xref: /openbmc/linux/net/ipv4/ipmr.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  *	IP multicast routing support for mrouted 3.6/3.8
3  *
4  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *	  Linux Consultancy and Custom Driver Development
6  *
7  *	This program is free software; you can redistribute it and/or
8  *	modify it under the terms of the GNU General Public License
9  *	as published by the Free Software Foundation; either version
10  *	2 of the License, or (at your option) any later version.
11  *
12  *	Fixes:
13  *	Michael Chastain	:	Incorrect size of copying.
14  *	Alan Cox		:	Added the cache manager code
15  *	Alan Cox		:	Fixed the clone/copy bug and device race.
16  *	Mike McLagan		:	Routing by source
17  *	Malcolm Beattie		:	Buffer handling fixes.
18  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
19  *	SVR Anand		:	Fixed several multicast bugs and problems.
20  *	Alexey Kuznetsov	:	Status, optimisations and more.
21  *	Brad Parker		:	Better behaviour on mrouted upcall
22  *					overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
25  *					Relax this requirement to work with older peers.
26  *
27  */
28 
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 
70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
71 #define CONFIG_IP_PIMSM	1
72 #endif
73 
74 struct mr_table {
75 	struct list_head	list;
76 	possible_net_t		net;
77 	u32			id;
78 	struct sock __rcu	*mroute_sk;
79 	struct timer_list	ipmr_expire_timer;
80 	struct list_head	mfc_unres_queue;
81 	struct list_head	mfc_cache_array[MFC_LINES];
82 	struct vif_device	vif_table[MAXVIFS];
83 	int			maxvif;
84 	atomic_t		cache_resolve_queue_len;
85 	bool			mroute_do_assert;
86 	bool			mroute_do_pim;
87 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
88 	int			mroute_reg_vif_num;
89 #endif
90 };
91 
92 struct ipmr_rule {
93 	struct fib_rule		common;
94 };
95 
96 struct ipmr_result {
97 	struct mr_table		*mrt;
98 };
99 
100 /* Big lock, protecting vif table, mrt cache and mroute socket state.
101  * Note that the changes are semaphored via rtnl_lock.
102  */
103 
104 static DEFINE_RWLOCK(mrt_lock);
105 
106 /*
107  *	Multicast router control variables
108  */
109 
110 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
111 
112 /* Special spinlock for queue of unresolved entries */
113 static DEFINE_SPINLOCK(mfc_unres_lock);
114 
115 /* We return to original Alan's scheme. Hash table of resolved
116  * entries is changed only in process context and protected
117  * with weak lock mrt_lock. Queue of unresolved entries is protected
118  * with strong spinlock mfc_unres_lock.
119  *
120  * In this case data path is free of exclusive locks at all.
121  */
122 
123 static struct kmem_cache *mrt_cachep __read_mostly;
124 
125 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
126 static void ipmr_free_table(struct mr_table *mrt);
127 
128 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
129 			  struct sk_buff *skb, struct mfc_cache *cache,
130 			  int local);
131 static int ipmr_cache_report(struct mr_table *mrt,
132 			     struct sk_buff *pkt, vifi_t vifi, int assert);
133 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
134 			      struct mfc_cache *c, struct rtmsg *rtm);
135 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
136 				 int cmd);
137 static void mroute_clean_tables(struct mr_table *mrt);
138 static void ipmr_expire_process(unsigned long arg);
139 
140 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
141 #define ipmr_for_each_table(mrt, net) \
142 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
143 
144 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
145 {
146 	struct mr_table *mrt;
147 
148 	ipmr_for_each_table(mrt, net) {
149 		if (mrt->id == id)
150 			return mrt;
151 	}
152 	return NULL;
153 }
154 
155 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
156 			   struct mr_table **mrt)
157 {
158 	int err;
159 	struct ipmr_result res;
160 	struct fib_lookup_arg arg = {
161 		.result = &res,
162 		.flags = FIB_LOOKUP_NOREF,
163 	};
164 
165 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
166 			       flowi4_to_flowi(flp4), 0, &arg);
167 	if (err < 0)
168 		return err;
169 	*mrt = res.mrt;
170 	return 0;
171 }
172 
173 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
174 			    int flags, struct fib_lookup_arg *arg)
175 {
176 	struct ipmr_result *res = arg->result;
177 	struct mr_table *mrt;
178 
179 	switch (rule->action) {
180 	case FR_ACT_TO_TBL:
181 		break;
182 	case FR_ACT_UNREACHABLE:
183 		return -ENETUNREACH;
184 	case FR_ACT_PROHIBIT:
185 		return -EACCES;
186 	case FR_ACT_BLACKHOLE:
187 	default:
188 		return -EINVAL;
189 	}
190 
191 	mrt = ipmr_get_table(rule->fr_net, rule->table);
192 	if (!mrt)
193 		return -EAGAIN;
194 	res->mrt = mrt;
195 	return 0;
196 }
197 
198 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
199 {
200 	return 1;
201 }
202 
203 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
204 	FRA_GENERIC_POLICY,
205 };
206 
207 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
208 			       struct fib_rule_hdr *frh, struct nlattr **tb)
209 {
210 	return 0;
211 }
212 
213 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
214 			     struct nlattr **tb)
215 {
216 	return 1;
217 }
218 
219 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
220 			  struct fib_rule_hdr *frh)
221 {
222 	frh->dst_len = 0;
223 	frh->src_len = 0;
224 	frh->tos     = 0;
225 	return 0;
226 }
227 
228 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
229 	.family		= RTNL_FAMILY_IPMR,
230 	.rule_size	= sizeof(struct ipmr_rule),
231 	.addr_size	= sizeof(u32),
232 	.action		= ipmr_rule_action,
233 	.match		= ipmr_rule_match,
234 	.configure	= ipmr_rule_configure,
235 	.compare	= ipmr_rule_compare,
236 	.fill		= ipmr_rule_fill,
237 	.nlgroup	= RTNLGRP_IPV4_RULE,
238 	.policy		= ipmr_rule_policy,
239 	.owner		= THIS_MODULE,
240 };
241 
242 static int __net_init ipmr_rules_init(struct net *net)
243 {
244 	struct fib_rules_ops *ops;
245 	struct mr_table *mrt;
246 	int err;
247 
248 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
249 	if (IS_ERR(ops))
250 		return PTR_ERR(ops);
251 
252 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
253 
254 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
255 	if (!mrt) {
256 		err = -ENOMEM;
257 		goto err1;
258 	}
259 
260 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
261 	if (err < 0)
262 		goto err2;
263 
264 	net->ipv4.mr_rules_ops = ops;
265 	return 0;
266 
267 err2:
268 	ipmr_free_table(mrt);
269 err1:
270 	fib_rules_unregister(ops);
271 	return err;
272 }
273 
274 static void __net_exit ipmr_rules_exit(struct net *net)
275 {
276 	struct mr_table *mrt, *next;
277 
278 	rtnl_lock();
279 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
280 		list_del(&mrt->list);
281 		ipmr_free_table(mrt);
282 	}
283 	fib_rules_unregister(net->ipv4.mr_rules_ops);
284 	rtnl_unlock();
285 }
286 #else
287 #define ipmr_for_each_table(mrt, net) \
288 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
289 
290 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
291 {
292 	return net->ipv4.mrt;
293 }
294 
295 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
296 			   struct mr_table **mrt)
297 {
298 	*mrt = net->ipv4.mrt;
299 	return 0;
300 }
301 
302 static int __net_init ipmr_rules_init(struct net *net)
303 {
304 	net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
305 	return net->ipv4.mrt ? 0 : -ENOMEM;
306 }
307 
308 static void __net_exit ipmr_rules_exit(struct net *net)
309 {
310 	rtnl_lock();
311 	ipmr_free_table(net->ipv4.mrt);
312 	net->ipv4.mrt = NULL;
313 	rtnl_unlock();
314 }
315 #endif
316 
317 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
318 {
319 	struct mr_table *mrt;
320 	unsigned int i;
321 
322 	mrt = ipmr_get_table(net, id);
323 	if (mrt)
324 		return mrt;
325 
326 	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
327 	if (!mrt)
328 		return NULL;
329 	write_pnet(&mrt->net, net);
330 	mrt->id = id;
331 
332 	/* Forwarding cache */
333 	for (i = 0; i < MFC_LINES; i++)
334 		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
335 
336 	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
337 
338 	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
339 		    (unsigned long)mrt);
340 
341 #ifdef CONFIG_IP_PIMSM
342 	mrt->mroute_reg_vif_num = -1;
343 #endif
344 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
345 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
346 #endif
347 	return mrt;
348 }
349 
350 static void ipmr_free_table(struct mr_table *mrt)
351 {
352 	del_timer_sync(&mrt->ipmr_expire_timer);
353 	mroute_clean_tables(mrt);
354 	kfree(mrt);
355 }
356 
357 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
358 
359 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
360 {
361 	struct net *net = dev_net(dev);
362 
363 	dev_close(dev);
364 
365 	dev = __dev_get_by_name(net, "tunl0");
366 	if (dev) {
367 		const struct net_device_ops *ops = dev->netdev_ops;
368 		struct ifreq ifr;
369 		struct ip_tunnel_parm p;
370 
371 		memset(&p, 0, sizeof(p));
372 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
373 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
374 		p.iph.version = 4;
375 		p.iph.ihl = 5;
376 		p.iph.protocol = IPPROTO_IPIP;
377 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
378 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
379 
380 		if (ops->ndo_do_ioctl) {
381 			mm_segment_t oldfs = get_fs();
382 
383 			set_fs(KERNEL_DS);
384 			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
385 			set_fs(oldfs);
386 		}
387 	}
388 }
389 
390 static
391 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
392 {
393 	struct net_device  *dev;
394 
395 	dev = __dev_get_by_name(net, "tunl0");
396 
397 	if (dev) {
398 		const struct net_device_ops *ops = dev->netdev_ops;
399 		int err;
400 		struct ifreq ifr;
401 		struct ip_tunnel_parm p;
402 		struct in_device  *in_dev;
403 
404 		memset(&p, 0, sizeof(p));
405 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
406 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
407 		p.iph.version = 4;
408 		p.iph.ihl = 5;
409 		p.iph.protocol = IPPROTO_IPIP;
410 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
411 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
412 
