 		return ret;
1238 	}
1239 	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1240 	/* Check to see if we resolved a queued list. If so we
1241 	 * need to send on the frames and tidy up.
1242 	 */
1243 	found = false;
1244 	spin_lock_bh(&mfc_unres_lock);
1245 	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1246 		uc = (struct mfc_cache *)_uc;
1247 		if (uc->mfc_origin == c->mfc_origin &&
1248 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1249 			list_del(&_uc->list);
1250 			atomic_dec(&mrt->cache_resolve_queue_len);
1251 			found = true;
1252 			break;
1253 		}
1254 	}
1255 	if (list_empty(&mrt->mfc_unres_queue))
1256 		del_timer(&mrt->ipmr_expire_timer);
1257 	spin_unlock_bh(&mfc_unres_lock);
1258 
1259 	if (found) {
1260 		ipmr_cache_resolve(net, mrt, uc, c);
1261 		ipmr_cache_free(uc);
1262 	}
1263 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1264 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1265 	return 0;
1266 }
1267 
1268 /* Close the multicast socket, and clear the vif tables etc */
1269 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1270 {
1271 	struct net *net = read_pnet(&mrt->net);
1272 	struct mr_mfc *c, *tmp;
1273 	struct mfc_cache *cache;
1274 	LIST_HEAD(list);
1275 	int i;
1276 
1277 	/* Shut down all active vif entries */
1278 	if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1279 		for (i = 0; i < mrt->maxvif; i++) {
1280 			if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1281 			     !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1282 			    (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1283 				continue;
1284 			vif_delete(mrt, i, 0, &list);
1285 		}
1286 		unregister_netdevice_many(&list);
1287 	}
1288 
1289 	/* Wipe the cache */
1290 	if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1291 		list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1292 			if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1293 			    (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1294 				continue;
1295 			rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1296 			list_del_rcu(&c->list);
1297 			cache = (struct mfc_cache *)c;
1298 			call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1299 						      mrt->id);
1300 			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1301 			mr_cache_put(c);
1302 		}
1303 	}
1304 
1305 	if (flags & MRT_FLUSH_MFC) {
1306 		if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1307 			spin_lock_bh(&mfc_unres_lock);
1308 			list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1309 				list_del(&c->list);
1310 				cache = (struct mfc_cache *)c;
1311 				mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1312 				ipmr_destroy_unres(mrt, cache);
1313 			}
1314 			spin_unlock_bh(&mfc_unres_lock);
1315 		}
1316 	}
1317 }
1318 
1319 /* called from ip_ra_control(), before an RCU grace period,
1320  * we don't need to call synchronize_rcu() here
1321  */
1322 static void mrtsock_destruct(struct sock *sk)
1323 {
1324 	struct net *net = sock_net(sk);
1325 	struct mr_table *mrt;
1326 
1327 	rtnl_lock();
1328 	ipmr_for_each_table(mrt, net) {
1329 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1330 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1331 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1332 						    NETCONFA_MC_FORWARDING,
1333 						    NETCONFA_IFINDEX_ALL,
1334 						    net->ipv4.devconf_all);
1335 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1336 			mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1337 		}
1338 	}
1339 	rtnl_unlock();
1340 }
1341 
1342 /* Socket options and virtual interface manipulation. The whole
1343  * virtual interface system is a complete heap, but unfortunately
1344  * that's how BSD mrouted happens to think. Maybe one day with a proper
1345  * MOSPF/PIM router set up we can clean this up.
1346  */
1347 
1348 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1349 			 unsigned int optlen)
1350 {
1351 	struct net *net = sock_net(sk);
1352 	int val, ret = 0, parent = 0;
1353 	struct mr_table *mrt;
1354 	struct vifctl vif;
1355 	struct mfcctl mfc;
1356 	bool do_wrvifwhole;
1357 	u32 uval;
1358 
1359 	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1360 	rtnl_lock();
1361 	if (sk->sk_type != SOCK_RAW ||
1362 	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1363 		ret = -EOPNOTSUPP;
1364 		goto out_unlock;
1365 	}
1366 
1367 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1368 	if (!mrt) {
1369 		ret = -ENOENT;
1370 		goto out_unlock;
1371 	}
1372 	if (optname != MRT_INIT) {
1373 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1374 		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1375 			ret = -EACCES;
1376 			goto out_unlock;
1377 		}
1378 	}
1379 
1380 	switch (optname) {
1381 	case MRT_INIT:
1382 		if (optlen != sizeof(int)) {
1383 			ret = -EINVAL;
1384 			break;
1385 		}
1386 		if (rtnl_dereference(mrt->mroute_sk)) {
1387 			ret = -EADDRINUSE;
1388 			break;
1389 		}
1390 
1391 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1392 		if (ret == 0) {
1393 			rcu_assign_pointer(mrt->mroute_sk, sk);
1394 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1395 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1396 						    NETCONFA_MC_FORWARDING,
1397 						    NETCONFA_IFINDEX_ALL,
1398 						    net->ipv4.devconf_all);
1399 		}
1400 		break;
1401 	case MRT_DONE:
1402 		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1403 			ret = -EACCES;
1404 		} else {
1405 			/* We need to unlock here because mrtsock_destruct takes
1406 			 * care of rtnl itself and we can't change that due to
1407 			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1408 			 */
1409 			rtnl_unlock();
1410 			ret = ip_ra_control(sk, 0, NULL);
1411 			goto out;
1412 		}
1413 		break;
1414 	case MRT_ADD_VIF:
1415 	case MRT_DEL_VIF:
1416 		if (optlen != sizeof(vif)) {
1417 			ret = -EINVAL;
1418 			break;
1419 		}
1420 		if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1421 			ret = -EFAULT;
1422 			break;
1423 		}
1424 		if (vif.vifc_vifi >= MAXVIFS) {
1425 			ret = -ENFILE;
1426 			break;
1427 		}
1428 		if (optname == MRT_ADD_VIF) {
1429 			ret = vif_add(net, mrt, &vif,
1430 				      sk == rtnl_dereference(mrt->mroute_sk));
1431 		} else {
1432 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1433 		}
1434 		break;
1435 	/* Manipulate the forwarding caches. These live
1436 	 * in a sort of kernel/user symbiosis.
