1 /* 2 * IP multicast routing support for mrouted 3.6/3.8 3 * 4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 5 * Linux Consultancy and Custom Driver Development 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 * 12 * Fixes: 13 * Michael Chastain : Incorrect size of copying. 14 * Alan Cox : Added the cache manager code 15 * Alan Cox : Fixed the clone/copy bug and device race. 16 * Mike McLagan : Routing by source 17 * Malcolm Beattie : Buffer handling fixes. 18 * Alexey Kuznetsov : Double buffer free and other fixes. 19 * SVR Anand : Fixed several multicast bugs and problems. 20 * Alexey Kuznetsov : Status, optimisations and more. 21 * Brad Parker : Better behaviour on mrouted upcall 22 * overflow. 23 * Carlos Picoto : PIMv1 Support 24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 25 * Relax this requirement to work with older peers. 26 * 27 */ 28 29 #include <asm/uaccess.h> 30 #include <linux/types.h> 31 #include <linux/capability.h> 32 #include <linux/errno.h> 33 #include <linux/timer.h> 34 #include <linux/mm.h> 35 #include <linux/kernel.h> 36 #include <linux/fcntl.h> 37 #include <linux/stat.h> 38 #include <linux/socket.h> 39 #include <linux/in.h> 40 #include <linux/inet.h> 41 #include <linux/netdevice.h> 42 #include <linux/inetdevice.h> 43 #include <linux/igmp.h> 44 #include <linux/proc_fs.h> 45 #include <linux/seq_file.h> 46 #include <linux/mroute.h> 47 #include <linux/init.h> 48 #include <linux/if_ether.h> 49 #include <linux/slab.h> 50 #include <net/net_namespace.h> 51 #include <net/ip.h> 52 #include <net/protocol.h> 53 #include <linux/skbuff.h> 54 #include <net/route.h> 55 #include <net/sock.h> 56 #include <net/icmp.h> 57 #include <net/udp.h> 58 #include <net/raw.h> 59 #include <linux/notifier.h> 60 #include <linux/if_arp.h> 61 #include <linux/netfilter_ipv4.h> 62 #include <linux/compat.h> 63 #include <linux/export.h> 64 #include <net/ip_tunnels.h> 65 #include <net/checksum.h> 66 #include <net/netlink.h> 67 #include <net/fib_rules.h> 68 #include <linux/netconf.h> 69 70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 71 #define CONFIG_IP_PIMSM 1 72 #endif 73 74 struct mr_table { 75 struct list_head list; 76 possible_net_t net; 77 u32 id; 78 struct sock __rcu *mroute_sk; 79 struct timer_list ipmr_expire_timer; 80 struct list_head mfc_unres_queue; 81 struct list_head mfc_cache_array[MFC_LINES]; 82 struct vif_device vif_table[MAXVIFS]; 83 int maxvif; 84 atomic_t cache_resolve_queue_len; 85 bool mroute_do_assert; 86 bool mroute_do_pim; 87 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 88 int mroute_reg_vif_num; 89 #endif 90 }; 91 92 struct ipmr_rule { 93 struct fib_rule common; 94 }; 95 96 struct ipmr_result { 97 struct mr_table *mrt; 98 }; 99 100 /* Big lock, protecting vif table, mrt cache and mroute socket state. 101 * Note that the changes are semaphored via rtnl_lock. 102 */ 103 104 static DEFINE_RWLOCK(mrt_lock); 105 106 /* 107 * Multicast router control variables 108 */ 109 110 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL) 111 112 /* Special spinlock for queue of unresolved entries */ 113 static DEFINE_SPINLOCK(mfc_unres_lock); 114 115 /* We return to original Alan's scheme. Hash table of resolved 116 * entries is changed only in process context and protected 117 * with weak lock mrt_lock. Queue of unresolved entries is protected 118 * with strong spinlock mfc_unres_lock. 119 * 120 * In this case data path is free of exclusive locks at all. 121 */ 122 123 static struct kmem_cache *mrt_cachep __read_mostly; 124 125 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 126 static void ipmr_free_table(struct mr_table *mrt); 127 128 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 129 struct sk_buff *skb, struct mfc_cache *cache, 130 int local); 131 static int ipmr_cache_report(struct mr_table *mrt, 132 struct sk_buff *pkt, vifi_t vifi, int assert); 133 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 134 struct mfc_cache *c, struct rtmsg *rtm); 135 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 136 int cmd); 137 static void mroute_clean_tables(struct mr_table *mrt); 138 static void ipmr_expire_process(unsigned long arg); 139 140 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 141 #define ipmr_for_each_table(mrt, net) \ 142 