413 		if (ops->ndo_do_ioctl) {
414 			mm_segment_t oldfs = get_fs();
415 
416 			set_fs(KERNEL_DS);
417 			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
418 			set_fs(oldfs);
419 		} else {
420 			err = -EOPNOTSUPP;
421 		}
422 		dev = NULL;
423 
424 		if (err == 0 &&
425 		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
426 			dev->flags |= IFF_MULTICAST;
427 
428 			in_dev = __in_dev_get_rtnl(dev);
429 			if (!in_dev)
430 				goto failure;
431 
432 			ipv4_devconf_setall(in_dev);
433 			neigh_parms_data_state_setall(in_dev->arp_parms);
434 			IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
435 
436 			if (dev_open(dev))
437 				goto failure;
438 			dev_hold(dev);
439 		}
440 	}
441 	return dev;
442 
443 failure:
444 	/* allow the register to be completed before unregistering. */
445 	rtnl_unlock();
446 	rtnl_lock();
447 
448 	unregister_netdevice(dev);
449 	return NULL;
450 }
451 
452 #ifdef CONFIG_IP_PIMSM
453 
454 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
455 {
456 	struct net *net = dev_net(dev);
457 	struct mr_table *mrt;
458 	struct flowi4 fl4 = {
459 		.flowi4_oif	= dev->ifindex,
460 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
461 		.flowi4_mark	= skb->mark,
462 	};
463 	int err;
464 
465 	err = ipmr_fib_lookup(net, &fl4, &mrt);
466 	if (err < 0) {
467 		kfree_skb(skb);
468 		return err;
469 	}
470 
471 	read_lock(&mrt_lock);
472 	dev->stats.tx_bytes += skb->len;
473 	dev->stats.tx_packets++;
474 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
475 	read_unlock(&mrt_lock);
476 	kfree_skb(skb);
477 	return NETDEV_TX_OK;
478 }
479 
480 static int reg_vif_get_iflink(const struct net_device *dev)
481 {
482 	return 0;
483 }
484 
485 static const struct net_device_ops reg_vif_netdev_ops = {
486 	.ndo_start_xmit	= reg_vif_xmit,
487 	.ndo_get_iflink = reg_vif_get_iflink,
488 };
489 
490 static void reg_vif_setup(struct net_device *dev)
491 {
492 	dev->type		= ARPHRD_PIMREG;
493 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
494 	dev->flags		= IFF_NOARP;
495 	dev->netdev_ops		= &reg_vif_netdev_ops;
496 	dev->destructor		= free_netdev;
497 	dev->features		|= NETIF_F_NETNS_LOCAL;
498 }
499 
500 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
501 {
502 	struct net_device *dev;
503 	struct in_device *in_dev;
504 	char name[IFNAMSIZ];
505 
506 	if (mrt->id == RT_TABLE_DEFAULT)
507 		sprintf(name, "pimreg");
508 	else
509 		sprintf(name, "pimreg%u", mrt->id);
510 
511 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
512 
513 	if (!dev)
514 		return NULL;
515 
516 	dev_net_set(dev, net);
517 
518 	if (register_netdevice(dev)) {
519 		free_netdev(dev);
520 		return NULL;
521 	}
522 
523 	rcu_read_lock();
524 	in_dev = __in_dev_get_rcu(dev);
525 	if (!in_dev) {
526 		rcu_read_unlock();
527 		goto failure;
528 	}
529 
530 	ipv4_devconf_setall(in_dev);
531 	neigh_parms_data_state_setall(in_dev->arp_parms);
532 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
533 	rcu_read_unlock();
534 
535 	if (dev_open(dev))
536 		goto failure;
537 
538 	dev_hold(dev);
539 
540 	return dev;
541 
542 failure:
543 	/* allow the register to be completed before unregistering. */
544 	rtnl_unlock();
545 	rtnl_lock();
546 
547 	unregister_netdevice(dev);
548 	return NULL;
549 }
550 #endif
551 
552 /**
553  *	vif_delete - Delete a VIF entry
554  *	@notify: Set to 1, if the caller is a notifier_call
555  */
556 
557 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
558 		      struct list_head *head)
559 {
560 	struct vif_device *v;
561 	struct net_device *dev;
562 	struct in_device *in_dev;
563 
564 	if (vifi < 0 || vifi >= mrt->maxvif)
565 		return -EADDRNOTAVAIL;
566 
567 	v = &mrt->vif_table[vifi];
568 
569 	write_lock_bh(&mrt_lock);
570 	dev = v->dev;
571 	v->dev = NULL;
572 
573 	if (!dev) {
574 		write_unlock_bh(&mrt_lock);
575 		return -EADDRNOTAVAIL;
576 	}
577 
578 #ifdef CONFIG_IP_PIMSM
579 	if (vifi == mrt->mroute_reg_vif_num)
580 		mrt->mroute_reg_vif_num = -1;
581 #endif
582 
583 	if (vifi + 1 == mrt->maxvif) {
584 		int tmp;
585 
586 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
587 			if (VIF_EXISTS(mrt, tmp))
588 				break;
589 		}
590 		mrt->maxvif = tmp+1;
591 	}
592 
593 	write_unlock_bh(&mrt_lock);
594 
595 	dev_set_allmulti(dev, -1);
596 
597 	in_dev = __in_dev_get_rtnl(dev);
598 	if (in_dev) {
599 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
600 		inet_netconf_notify_devconf(dev_net(dev),
601 					    NETCONFA_MC_FORWARDING,
602 					    dev->ifindex, &in_dev->cnf);
603 		ip_rt_multicast_event(in_dev);
604 	}
605 
606 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
607 		unregister_netdevice_queue(dev, head);
608 
609 	dev_put(dev);
610 	return 0;
611 }
612 
613 static void ipmr_cache_free_rcu(struct rcu_head *head)
614 {
615 	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
616 
617 	kmem_cache_free(mrt_cachep, c);
618 }
619 
620 static inline void ipmr_cache_free(struct mfc_cache *c)
621 {
622 	call_rcu(&c->rcu, ipmr_cache_free_rcu);
623 }
624 
625 /* Destroy an unresolved cache entry, killing queued skbs
626  * and reporting error to netlink readers.
627  */
628 
629 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
630 {
631 	struct net *net = read_pnet(&mrt->net);
632 	struct sk_buff *skb;
633 	struct nlmsgerr *e;
634 
635 	atomic_dec(&mrt->cache_resolve_queue_len);
636 
637 	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
638 		if (ip_hdr(skb)->version == 0) {
639 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
640 			nlh->nlmsg_type = NLMSG_ERROR;
641 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
642 			skb_trim(skb, nlh->nlmsg_len);
643 			e = nlmsg_data(nlh);
644 			e->error = -ETIMEDOUT;
645 			memset(&e->msg, 0, sizeof(e->msg));
646 
647 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
648 		} else {
649 			kfree_skb(skb);
650 		}
651 	}
652 
653 	ipmr_cache_free(c);
654 }
655 
656 
657 /* Timer process for the unresolved queue. */
658 
659 static void ipmr_expire_process(unsigned long arg)
660 {
661 	struct mr_table *mrt = (struct mr_table *)arg;
662 	unsigned long now;
663 	unsigned long expires;
664 	struct mfc_cache *c, *next;
665 
666 	if (!spin_trylock(&mfc_unres_lock)) {
667 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
668 		return;
669 	}
670 
671 	if (list_empty(&mrt->mfc_unres_queue))
672 		goto out;
673 
674 	now = jiffies;
675 	expires = 10*HZ;
676 
677 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
678 		if (time_after(c->mfc_un.unres.expires, now)) {
679 			unsigned long interval = c->mfc_un.unres.expires - now;
680 			if (interval < expires)
681 				expires = interval;
682 			continue;
683 		}
684 
685 		list_del(&c->list);
686 		mroute_netlink_event(mrt, c, RTM_DELROUTE);
687 		ipmr_destroy_unres(mrt, c);
688 	}
689 
690 	if (!list_empty(&mrt->mfc_unres_queue))
691 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
692 
693 out:
694 	spin_unlock(&mfc_unres_lock);
695 }
696 
697 /* Fill oifs list. It is called under write locked mrt_lock. */
698 
699 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
700 				   unsigned char *ttls)
701 {
702 	int vifi;
703 
704 	cache->mfc_un.res.minvif = MAXVIFS;
705 	cache->mfc_un.res.maxvif = 0;
706 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
707 
708 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
709 		if (VIF_EXISTS(mrt, vifi) &&
710 		    ttls[vifi] && ttls[vifi] < 255) {
711 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
712 			if (cache->mfc_un.res.minvif > vifi)
713 				cache->mfc_un.res.minvif = vifi;
714 			if (cache->mfc_un.res.maxvif <= vifi)
715 				cache->mfc_un.res.maxvif = vifi + 1;
716 		}
717 	}
718 }
719 
720 static int vif_add(struct net *net, struct mr_table *mrt,
721 		   struct vifctl *vifc, int mrtsock)
722 {
723 	int vifi = vifc->vifc_vifi;
724 	struct vif_device *v = &mrt->vif_table[vifi];
725 	struct net_device *dev;
726 	struct in_device *in_dev;
727 	int err;
728 
729 	/* Is vif busy ? */
730 	if (VIF_EXISTS(mrt, vifi))
731 		return -EADDRINUSE;
732 
733 	switch (vifc->vifc_flags) {
734 #ifdef CONFIG_IP_PIMSM
735 	case VIFF_REGISTER:
736 		/*
737 		 * Special Purpose VIF in PIM
738 		 * All the packets will be sent to the daemon
739 		 */
740 		if (mrt->mroute_reg_vif_num >= 0)
741 			return -EADDRINUSE;
742 		dev = ipmr_reg_vif(net, mrt);
743 		if (!dev)
744 			return -ENOBUFS;
745 		err = dev_set_allmulti(dev, 1);
746 		if (err) {
747 			unregister_netdevice(dev);
748 			dev_put(dev);
749 			return err;
750 		}
751 		break;
752 #endif
753 	case VIFF_TUNNEL:
754 		dev = ipmr_new_tunnel(net, vifc);
755 		if (!dev)
756 			return -ENOBUFS;
757 		err = dev_set_allmulti(dev, 1);
758 		if (err) {
759 			ipmr_del_tunnel(dev, vifc);
760 			dev_put(dev);
761 			return err;
762 		}
763 		break;
764 
765 	case VIFF_USE_IFINDEX:
766 	case 0:
767 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
768 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
769 			if (dev && !__in_dev_get_rtnl(dev)) {
770 				dev_put(dev);
771 				return -EADDRNOTAVAIL;
772 			}
773 		} else {
774 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
775 		}
776 		if (!dev)
777 			return -EADDRNOTAVAIL;
778 		err = dev_set_allmulti(dev, 1);
779 		if (err) {
780 			dev_put(dev);
781 			return err;
782 		}
783 		break;
784 	default:
785 		return -EINVAL;
786 	}
787 
788 	in_dev = __in_dev_get_rtnl(dev);
789 	if (!in_dev) {
790 		dev_put(dev);
791 		return -EADDRNOTAVAIL;
792 	}
793 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
794 	inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
795 				    &in_dev->cnf);
796 	ip_rt_multicast_event(in_dev);
797 
798 	/* Fill in the VIF structures */
799 
800 	v->rate_limit = vifc->vifc_rate_limit;
801 	v->local = vifc->vifc_lcl_addr.s_addr;
802 	v->remote = vifc->vifc_rmt_addr.s_addr;
803 	v->flags = vifc->vifc_flags;
804 	if (!mrtsock)
805 		v->flags |= VIFF_STATIC;
806 	v->threshold = vifc->vifc_threshold;
807 	v->bytes_in = 0;
808 	v->bytes_out = 0;
809 	v->pkt_in = 0;
810 	v->pkt_out = 0;
811 	v->link = dev->ifindex;
812 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
813 		v->link = dev_get_iflink(dev);
814 
815 	/* And finish update writing critical data */
816 	write_lock_bh(&mrt_lock);
817 	v->dev = dev;
818 #ifdef CONFIG_IP_PIMSM
819 	if (v->flags & VIFF_REGISTER)