1437 	 */
1438 	case MRT_ADD_MFC:
1439 	case MRT_DEL_MFC:
1440 		parent = -1;
1441 		fallthrough;
1442 	case MRT_ADD_MFC_PROXY:
1443 	case MRT_DEL_MFC_PROXY:
1444 		if (optlen != sizeof(mfc)) {
1445 			ret = -EINVAL;
1446 			break;
1447 		}
1448 		if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1449 			ret = -EFAULT;
1450 			break;
1451 		}
1452 		if (parent == 0)
1453 			parent = mfc.mfcc_parent;
1454 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1455 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1456 		else
1457 			ret = ipmr_mfc_add(net, mrt, &mfc,
1458 					   sk == rtnl_dereference(mrt->mroute_sk),
1459 					   parent);
1460 		break;
1461 	case MRT_FLUSH:
1462 		if (optlen != sizeof(val)) {
1463 			ret = -EINVAL;
1464 			break;
1465 		}
1466 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1467 			ret = -EFAULT;
1468 			break;
1469 		}
1470 		mroute_clean_tables(mrt, val);
1471 		break;
1472 	/* Control PIM assert. */
1473 	case MRT_ASSERT:
1474 		if (optlen != sizeof(val)) {
1475 			ret = -EINVAL;
1476 			break;
1477 		}
1478 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1479 			ret = -EFAULT;
1480 			break;
1481 		}
1482 		mrt->mroute_do_assert = val;
1483 		break;
1484 	case MRT_PIM:
1485 		if (!ipmr_pimsm_enabled()) {
1486 			ret = -ENOPROTOOPT;
1487 			break;
1488 		}
1489 		if (optlen != sizeof(val)) {
1490 			ret = -EINVAL;
1491 			break;
1492 		}
1493 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1494 			ret = -EFAULT;
1495 			break;
1496 		}
1497 
1498 		do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1499 		val = !!val;
1500 		if (val != mrt->mroute_do_pim) {
1501 			mrt->mroute_do_pim = val;
1502 			mrt->mroute_do_assert = val;
1503 			mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1504 		}
1505 		break;
1506 	case MRT_TABLE:
1507 		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1508 			ret = -ENOPROTOOPT;
1509 			break;
1510 		}
1511 		if (optlen != sizeof(uval)) {
1512 			ret = -EINVAL;
1513 			break;
1514 		}
1515 		if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1516 			ret = -EFAULT;
1517 			break;
1518 		}
1519 
1520 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1521 			ret = -EBUSY;
1522 		} else {
1523 			mrt = ipmr_new_table(net, uval);
1524 			if (IS_ERR(mrt))
1525 				ret = PTR_ERR(mrt);
1526 			else
1527 				raw_sk(sk)->ipmr_table = uval;
1528 		}
1529 		break;
1530 	/* Spurious command, or MRT_VERSION which you cannot set. */
1531 	default:
1532 		ret = -ENOPROTOOPT;
1533 	}
1534 out_unlock:
1535 	rtnl_unlock();
1536 out:
1537 	return ret;
1538 }
1539 
1540 /* Getsock opt support for the multicast routing system. */
1541 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1542 {
1543 	int olr;
1544 	int val;
1545 	struct net *net = sock_net(sk);
1546 	struct mr_table *mrt;
1547 
1548 	if (sk->sk_type != SOCK_RAW ||
1549 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1550 		return -EOPNOTSUPP;
1551 
1552 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1553 	if (!mrt)
1554 		return -ENOENT;
1555 
1556 	switch (optname) {
1557 	case MRT_VERSION:
1558 		val = 0x0305;
1559 		break;
1560 	case MRT_PIM:
1561 		if (!ipmr_pimsm_enabled())
1562 			return -ENOPROTOOPT;
1563 		val = mrt->mroute_do_pim;
1564 		break;
1565 	case MRT_ASSERT:
1566 		val = mrt->mroute_do_assert;
1567 		break;
1568 	default:
1569 		return -ENOPROTOOPT;
1570 	}
1571 
1572 	if (get_user(olr, optlen))
1573 		return -EFAULT;
1574 	olr = min_t(unsigned int, olr, sizeof(int));
1575 	if (olr < 0)
1576 		return -EINVAL;
1577 	if (put_user(olr, optlen))
1578 		return -EFAULT;
1579 	if (copy_to_user(optval, &val, olr))
1580 		return -EFAULT;
1581 	return 0;
1582 }
1583 
1584 /* The IP multicast ioctl support routines. */
1585 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1586 {
1587 	struct sioc_sg_req sr;
1588 	struct sioc_vif_req vr;
1589 	struct vif_device *vif;
1590 	struct mfc_cache *c;
1591 	struct net *net = sock_net(sk);
1592 	struct mr_table *mrt;
1593 
1594 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1595 	if (!mrt)
1596 		return -ENOENT;
1597 
1598 	switch (cmd) {
1599 	case SIOCGETVIFCNT:
1600 		if (copy_from_user(&vr, arg, sizeof(vr)))
1601 			return -EFAULT;
1602 		if (vr.vifi >= mrt->maxvif)
1603 			return -EINVAL;
1604 		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1605 		read_lock(&mrt_lock);
1606 		vif = &mrt->vif_table[vr.vifi];
1607 		if (VIF_EXISTS(mrt, vr.vifi)) {
1608 			vr.icount = vif->pkt_in;
1609 			vr.ocount = vif->pkt_out;
1610 			vr.ibytes = vif->bytes_in;
1611 			vr.obytes = vif->bytes_out;
1612 			read_unlock(&mrt_lock);
1613 
1614 			if (copy_to_user(arg, &vr, sizeof(vr)))
1615 				return -EFAULT;
1616 			return 0;
1617 		}
1618 		read_unlock(&mrt_lock);
1619 		return -EADDRNOTAVAIL;
1620 	case SIOCGETSGCNT:
1621 		if (copy_from_user(&sr, arg, sizeof(sr)))
1622 			return -EFAULT;
1623 
1624 		rcu_read_lock();
1625 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1626 		if (c) {
1627 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1628 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1629 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1630 			rcu_read_unlock();
1631 
1632 			if (copy_to_user(arg, &sr, sizeof(sr)))
1633 				return -EFAULT;
1634 			return 0;
1635 		}
1636 		rcu_read_unlock();
1637 		return -EADDRNOTAVAIL;
1638 	default:
1639 		return -ENOIOCTLCMD;
1640 	}
1641 }
1642 
1643 #ifdef CONFIG_COMPAT
1644 struct compat_sioc_sg_req {
1645 	struct in_addr src;
1646 	struct in_addr grp;
1647 	compat_ulong_t pktcnt;
1648 	compat_ulong_t bytecnt;
1649 	compat_ulong_t wrong_if;
1650 };
1651 
1652 struct compat_sioc_vif_req {
1653 	vifi_t	vifi;		/* Which iface */
1654 	compat_ulong_t icount;
1655 	compat_ulong_t ocount;
1656 	compat_ulong_t ibytes;
1657 	compat_ulong_t obytes;
1658 };
1659 
1660 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1661 {
1662 	struct compat_sioc_sg_req sr;
1663 	struct compat_sioc_vif_req vr;
1664 	struct vif_device *vif;
1665 	struct mfc_cache *c;
1666 	struct net *net = sock_net(sk);
1667 	struct mr_table *mrt;
1668 
1669 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1670 	if (!mrt)
1671 		return -ENOENT;
1672 
1673 	switch (cmd) {
1674 	case SIOCGETVIFCNT:
1675 		if (copy_from_user(&vr, arg, sizeof(vr)))
1676 			return -EFAULT;
1677 		if (vr.vifi >= mrt->maxvif)
1678 			return -EINVAL;
1679 		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1680 		read_lock(&mrt_lock);
1681 		vif = &mrt->vif_table[vr.vifi];
1682 		if (VIF_EXISTS(mrt, vr.vifi)) {
1683 			vr.icount = vif->pkt_in;
1684 			vr.ocount = vif->pkt_out;
1685 			vr.ibytes = vif->bytes_in;
1686 			vr.obytes = vif->bytes_out;
1687 			read_unlock(&mrt_lock);
1688 
1689 			if (copy_to_user(arg, &vr, sizeof(vr)))
1690 				return -EFAULT;
1691 			return 0;
1692 		}
1693 		read_unlock(&mrt_lock);
1694 		return -EADDRNOTAVAIL;
1695 	case SIOCGETSGCNT:
1696 		if (copy_from_user(&sr, arg, sizeof(sr)))
1697 			return -EFAULT;
1698 
1699 		rcu_read_lock();
1700 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1701 		if (c) {
1702 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1703 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1704 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1705 			rcu_read_unlock();
1706 
1707 			if (copy_to_user(arg, &sr, sizeof(sr)))
1708 				return -EFAULT;
1709 			return 0;
1710 		}
1711 		rcu_read_unlock();
1712 		return -EADDRNOTAVAIL;
1713 	default:
1714 		return -ENOIOCTLCMD;
1715 	}
1716 }
1717 #endif
1718 
1719 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1720 {
1721 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1722 	struct net *net = dev_net(dev);
1723 	struct mr_table *mrt;
1724 	struct vif_device *v;
1725 	int ct;
1726 
1727 	if (event != NETDEV_UNREGISTER)
1728 		return NOTIFY_DONE;
1729 
1730 	ipmr_for_each_table(mrt, net) {
1731 		v = &mrt->vif_table[0];
1732 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1733 			if (v->dev == dev)
1734 				vif_delete(mrt, ct, 1, NULL);
1735 		}
1736 	}
1737 	return NOTIFY_DONE;
1738 }
1739 
1740 static struct notifier_block ip_mr_notifier = {
1741 	.notifier_call = ipmr_device_event,
1742 };
1743 
1744 /* Encapsulate a packet by attaching a valid IPIP header to it.