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list) 143 144 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 145 { 146 struct mr_table *mrt; 147 148 ipmr_for_each_table(mrt, net) { 149 if (mrt->id == id) 150 return mrt; 151 } 152 return NULL; 153 } 154 155 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 156 struct mr_table **mrt) 157 { 158 int err; 159 struct ipmr_result res; 160 struct fib_lookup_arg arg = { 161 .result = &res, 162 .flags = FIB_LOOKUP_NOREF, 163 }; 164 165 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 166 flowi4_to_flowi(flp4), 0, &arg); 167 if (err < 0) 168 return err; 169 *mrt = res.mrt; 170 return 0; 171 } 172 173 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 174 int flags, struct fib_lookup_arg *arg) 175 { 176 struct ipmr_result *res = arg->result; 177 struct mr_table *mrt; 178 179 switch (rule->action) { 180 case FR_ACT_TO_TBL: 181 break; 182 case FR_ACT_UNREACHABLE: 183 return -ENETUNREACH; 184 case FR_ACT_PROHIBIT: 185 return -EACCES; 186 case FR_ACT_BLACKHOLE: 187 default: 188 return -EINVAL; 189 } 190 191 mrt = ipmr_get_table(rule->fr_net, rule->table); 192 if (!mrt) 193 return -EAGAIN; 194 res->mrt = mrt; 195 return 0; 196 } 197 198 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 199 { 200 return 1; 201 } 202 203 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = { 204 FRA_GENERIC_POLICY, 205 }; 206 207 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 208 struct fib_rule_hdr *frh, struct nlattr **tb) 209 { 210 return 0; 211 } 212 213 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 214 struct nlattr **tb) 215 { 216 return 1; 217 } 218 219 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 220 struct fib_rule_hdr *frh) 221 { 222 frh->dst_len = 0; 223 frh->src_len = 0; 224 frh->tos = 0; 225 return 0; 226 } 227 228 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 229 .family = RTNL_FAMILY_IPMR, 230 .rule_size = sizeof(struct ipmr_rule), 231 .addr_size = sizeof(u32), 232 .action = ipmr_rule_action, 233 .match = ipmr_rule_match, 234 .configure = ipmr_rule_configure, 235 .compare = ipmr_rule_compare, 236 .fill = ipmr_rule_fill, 237 .nlgroup = RTNLGRP_IPV4_RULE, 238 .policy = ipmr_rule_policy, 239 .owner = THIS_MODULE, 240 }; 241 242 static int __net_init ipmr_rules_init(struct net *net) 243 { 244 struct fib_rules_ops *ops; 245 struct mr_table *mrt; 246 int err; 247 248 ops = fib_rules_register(&ipmr_rules_ops_template, net); 249 if (IS_ERR(ops)) 250 return PTR_ERR(ops); 251 252 INIT_LIST_HEAD(&net->ipv4.mr_tables); 253 254 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 255 if (!mrt) { 256 err = -ENOMEM; 257 goto err1; 258 } 259 260 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 261 if (err < 0) 262 goto err2; 263 264 net->ipv4.mr_rules_ops = ops; 265 return 0; 266 267 err2: 268 ipmr_free_table(mrt); 269 err1: 270 fib_rules_unregister(ops); 271 return err; 272 } 273 274 static void __net_exit ipmr_rules_exit(struct net *net) 275 { 276 struct mr_table *mrt, *next; 277 278 rtnl_lock(); 279 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 280 list_del(&mrt->list); 281 ipmr_free_table(mrt); 282 } 283 fib_rules_unregister(net->ipv4.mr_rules_ops); 284 rtnl_unlock(); 285 } 286 #else 287 #define ipmr_for_each_table(mrt, net) \ 288 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 289 290 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 291 { 292 return net->ipv4.mrt; 293 } 294 295 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 296 struct mr_table **mrt) 297 { 298 *mrt = net->ipv4.mrt; 299 return 0; 300 } 301 302 static int __net_init ipmr_rules_init(struct net *net) 303 { 304 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 305 return net->ipv4.mrt ? 