820 		mrt->mroute_reg_vif_num = vifi;
821 #endif
822 	if (vifi+1 > mrt->maxvif)
823 		mrt->maxvif = vifi+1;
824 	write_unlock_bh(&mrt_lock);
825 	return 0;
826 }
827 
828 /* called with rcu_read_lock() */
829 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
830 					 __be32 origin,
831 					 __be32 mcastgrp)
832 {
833 	int line = MFC_HASH(mcastgrp, origin);
834 	struct mfc_cache *c;
835 
836 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
837 		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
838 			return c;
839 	}
840 	return NULL;
841 }
842 
843 /* Look for a (*,*,oif) entry */
844 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
845 						    int vifi)
846 {
847 	int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
848 	struct mfc_cache *c;
849 
850 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
851 		if (c->mfc_origin == htonl(INADDR_ANY) &&
852 		    c->mfc_mcastgrp == htonl(INADDR_ANY) &&
853 		    c->mfc_un.res.ttls[vifi] < 255)
854 			return c;
855 
856 	return NULL;
857 }
858 
859 /* Look for a (*,G) entry */
860 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
861 					     __be32 mcastgrp, int vifi)
862 {
863 	int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
864 	struct mfc_cache *c, *proxy;
865 
866 	if (mcastgrp == htonl(INADDR_ANY))
867 		goto skip;
868 
869 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
870 		if (c->mfc_origin == htonl(INADDR_ANY) &&
871 		    c->mfc_mcastgrp == mcastgrp) {
872 			if (c->mfc_un.res.ttls[vifi] < 255)
873 				return c;
874 
875 			/* It's ok if the vifi is part of the static tree */
876 			proxy = ipmr_cache_find_any_parent(mrt,
877 							   c->mfc_parent);
878 			if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
879 				return c;
880 		}
881 
882 skip:
883 	return ipmr_cache_find_any_parent(mrt, vifi);
884 }
885 
886 /*
887  *	Allocate a multicast cache entry
888  */
889 static struct mfc_cache *ipmr_cache_alloc(void)
890 {
891 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
892 
893 	if (c)
894 		c->mfc_un.res.minvif = MAXVIFS;
895 	return c;
896 }
897 
898 static struct mfc_cache *ipmr_cache_alloc_unres(void)
899 {
900 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
901 
902 	if (c) {
903 		skb_queue_head_init(&c->mfc_un.unres.unresolved);
904 		c->mfc_un.unres.expires = jiffies + 10*HZ;
905 	}
906 	return c;
907 }
908 
909 /*
910  *	A cache entry has gone into a resolved state from queued
911  */
912 
913 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
914 			       struct mfc_cache *uc, struct mfc_cache *c)
915 {
916 	struct sk_buff *skb;
917 	struct nlmsgerr *e;
918 
919 	/* Play the pending entries through our router */
920 
921 	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
922 		if (ip_hdr(skb)->version == 0) {
923 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
924 
925 			if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
926 				nlh->nlmsg_len = skb_tail_pointer(skb) -
927 						 (u8 *)nlh;
928 			} else {
929 				nlh->nlmsg_type = NLMSG_ERROR;
930 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
931 				skb_trim(skb, nlh->nlmsg_len);
932 				e = nlmsg_data(nlh);
933 				e->error = -EMSGSIZE;
934 				memset(&e->msg, 0, sizeof(e->msg));
935 			}
936 
937 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
938 		} else {
939 			ip_mr_forward(net, mrt, skb, c, 0);
940 		}
941 	}
942 }
943 
944 /*
945  *	Bounce a cache query up to mrouted. We could use netlink for this but mrouted
946  *	expects the following bizarre scheme.
947  *
948  *	Called under mrt_lock.
949  */
950 
951 static int ipmr_cache_report(struct mr_table *mrt,
952 			     struct sk_buff *pkt, vifi_t vifi, int assert)
953 {
954 	struct sk_buff *skb;
955 	const int ihl = ip_hdrlen(pkt);
956 	struct igmphdr *igmp;
957 	struct igmpmsg *msg;
958 	struct sock *mroute_sk;
959 	int ret;
960 
961 #ifdef CONFIG_IP_PIMSM
962 	if (assert == IGMPMSG_WHOLEPKT)
963 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
964 	else
965 #endif
966 		skb = alloc_skb(128, GFP_ATOMIC);
967 
968 	if (!skb)
969 		return -ENOBUFS;
970 
971 #ifdef CONFIG_IP_PIMSM
972 	if (assert == IGMPMSG_WHOLEPKT) {
973 		/* Ugly, but we have no choice with this interface.
974 		 * Duplicate old header, fix ihl, length etc.
975 		 * And all this only to mangle msg->im_msgtype and
976 		 * to set msg->im_mbz to "mbz" :-)
977 		 */
978 		skb_push(skb, sizeof(struct iphdr));
979 		skb_reset_network_header(skb);
980 		skb_reset_transport_header(skb);
981 		msg = (struct igmpmsg *)skb_network_header(skb);
982 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
983 		msg->im_msgtype = IGMPMSG_WHOLEPKT;
984 		msg->im_mbz = 0;
985 		msg->im_vif = mrt->mroute_reg_vif_num;
986 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
987 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
988 					     sizeof(struct iphdr));
989 	} else
990 #endif
991 	{
992 
993 	/* Copy the IP header */
994 
995 	skb_set_network_header(skb, skb->len);
996 	skb_put(skb, ihl);
997 	skb_copy_to_linear_data(skb, pkt->data, ihl);
998 	ip_hdr(skb)->protocol = 0;	/* Flag to the kernel this is a route add */
999 	msg = (struct igmpmsg *)skb_network_header(skb);
1000 	msg->im_vif = vifi;
1001 	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1002 
1003 	/* Add our header */
1004 
1005 	igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
1006 	igmp->type	=
1007 	msg->im_msgtype = assert;
1008 	igmp->code	= 0;
1009 	ip_hdr(skb)->tot_len = htons(skb->len);		/* Fix the length */
1010 	skb->transport_header = skb->network_header;
1011 	}
1012 
1013 	rcu_read_lock();
1014 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1015 	if (!mroute_sk) {
1016 		rcu_read_unlock();
1017 		kfree_skb(skb);
1018 		return -EINVAL;
1019 	}
1020 
1021 	/* Deliver to mrouted */
1022 
1023 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1024 	rcu_read_unlock();
1025 	if (ret < 0) {
1026 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1027 		kfree_skb(skb);
1028 	}
1029 
1030 	return ret;
1031 }
1032 
1033 /*
1034  *	Queue a packet for resolution. It gets locked cache entry!
1035  */
1036 
1037 static int
1038 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
1039 {
1040 	bool found = false;
1041 	int err;
1042 	struct mfc_cache *c;
1043 	const struct iphdr *iph = ip_hdr(skb);
1044 
1045 	spin_lock_bh(&mfc_unres_lock);
1046 	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1047 		if (c->mfc_mcastgrp == iph->daddr &&
1048 		    c->mfc_origin == iph->saddr) {
1049 			found = true;
1050 			break;
1051 		}
1052 	}
1053 
1054 	if (!found) {
1055 		/* Create a new entry if allowable */
1056 
1057 		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1058 		    (c = ipmr_cache_alloc_unres()) == NULL) {
1059 			spin_unlock_bh(&mfc_unres_lock);
1060 
1061 			kfree_skb(skb);
1062 			return -ENOBUFS;
1063 		}
1064 
1065 		/* Fill in the new cache entry */
1066 
1067 		c->mfc_parent	= -1;
1068 		c->mfc_origin	= iph->saddr;
1069 		c->mfc_mcastgrp	= iph->daddr;
1070 
1071 		/* Reflect first query at mrouted. */
1072 
1073 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1074 		if (err < 0) {
1075 			/* If the report failed throw the cache entry
1076 			   out - Brad Parker
1077 			 */
1078 			spin_unlock_bh(&mfc_unres_lock);
1079 
1080 			ipmr_cache_free(c);
1081 			kfree_skb(skb);
1082 			return err;
1083 		}
1084 
1085 		atomic_inc(&mrt->cache_resolve_queue_len);
1086 		list_add(&c->list, &mrt->mfc_unres_queue);
1087 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1088 
1089 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1090 			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1091 	}
1092 
1093 	/* See if we can append the packet */
1094 
1095 	if (c->mfc_un.unres.unresolved.qlen > 3) {
1096 		kfree_skb(skb);
1097 		err = -ENOBUFS;
1098 	} else {
1099 		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1100 		err = 0;
1101 	}
1102 
1103 	spin_unlock_bh(&mfc_unres_lock);
1104 	return err;
1105 }
1106 
1107 /*
1108  *	MFC cache manipulation by user space mroute daemon
1109  */
1110 
1111 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1112 {
1113 	int line;
1114 	struct mfc_cache *c, *next;
1115 
1116 	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1117 
1118 	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1119 		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1120 		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1121 		    (parent == -1 || parent == c->mfc_parent)) {
1122 			list_del_rcu(&c->list);
1123 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1124 			ipmr_cache_free(c);
1125 			return 0;
1126 		}
1127 	}
1128 	return -ENOENT;
1129 }
1130 
1131 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1132 			struct mfcctl *mfc, int mrtsock, int parent)
1133 {
1134 	bool found = false;
1135 	int line;
1136 	struct mfc_cache *uc, *c;
1137 
1138 	if (mfc->mfcc_parent >= MAXVIFS)
1139 		return -ENFILE;
1140 
1141 	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1142 
1143 	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1144 		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1145 		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1146 		    (parent == -1 || parent == c->mfc_parent)) {
1147 			found = true;
1148 			break;
1149 		}
1150 	}
1151 
1152 	if (found) {
1153 		write_lock_bh(&mrt_lock);
1154 		c->mfc_parent = mfc->mfcc_parent;
1155 		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1156 		if (!mrtsock)
1157 			c->mfc_flags |= MFC_STATIC;
1158 		write_unlock_bh(&mrt_lock);
1159 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1160 		return 0;
1161 	}
1162 
1163 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1164 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1165 		return -EINVAL;
1166 
1167 	c = ipmr_cache_alloc();
1168 	if (!c)
1169 		return -ENOMEM;
1170 
1171 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1172 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1173 	c->mfc_parent = mfc->mfcc_parent;
1174 	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1175 	if (!mrtsock)
1176 		c->mfc_flags |= MFC_STATIC;
1177 
1178 	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1179 
1180 	/*
1181 	 *	Check to see if we resolved a queued list. If so we
1182 	 *	need to send on the frames and tidy up.