1745  * This avoids tunnel drivers and other mess and gives us the speed so
1746  * important for multicast video.
1747  */
1748 static void ip_encap(struct net *net, struct sk_buff *skb,
1749 		     __be32 saddr, __be32 daddr)
1750 {
1751 	struct iphdr *iph;
1752 	const struct iphdr *old_iph = ip_hdr(skb);
1753 
1754 	skb_push(skb, sizeof(struct iphdr));
1755 	skb->transport_header = skb->network_header;
1756 	skb_reset_network_header(skb);
1757 	iph = ip_hdr(skb);
1758 
1759 	iph->version	=	4;
1760 	iph->tos	=	old_iph->tos;
1761 	iph->ttl	=	old_iph->ttl;
1762 	iph->frag_off	=	0;
1763 	iph->daddr	=	daddr;
1764 	iph->saddr	=	saddr;
1765 	iph->protocol	=	IPPROTO_IPIP;
1766 	iph->ihl	=	5;
1767 	iph->tot_len	=	htons(skb->len);
1768 	ip_select_ident(net, skb, NULL);
1769 	ip_send_check(iph);
1770 
1771 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1772 	nf_reset_ct(skb);
1773 }
1774 
1775 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1776 				      struct sk_buff *skb)
1777 {
1778 	struct ip_options *opt = &(IPCB(skb)->opt);
1779 
1780 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1781 	IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1782 
1783 	if (unlikely(opt->optlen))
1784 		ip_forward_options(skb);
1785 
1786 	return dst_output(net, sk, skb);
1787 }
1788 
1789 #ifdef CONFIG_NET_SWITCHDEV
1790 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1791 				   int in_vifi, int out_vifi)
1792 {
1793 	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1794 	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1795 
1796 	if (!skb->offload_l3_fwd_mark)
1797 		return false;
1798 	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1799 		return false;
1800 	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1801 					&in_vif->dev_parent_id);
1802 }
1803 #else
1804 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1805 				   int in_vifi, int out_vifi)
1806 {
1807 	return false;
1808 }
1809 #endif
1810 
1811 /* Processing handlers for ipmr_forward */
1812 
1813 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1814 			    int in_vifi, struct sk_buff *skb, int vifi)
1815 {
1816 	const struct iphdr *iph = ip_hdr(skb);
1817 	struct vif_device *vif = &mrt->vif_table[vifi];
1818 	struct net_device *dev;
1819 	struct rtable *rt;
1820 	struct flowi4 fl4;
1821 	int    encap = 0;
1822 
1823 	if (!vif->dev)
1824 		goto out_free;
1825 
1826 	if (vif->flags & VIFF_REGISTER) {
1827 		vif->pkt_out++;
1828 		vif->bytes_out += skb->len;
1829 		vif->dev->stats.tx_bytes += skb->len;
1830 		vif->dev->stats.tx_packets++;
1831 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1832 		goto out_free;
1833 	}
1834 
1835 	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1836 		goto out_free;
1837 
1838 	if (vif->flags & VIFF_TUNNEL) {
1839 		rt = ip_route_output_ports(net, &fl4, NULL,
1840 					   vif->remote, vif->local,
1841 					   0, 0,
1842 					   IPPROTO_IPIP,
1843 					   RT_TOS(iph->tos), vif->link);
1844 		if (IS_ERR(rt))
1845 			goto out_free;
1846 		encap = sizeof(struct iphdr);
1847 	} else {
1848 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1849 					   0, 0,
1850 					   IPPROTO_IPIP,
1851 					   RT_TOS(iph->tos), vif->link);
1852 		if (IS_ERR(rt))
1853 			goto out_free;
1854 	}
1855 
1856 	dev = rt->dst.dev;
1857 
1858 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1859 		/* Do not fragment multicasts. Alas, IPv4 does not
1860 		 * allow to send ICMP, so that packets will disappear
1861 		 * to blackhole.
1862 		 */
1863 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1864 		ip_rt_put(rt);
1865 		goto out_free;
1866 	}
1867 
1868 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1869 
1870 	if (skb_cow(skb, encap)) {
1871 		ip_rt_put(rt);
1872 		goto out_free;
1873 	}
1874 
1875 	vif->pkt_out++;
1876 	vif->bytes_out += skb->len;
1877 
1878 	skb_dst_drop(skb);
1879 	skb_dst_set(skb, &rt->dst);
1880 	ip_decrease_ttl(ip_hdr(skb));
1881 
1882 	/* FIXME: forward and output firewalls used to be called here.
1883 	 * What do we do with netfilter? -- RR
1884 	 */
1885 	if (vif->flags & VIFF_TUNNEL) {
1886 		ip_encap(net, skb, vif->local, vif->remote);
1887 		/* FIXME: extra output firewall step used to be here. --RR */
1888 		vif->dev->stats.tx_packets++;
1889 		vif->dev->stats.tx_bytes += skb->len;
1890 	}
1891 
1892 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1893 
1894 	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1895 	 * not only before forwarding, but after forwarding on all output
1896 	 * interfaces. It is clear, if mrouter runs a multicasting
1897 	 * program, it should receive packets not depending to what interface
1898 	 * program is joined.
1899 	 * If we will not make it, the program will have to join on all
1900 	 * interfaces. On the other hand, multihoming host (or router, but
1901 	 * not mrouter) cannot join to more than one interface - it will
1902 	 * result in receiving multiple packets.
1903 	 */
1904 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1905 		net, NULL, skb, skb->dev, dev,
1906 		ipmr_forward_finish);
1907 	return;
1908 
1909 out_free:
1910 	kfree_skb(skb);
1911 }
1912 
1913 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1914 {
1915 	int ct;
1916 
1917 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1918 		if (mrt->vif_table[ct].dev == dev)
1919 			break;
1920 	}
1921 	return ct;
1922 }
1923 
1924 /* "local" means that we should preserve one skb (for local delivery) */
1925 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1926 			  struct net_device *dev, struct sk_buff *skb,
1927 			  struct mfc_cache *c, int local)
1928 {
1929 	int true_vifi = ipmr_find_vif(mrt, dev);
1930 	int psend = -1;
1931 	int vif, ct;
1932 
1933 	vif = c->_c.mfc_parent;
1934 	c->_c.mfc_un.res.pkt++;
1935 	c->_c.mfc_un.res.bytes += skb->len;
1936 	c->_c.mfc_un.res.lastuse = jiffies;
1937 
1938 	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1939 		struct mfc_cache *cache_proxy;
1940 
1941 		/* For an (*,G) entry, we only check that the incoming
1942 		 * interface is part of the static tree.