0 : -ENOMEM; 306 } 307 308 static void __net_exit ipmr_rules_exit(struct net *net) 309 { 310 rtnl_lock(); 311 ipmr_free_table(net->ipv4.mrt); 312 net->ipv4.mrt = NULL; 313 rtnl_unlock(); 314 } 315 #endif 316 317 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 318 { 319 struct mr_table *mrt; 320 unsigned int i; 321 322 mrt = ipmr_get_table(net, id); 323 if (mrt) 324 return mrt; 325 326 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL); 327 if (!mrt) 328 return NULL; 329 write_pnet(&mrt->net, net); 330 mrt->id = id; 331 332 /* Forwarding cache */ 333 for (i = 0; i < MFC_LINES; i++) 334 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]); 335 336 INIT_LIST_HEAD(&mrt->mfc_unres_queue); 337 338 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process, 339 (unsigned long)mrt); 340 341 #ifdef CONFIG_IP_PIMSM 342 mrt->mroute_reg_vif_num = -1; 343 #endif 344 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 345 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 346 #endif 347 return mrt; 348 } 349 350 static void ipmr_free_table(struct mr_table *mrt) 351 { 352 del_timer_sync(&mrt->ipmr_expire_timer); 353 mroute_clean_tables(mrt); 354 kfree(mrt); 355 } 356 357 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 358 359 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v) 360 { 361 struct net *net = dev_net(dev); 362 363 dev_close(dev); 364 365 dev = __dev_get_by_name(net, "tunl0"); 366 if (dev) { 367 const struct net_device_ops *ops = dev->netdev_ops; 368 struct ifreq ifr; 369 struct ip_tunnel_parm p; 370 371 memset(&p, 0, sizeof(p)); 372 p.iph.daddr = v->vifc_rmt_addr.s_addr; 373 p.iph.saddr = v->vifc_lcl_addr.s_addr; 374 p.iph.version = 4; 375 p.iph.ihl = 5; 376 p.iph.protocol = IPPROTO_IPIP; 377 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 378 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 379 380 if (ops->ndo_do_ioctl) { 381 mm_segment_t oldfs = get_fs(); 382 383 set_fs(KERNEL_DS); 384 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL); 385 set_fs(oldfs); 386 } 387 } 388 } 389 390 static 391 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 392 { 393 struct net_device *dev; 394 395 dev = __dev_get_by_name(net, "tunl0"); 396 397 if (dev) { 398 const struct net_device_ops *ops = dev->netdev_ops; 399 int err; 400 struct ifreq ifr; 401 struct ip_tunnel_parm p; 402 struct in_device *in_dev; 403 404 memset(&p, 0, sizeof(p)); 405 p.iph.daddr = v->vifc_rmt_addr.s_addr; 406 p.iph.saddr = v->vifc_lcl_addr.s_addr; 407 p.iph.version = 4; 408 p.iph.ihl = 5; 409 p.iph.protocol = IPPROTO_IPIP; 410 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 411 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 412 413 if (ops->ndo_do_ioctl) { 414 mm_segment_t oldfs = get_fs(); 415 416 set_fs(KERNEL_DS); 417 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL); 418 set_fs(oldfs); 419 } else { 420 err = -EOPNOTSUPP; 421 } 422 dev = NULL; 423 424 if (err == 0 && 425 (dev = __dev_get_by_name(net, p.name)) != NULL) { 426 dev->flags |= IFF_MULTICAST; 427 428 in_dev = __in_dev_get_rtnl(dev); 429 if (!in_dev) 430 goto failure; 431 432 ipv4_devconf_setall(in_dev); 433 neigh_parms_data_state_setall(in_dev->arp_parms); 434 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 435 436 if (dev_open(dev)) 437 goto failure; 438 dev_hold(dev); 439 } 440 } 441 return dev; 442 443 failure: 444 /* allow the register to be completed before unregistering. */ 445 rtnl_unlock(); 446 rtnl_lock(); 447 448 unregister_netdevice(dev); 449 return NULL; 450 } 451 452 #ifdef CONFIG_IP_PIMSM 453 454 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 455 { 456 struct net *net = dev_net(dev); 457 struct mr_table *mrt; 458 struct flowi4 fl4 = { 459 .flowi4_oif = dev->ifindex, 460 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 461 .flowi4_mark = skb->mark, 462 }; 463 int err; 464 465 err = ipmr_fib_lookup(net, &fl4, &mrt); 466 if (err < 0) { 467 kfree_skb(skb); 468 return err; 469 } 470 471 read_lock(&mrt_lock); 472 dev->stats.tx_bytes += skb->len; 473 dev->stats.tx_packets++; 474 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT); 475 read_unlock(&mrt_lock); 476 kfree_skb(skb); 477 return NETDEV_TX_OK; 478 } 479 480 static int reg_vif_get_iflink(const struct net_device *dev) 481 { 482 return 0; 483 } 484 485 static const struct net_device_ops reg_vif_netdev_ops = { 486 .ndo_start_xmit = reg_vif_xmit, 487 .ndo_get_iflink = reg_vif_get_iflink, 488 }; 489 490 static void reg_vif_setup(struct net_device *dev) 491 { 492 dev->type = ARPHRD_PIMREG; 493 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 494 dev->flags = IFF_NOARP; 495 dev->netdev_ops = ®_vif_netdev_ops; 496 dev->destructor = free_netdev; 497 dev->features |= NETIF_F_NETNS_LOCAL; 498 } 499 500 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 501 { 