1183 	 */
1184 	found = false;
1185 	spin_lock_bh(&mfc_unres_lock);
1186 	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1187 		if (uc->mfc_origin == c->mfc_origin &&
1188 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1189 			list_del(&uc->list);
1190 			atomic_dec(&mrt->cache_resolve_queue_len);
1191 			found = true;
1192 			break;
1193 		}
1194 	}
1195 	if (list_empty(&mrt->mfc_unres_queue))
1196 		del_timer(&mrt->ipmr_expire_timer);
1197 	spin_unlock_bh(&mfc_unres_lock);
1198 
1199 	if (found) {
1200 		ipmr_cache_resolve(net, mrt, uc, c);
1201 		ipmr_cache_free(uc);
1202 	}
1203 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1204 	return 0;
1205 }
1206 
1207 /*
1208  *	Close the multicast socket, and clear the vif tables etc
1209  */
1210 
1211 static void mroute_clean_tables(struct mr_table *mrt)
1212 {
1213 	int i;
1214 	LIST_HEAD(list);
1215 	struct mfc_cache *c, *next;
1216 
1217 	/* Shut down all active vif entries */
1218 
1219 	for (i = 0; i < mrt->maxvif; i++) {
1220 		if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1221 			vif_delete(mrt, i, 0, &list);
1222 	}
1223 	unregister_netdevice_many(&list);
1224 
1225 	/* Wipe the cache */
1226 
1227 	for (i = 0; i < MFC_LINES; i++) {
1228 		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1229 			if (c->mfc_flags & MFC_STATIC)
1230 				continue;
1231 			list_del_rcu(&c->list);
1232 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1233 			ipmr_cache_free(c);
1234 		}
1235 	}
1236 
1237 	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1238 		spin_lock_bh(&mfc_unres_lock);
1239 		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1240 			list_del(&c->list);
1241 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1242 			ipmr_destroy_unres(mrt, c);
1243 		}
1244 		spin_unlock_bh(&mfc_unres_lock);
1245 	}
1246 }
1247 
1248 /* called from ip_ra_control(), before an RCU grace period,
1249  * we dont need to call synchronize_rcu() here
1250  */
1251 static void mrtsock_destruct(struct sock *sk)
1252 {
1253 	struct net *net = sock_net(sk);
1254 	struct mr_table *mrt;
1255 
1256 	rtnl_lock();
1257 	ipmr_for_each_table(mrt, net) {
1258 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1259 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1260 			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1261 						    NETCONFA_IFINDEX_ALL,
1262 						    net->ipv4.devconf_all);
1263 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1264 			mroute_clean_tables(mrt);
1265 		}
1266 	}
1267 	rtnl_unlock();
1268 }
1269 
1270 /*
1271  *	Socket options and virtual interface manipulation. The whole
1272  *	virtual interface system is a complete heap, but unfortunately
1273  *	that's how BSD mrouted happens to think. Maybe one day with a proper
1274  *	MOSPF/PIM router set up we can clean this up.
1275  */
1276 
1277 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1278 {
1279 	int ret, parent = 0;
1280 	struct vifctl vif;
1281 	struct mfcctl mfc;
1282 	struct net *net = sock_net(sk);
1283 	struct mr_table *mrt;
1284 
1285 	if (sk->sk_type != SOCK_RAW ||
1286 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1287 		return -EOPNOTSUPP;
1288 
1289 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1290 	if (!mrt)
1291 		return -ENOENT;
1292 
1293 	if (optname != MRT_INIT) {
1294 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1295 		    !ns_capable(net->user_ns, CAP_NET_ADMIN))
1296 			return -EACCES;
1297 	}
1298 
1299 	switch (optname) {
1300 	case MRT_INIT:
1301 		if (optlen != sizeof(int))
1302 			return -EINVAL;
1303 
1304 		rtnl_lock();
1305 		if (rtnl_dereference(mrt->mroute_sk)) {
1306 			rtnl_unlock();
1307 			return -EADDRINUSE;
1308 		}
1309 
1310 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1311 		if (ret == 0) {
1312 			rcu_assign_pointer(mrt->mroute_sk, sk);
1313 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1314 			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1315 						    NETCONFA_IFINDEX_ALL,
1316 						    net->ipv4.devconf_all);
1317 		}
1318 		rtnl_unlock();
1319 		return ret;
1320 	case MRT_DONE:
1321 		if (sk != rcu_access_pointer(mrt->mroute_sk))
1322 			return -EACCES;
1323 		return ip_ra_control(sk, 0, NULL);
1324 	case MRT_ADD_VIF:
1325 	case MRT_DEL_VIF:
1326 		if (optlen != sizeof(vif))
1327 			return -EINVAL;
1328 		if (copy_from_user(&vif, optval, sizeof(vif)))
1329 			return -EFAULT;
1330 		if (vif.vifc_vifi >= MAXVIFS)
1331 			return -ENFILE;
1332 		rtnl_lock();
1333 		if (optname == MRT_ADD_VIF) {
1334 			ret = vif_add(net, mrt, &vif,
1335 				      sk == rtnl_dereference(mrt->mroute_sk));
1336 		} else {
1337 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1338 		}
1339 		rtnl_unlock();
1340 		return ret;
1341 
1342 		/*
1343 		 *	Manipulate the forwarding caches. These live
1344 		 *	in a sort of kernel/user symbiosis.
1345 		 */
1346 	case MRT_ADD_MFC:
1347 	case MRT_DEL_MFC:
1348 		parent = -1;
1349 	case MRT_ADD_MFC_PROXY:
1350 	case MRT_DEL_MFC_PROXY:
1351 		if (optlen != sizeof(mfc))
1352 			return -EINVAL;
1353 		if (copy_from_user(&mfc, optval, sizeof(mfc)))
1354 			return -EFAULT;
1355 		if (parent == 0)
1356 			parent = mfc.mfcc_parent;
1357 		rtnl_lock();
1358 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1359 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1360 		else
1361 			ret = ipmr_mfc_add(net, mrt, &mfc,
1362 					   sk == rtnl_dereference(mrt->mroute_sk),
1363 					   parent);
1364 		rtnl_unlock();
1365 		return ret;
1366 		/*
1367 		 *	Control PIM assert.
1368 		 */
1369 	case MRT_ASSERT:
1370 	{
1371 		int v;
1372 		if (optlen != sizeof(v))
1373 			return -EINVAL;
1374 		if (get_user(v, (int __user *)optval))
1375 			return -EFAULT;
1376 		mrt->mroute_do_assert = v;
1377 		return 0;
1378 	}
1379 #ifdef CONFIG_IP_PIMSM
1380 	case MRT_PIM:
1381 	{
1382 		int v;
1383 
1384 		if (optlen != sizeof(v))
1385 			return -EINVAL;
1386 		if (get_user(v, (int __user *)optval))
1387 			return -EFAULT;
1388 		v = !!v;
1389 
1390 		rtnl_lock();
1391 		ret = 0;
1392 		if (v != mrt->mroute_do_pim) {
1393 			mrt->mroute_do_pim = v;
1394 			mrt->mroute_do_assert = v;
1395 		}
1396 		rtnl_unlock();
1397 		return ret;
1398 	}
1399 #endif
1400 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1401 	case MRT_TABLE:
1402 	{
1403 		u32 v;
1404 
1405 		if (optlen != sizeof(u32))
1406 			return -EINVAL;
1407 		if (get_user(v, (u32 __user *)optval))
1408 			return -EFAULT;
1409 
1410 		/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1411 		if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1412 			return -EINVAL;
1413 
1414 		rtnl_lock();
1415 		ret = 0;
1416 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1417 			ret = -EBUSY;
1418 		} else {
1419 			if (!ipmr_new_table(net, v))
1420 				ret = -ENOMEM;
1421 			else
1422 				raw_sk(sk)->ipmr_table = v;
1423 		}
1424 		rtnl_unlock();
1425 		return ret;
1426 	}
1427 #endif
1428 	/*
1429 	 *	Spurious command, or MRT_VERSION which you cannot
1430 	 *	set.
1431 	 */
1432 	default:
1433 		return -ENOPROTOOPT;
1434 	}
1435 }
1436 
1437 /*
1438  *	Getsock opt support for the multicast routing system.
1439  */
1440 
1441 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1442 {
1443 	int olr;
1444 	int val;
1445 	struct net *net = sock_net(sk);
1446 	struct mr_table *mrt;
1447 
1448 	if (sk->sk_type != SOCK_RAW ||
1449 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1450 		return -EOPNOTSUPP;
1451 
1452 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1453 	if (!mrt)
1454 		return -ENOENT;
1455 
1456 	if (optname != MRT_VERSION &&
1457 #ifdef CONFIG_IP_PIMSM
1458 	   optname != MRT_PIM &&
1459 #endif
1460 	   optname != MRT_ASSERT)
1461 		return -ENOPROTOOPT;
1462 
1463 	if (get_user(olr, optlen))
1464 		return -EFAULT;
1465 
1466 	olr = min_t(unsigned int, olr, sizeof(int));
1467 	if (olr < 0)
1468 		return -EINVAL;
1469 
1470 	if (put_user(olr, optlen))
1471 		return -EFAULT;
1472 	if (optname == MRT_VERSION)
1473 		val = 0x0305;
1474 #ifdef CONFIG_IP_PIMSM
1475 	else if (optname == MRT_PIM)
1476 		val = mrt->mroute_do_pim;
1477 #endif
1478 	else
1479 		val = mrt->mroute_do_assert;
1480 	if (copy_to_user(optval, &val, olr))
1481 		return -EFAULT;
1482 	return 0;
1483 }
1484 
1485 /*
1486  *	The IP multicast ioctl support routines.