1943 		 */
1944 		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1945 		if (cache_proxy &&
1946 		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1947 			goto forward;
1948 	}
1949 
1950 	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1951 	if (mrt->vif_table[vif].dev != dev) {
1952 		if (rt_is_output_route(skb_rtable(skb))) {
1953 			/* It is our own packet, looped back.
1954 			 * Very complicated situation...
1955 			 *
1956 			 * The best workaround until routing daemons will be
1957 			 * fixed is not to redistribute packet, if it was
1958 			 * send through wrong interface. It means, that
1959 			 * multicast applications WILL NOT work for
1960 			 * (S,G), which have default multicast route pointing
1961 			 * to wrong oif. In any case, it is not a good
1962 			 * idea to use multicasting applications on router.
1963 			 */
1964 			goto dont_forward;
1965 		}
1966 
1967 		c->_c.mfc_un.res.wrong_if++;
1968 
1969 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1970 		    /* pimsm uses asserts, when switching from RPT to SPT,
1971 		     * so that we cannot check that packet arrived on an oif.
1972 		     * It is bad, but otherwise we would need to move pretty
1973 		     * large chunk of pimd to kernel. Ough... --ANK
1974 		     */
1975 		    (mrt->mroute_do_pim ||
1976 		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
1977 		    time_after(jiffies,
1978 			       c->_c.mfc_un.res.last_assert +
1979 			       MFC_ASSERT_THRESH)) {
1980 			c->_c.mfc_un.res.last_assert = jiffies;
1981 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1982 			if (mrt->mroute_do_wrvifwhole)
1983 				ipmr_cache_report(mrt, skb, true_vifi,
1984 						  IGMPMSG_WRVIFWHOLE);
1985 		}
1986 		goto dont_forward;
1987 	}
1988 
1989 forward:
1990 	mrt->vif_table[vif].pkt_in++;
1991 	mrt->vif_table[vif].bytes_in += skb->len;
1992 
1993 	/* Forward the frame */
1994 	if (c->mfc_origin == htonl(INADDR_ANY) &&
1995 	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
1996 		if (true_vifi >= 0 &&
1997 		    true_vifi != c->_c.mfc_parent &&
1998 		    ip_hdr(skb)->ttl >
1999 				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2000 			/* It's an (*,*) entry and the packet is not coming from
2001 			 * the upstream: forward the packet to the upstream
2002 			 * only.
2003 			 */
2004 			psend = c->_c.mfc_parent;
2005 			goto last_forward;
2006 		}
2007 		goto dont_forward;
2008 	}
2009 	for (ct = c->_c.mfc_un.res.maxvif - 1;
2010 	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2011 		/* For (*,G) entry, don't forward to the incoming interface */
2012 		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2013 		     ct != true_vifi) &&
2014 		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2015 			if (psend != -1) {
2016 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2017 
2018 				if (skb2)
2019 					ipmr_queue_xmit(net, mrt, true_vifi,
2020 							skb2, psend);
2021 			}
2022 			psend = ct;
2023 		}
2024 	}
2025 last_forward:
2026 	if (psend != -1) {
2027 		if (local) {
2028 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2029 
2030 			if (skb2)
2031 				ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2032 						psend);
2033 		} else {
2034 			ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2035 			return;
2036 		}
2037 	}
2038 
2039 dont_forward:
2040 	if (!local)
2041 		kfree_skb(skb);
2042 }
2043 
2044 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2045 {
2046 	struct rtable *rt = skb_rtable(skb);
2047 	struct iphdr *iph = ip_hdr(skb);
2048 	struct flowi4 fl4 = {
2049 		.daddr = iph->daddr,
2050 		.saddr = iph->saddr,
2051 		.flowi4_tos = RT_TOS(iph->tos),
2052 		.flowi4_oif = (rt_is_output_route(rt) ?
2053 			       skb->dev->ifindex : 0),
2054 		.flowi4_iif = (rt_is_output_route(rt) ?
2055 			       LOOPBACK_IFINDEX :
2056 			       skb->dev->ifindex),
2057 		.flowi4_mark = skb->mark,
2058 	};
2059 	struct mr_table *mrt;
2060 	int err;
2061 
2062 	err = ipmr_fib_lookup(net, &fl4, &mrt);
2063 	if (err)
2064 		return ERR_PTR(err);
2065 	return mrt;
2066 }
2067 
2068 /* Multicast packets for forwarding arrive here
2069  * Called with rcu_read_lock();
2070  */
2071 int ip_mr_input(struct sk_buff *skb)
2072 {
2073 	struct mfc_cache *cache;
2074 	struct net *net = dev_net(skb->dev);
2075 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2076 	struct mr_table *mrt;
2077 	struct net_device *dev;
2078 
2079 	/* skb->dev passed in is the loX master dev for vrfs.
2080 	 * As there are no vifs associated with loopback devices,
2081 	 * get the proper interface that does have a vif associated with it.
2082 	 */
2083 	dev = skb->dev;
2084 	if (netif_is_l3_master(skb->dev)) {
2085 		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2086 		if (!dev) {
2087 			kfree_skb(skb);
2088 			return -ENODEV;
2089 		}
2090 	}
2091 
2092 	/* Packet is looped back after forward, it should not be
2093 	 * forwarded second time, but still can be delivered locally.
2094 	 */
2095 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2096 		goto dont_forward;
2097 
2098 	mrt = ipmr_rt_fib_lookup(net, skb);
2099 	if (IS_ERR(mrt)) {
2100 		kfree_skb(skb);
2101 		return PTR_ERR(mrt);
2102 	}
2103 	if (!local) {
2104 		if (IPCB(skb)->opt.router_alert) {
2105 			if (ip_call_ra_chain(skb))
2106 				return 0;
2107 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2108 			/* IGMPv1 (and broken IGMPv2 implementations sort of
2109 			 * Cisco IOS <= 11.2(8)) do not put router alert
2110 			 * option to IGMP packets destined to routable
2111 			 * groups. It is very bad, because it means
2112 			 * that we can forward NO IGMP messages.