502 struct net_device *dev; 503 struct in_device *in_dev; 504 char name[IFNAMSIZ]; 505 506 if (mrt->id == RT_TABLE_DEFAULT) 507 sprintf(name, "pimreg"); 508 else 509 sprintf(name, "pimreg%u", mrt->id); 510 511 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 512 513 if (!dev) 514 return NULL; 515 516 dev_net_set(dev, net); 517 518 if (register_netdevice(dev)) { 519 free_netdev(dev); 520 return NULL; 521 } 522 523 rcu_read_lock(); 524 in_dev = __in_dev_get_rcu(dev); 525 if (!in_dev) { 526 rcu_read_unlock(); 527 goto failure; 528 } 529 530 ipv4_devconf_setall(in_dev); 531 neigh_parms_data_state_setall(in_dev->arp_parms); 532 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 533 rcu_read_unlock(); 534 535 if (dev_open(dev)) 536 goto failure; 537 538 dev_hold(dev); 539 540 return dev; 541 542 failure: 543 /* allow the register to be completed before unregistering. */ 544 rtnl_unlock(); 545 rtnl_lock(); 546 547 unregister_netdevice(dev); 548 return NULL; 549 } 550 #endif 551 552 /** 553 * vif_delete - Delete a VIF entry 554 * @notify: Set to 1, if the caller is a notifier_call 555 */ 556 557 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 558 struct list_head *head) 559 { 560 struct vif_device *v; 561 struct net_device *dev; 562 struct in_device *in_dev; 563 564 if (vifi < 0 || vifi >= mrt->maxvif) 565 return -EADDRNOTAVAIL; 566 567 v = &mrt->vif_table[vifi]; 568 569 write_lock_bh(&mrt_lock); 570 dev = v->dev; 571 v->dev = NULL; 572 573 if (!dev) { 574 write_unlock_bh(&mrt_lock); 575 return -EADDRNOTAVAIL; 576 } 577 578 #ifdef CONFIG_IP_PIMSM 579 if (vifi == mrt->mroute_reg_vif_num) 580 mrt->mroute_reg_vif_num = -1; 581 #endif 582 583 if (vifi + 1 == mrt->maxvif) { 584 int tmp; 585 586 for (tmp = vifi - 1; tmp >= 0; tmp--) { 587 if (VIF_EXISTS(mrt, tmp)) 588 break; 589 } 590 mrt->maxvif = tmp+1; 591 } 592 593 write_unlock_bh(&mrt_lock); 594 595 dev_set_allmulti(dev, -1); 596 597 in_dev = __in_dev_get_rtnl(dev); 598 if (in_dev) { 599 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 600 inet_netconf_notify_devconf(dev_net(dev), 601 NETCONFA_MC_FORWARDING, 602 dev->ifindex, &in_dev->cnf); 603 ip_rt_multicast_event(in_dev); 604 } 605 606 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 607 unregister_netdevice_queue(dev, head); 608 609 dev_put(dev); 610 return 0; 611 } 612 613 static void ipmr_cache_free_rcu(struct rcu_head *head) 614 { 615 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu); 616 617 kmem_cache_free(mrt_cachep, c); 618 } 619 620 static inline void ipmr_cache_free(struct mfc_cache *c) 621 { 622 call_rcu(&c->rcu, ipmr_cache_free_rcu); 623 } 624 625 /* Destroy an unresolved cache entry, killing queued skbs 626 * and reporting error to netlink readers. 627 */ 628 629 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 630 { 631 struct net *net = read_pnet(&mrt->net); 632 struct sk_buff *skb; 633 struct nlmsgerr *e; 634 635 atomic_dec(&mrt->cache_resolve_queue_len); 636 637 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) { 638 if (ip_hdr(skb)->version == 0) { 639 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 640 nlh->nlmsg_type = NLMSG_ERROR; 641 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 642 skb_trim(skb, nlh->nlmsg_len); 643 e = nlmsg_data(nlh); 644 e->error = -ETIMEDOUT; 645 memset(&e->msg, 0, sizeof(e->msg)); 646 647 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 648 } else { 649 kfree_skb(skb); 650 } 651 } 652 653 ipmr_cache_free(c); 654 } 655 656 657 /* Timer process for the unresolved queue. */ 658 659 static void ipmr_expire_process(unsigned long arg) 660 { 661 struct mr_table *mrt = (struct mr_table *)arg; 662 unsigned long now; 663 unsigned long expires; 664 struct mfc_cache *c, *next; 665 666 if (!spin_trylock(&mfc_unres_lock)) { 667 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 668 return; 669 } 670 671 if (list_empty(&mrt->mfc_unres_queue)) 672 goto out; 673 674 now = jiffies; 675 expires = 10*HZ; 676 677 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 678 if (time_after(c->mfc_un.unres.expires, now)) { 679 unsigned long interval = c->mfc_un.unres.expires - now; 680 if (interval < expires) 681 expires = interval; 682 continue; 683 } 684 685 list_del(&c->list); 686 mroute_netlink_event(mrt, c, RTM_DELROUTE); 