1487  */
1488 
1489 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1490 {
1491 	struct sioc_sg_req sr;
1492 	struct sioc_vif_req vr;
1493 	struct vif_device *vif;
1494 	struct mfc_cache *c;
1495 	struct net *net = sock_net(sk);
1496 	struct mr_table *mrt;
1497 
1498 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1499 	if (!mrt)
1500 		return -ENOENT;
1501 
1502 	switch (cmd) {
1503 	case SIOCGETVIFCNT:
1504 		if (copy_from_user(&vr, arg, sizeof(vr)))
1505 			return -EFAULT;
1506 		if (vr.vifi >= mrt->maxvif)
1507 			return -EINVAL;
1508 		read_lock(&mrt_lock);
1509 		vif = &mrt->vif_table[vr.vifi];
1510 		if (VIF_EXISTS(mrt, vr.vifi)) {
1511 			vr.icount = vif->pkt_in;
1512 			vr.ocount = vif->pkt_out;
1513 			vr.ibytes = vif->bytes_in;
1514 			vr.obytes = vif->bytes_out;
1515 			read_unlock(&mrt_lock);
1516 
1517 			if (copy_to_user(arg, &vr, sizeof(vr)))
1518 				return -EFAULT;
1519 			return 0;
1520 		}
1521 		read_unlock(&mrt_lock);
1522 		return -EADDRNOTAVAIL;
1523 	case SIOCGETSGCNT:
1524 		if (copy_from_user(&sr, arg, sizeof(sr)))
1525 			return -EFAULT;
1526 
1527 		rcu_read_lock();
1528 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1529 		if (c) {
1530 			sr.pktcnt = c->mfc_un.res.pkt;
1531 			sr.bytecnt = c->mfc_un.res.bytes;
1532 			sr.wrong_if = c->mfc_un.res.wrong_if;
1533 			rcu_read_unlock();
1534 
1535 			if (copy_to_user(arg, &sr, sizeof(sr)))
1536 				return -EFAULT;
1537 			return 0;
1538 		}
1539 		rcu_read_unlock();
1540 		return -EADDRNOTAVAIL;
1541 	default:
1542 		return -ENOIOCTLCMD;
1543 	}
1544 }
1545 
1546 #ifdef CONFIG_COMPAT
1547 struct compat_sioc_sg_req {
1548 	struct in_addr src;
1549 	struct in_addr grp;
1550 	compat_ulong_t pktcnt;
1551 	compat_ulong_t bytecnt;
1552 	compat_ulong_t wrong_if;
1553 };
1554 
1555 struct compat_sioc_vif_req {
1556 	vifi_t	vifi;		/* Which iface */
1557 	compat_ulong_t icount;
1558 	compat_ulong_t ocount;
1559 	compat_ulong_t ibytes;
1560 	compat_ulong_t obytes;
1561 };
1562 
1563 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1564 {
1565 	struct compat_sioc_sg_req sr;
1566 	struct compat_sioc_vif_req vr;
1567 	struct vif_device *vif;
1568 	struct mfc_cache *c;
1569 	struct net *net = sock_net(sk);
1570 	struct mr_table *mrt;
1571 
1572 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1573 	if (!mrt)
1574 		return -ENOENT;
1575 
1576 	switch (cmd) {
1577 	case SIOCGETVIFCNT:
1578 		if (copy_from_user(&vr, arg, sizeof(vr)))
1579 			return -EFAULT;
1580 		if (vr.vifi >= mrt->maxvif)
1581 			return -EINVAL;
1582 		read_lock(&mrt_lock);
1583 		vif = &mrt->vif_table[vr.vifi];
1584 		if (VIF_EXISTS(mrt, vr.vifi)) {
1585 			vr.icount = vif->pkt_in;
1586 			vr.ocount = vif->pkt_out;
1587 			vr.ibytes = vif->bytes_in;
1588 			vr.obytes = vif->bytes_out;
1589 			read_unlock(&mrt_lock);
1590 
1591 			if (copy_to_user(arg, &vr, sizeof(vr)))
1592 				return -EFAULT;
1593 			return 0;
1594 		}
1595 		read_unlock(&mrt_lock);
1596 		return -EADDRNOTAVAIL;
1597 	case SIOCGETSGCNT:
1598 		if (copy_from_user(&sr, arg, sizeof(sr)))
1599 			return -EFAULT;
1600 
1601 		rcu_read_lock();
1602 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1603 		if (c) {
1604 			sr.pktcnt = c->mfc_un.res.pkt;
1605 			sr.bytecnt = c->mfc_un.res.bytes;
1606 			sr.wrong_if = c->mfc_un.res.wrong_if;
1607 			rcu_read_unlock();
1608 
1609 			if (copy_to_user(arg, &sr, sizeof(sr)))
1610 				return -EFAULT;
1611 			return 0;
1612 		}
1613 		rcu_read_unlock();
1614 		return -EADDRNOTAVAIL;
1615 	default:
1616 		return -ENOIOCTLCMD;
1617 	}
1618 }
1619 #endif
1620 
1621 
1622 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1623 {
1624 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1625 	struct net *net = dev_net(dev);
1626 	struct mr_table *mrt;
1627 	struct vif_device *v;
1628 	int ct;
1629 
1630 	if (event != NETDEV_UNREGISTER)
1631 		return NOTIFY_DONE;
1632 
1633 	ipmr_for_each_table(mrt, net) {
1634 		v = &mrt->vif_table[0];
1635 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1636 			if (v->dev == dev)
1637 				vif_delete(mrt, ct, 1, NULL);
1638 		}
1639 	}
1640 	return NOTIFY_DONE;
1641 }
1642 
1643 
1644 static struct notifier_block ip_mr_notifier = {
1645 	.notifier_call = ipmr_device_event,
1646 };
1647 
1648 /*
1649  *	Encapsulate a packet by attaching a valid IPIP header to it.
1650  *	This avoids tunnel drivers and other mess and gives us the speed so
1651  *	important for multicast video.
1652  */
1653 
1654 static void ip_encap(struct net *net, struct sk_buff *skb,
1655 		     __be32 saddr, __be32 daddr)
1656 {
1657 	struct iphdr *iph;
1658 	const struct iphdr *old_iph = ip_hdr(skb);
1659 
1660 	skb_push(skb, sizeof(struct iphdr));
1661 	skb->transport_header = skb->network_header;
1662 	skb_reset_network_header(skb);
1663 	iph = ip_hdr(skb);
1664 
1665 	iph->version	=	4;
1666 	iph->tos	=	old_iph->tos;
1667 	iph->ttl	=	old_iph->ttl;
1668 	iph->frag_off	=	0;
1669 	iph->daddr	=	daddr;
1670 	iph->saddr	=	saddr;
1671 	iph->protocol	=	IPPROTO_IPIP;
1672 	iph->ihl	=	5;
1673 	iph->tot_len	=	htons(skb->len);
1674 	ip_select_ident(net, skb, NULL);
1675 	ip_send_check(iph);
1676 
1677 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1678 	nf_reset(skb);
1679 }
1680 
1681 static inline int ipmr_forward_finish(struct sock *sk, struct sk_buff *skb)
1682 {
1683 	struct ip_options *opt = &(IPCB(skb)->opt);
1684 
1685 	IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1686 	IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1687 
1688 	if (unlikely(opt->optlen))
1689 		ip_forward_options(skb);
1690 
1691 	return dst_output_sk(sk, skb);
1692 }
1693 
1694 /*
1695  *	Processing handlers for ipmr_forward
1696  */
1697 
1698 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1699 			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1700 {
1701 	const struct iphdr *iph = ip_hdr(skb);
1702 	struct vif_device *vif = &mrt->vif_table[vifi];
1703 	struct net_device *dev;
1704 	struct rtable *rt;
1705 	struct flowi4 fl4;
1706 	int    encap = 0;
1707 
1708 	if (!vif->dev)
1709 		goto out_free;
1710 
1711 #ifdef CONFIG_IP_PIMSM
1712 	if (vif->flags & VIFF_REGISTER) {
1713 		vif->pkt_out++;
1714 		vif->bytes_out += skb->len;
1715 		vif->dev->stats.tx_bytes += skb->len;
1716 		vif->dev->stats.tx_packets++;
1717 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1718 		goto out_free;
1719 	}
1720 #endif
1721 
1722 	if (vif->flags & VIFF_TUNNEL) {
1723 		rt = ip_route_output_ports(net, &fl4, NULL,
1724 					   vif->remote, vif->local,
1725 					   0, 0,
1726 					   IPPROTO_IPIP,
1727 					   RT_TOS(iph->tos), vif->link);
1728 		if (IS_ERR(rt))
1729 			goto out_free;
1730 		encap = sizeof(struct iphdr);
1731 	} else {
1732 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1733 					   0, 0,
1734 					   IPPROTO_IPIP,
1735 					   RT_TOS(iph->tos), vif->link);
1736 		if (IS_ERR(rt))
1737 			goto out_free;
1738 	}
1739 
1740 	dev = rt->dst.dev;
1741 
1742 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1743 		/* Do not fragment multicasts. Alas, IPv4 does not
1744 		 * allow to send ICMP, so that packets will disappear
1745 		 * to blackhole.
1746 		 */
1747 
1748 		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1749 		ip_rt_put(rt);
1750 		goto out_free;
1751 	}
1752 
1753 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1754 
1755 	if (skb_cow(skb, encap)) {
1756 		ip_rt_put(rt);
1757 		goto out_free;
1758 	}
1759 
1760 	vif->pkt_out++;
1761 	vif->bytes_out += skb->len;
1762 
1763 	skb_dst_drop(skb);
1764 	skb_dst_set(skb, &rt->dst);
1765 	ip_decrease_ttl(ip_hdr(skb));
1766 
1767 	/* FIXME: forward and output firewalls used to be called here.
1768 	 * What do we do with netfilter? -- RR
1769 	 */
1770 	if (vif->flags & VIFF_TUNNEL) {
1771 		ip_encap(net, skb, vif->local, vif->remote);
1772 		/* FIXME: extra output firewall step used to be here. --RR */
1773 		vif->dev->stats.tx_packets++;
1774 		vif->dev->stats.tx_bytes += skb->len;
1775 	}
1776 
1777 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1778 
1779 	/*
1780 	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1781 	 * not only before forwarding, but after forwarding on all output
1782 	 * interfaces. It is clear, if mrouter runs a multicasting
1783 	 * program, it should receive packets not depending to what interface
1784 	 * program is joined.
1785 	 * If we will not make it, the program will have to join on all
1786 	 * interfaces. On the other hand, multihoming host (or router, but
1787 	 * not mrouter) cannot join to more than one interface - it will
1788 	 * result in receiving multiple packets.