2113 			 */
2114 			struct sock *mroute_sk;
2115 
2116 			mroute_sk = rcu_dereference(mrt->mroute_sk);
2117 			if (mroute_sk) {
2118 				nf_reset_ct(skb);
2119 				raw_rcv(mroute_sk, skb);
2120 				return 0;
2121 			}
2122 		}
2123 	}
2124 
2125 	/* already under rcu_read_lock() */
2126 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2127 	if (!cache) {
2128 		int vif = ipmr_find_vif(mrt, dev);
2129 
2130 		if (vif >= 0)
2131 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2132 						    vif);
2133 	}
2134 
2135 	/* No usable cache entry */
2136 	if (!cache) {
2137 		int vif;
2138 
2139 		if (local) {
2140 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2141 			ip_local_deliver(skb);
2142 			if (!skb2)
2143 				return -ENOBUFS;
2144 			skb = skb2;
2145 		}
2146 
2147 		read_lock(&mrt_lock);
2148 		vif = ipmr_find_vif(mrt, dev);
2149 		if (vif >= 0) {
2150 			int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2151 			read_unlock(&mrt_lock);
2152 
2153 			return err2;
2154 		}
2155 		read_unlock(&mrt_lock);
2156 		kfree_skb(skb);
2157 		return -ENODEV;
2158 	}
2159 
2160 	read_lock(&mrt_lock);
2161 	ip_mr_forward(net, mrt, dev, skb, cache, local);
2162 	read_unlock(&mrt_lock);
2163 
2164 	if (local)
2165 		return ip_local_deliver(skb);
2166 
2167 	return 0;
2168 
2169 dont_forward:
2170 	if (local)
2171 		return ip_local_deliver(skb);
2172 	kfree_skb(skb);
2173 	return 0;
2174 }
2175 
2176 #ifdef CONFIG_IP_PIMSM_V1
2177 /* Handle IGMP messages of PIMv1 */
2178 int pim_rcv_v1(struct sk_buff *skb)
2179 {
2180 	struct igmphdr *pim;
2181 	struct net *net = dev_net(skb->dev);
2182 	struct mr_table *mrt;
2183 
2184 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2185 		goto drop;
2186 
2187 	pim = igmp_hdr(skb);
2188 
2189 	mrt = ipmr_rt_fib_lookup(net, skb);
2190 	if (IS_ERR(mrt))
2191 		goto drop;
2192 	if (!mrt->mroute_do_pim ||
2193 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2194 		goto drop;
2195 
2196 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2197 drop:
2198 		kfree_skb(skb);
2199 	}
2200 	return 0;
2201 }
2202 #endif
2203 
2204 #ifdef CONFIG_IP_PIMSM_V2
2205 static int pim_rcv(struct sk_buff *skb)
2206 {
2207 	struct pimreghdr *pim;
2208 	struct net *net = dev_net(skb->dev);
2209 	struct mr_table *mrt;
2210 
2211 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2212 		goto drop;
2213 
2214 	pim = (struct pimreghdr *)skb_transport_header(skb);
2215 	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2216 	    (pim->flags & PIM_NULL_REGISTER) ||
2217 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2218 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2219 		goto drop;
2220 
2221 	mrt = ipmr_rt_fib_lookup(net, skb);
2222 	if (IS_ERR(mrt))
2223 		goto drop;
2224 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2225 drop:
2226 		kfree_skb(skb);
2227 	}
2228 	return 0;
2229 }
2230 #endif
2231 
2232 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2233 		   __be32 saddr, __be32 daddr,
2234 		   struct rtmsg *rtm, u32 portid)
2235 {
2236 	struct mfc_cache *cache;
2237 	struct mr_table *mrt;
2238 	int err;
2239 
2240 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2241 	if (!mrt)
2242 		return -ENOENT;
2243 
2244 	rcu_read_lock();
2245 	cache = ipmr_cache_find(mrt, saddr, daddr);
2246 	if (!cache && skb->dev) {
2247 		int vif = ipmr_find_vif(mrt, skb->dev);
2248 
2249 		if (vif >= 0)
2250 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2251 	}
2252 	if (!cache) {
2253 		struct sk_buff *skb2;
2254 		struct iphdr *iph;
2255 		struct net_device *dev;
2256 		int vif = -1;
2257 
2258 		dev = skb->dev;
2259 		read_lock(&mrt_lock);
2260 		if (dev)
2261 			vif = ipmr_find_vif(mrt, dev);
2262 		if (vif < 0) {
2263 			read_unlock(&mrt_lock);
2264 			rcu_read_unlock();
2265 			return -ENODEV;
2266 		}
2267 
2268 		skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2269 		if (!skb2) {
2270 			read_unlock(&mrt_lock);
2271 			rcu_read_unlock();
2272 			return -ENOMEM;
2273 		}
2274 
2275 		NETLINK_CB(skb2).portid = portid;
2276 		skb_push(skb2, sizeof(struct iphdr));
2277 		skb_reset_network_header(skb2);
2278 		iph = ip_hdr(skb2);
2279 		iph->ihl = sizeof(struct iphdr) >> 2;
2280 		iph->saddr = saddr;
2281 		iph->daddr = daddr;
2282 		iph->version = 0;
2283 		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2284 		read_unlock(&mrt_lock);
2285 		rcu_read_unlock();
2286 		return err;
2287 	}
2288 
2289 	read_lock(&mrt_lock);
2290 	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2291 	read_unlock(&mrt_lock);
2292 	rcu_read_unlock();
2293 	return err;
2294 }
2295 
2296 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2297 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2298 			    int flags)
2299 {
2300 	struct nlmsghdr *nlh;
2301 	struct rtmsg *rtm;
2302 	int err;
2303 
2304 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2305 	if (!nlh)
2306 		return -EMSGSIZE;
2307 
2308 	rtm = nlmsg_data(nlh);
2309 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2310 	rtm->rtm_dst_len  = 32;
2311 	rtm->rtm_src_len  = 32;
2312 	rtm->rtm_tos      = 0;
2313 	rtm->rtm_table    = mrt->id;
2314 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2315 		goto nla_put_failure;
2316 	rtm->rtm_type     = RTN_MULTICAST;
2317 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2318 	if (c->_c.mfc_flags & MFC_STATIC)
2319 		rtm->rtm_protocol = RTPROT_STATIC;
2320 	else
2321 		rtm->rtm_protocol = RTPROT_MROUTED;
2322 	rtm->rtm_flags    = 0;
2323 
2324 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2325 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2326 		goto nla_put_failure;
2327 	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2328 	/* do not break the dump if cache is unresolved */
2329 	if (err < 0 && err != -ENOENT)
2330 		goto nla_put_failure;
2331 
2332 	nlmsg_end(skb, nlh);
2333 	return 0;
2334 
2335 nla_put_failure:
2336 	nlmsg_cancel(skb, nlh);
2337 	return -EMSGSIZE;
2338 }
2339 
2340 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2341 			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2342 			     int flags)
2343 {
2344 	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2345 				cmd, flags);
2346 }
2347 
2348 static size_t mroute_msgsize(bool unresolved, int maxvif)
2349 {
2350 	size_t len =
2351 		NLMSG_ALIGN(sizeof(struct rtmsg))
2352 		+ nla_total_size(4)	/* RTA_TABLE */
2353 		+ nla_total_size(4)	/* RTA_SRC */
2354 		+ nla_total_size(4)	/* RTA_DST */
2355 		;
2356 
2357 	if (!unresolved)
2358 		len = len
2359 		      + nla_total_size(4)	/* RTA_IIF */
2360 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2361 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2362 						/* RTA_MFC_STATS */
2363 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2364 		;
2365 
2366 	return len;
2367 }
2368 
2369 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2370 				 int cmd)
2371 {
2372 	struct net *net = read_pnet(&mrt->net);
2373 	struct sk_buff *skb;
2374 	int err = -ENOBUFS;
2375 
2376 	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2377 				       mrt->maxvif),
2378 			GFP_ATOMIC);
2379 	if (!skb)
2380 		goto errout;
2381 
2382 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2383 	if (err < 0)
2384 		goto errout;
2385 
2386 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2387 	return;
2388 
2389 errout:
2390 	kfree_skb(skb);
2391 	if (err < 0)
2392 		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2393 }
2394 
2395 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2396 {
2397 	size_t len =