687 ipmr_destroy_unres(mrt, c); 688 } 689 690 if (!list_empty(&mrt->mfc_unres_queue)) 691 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 692 693 out: 694 spin_unlock(&mfc_unres_lock); 695 } 696 697 /* Fill oifs list. It is called under write locked mrt_lock. */ 698 699 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache, 700 unsigned char *ttls) 701 { 702 int vifi; 703 704 cache->mfc_un.res.minvif = MAXVIFS; 705 cache->mfc_un.res.maxvif = 0; 706 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 707 708 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 709 if (VIF_EXISTS(mrt, vifi) && 710 ttls[vifi] && ttls[vifi] < 255) { 711 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 712 if (cache->mfc_un.res.minvif > vifi) 713 cache->mfc_un.res.minvif = vifi; 714 if (cache->mfc_un.res.maxvif <= vifi) 715 cache->mfc_un.res.maxvif = vifi + 1; 716 } 717 } 718 } 719 720 static int vif_add(struct net *net, struct mr_table *mrt, 721 struct vifctl *vifc, int mrtsock) 722 { 723 int vifi = vifc->vifc_vifi; 724 struct vif_device *v = &mrt->vif_table[vifi]; 725 struct net_device *dev; 726 struct in_device *in_dev; 727 int err; 728 729 /* Is vif busy ? */ 730 if (VIF_EXISTS(mrt, vifi)) 731 return -EADDRINUSE; 732 733 switch (vifc->vifc_flags) { 734 #ifdef CONFIG_IP_PIMSM 735 case VIFF_REGISTER: 736 /* 737 * Special Purpose VIF in PIM 738 * All the packets will be sent to the daemon 739 */ 740 if (mrt->mroute_reg_vif_num >= 0) 741 return -EADDRINUSE; 742 dev = ipmr_reg_vif(net, mrt); 743 if (!dev) 744 return -ENOBUFS; 745 err = dev_set_allmulti(dev, 1); 746 if (err) { 747 unregister_netdevice(dev); 748 dev_put(dev); 749 return err; 750 } 751 break; 752 #endif 753 case VIFF_TUNNEL: 754 dev = ipmr_new_tunnel(net, vifc); 755 if (!dev) 756 return -ENOBUFS; 757 err = dev_set_allmulti(dev, 1); 758 if (err) { 759 ipmr_del_tunnel(dev, vifc); 760 dev_put(dev); 761 return err; 762 } 763 break; 764 765 case VIFF_USE_IFINDEX: 766 case 0: 767 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 768 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 769 if (dev && !__in_dev_get_rtnl(dev)) { 770 dev_put(dev); 771 return -EADDRNOTAVAIL; 772 } 773 } else { 774 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 775 } 776 if (!dev) 777 return -EADDRNOTAVAIL; 778 err = dev_set_allmulti(dev, 1); 779 if (err) { 780 dev_put(dev); 781 return err; 782 } 783 break; 784 default: 785 return -EINVAL; 786 } 787 788 in_dev = __in_dev_get_rtnl(dev); 789 if (!in_dev) { 790 dev_put(dev); 791 return -EADDRNOTAVAIL; 792 } 793 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 794 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex, 795 &in_dev->cnf); 796 ip_rt_multicast_event(in_dev); 797 798 /* Fill in the VIF structures */ 799 800 v->rate_limit = vifc->vifc_rate_limit; 801 v->local = vifc->vifc_lcl_addr.s_addr; 802 v->remote = vifc->vifc_rmt_addr.s_addr; 803 v->flags = vifc->vifc_flags; 804 if (!mrtsock) 805 v->flags |= VIFF_STATIC; 806 v->threshold = vifc->vifc_threshold; 807 v->bytes_in = 0; 808 v->bytes_out = 0; 809 v->pkt_in = 0; 810 v->pkt_out = 0; 811 v->link = dev->ifindex; 812 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER)) 813 v->link = dev_get_iflink(dev); 814 815 /* And finish update writing critical data */ 816 write_lock_bh(&mrt_lock); 817 v->dev = dev; 818 #ifdef CONFIG_IP_PIMSM 819 if (v->flags & VIFF_REGISTER) 820 mrt->mroute_reg_vif_num = vifi; 821 #endif 822 if (vifi+1 > mrt->maxvif) 823 mrt->maxvif = vifi+1; 824 write_unlock_bh(&mrt_lock); 825 return 0; 826 } 827 828 /* called with rcu_read_lock() */ 829 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 830 __be32 origin, 831 __be32 mcastgrp) 832 { 833 int line = MFC_HASH(mcastgrp, origin); 834 struct mfc_cache *c; 835 836 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) { 837 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp) 838 return c; 839 } 840 return NULL; 841 } 842 843 /* Look for a (*,*,oif) entry */ 844 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt, 845 int vifi) 846 { 847 int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY)); 848 struct mfc_cache *c; 849 850 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) 851 if (c->mfc_origin == htonl(INADDR_ANY) && 852 c->mfc_mcastgrp == htonl(INADDR_ANY) && 853 c->mfc_un.res.ttls[vifi] < 255) 854 return c; 855 856 return NULL; 857 } 858 859 /* Look for a (*,G) entry */ 860 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 861 __be32 mcastgrp, int vifi) 862 { 863 int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY)); 864 struct mfc_cache *c, *proxy; 865 866 if (mcastgrp == htonl(INADDR_ANY)) 867 goto skip; 868 869 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) 870 if (c->mfc_origin == htonl(INADDR_ANY) && 871 c->mfc_mcastgrp == mcastgrp) { 872 if (c->mfc_un.res.ttls[vifi] < 255) 873 return c; 874 875 /* It's ok if the vifi is part of the static tree */ 876 proxy = ipmr_cache_find_any_parent(mrt, 877 c->mfc_parent); 878 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255) 879 return c; 880 } 881 882 skip: 883 return ipmr_cache_find_any_parent(mrt, vifi); 884 } 885 886 /* 887 * Allocate a multicast cache entry 888 */ 889 static struct mfc_cache *ipmr_cache_alloc(void) 890 { 891 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 892 893 if (c) 894 c->mfc_un.res.minvif = MAXVIFS; 895 return c; 896 } 897 898 static struct mfc_cache *ipmr_cache_alloc_unres(void) 899 { 900 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 901 902 if (c) { 903 skb_queue_head_init(&c->mfc_un.unres.unresolved); 904 c->mfc_un.unres.expires = jiffies + 10*HZ; 905 } 906 return c; 907 } 908 909 /* 910 * A cache entry has gone into a resolved state from queued 911 */ 912 913 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 914 struct mfc_cache *uc, struct mfc_cache *c) 915 { 916 struct sk_buff *skb; 917 struct nlmsgerr *e; 918 919 /* Play the pending entries through our router */ 920 921 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) { 922 if (ip_hdr(skb)->version == 0) { 923 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 924 925 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) { 926 nlh->nlmsg_len = skb_tail_pointer(skb) - 927 (u8 *)nlh; 928 } else { 929 nlh->nlmsg_type = NLMSG_ERROR; 930 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 931 skb_trim(skb, nlh->nlmsg_len); 932 e = nlmsg_data(nlh); 933 e->error = -EMSGSIZE; 934 memset(&e->msg, 0, sizeof(e->msg)); 935 } 936 937 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 938 } else { 939 ip_mr_forward(net, mrt, skb, c, 0); 940 } 941 } 942 } 943 944 /* 945 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted 946 * expects the following bizarre scheme. 947 * 948 * Called under mrt_lock. 949 */ 950 951 static int ipmr_cache_report(struct mr_table *mrt, 952 struct sk_buff *pkt, vifi_t vifi, int assert) 953 { 954 struct sk_buff *skb; 955 const int ihl = ip_hdrlen(pkt); 956 struct igmphdr *igmp; 957 struct igmpmsg *msg; 958 struct sock *mroute_sk; 959 int ret; 960 961 #ifdef CONFIG_IP_PIMSM 962 if (assert == IGMPMSG_WHOLEPKT) 963 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 964 else 965 #endif 966 skb = alloc_skb(128, GFP_ATOMIC); 967 968 if (!skb) 969 return -ENOBUFS; 970 971 #ifdef CONFIG_IP_PIMSM 972 if (assert == IGMPMSG_WHOLEPKT) { 973 /* Ugly, but we have no choice with this interface. 974 * Duplicate old header, fix ihl, length etc. 975 * And all this only to mangle msg->im_msgtype and 976 * to set msg->im_mbz to "mbz" :-) 977 */ 978 skb_push(skb, sizeof(struct iphdr)); 979 skb_reset_network_header(skb); 980 skb_reset_transport_header(skb); 981 msg = (struct igmpmsg *)skb_network_header(skb); 982 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 983 msg->im_msgtype = IGMPMSG_WHOLEPKT; 984 msg->im_mbz = 0; 985 msg->im_vif = mrt->mroute_reg_vif_num; 986 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 987 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 988 sizeof(struct iphdr)); 989 } else 990 #endif 991 { 992 993 /* Copy the IP header */ 994 995 skb_set_network_header(skb, skb->len); 996 skb_put(skb, ihl); 997 skb_copy_to_linear_data(skb, pkt->data, ihl); 998 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */ 999 msg = (struct igmpmsg *)skb_network_header(skb); 1000 msg->im_vif = vifi; 1001 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 1002 1003 /* Add our header */ 1004 1005 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr)); 1006 igmp->type = 1007 msg->im_msgtype = assert; 1008 igmp->code = 0; 1009 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 1010 skb->transport_header = skb->network_header; 1011 } 1012 1013 rcu_read_lock(); 1014 mroute_sk = rcu_dereference(mrt->mroute_sk); 1015 if (!mroute_sk) { 1016 rcu_read_unlock(); 1017 kfree_skb(skb); 1018 return -EINVAL; 1019 } 1020 1021 /* Deliver to mrouted */ 1022 1023 ret = sock_queue_rcv_skb(mroute_sk, skb); 1024 rcu_read_unlock(); 1025 if (ret < 0) { 1026 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1027 kfree_skb(skb); 1028 } 1029 1030 return ret; 1031 } 1032 1033 /* 1034 * Queue a packet for resolution. It gets locked cache entry! 