1789 	 */
1790 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, NULL, skb,
1791 		skb->dev, dev,
1792 		ipmr_forward_finish);
1793 	return;
1794 
1795 out_free:
1796 	kfree_skb(skb);
1797 }
1798 
1799 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1800 {
1801 	int ct;
1802 
1803 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1804 		if (mrt->vif_table[ct].dev == dev)
1805 			break;
1806 	}
1807 	return ct;
1808 }
1809 
1810 /* "local" means that we should preserve one skb (for local delivery) */
1811 
1812 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1813 			  struct sk_buff *skb, struct mfc_cache *cache,
1814 			  int local)
1815 {
1816 	int psend = -1;
1817 	int vif, ct;
1818 	int true_vifi = ipmr_find_vif(mrt, skb->dev);
1819 
1820 	vif = cache->mfc_parent;
1821 	cache->mfc_un.res.pkt++;
1822 	cache->mfc_un.res.bytes += skb->len;
1823 
1824 	if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1825 		struct mfc_cache *cache_proxy;
1826 
1827 		/* For an (*,G) entry, we only check that the incomming
1828 		 * interface is part of the static tree.
1829 		 */
1830 		cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1831 		if (cache_proxy &&
1832 		    cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1833 			goto forward;
1834 	}
1835 
1836 	/*
1837 	 * Wrong interface: drop packet and (maybe) send PIM assert.
1838 	 */
1839 	if (mrt->vif_table[vif].dev != skb->dev) {
1840 		if (rt_is_output_route(skb_rtable(skb))) {
1841 			/* It is our own packet, looped back.
1842 			 * Very complicated situation...
1843 			 *
1844 			 * The best workaround until routing daemons will be
1845 			 * fixed is not to redistribute packet, if it was
1846 			 * send through wrong interface. It means, that
1847 			 * multicast applications WILL NOT work for
1848 			 * (S,G), which have default multicast route pointing
1849 			 * to wrong oif. In any case, it is not a good
1850 			 * idea to use multicasting applications on router.
1851 			 */
1852 			goto dont_forward;
1853 		}
1854 
1855 		cache->mfc_un.res.wrong_if++;
1856 
1857 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1858 		    /* pimsm uses asserts, when switching from RPT to SPT,
1859 		     * so that we cannot check that packet arrived on an oif.
1860 		     * It is bad, but otherwise we would need to move pretty
1861 		     * large chunk of pimd to kernel. Ough... --ANK
1862 		     */
1863 		    (mrt->mroute_do_pim ||
1864 		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1865 		    time_after(jiffies,
1866 			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1867 			cache->mfc_un.res.last_assert = jiffies;
1868 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1869 		}
1870 		goto dont_forward;
1871 	}
1872 
1873 forward:
1874 	mrt->vif_table[vif].pkt_in++;
1875 	mrt->vif_table[vif].bytes_in += skb->len;
1876 
1877 	/*
1878 	 *	Forward the frame
1879 	 */
1880 	if (cache->mfc_origin == htonl(INADDR_ANY) &&
1881 	    cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1882 		if (true_vifi >= 0 &&
1883 		    true_vifi != cache->mfc_parent &&
1884 		    ip_hdr(skb)->ttl >
1885 				cache->mfc_un.res.ttls[cache->mfc_parent]) {
1886 			/* It's an (*,*) entry and the packet is not coming from
1887 			 * the upstream: forward the packet to the upstream
1888 			 * only.
1889 			 */
1890 			psend = cache->mfc_parent;
1891 			goto last_forward;
1892 		}
1893 		goto dont_forward;
1894 	}
1895 	for (ct = cache->mfc_un.res.maxvif - 1;
1896 	     ct >= cache->mfc_un.res.minvif; ct--) {
1897 		/* For (*,G) entry, don't forward to the incoming interface */
1898 		if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1899 		     ct != true_vifi) &&
1900 		    ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1901 			if (psend != -1) {
1902 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1903 
1904 				if (skb2)
1905 					ipmr_queue_xmit(net, mrt, skb2, cache,
1906 							psend);
1907 			}
1908 			psend = ct;
1909 		}
1910 	}
1911 last_forward:
1912 	if (psend != -1) {
1913 		if (local) {
1914 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1915 
1916 			if (skb2)
1917 				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1918 		} else {
1919 			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1920 			return;
1921 		}
1922 	}
1923 
1924 dont_forward:
1925 	if (!local)
1926 		kfree_skb(skb);
1927 }
1928 
1929 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1930 {
1931 	struct rtable *rt = skb_rtable(skb);
1932 	struct iphdr *iph = ip_hdr(skb);
1933 	struct flowi4 fl4 = {
1934 		.daddr = iph->daddr,
1935 		.saddr = iph->saddr,
1936 		.flowi4_tos = RT_TOS(iph->tos),
1937 		.flowi4_oif = (rt_is_output_route(rt) ?
1938 			       skb->dev->ifindex : 0),
1939 		.flowi4_iif = (rt_is_output_route(rt) ?
1940 			       LOOPBACK_IFINDEX :
1941 			       skb->dev->ifindex),
1942 		.flowi4_mark = skb->mark,
1943 	};
1944 	struct mr_table *mrt;
1945 	int err;
1946 
1947 	err = ipmr_fib_lookup(net, &fl4, &mrt);
1948 	if (err)
1949 		return ERR_PTR(err);
1950 	return mrt;
1951 }
1952 
1953 /*
1954  *	Multicast packets for forwarding arrive here
1955  *	Called with rcu_read_lock();
1956  */
1957 
1958 int ip_mr_input(struct sk_buff *skb)
1959 {
1960 	struct mfc_cache *cache;
1961 	struct net *net = dev_net(skb->dev);
1962 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1963 	struct mr_table *mrt;
1964 
1965 	/* Packet is looped back after forward, it should not be
1966 	 * forwarded second time, but still can be delivered locally.
1967 	 */
1968 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1969 		goto dont_forward;
1970 
1971 	mrt = ipmr_rt_fib_lookup(net, skb);
1972 	if (IS_ERR(mrt)) {
1973 		kfree_skb(skb);
1974 		return PTR_ERR(mrt);
1975 	}
1976 	if (!local) {
1977 		if (IPCB(skb)->opt.router_alert) {
1978 			if (ip_call_ra_chain(skb))
1979 				return 0;
1980 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1981 			/* IGMPv1 (and broken IGMPv2 implementations sort of
1982 			 * Cisco IOS <= 11.2(8)) do not put router alert
1983 			 * option to IGMP packets destined to routable
1984 			 * groups. It is very bad, because it means
1985 			 * that we can forward NO IGMP messages.
1986 			 */
1987 			struct sock *mroute_sk;
1988 
1989 			mroute_sk = rcu_dereference(mrt->mroute_sk);
1990 			if (mroute_sk) {
1991 				nf_reset(skb);
1992 				raw_rcv(mroute_sk, skb);
1993 				return 0;
1994 			}
1995 		    }
1996 	}
1997 
1998 	/* already under rcu_read_lock() */
1999 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2000 	if (!cache) {
2001 		int vif = ipmr_find_vif(mrt, skb->dev);
2002 
2003 		if (vif >= 0)
2004 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2005 						    vif);
2006 	}
2007 
2008 	/*
2009 	 *	No usable cache entry
2010 	 */
2011 	if (!cache) {
2012 		int vif;
2013 
2014 		if (local) {
2015 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2016 			ip_local_deliver(skb);
2017 			if (!skb2)
2018 				return -ENOBUFS;
2019 			skb = skb2;
2020 		}
2021 
2022 		read_lock(&mrt_lock);
2023 		vif = ipmr_find_vif(mrt, skb->dev);
2024 		if (vif >= 0) {
2025 			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2026 			read_unlock(&mrt_lock);
2027 
2028 			return err2;
2029 		}
2030 		read_unlock(&mrt_lock);
2031 		kfree_skb(skb);
2032 		return -ENODEV;
2033 	}
2034 
2035 	read_lock(&mrt_lock);
2036 	ip_mr_forward(net, mrt, skb, cache, local);
2037 	read_unlock(&mrt_lock);
2038 
2039 	if (local)
2040 		return ip_local_deliver(skb);
2041 
2042 	return 0;
2043 
2044 dont_forward:
2045 	if (local)
2046 		return ip_local_deliver(skb);
2047 	kfree_skb(skb);
2048 	return 0;
2049 }
2050 
2051 #ifdef CONFIG_IP_PIMSM
2052 /* called with rcu_read_lock() */
2053 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
2054 		     unsigned int pimlen)
2055 {
2056 	struct net_device *reg_dev = NULL;
2057 	struct iphdr *encap;
2058 
2059 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
2060 	/*
2061 	 * Check that:
2062 	 * a. packet is really sent to a multicast group
2063 	 * b. packet is not a NULL-REGISTER
2064 	 * c. packet is not truncated
2065 	 */
2066 	if (!ipv4_is_multicast(encap->daddr) ||
2067 	    encap->tot_len == 0 ||
2068 	    ntohs(encap->tot_len) + pimlen > skb->len)
2069 		return 1;
2070 
2071 	read_lock(&mrt_lock);
2072 	if (mrt->mroute_reg_vif_num >= 0)
2073 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
2074 	read_unlock(&mrt_lock);
2075 
2076 	if (!reg_dev)
2077 		return 1;
2078 
2079 	skb->mac_header = skb->network_header;
2080 	skb_pull(skb, (u8 *)encap - skb->data);
2081 	skb_reset_network_header(skb);
2082 	skb->protocol = htons(ETH_P_IP);
2083 	skb->ip_summed = CHECKSUM_NONE;
2084 
2085 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
2086 
2087 	netif_rx(skb);
2088 
2089 	return NET_RX_SUCCESS;
2090 }
2091 #endif
2092 
2093 #ifdef CONFIG_IP_PIMSM_V1
2094 /*
2095  * Handle IGMP messages of PIMv1
2096  */
2097 
2098 int pim_rcv_v1(struct sk_buff *skb)
2099 {
2100 	struct igmphdr *pim;
2101 	struct net *net = dev_net(skb->dev);
2102 	struct mr_table *mrt;
2103 
2104 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2105 		goto drop;
2106 
2107 	pim = igmp_hdr(skb);
2108 
2109 	mrt = ipmr_rt_fib_lookup(net, skb);
2110 	if (IS_ERR(mrt))
2111 		goto drop;
2112 	if (!mrt->mroute_do_pim ||