2398 		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2399 		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2400 		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2401 		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2402 		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2403 		+ nla_total_size(4)	/* IPMRA_CREPORT_TABLE */
2404 					/* IPMRA_CREPORT_PKT */
2405 		+ nla_total_size(payloadlen)
2406 		;
2407 
2408 	return len;
2409 }
2410 
2411 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2412 {
2413 	struct net *net = read_pnet(&mrt->net);
2414 	struct nlmsghdr *nlh;
2415 	struct rtgenmsg *rtgenm;
2416 	struct igmpmsg *msg;
2417 	struct sk_buff *skb;
2418 	struct nlattr *nla;
2419 	int payloadlen;
2420 
2421 	payloadlen = pkt->len - sizeof(struct igmpmsg);
2422 	msg = (struct igmpmsg *)skb_network_header(pkt);
2423 
2424 	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2425 	if (!skb)
2426 		goto errout;
2427 
2428 	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2429 			sizeof(struct rtgenmsg), 0);
2430 	if (!nlh)
2431 		goto errout;
2432 	rtgenm = nlmsg_data(nlh);
2433 	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2434 	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2435 	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2436 	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2437 			    msg->im_src.s_addr) ||
2438 	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2439 			    msg->im_dst.s_addr) ||
2440 	    nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2441 		goto nla_put_failure;
2442 
2443 	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2444 	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2445 				  nla_data(nla), payloadlen))
2446 		goto nla_put_failure;
2447 
2448 	nlmsg_end(skb, nlh);
2449 
2450 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2451 	return;
2452 
2453 nla_put_failure:
2454 	nlmsg_cancel(skb, nlh);
2455 errout:
2456 	kfree_skb(skb);
2457 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2458 }
2459 
2460 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2461 				       const struct nlmsghdr *nlh,
2462 				       struct nlattr **tb,
2463 				       struct netlink_ext_ack *extack)
2464 {
2465 	struct rtmsg *rtm;
2466 	int i, err;
2467 
2468 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2469 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2470 		return -EINVAL;
2471 	}
2472 
2473 	if (!netlink_strict_get_check(skb))
2474 		return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2475 					      rtm_ipv4_policy, extack);
2476 
2477 	rtm = nlmsg_data(nlh);
2478 	if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2479 	    (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2480 	    rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2481 	    rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2482 		NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2483 		return -EINVAL;
2484 	}
2485 
2486 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2487 					    rtm_ipv4_policy, extack);
2488 	if (err)
2489 		return err;
2490 
2491 	if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2492 	    (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2493 		NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2494 		return -EINVAL;
2495 	}
2496 
2497 	for (i = 0; i <= RTA_MAX; i++) {
2498 		if (!tb[i])
2499 			continue;
2500 
2501 		switch (i) {
2502 		case RTA_SRC:
2503 		case RTA_DST:
2504 		case RTA_TABLE:
2505 			break;
2506 		default:
2507 			NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2508 			return -EINVAL;
2509 		}
2510 	}
2511 
2512 	return 0;
2513 }
2514 
2515 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2516 			     struct netlink_ext_ack *extack)
2517 {
2518 	struct net *net = sock_net(in_skb->sk);
2519 	struct nlattr *tb[RTA_MAX + 1];
2520 	struct sk_buff *skb = NULL;
2521 	struct mfc_cache *cache;
2522 	struct mr_table *mrt;
2523 	__be32 src, grp;
2524 	u32 tableid;
2525 	int err;
2526 
2527 	err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2528 	if (err < 0)
2529 		goto errout;
2530 
2531 	src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2532 	grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2533 	tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2534 
2535 	mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2536 	if (!mrt) {
2537 		err = -ENOENT;
2538 		goto errout_free;
2539 	}
2540 
2541 	/* entries are added/deleted only under RTNL */
2542 	rcu_read_lock();
2543 	cache = ipmr_cache_find(mrt, src, grp);
2544 	rcu_read_unlock();
2545 	if (!cache) {
2546 		err = -ENOENT;
2547 		goto errout_free;
2548 	}
2549 
2550 	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2551 	if (!skb) {
2552 		err = -ENOBUFS;
2553 		goto errout_free;
2554 	}
2555 
2556 	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2557 			       nlh->nlmsg_seq, cache,
2558 			       RTM_NEWROUTE, 0);
2559 	if (err < 0)
2560 		goto errout_free;
2561 
2562 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2563 
2564 errout:
2565 	return err;
2566 
2567 errout_free:
2568 	kfree_skb(skb);
2569 	goto errout;
2570 }
2571 
2572 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2573 {
2574 	struct fib_dump_filter filter = {};
2575 	int err;
2576 
2577 	if (cb->strict_check) {
2578 		err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2579 					    &filter, cb);
2580 		if (err < 0)
2581 			return err;
2582 	}
2583 
2584 	if (filter.table_id) {
2585 		struct mr_table *mrt;
2586 
2587 		mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id);
2588 		if (!mrt) {
2589 			if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2590 				return skb->len;
2591 
2592 			NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2593 			return -ENOENT;
2594 		}
2595 		err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2596 				    &mfc_unres_lock, &filter);
2597 		return skb->len ? : err;
2598 	}
2599 
2600 	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2601 				_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2602 }
2603 
2604 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2605 	[RTA_SRC]	= { .type = NLA_U32 },
2606 	[RTA_DST]	= { .type = NLA_U32 },
2607 	[RTA_IIF]	= { .type = NLA_U32 },
2608 	[RTA_TABLE]	= { .type = NLA_U32 },
2609 	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2610 };
2611 
2612 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2613 {
2614 	switch (rtm_protocol) {
2615 	case RTPROT_STATIC:
2616 	case RTPROT_MROUTED:
2617 		return true;
2618 	}
2619 	return false;
2620 }
2621 
2622 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2623 {
2624 	struct rtnexthop *rtnh = nla_data(nla);
2625 	int remaining = nla_len(nla), vifi = 0;
2626 
2627 	while (rtnh_ok(rtnh, remaining)) {
2628 		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2629 		if (++vifi == MAXVIFS)
2630 			break;
2631 		rtnh = rtnh_next(rtnh, &remaining);
2632 	}
2633 
2634 	return remaining > 0 ? -EINVAL : vifi;
2635 }
2636 
2637 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2638 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2639 			    struct mfcctl *mfcc, int *mrtsock,
2640 			    struct mr_table **mrtret,
2641 			    struct netlink_ext_ack *extack)
2642 {
2643 	struct net_device *dev = NULL;
2644 	u32 tblid = RT_TABLE_DEFAULT;
2645 	struct mr_table *mrt;
2646 	struct nlattr *attr;
2647 	struct rtmsg *rtm;
2648 	int ret, rem;
2649 
2650 	ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2651 					rtm_ipmr_policy, extack);
2652 	if (ret < 0)
2653 		goto out;
2654 	rtm = nlmsg_data(nlh);
2655 
2656 	ret = -EINVAL;