1035 */ 1036 1037 static int 1038 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb) 1039 { 1040 bool found = false; 1041 int err; 1042 struct mfc_cache *c; 1043 const struct iphdr *iph = ip_hdr(skb); 1044 1045 spin_lock_bh(&mfc_unres_lock); 1046 list_for_each_entry(c, &mrt->mfc_unres_queue, list) { 1047 if (c->mfc_mcastgrp == iph->daddr && 1048 c->mfc_origin == iph->saddr) { 1049 found = true; 1050 break; 1051 } 1052 } 1053 1054 if (!found) { 1055 /* Create a new entry if allowable */ 1056 1057 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 1058 (c = ipmr_cache_alloc_unres()) == NULL) { 1059 spin_unlock_bh(&mfc_unres_lock); 1060 1061 kfree_skb(skb); 1062 return -ENOBUFS; 1063 } 1064 1065 /* Fill in the new cache entry */ 1066 1067 c->mfc_parent = -1; 1068 c->mfc_origin = iph->saddr; 1069 c->mfc_mcastgrp = iph->daddr; 1070 1071 /* Reflect first query at mrouted. */ 1072 1073 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1074 if (err < 0) { 1075 /* If the report failed throw the cache entry 1076 out - Brad Parker 1077 */ 1078 spin_unlock_bh(&mfc_unres_lock); 1079 1080 ipmr_cache_free(c); 1081 kfree_skb(skb); 1082 return err; 1083 } 1084 1085 atomic_inc(&mrt->cache_resolve_queue_len); 1086 list_add(&c->list, &mrt->mfc_unres_queue); 1087 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1088 1089 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1090 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires); 1091 } 1092 1093 /* See if we can append the packet */ 1094 1095 if (c->mfc_un.unres.unresolved.qlen > 3) { 1096 kfree_skb(skb); 1097 err = -ENOBUFS; 1098 } else { 1099 skb_queue_tail(&c->mfc_un.unres.unresolved, skb); 1100 err = 0; 1101 } 1102 1103 spin_unlock_bh(&mfc_unres_lock); 1104 return err; 1105 } 1106 1107 /* 1108 * MFC cache manipulation by user space mroute daemon 1109 */ 1110 1111 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1112 { 1113 int line; 1114 struct mfc_cache *c, *next; 1115 1116 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1117 1118 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) { 1119 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1120 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr && 1121 (parent == -1 || parent == c->mfc_parent)) { 1122 list_del_rcu(&c->list); 1123 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1124 ipmr_cache_free(c); 1125 return 0; 1126 } 1127 } 1128 return -ENOENT; 1129 } 1130 1131 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1132 struct mfcctl *mfc, int mrtsock, int parent) 1133 { 1134 bool found = false; 1135 int line; 1136 struct mfc_cache *uc, *c; 1137 1138 if (mfc->mfcc_parent >= MAXVIFS) 1139 return -ENFILE; 1140 1141 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1142 1143 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) { 1144 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1145 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr && 1146 (parent == -1 || parent == c->mfc_parent)) { 1147 found = true; 1148 break; 1149 } 1150 } 1151 1152 if (found) { 1153 write_lock_bh(&mrt_lock); 1154 c->mfc_parent = mfc->mfcc_parent; 1155 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1156 if (!mrtsock) 1157 c->mfc_flags |= MFC_STATIC; 1158 write_unlock_bh(&mrt_lock); 1159 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1160 return 0; 1161 } 1162 1163 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1164 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1165 return -EINVAL; 1166 1167 c = ipmr_cache_alloc(); 1168 if (!c) 1169 return -ENOMEM; 1170 1171 c->mfc_origin = mfc->mfcc_origin.s_addr; 1172 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1173 