2113 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2114 		goto drop;
2115 
2116 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2117 drop:
2118 		kfree_skb(skb);
2119 	}
2120 	return 0;
2121 }
2122 #endif
2123 
2124 #ifdef CONFIG_IP_PIMSM_V2
2125 static int pim_rcv(struct sk_buff *skb)
2126 {
2127 	struct pimreghdr *pim;
2128 	struct net *net = dev_net(skb->dev);
2129 	struct mr_table *mrt;
2130 
2131 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2132 		goto drop;
2133 
2134 	pim = (struct pimreghdr *)skb_transport_header(skb);
2135 	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2136 	    (pim->flags & PIM_NULL_REGISTER) ||
2137 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2138 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2139 		goto drop;
2140 
2141 	mrt = ipmr_rt_fib_lookup(net, skb);
2142 	if (IS_ERR(mrt))
2143 		goto drop;
2144 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2145 drop:
2146 		kfree_skb(skb);
2147 	}
2148 	return 0;
2149 }
2150 #endif
2151 
2152 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2153 			      struct mfc_cache *c, struct rtmsg *rtm)
2154 {
2155 	int ct;
2156 	struct rtnexthop *nhp;
2157 	struct nlattr *mp_attr;
2158 	struct rta_mfc_stats mfcs;
2159 
2160 	/* If cache is unresolved, don't try to parse IIF and OIF */
2161 	if (c->mfc_parent >= MAXVIFS)
2162 		return -ENOENT;
2163 
2164 	if (VIF_EXISTS(mrt, c->mfc_parent) &&
2165 	    nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2166 		return -EMSGSIZE;
2167 
2168 	if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2169 		return -EMSGSIZE;
2170 
2171 	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2172 		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2173 			if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2174 				nla_nest_cancel(skb, mp_attr);
2175 				return -EMSGSIZE;
2176 			}
2177 
2178 			nhp->rtnh_flags = 0;
2179 			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2180 			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2181 			nhp->rtnh_len = sizeof(*nhp);
2182 		}
2183 	}
2184 
2185 	nla_nest_end(skb, mp_attr);
2186 
2187 	mfcs.mfcs_packets = c->mfc_un.res.pkt;
2188 	mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2189 	mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2190 	if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2191 		return -EMSGSIZE;
2192 
2193 	rtm->rtm_type = RTN_MULTICAST;
2194 	return 1;
2195 }
2196 
2197 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2198 		   __be32 saddr, __be32 daddr,
2199 		   struct rtmsg *rtm, int nowait)
2200 {
2201 	struct mfc_cache *cache;
2202 	struct mr_table *mrt;
2203 	int err;
2204 
2205 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2206 	if (!mrt)
2207 		return -ENOENT;
2208 
2209 	rcu_read_lock();
2210 	cache = ipmr_cache_find(mrt, saddr, daddr);
2211 	if (!cache && skb->dev) {
2212 		int vif = ipmr_find_vif(mrt, skb->dev);
2213 
2214 		if (vif >= 0)
2215 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2216 	}
2217 	if (!cache) {
2218 		struct sk_buff *skb2;
2219 		struct iphdr *iph;
2220 		struct net_device *dev;
2221 		int vif = -1;
2222 
2223 		if (nowait) {
2224 			rcu_read_unlock();
2225 			return -EAGAIN;
2226 		}
2227 
2228 		dev = skb->dev;
2229 		read_lock(&mrt_lock);
2230 		if (dev)
2231 			vif = ipmr_find_vif(mrt, dev);
2232 		if (vif < 0) {
2233 			read_unlock(&mrt_lock);
2234 			rcu_read_unlock();
2235 			return -ENODEV;
2236 		}
2237 		skb2 = skb_clone(skb, GFP_ATOMIC);
2238 		if (!skb2) {
2239 			read_unlock(&mrt_lock);
2240 			rcu_read_unlock();
2241 			return -ENOMEM;
2242 		}
2243 
2244 		skb_push(skb2, sizeof(struct iphdr));
2245 		skb_reset_network_header(skb2);
2246 		iph = ip_hdr(skb2);
2247 		iph->ihl = sizeof(struct iphdr) >> 2;
2248 		iph->saddr = saddr;
2249 		iph->daddr = daddr;
2250 		iph->version = 0;
2251 		err = ipmr_cache_unresolved(mrt, vif, skb2);
2252 		read_unlock(&mrt_lock);
2253 		rcu_read_unlock();
2254 		return err;
2255 	}
2256 
2257 	read_lock(&mrt_lock);
2258 	if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2259 		cache->mfc_flags |= MFC_NOTIFY;
2260 	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2261 	read_unlock(&mrt_lock);
2262 	rcu_read_unlock();
2263 	return err;
2264 }
2265 
2266 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2267 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2268 			    int flags)
2269 {
2270 	struct nlmsghdr *nlh;
2271 	struct rtmsg *rtm;
2272 	int err;
2273 
2274 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2275 	if (!nlh)
2276 		return -EMSGSIZE;
2277 
2278 	rtm = nlmsg_data(nlh);
2279 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2280 	rtm->rtm_dst_len  = 32;
2281 	rtm->rtm_src_len  = 32;
2282 	rtm->rtm_tos      = 0;
2283 	rtm->rtm_table    = mrt->id;
2284 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2285 		goto nla_put_failure;
2286 	rtm->rtm_type     = RTN_MULTICAST;
2287 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2288 	if (c->mfc_flags & MFC_STATIC)
2289 		rtm->rtm_protocol = RTPROT_STATIC;
2290 	else
2291 		rtm->rtm_protocol = RTPROT_MROUTED;
2292 	rtm->rtm_flags    = 0;
2293 
2294 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2295 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2296 		goto nla_put_failure;
2297 	err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2298 	/* do not break the dump if cache is unresolved */
2299 	if (err < 0 && err != -ENOENT)
2300 		goto nla_put_failure;
2301 
2302 	nlmsg_end(skb, nlh);
2303 	return 0;
2304 
2305 nla_put_failure:
2306 	nlmsg_cancel(skb, nlh);
2307 	return -EMSGSIZE;
2308 }
2309 
2310 static size_t mroute_msgsize(bool unresolved, int maxvif)
2311 {
2312 	size_t len =
2313 		NLMSG_ALIGN(sizeof(struct rtmsg))
2314 		+ nla_total_size(4)	/* RTA_TABLE */
2315 		+ nla_total_size(4)	/* RTA_SRC */
2316 		+ nla_total_size(4)	/* RTA_DST */
2317 		;
2318 
2319 	if (!unresolved)
2320 		len = len
2321 		      + nla_total_size(4)	/* RTA_IIF */
2322 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2323 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2324 						/* RTA_MFC_STATS */
2325 		      + nla_total_size(sizeof(struct rta_mfc_stats))
2326 		;
2327 
2328 	return len;
2329 }
2330 
2331 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2332 				 int cmd)
2333 {
2334 	struct net *net = read_pnet(&mrt->net);
2335 	struct sk_buff *skb;
2336 	int err = -ENOBUFS;
2337 
2338 	skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2339 			GFP_ATOMIC);
2340 	if (!skb)
2341 		goto errout;
2342 
2343 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2344 	if (err < 0)
2345 		goto errout;
2346 
2347 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2348 	return;
2349 
2350 errout:
2351 	kfree_skb(skb);
2352 	if (err < 0)
2353 		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2354 }
2355 
2356 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2357 {
2358 	struct net *net = sock_net(skb->sk);
2359 	struct mr_table *mrt;
2360 	struct mfc_cache *mfc;
2361 	unsigned int t = 0, s_t;
2362 	unsigned int h = 0, s_h;
2363 	unsigned int e = 0, s_e;
2364 
2365 	s_t = cb->args[0];
2366 	s_h = cb->args[1];
2367 	s_e = cb->args[2];
2368 
2369 	rcu_read_lock();
2370 	ipmr_for_each_table(mrt, net) {
2371 		if (t < s_t)
2372 			goto next_table;
2373 		if (t > s_t)
2374 			s_h = 0;
2375 		for (h = s_h; h < MFC_LINES; h++) {
2376 			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2377 				if (e < s_e)
2378 					goto next_entry;
2379 				if (ipmr_fill_mroute(mrt, skb,
2380 						     NETLINK_CB(cb->skb).portid,
2381 						     cb->nlh->nlmsg_seq,
2382 						     mfc, RTM_NEWROUTE,
2383 						     NLM_F_MULTI) < 0)
2384 					goto done;
2385 next_entry:
2386 				e++;
2387 			}
2388 			e = s_e = 0;
2389 		}
2390 		spin_lock_bh(&mfc_unres_lock);
2391 		list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2392 			if (e < s_e)
2393 				goto next_entry2;
2394 			if (ipmr_fill_mroute(mrt, skb,
2395 					     NETLINK_CB(cb->skb).portid,
2396 					     cb->nlh->nlmsg_seq,
2397 					     mfc, RTM_NEWROUTE,
2398 					     NLM_F_MULTI) < 0) {
2399 				spin_unlock_bh(&mfc_unres_lock);
2400 				goto done;
2401 			}
2402 next_entry2:
2403 			e++;
2404 		}
2405 		spin_unlock_bh(&mfc_unres_lock);
2406 		e = s_e = 0;
2407 		s_h = 0;
2408 next_table:
2409 		t++;
2410 	}
2411 done:
2412 	rcu_read_unlock();
2413 
2414 	cb->args[2] = e;
2415 	cb->args[1] = h;
2416 	cb->args[0] = t;
2417 
2418 	return skb->len;
2419 }
2420 
2421 #ifdef CONFIG_PROC_FS
2422 /*
2423  *	The /proc interfaces to multicast routing :
2424  *	/proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2425  */
2426 struct ipmr_vif_iter {
2427 	struct seq_net_private p;
2428 	struct mr_table *mrt;
2429 	int ct;
2430 };
2431 
2432 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2433 					   struct ipmr_vif_iter *iter,
2434 					   loff_t pos)
2435 {
2436 	struct mr_table *mrt = iter->mrt;
2437 
2438 	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2439 		if (!VIF_EXISTS(mrt, iter->ct))
2440 			continue;
2441 		if (pos-- == 0)
2442 			return &mrt->vif_table[iter->ct];
2443 	}
2444 	return NULL;
2445 }
2446 
2447 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2448 	__acquires(mrt_lock)
2449 {
2450 	struct ipmr_vif_iter *iter = seq->private;
2451 	struct net *net = seq_file_net(seq);