2657 	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2658 	    rtm->rtm_type != RTN_MULTICAST ||
2659 	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2660 	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2661 		goto out;
2662 
2663 	memset(mfcc, 0, sizeof(*mfcc));
2664 	mfcc->mfcc_parent = -1;
2665 	ret = 0;
2666 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2667 		switch (nla_type(attr)) {
2668 		case RTA_SRC:
2669 			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2670 			break;
2671 		case RTA_DST:
2672 			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2673 			break;
2674 		case RTA_IIF:
2675 			dev = __dev_get_by_index(net, nla_get_u32(attr));
2676 			if (!dev) {
2677 				ret = -ENODEV;
2678 				goto out;
2679 			}
2680 			break;
2681 		case RTA_MULTIPATH:
2682 			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2683 				ret = -EINVAL;
2684 				goto out;
2685 			}
2686 			break;
2687 		case RTA_PREFSRC:
2688 			ret = 1;
2689 			break;
2690 		case RTA_TABLE:
2691 			tblid = nla_get_u32(attr);
2692 			break;
2693 		}
2694 	}
2695 	mrt = ipmr_get_table(net, tblid);
2696 	if (!mrt) {
2697 		ret = -ENOENT;
2698 		goto out;
2699 	}
2700 	*mrtret = mrt;
2701 	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2702 	if (dev)
2703 		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2704 
2705 out:
2706 	return ret;
2707 }
2708 
2709 /* takes care of both newroute and delroute */
2710 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2711 			  struct netlink_ext_ack *extack)
2712 {
2713 	struct net *net = sock_net(skb->sk);
2714 	int ret, mrtsock, parent;
2715 	struct mr_table *tbl;
2716 	struct mfcctl mfcc;
2717 
2718 	mrtsock = 0;
2719 	tbl = NULL;
2720 	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2721 	if (ret < 0)
2722 		return ret;
2723 
2724 	parent = ret ? mfcc.mfcc_parent : -1;
2725 	if (nlh->nlmsg_type == RTM_NEWROUTE)
2726 		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2727 	else
2728 		return ipmr_mfc_delete(tbl, &mfcc, parent);
2729 }
2730 
2731 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2732 {
2733 	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2734 
2735 	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2736 	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2737 	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2738 			mrt->mroute_reg_vif_num) ||
2739 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2740 		       mrt->mroute_do_assert) ||
2741 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2742 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2743 		       mrt->mroute_do_wrvifwhole))
2744 		return false;
2745 
2746 	return true;
2747 }
2748 
2749 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2750 {
2751 	struct nlattr *vif_nest;
2752 	struct vif_device *vif;
2753 
2754 	/* if the VIF doesn't exist just continue */
2755 	if (!VIF_EXISTS(mrt, vifid))
2756 		return true;
2757 
2758 	vif = &mrt->vif_table[vifid];
2759 	vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2760 	if (!vif_nest)
2761 		return false;
2762 	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2763 	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2764 	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2765 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2766 			      IPMRA_VIFA_PAD) ||
2767 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2768 			      IPMRA_VIFA_PAD) ||
2769 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2770 			      IPMRA_VIFA_PAD) ||
2771 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2772 			      IPMRA_VIFA_PAD) ||
2773 	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2774 	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2775 		nla_nest_cancel(skb, vif_nest);
2776 		return false;
2777 	}
2778 	nla_nest_end(skb, vif_nest);
2779 
2780 	return true;
2781 }
2782 
2783 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2784 			       struct netlink_ext_ack *extack)
2785 {
2786 	struct ifinfomsg *ifm;
2787 
2788 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2789 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2790 		return -EINVAL;
2791 	}
2792 
2793 	if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2794 		NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2795 		return -EINVAL;
2796 	}
2797 
2798 	ifm = nlmsg_data(nlh);
2799 	if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2800 	    ifm->ifi_change || ifm->ifi_index) {
2801 		NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2802 		return -EINVAL;
2803 	}
2804 
2805 	return 0;
2806 }
2807 
2808 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2809 {
2810 	struct net *net = sock_net(skb->sk);
2811 	struct nlmsghdr *nlh = NULL;
2812 	unsigned int t = 0, s_t;
2813 	unsigned int e = 0, s_e;
2814 	struct mr_table *mrt;
2815 
2816 	if (cb->strict_check) {
2817 		int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2818 
2819 		if (err < 0)
2820 			return err;
2821 	}
2822 
2823 	s_t = cb->args[0];
2824 	s_e = cb->args[1];
2825 
2826 	ipmr_for_each_table(mrt, net) {
2827 		struct nlattr *vifs, *af;
2828 		struct ifinfomsg *hdr;
2829 		u32 i;
2830 
2831 		if (t < s_t)
2832 			goto skip_table;
2833 		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2834 				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2835 				sizeof(*hdr), NLM_F_MULTI);
2836 		if (!nlh)
2837 			break;
2838 
2839 		hdr = nlmsg_data(nlh);
2840 		memset(hdr, 0, sizeof(*hdr));
2841 		hdr->ifi_family = RTNL_FAMILY_IPMR;
2842 
2843 		af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2844 		if (!af) {
2845 			nlmsg_cancel(skb, nlh);
2846 			goto out;
2847 		}
2848 
2849 		if (!ipmr_fill_table(mrt, skb)) {
2850 			nlmsg_cancel(skb, nlh);
2851 			goto out;
2852 		}
2853 
2854 		vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2855 		if (!vifs) {
2856 			nla_nest_end(skb, af);
2857 			nlmsg_end(skb, nlh);
2858 			goto out;
2859 		}
2860 		for (i = 0; i < mrt->maxvif; i++) {
2861 			if (e < s_e)
2862 				goto skip_entry;
2863 			if (!ipmr_fill_vif(mrt, i, skb)) {
2864 				nla_nest_end(skb, vifs);
2865 				nla_nest_end(skb, af);
2866 				nlmsg_end(skb, nlh);
2867 				goto out;
2868 			}
2869 skip_entry:
2870 			e++;
2871 		}
2872 		s_e = 0;
2873 		e = 0;
2874 		nla_nest_end(skb, vifs);
2875 		nla_nest_end(skb, af);
2876 		nlmsg_end(skb, nlh);
2877 skip_table:
2878 		t++;
2879 	}
2880 
2881 out:
2882 	cb->args[1] = e;
2883 	cb->args[0] = t;
2884 
2885 	return skb->len;
2886 }
2887 
2888 #ifdef CONFIG_PROC_FS
2889 /* The /proc interfaces to multicast routing :
2890  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2891  */
2892 
2893 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2894 	__acquires(mrt_lock)
2895 {
2896 	struct mr_vif_iter *iter = seq->private;
2897 	struct net *net = seq_file_net(seq);
2898 	struct mr_table *mrt;
2899 
2900 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2901 	if (!mrt)
2902 		return ERR_PTR(-ENOENT);
2903 
2904 	iter->mrt = mrt;
2905 
2906 	read_lock(&mrt_lock);
2907 	return mr_vif_seq_start(seq, pos);
2908 }
2909 
2910 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2911 	__releases(mrt_lock)
2912 {
2913 	read_unlock(&mrt_lock);
2914 }
2915 
2916 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2917 {
2918 	struct mr_vif_iter *iter = seq->private;
2919 	struct mr_table *mrt = iter->mrt;
2920 
2921 	if (v == SEQ_START_TOKEN) {
2922 		seq_puts(seq,
2923 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2924 	} else {
2925 		const struct vif_device *vif = v;
2926 		const char *name =  vif->dev ?
2927 				    vif->dev->name : "none";
2928 
2929 		seq_printf(seq,
2930 			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2931 			   vif - mrt->vif_table,
2932 			   name, vif->bytes_in, vif->pkt_in,
2933 			   vif->bytes_out, vif->pkt_out,
2934 			   vif->flags, vif->local, vif->remote);
2935 	}
2936 	return 0;
2937 }
2938 
2939 static const struct seq_operations ipmr_vif_seq_ops = {
2940 	.start = ipmr_vif_seq_start,
2941 	.next  = mr_vif_seq_next,
2942 	.stop  = ipmr_vif_seq_stop,
2943 	.show  = ipmr_vif_seq_show,
2944 };
2945 
2946 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2947 {
2948 	struct net *net = seq_file_net(seq);
2949 	struct mr_table *mrt;
2950 
2951 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2952 	if (!mrt)
2953 		return ERR_PTR(-ENOENT);
2954 
2955 	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2956 }
2957 
2958 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2959 {
2960 	int n;
2961 
2962 	if (v == SEQ_START_TOKEN) {
2963 		seq_puts(seq,
2964 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2965 	} else {
2966 		const struct mfc_cache *mfc = v;
2967 		const struct mr_mfc_iter *it = seq->private;
2968 		const struct mr_table *mrt = it->mrt;
2969 
2970 		seq_printf(seq, "%08X %08X %-3hd",
2971 			   (__force u32) mfc->mfc_mcastgrp,
2972 			   (__force u32) mfc->mfc_origin,
2973 			   mfc->_c.mfc_parent);
2974 
2975 		if (it->cache != &mrt->mfc_unres_queue) {
2976 			seq_printf(seq, " %8lu %8lu %8lu",
2977 				   mfc->_c.mfc_un.res.pkt,
2978 				   mfc->_c.mfc_un.res.bytes,
2979 				   mfc->_c.mfc_un.res.wrong_if);
2980 			for (n = mfc->_c.mfc_un.res.minvif;
2981 			     n < mfc->_c.mfc_un.res.maxvif; n++) {
2982 				if (VIF_EXISTS(mrt, n) &&
2983 				    mfc->_c.mfc_un.res.ttls[n] < 255)
2984 					seq_printf(seq,
2985 					   " %2d:%-3d",
2986 					   n, mfc->_c.mfc_un.res.ttls[n]);
2987 			}
2988 		} else {
2989 			/* unresolved mfc_caches don't contain
2990 			 * pkt, bytes and wrong_if values
2991 			 */
2992 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2993 		}
2994 		seq_putc(seq, '\n');
2995 	}
2996 	return 0;
2997 }
2998 
2999 static const struct seq_operations ipmr_mfc_seq_ops = {
3000 	.start = ipmr_mfc_seq_start,
3001 	.next  = mr_mfc_seq_next,
3002 	.stop  = mr_mfc_seq_stop,
3003 	.show  = ipmr_mfc_seq_show,
3004 };
3005 #endif
3006 
3007 #ifdef CONFIG_IP_PIMSM_V2
3008 static const struct net_protocol pim_protocol = {
3009 	.handler	=	pim_rcv,
3010 };
3011 #endif
3012 
3013 static unsigned int ipmr_seq_read(struct net *net)
3014 {
3015 	ASSERT_RTNL();
3016 
3017 	return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3018 }
3019 
3020 static int ipmr_dump(struct net *net, struct notifier_block *nb,
3021 		     struct netlink_ext_ack *extack)
3022 {
3023 	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3024 		       ipmr_mr_table_iter, &mrt_lock, extack);
3025 }
3026 
3027 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3028 	.family		= RTNL_FAMILY_IPMR,
3029 	.fib_seq_read	= ipmr_seq_read,
3030 	.fib_dump	= ipmr_dump,
3031 	.owner		= THIS_MODULE,
3032 };
3033 
3034 static int __net_init ipmr_notifier_init(struct net *net)
3035 {
3036 	struct fib_notifier_ops *ops;
3037 
3038 	net->ipv4.ipmr_seq = 0;
3039 
3040 	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3041 	if (IS_ERR(ops))
3042 		return PTR_ERR(ops);
3043 	net->ipv4.ipmr_notifier_ops = ops;
3044 
3045 	return 0;
3046 }
3047 
3048 static void __net_exit ipmr_notifier_exit(struct net *net)
3049 {
3050 	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3051 	net->ipv4.ipmr_notifier_ops = NULL;
3052 }
3053 
3054 /* Setup for IP multicast routing */
3055 static int __net_init ipmr_net_init(struct net *net)
3056 {
3057 	int err;
3058 
3059 	err = ipmr_notifier_init(net);
3060 	if (err)
3061 		goto ipmr_notifier_fail;
3062 
3063 	err = ipmr_rules_init(net);
3064 	if (err < 0)
3065 		goto ipmr_rules_fail;
3066 
3067 #ifdef CONFIG_PROC_FS
3068 	err = -ENOMEM;
3069 	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3070 			sizeof(struct mr_vif_iter)))
3071 		goto proc_vif_fail;
3072 	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3073 			sizeof(struct mr_mfc_iter)))
3074 		goto proc_cache_fail;
3075 #endif
3076 	return 0;
3077 
3078 #ifdef CONFIG_PROC_FS
3079 proc_cache_fail:
3080 	remove_proc_entry("ip_mr_vif", net->proc_net);
3081 proc_vif_fail:
3082 	ipmr_rules_exit(net);
3083 #endif
3084 ipmr_rules_fail:
3085 	ipmr_notifier_exit(net);
3086 ipmr_notifier_fail:
3087 	return err;
3088 }
3089 
3090 static void __net_exit ipmr_net_exit(struct net *net)
3091 {
3092 #ifdef CONFIG_PROC_FS
3093 	remove_proc_entry("ip_mr_cache", net->proc_net);
3094 	remove_proc_entry("ip_mr_vif", net->proc_net);
3095 #endif
3096 	ipmr_notifier_exit(net);
3097 	ipmr_rules_exit(net);
3098 }
3099 
3100 static struct pernet_operations ipmr_net_ops = {
3101 	.init = ipmr_net_init,
3102 	.exit = ipmr_net_exit,
3103 };
3104 
3105 int __init ip_mr_init(void)
3106 {
3107 	int err;
3108 
3109 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
3110 				       sizeof(struct mfc_cache),
3111 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3112 				       NULL);
3113 
3114 	err = register_pernet_subsys(&ipmr_net_ops);
3115 	if (err)
3116 		goto reg_pernet_fail;
3117 
3118 	err = register_netdevice_notifier(&ip_mr_notifier);
3119 	if (err)
3120 		goto reg_notif_fail;
3121 #ifdef CONFIG_IP_PIMSM_V2
3122 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3123 		pr_err("%s: can't add PIM protocol\n", __func__);
3124 		err = -EAGAIN;
3125 		goto add_proto_fail;
3126 	}
3127 #endif
3128 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3129 		      ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3130 	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3131 		      ipmr_rtm_route, NULL, 0);
3132 	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3133 		      ipmr_rtm_route, NULL, 0);
3134 
3135 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3136 		      NULL, ipmr_rtm_dumplink, 0);
3137 	return 0;
3138 
3139 #ifdef CONFIG_IP_PIMSM_V2
3140 add_proto_fail:
3141 	unregister_netdevice_notifier(&ip_mr_notifier);
3142 #endif
3143 reg_notif_fail:
3144 	unregister_pernet_subsys(&ipmr_net_ops);
3145 reg_pernet_fail:
3146 	kmem_cache_destroy(mrt_cachep);
3147 	return err;
3148 }
3149