2452 	struct mr_table *mrt;
2453 
2454 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2455 	if (!mrt)
2456 		return ERR_PTR(-ENOENT);
2457 
2458 	iter->mrt = mrt;
2459 
2460 	read_lock(&mrt_lock);
2461 	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2462 		: SEQ_START_TOKEN;
2463 }
2464 
2465 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2466 {
2467 	struct ipmr_vif_iter *iter = seq->private;
2468 	struct net *net = seq_file_net(seq);
2469 	struct mr_table *mrt = iter->mrt;
2470 
2471 	++*pos;
2472 	if (v == SEQ_START_TOKEN)
2473 		return ipmr_vif_seq_idx(net, iter, 0);
2474 
2475 	while (++iter->ct < mrt->maxvif) {
2476 		if (!VIF_EXISTS(mrt, iter->ct))
2477 			continue;
2478 		return &mrt->vif_table[iter->ct];
2479 	}
2480 	return NULL;
2481 }
2482 
2483 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2484 	__releases(mrt_lock)
2485 {
2486 	read_unlock(&mrt_lock);
2487 }
2488 
2489 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2490 {
2491 	struct ipmr_vif_iter *iter = seq->private;
2492 	struct mr_table *mrt = iter->mrt;
2493 
2494 	if (v == SEQ_START_TOKEN) {
2495 		seq_puts(seq,
2496 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2497 	} else {
2498 		const struct vif_device *vif = v;
2499 		const char *name =  vif->dev ? vif->dev->name : "none";
2500 
2501 		seq_printf(seq,
2502 			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2503 			   vif - mrt->vif_table,
2504 			   name, vif->bytes_in, vif->pkt_in,
2505 			   vif->bytes_out, vif->pkt_out,
2506 			   vif->flags, vif->local, vif->remote);
2507 	}
2508 	return 0;
2509 }
2510 
2511 static const struct seq_operations ipmr_vif_seq_ops = {
2512 	.start = ipmr_vif_seq_start,
2513 	.next  = ipmr_vif_seq_next,
2514 	.stop  = ipmr_vif_seq_stop,
2515 	.show  = ipmr_vif_seq_show,
2516 };
2517 
2518 static int ipmr_vif_open(struct inode *inode, struct file *file)
2519 {
2520 	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2521 			    sizeof(struct ipmr_vif_iter));
2522 }
2523 
2524 static const struct file_operations ipmr_vif_fops = {
2525 	.owner	 = THIS_MODULE,
2526 	.open    = ipmr_vif_open,
2527 	.read    = seq_read,
2528 	.llseek  = seq_lseek,
2529 	.release = seq_release_net,
2530 };
2531 
2532 struct ipmr_mfc_iter {
2533 	struct seq_net_private p;
2534 	struct mr_table *mrt;
2535 	struct list_head *cache;
2536 	int ct;
2537 };
2538 
2539 
2540 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2541 					  struct ipmr_mfc_iter *it, loff_t pos)
2542 {
2543 	struct mr_table *mrt = it->mrt;
2544 	struct mfc_cache *mfc;
2545 
2546 	rcu_read_lock();
2547 	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2548 		it->cache = &mrt->mfc_cache_array[it->ct];
2549 		list_for_each_entry_rcu(mfc, it->cache, list)
2550 			if (pos-- == 0)
2551 				return mfc;
2552 	}
2553 	rcu_read_unlock();
2554 
2555 	spin_lock_bh(&mfc_unres_lock);
2556 	it->cache = &mrt->mfc_unres_queue;
2557 	list_for_each_entry(mfc, it->cache, list)
2558 		if (pos-- == 0)
2559 			return mfc;
2560 	spin_unlock_bh(&mfc_unres_lock);
2561 
2562 	it->cache = NULL;
2563 	return NULL;
2564 }
2565 
2566 
2567 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2568 {
2569 	struct ipmr_mfc_iter *it = seq->private;
2570 	struct net *net = seq_file_net(seq);
2571 	struct mr_table *mrt;
2572 
2573 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2574 	if (!mrt)
2575 		return ERR_PTR(-ENOENT);
2576 
2577 	it->mrt = mrt;
2578 	it->cache = NULL;
2579 	it->ct = 0;
2580 	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2581 		: SEQ_START_TOKEN;
2582 }
2583 
2584 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2585 {
2586 	struct mfc_cache *mfc = v;
2587 	struct ipmr_mfc_iter *it = seq->private;
2588 	struct net *net = seq_file_net(seq);
2589 	struct mr_table *mrt = it->mrt;
2590 
2591 	++*pos;
2592 
2593 	if (v == SEQ_START_TOKEN)
2594 		return ipmr_mfc_seq_idx(net, seq->private, 0);
2595 
2596 	if (mfc->list.next != it->cache)
2597 		return list_entry(mfc->list.next, struct mfc_cache, list);
2598 
2599 	if (it->cache == &mrt->mfc_unres_queue)
2600 		goto end_of_list;
2601 
2602 	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2603 
2604 	while (++it->ct < MFC_LINES) {
2605 		it->cache = &mrt->mfc_cache_array[it->ct];
2606 		if (list_empty(it->cache))
2607 			continue;
2608 		return list_first_entry(it->cache, struct mfc_cache, list);
2609 	}
2610 
2611 	/* exhausted cache_array, show unresolved */
2612 	rcu_read_unlock();
2613 	it->cache = &mrt->mfc_unres_queue;
2614 	it->ct = 0;
2615 
2616 	spin_lock_bh(&mfc_unres_lock);
2617 	if (!list_empty(it->cache))
2618 		return list_first_entry(it->cache, struct mfc_cache, list);
2619 
2620 end_of_list:
2621 	spin_unlock_bh(&mfc_unres_lock);
2622 	it->cache = NULL;
2623 
2624 	return NULL;
2625 }
2626 
2627 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2628 {
2629 	struct ipmr_mfc_iter *it = seq->private;
2630 	struct mr_table *mrt = it->mrt;
2631 
2632 	if (it->cache == &mrt->mfc_unres_queue)
2633 		spin_unlock_bh(&mfc_unres_lock);
2634 	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2635 		rcu_read_unlock();
2636 }
2637 
2638 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2639 {
2640 	int n;
2641 
2642 	if (v == SEQ_START_TOKEN) {
2643 		seq_puts(seq,
2644 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2645 	} else {
2646 		const struct mfc_cache *mfc = v;
2647 		const struct ipmr_mfc_iter *it = seq->private;
2648 		const struct mr_table *mrt = it->mrt;
2649 
2650 		seq_printf(seq, "%08X %08X %-3hd",
2651 			   (__force u32) mfc->mfc_mcastgrp,
2652 			   (__force u32) mfc->mfc_origin,
2653 			   mfc->mfc_parent);
2654 
2655 		if (it->cache != &mrt->mfc_unres_queue) {
2656 			seq_printf(seq, " %8lu %8lu %8lu",
2657 				   mfc->mfc_un.res.pkt,
2658 				   mfc->mfc_un.res.bytes,
2659 				   mfc->mfc_un.res.wrong_if);
2660 			for (n = mfc->mfc_un.res.minvif;
2661 			     n < mfc->mfc_un.res.maxvif; n++) {
2662 				if (VIF_EXISTS(mrt, n) &&
2663 				    mfc->mfc_un.res.ttls[n] < 255)
2664 					seq_printf(seq,
2665 					   " %2d:%-3d",
2666 					   n, mfc->mfc_un.res.ttls[n]);
2667 			}
2668 		} else {
2669 			/* unresolved mfc_caches don't contain
2670 			 * pkt, bytes and wrong_if values
2671 			 */
2672 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2673 		}
2674 		seq_putc(seq, '\n');
2675 	}
2676 	return 0;
2677 }
2678 
2679 static const struct seq_operations ipmr_mfc_seq_ops = {
2680 	.start = ipmr_mfc_seq_start,
2681 	.next  = ipmr_mfc_seq_next,
2682 	.stop  = ipmr_mfc_seq_stop,
2683 	.show  = ipmr_mfc_seq_show,
2684 };
2685 
2686 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2687 {
2688 	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2689 			    sizeof(struct ipmr_mfc_iter));
2690 }
2691 
2692 static const struct file_operations ipmr_mfc_fops = {
2693 	.owner	 = THIS_MODULE,
2694 	.open    = ipmr_mfc_open,
2695 	.read    = seq_read,
2696 	.llseek  = seq_lseek,
2697 	.release = seq_release_net,
2698 };
2699 #endif
2700 
2701 #ifdef CONFIG_IP_PIMSM_V2
2702 static const struct net_protocol pim_protocol = {
2703 	.handler	=	pim_rcv,
2704 	.netns_ok	=	1,
2705 };
2706 #endif
2707 
2708 
2709 /*
2710  *	Setup for IP multicast routing
2711  */
2712 static int __net_init ipmr_net_init(struct net *net)
2713 {
2714 	int err;
2715 
2716 	err = ipmr_rules_init(net);
2717 	if (err < 0)
2718 		goto fail;
2719 
2720 #ifdef CONFIG_PROC_FS
2721 	err = -ENOMEM;
2722 	if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2723 		goto proc_vif_fail;
2724 	if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2725 		goto proc_cache_fail;
2726 #endif
2727 	return 0;
2728 
2729 #ifdef CONFIG_PROC_FS
2730 proc_cache_fail:
2731 	remove_proc_entry("ip_mr_vif", net->proc_net);
2732 proc_vif_fail:
2733 	ipmr_rules_exit(net);
2734 #endif
2735 fail:
2736 	return err;
2737 }
2738 
2739 static void __net_exit ipmr_net_exit(struct net *net)
2740 {
2741 #ifdef CONFIG_PROC_FS
2742 	remove_proc_entry("ip_mr_cache", net->proc_net);
2743 	remove_proc_entry("ip_mr_vif", net->proc_net);
2744 #endif
2745 	ipmr_rules_exit(net);
2746 }
2747 
2748 static struct pernet_operations ipmr_net_ops = {
2749 	.init = ipmr_net_init,
2750 	.exit = ipmr_net_exit,
2751 };
2752 
2753 int __init ip_mr_init(void)
2754 {
2755 	int err;
2756 
2757 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2758 				       sizeof(struct mfc_cache),
2759 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2760 				       NULL);
2761 	if (!mrt_cachep)
2762 		return -ENOMEM;
2763 
2764 	err = register_pernet_subsys(&ipmr_net_ops);
2765 	if (err)
2766 		goto reg_pernet_fail;
2767 
2768 	err = register_netdevice_notifier(&ip_mr_notifier);
2769 	if (err)
2770 		goto reg_notif_fail;
2771 #ifdef CONFIG_IP_PIMSM_V2
2772 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2773 		pr_err("%s: can't add PIM protocol\n", __func__);
2774 		err = -EAGAIN;
2775 		goto add_proto_fail;
2776 	}
2777 #endif
2778 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2779 		      NULL, ipmr_rtm_dumproute, NULL);
2780 	return 0;
2781 
2782 #ifdef CONFIG_IP_PIMSM_V2
2783 add_proto_fail:
2784 	unregister_netdevice_notifier(&ip_mr_notifier);
2785 #endif
2786 reg_notif_fail:
2787 	unregister_pernet_subsys(&ipmr_net_ops);
2788 reg_pernet_fail:
2789 	kmem_cache_destroy(mrt_cachep);
2790 	return err;
2791 }
2792