c->mfc_parent = mfc->mfcc_parent; 1174 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1175 if (!mrtsock) 1176 c->mfc_flags |= MFC_STATIC; 1177 1178 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]); 1179 1180 /* 1181 * Check to see if we resolved a queued list. If so we 1182 * need to send on the frames and tidy up. 1183 */ 1184 found = false; 1185 spin_lock_bh(&mfc_unres_lock); 1186 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) { 1187 if (uc->mfc_origin == c->mfc_origin && 1188 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1189 list_del(&uc->list); 1190 atomic_dec(&mrt->cache_resolve_queue_len); 1191 found = true; 1192 break; 1193 } 1194 } 1195 if (list_empty(&mrt->mfc_unres_queue)) 1196 del_timer(&mrt->ipmr_expire_timer); 1197 spin_unlock_bh(&mfc_unres_lock); 1198 1199 if (found) { 1200 ipmr_cache_resolve(net, mrt, uc, c); 1201 ipmr_cache_free(uc); 1202 } 1203 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1204 return 0; 1205 } 1206 1207 /* 1208 * Close the multicast socket, and clear the vif tables etc 1209 */ 1210 1211 static void mroute_clean_tables(struct mr_table *mrt) 1212 { 1213 int i; 1214 LIST_HEAD(list); 1215 struct mfc_cache *c, *next; 1216 1217 /* Shut down all active vif entries */ 1218 1219 for (i = 0; i < mrt->maxvif; i++) { 1220 if (!(mrt->vif_table[i].flags & VIFF_STATIC)) 1221 vif_delete(mrt, i, 0, &list); 1222 } 1223 unregister_netdevice_many(&list); 1224 1225 /* Wipe the cache */ 1226 1227 for (i = 0; i < MFC_LINES; i++) { 1228 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) { 1229 if (c->mfc_flags & MFC_STATIC) 1230 continue; 1231 list_del_rcu(&c->list); 1232 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1233 ipmr_cache_free(c); 1234 } 1235 } 1236 1237 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1238 spin_lock_bh(&mfc_unres_lock); 1239 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 1240 list_del(&c->list); 1241 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1242 ipmr_destroy_unres(mrt, c); 1243 } 1244 spin_unlock_bh(&mfc_unres_lock); 1245 } 1246 } 1247 1248 /* called from ip_ra_control(), before an RCU grace period, 1249 * we dont need to call synchronize_rcu() here 1250 */ 1251 static void mrtsock_destruct(struct sock *sk) 1252 { 1253 struct net *net = sock_net(sk); 1254 struct mr_table *mrt; 1255 1256 rtnl_lock(); 1257 ipmr_for_each_table(mrt, net) { 1258 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1259 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1260 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, 1261 NETCONFA_IFINDEX_ALL, 1262 net->ipv4.devconf_all); 1263 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1264 mroute_clean_tables(mrt); 1265 } 1266 } 1267 rtnl_unlock(); 1268 } 1269 1270 /* 1271 * Socket options and virtual interface manipulation. The whole 1272 * virtual interface system is a complete heap, but unfortunately 1273 * that's how BSD mrouted happens to think. Maybe one day with a proper 1274 * MOSPF/PIM router set up we can clean this up. 1275 */ 1276 1277 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen) 1278 { 1279 int ret, parent = 0; 1280 struct vifctl vif; 1281 struct mfcctl mfc; 1282 struct net *net = sock_net(sk); 1283 struct mr_table *mrt; 1284 1285 if (sk->sk_type != SOCK_RAW || 1286 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1287 return -EOPNOTSUPP; 1288 1289 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1290 if (!mrt) 1291 return -ENOENT; 1292 1293 if (optname != MRT_INIT) { 1294 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1295 !ns_capable(net->user_ns, CAP_NET_ADMIN)) 1296 return -EACCES; 1297 } 1298 1299 switch (optname) { 1300 case MRT_INIT: 1301 if (optlen != sizeof(int)) 1302 return -EINVAL; 1303 1304 rtnl_lock(); 1305 if (rtnl_dereference(mrt->mroute_sk)) { 1306 rtnl_unlock(); 1307 return -EADDRINUSE; 1308 } 1309 1310 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1311 if (ret == 0) { 1312 rcu_assign_pointer(mrt->mroute_sk, sk); 1313 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1314 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, 1315 NETCONFA_IFINDEX_ALL, 1316 net->ipv4.devconf_all); 1317 } 1318 rtnl_unlock(); 1319 return ret; 1320 case MRT_DONE: 1321 if (sk != rcu_access_pointer(mrt->mroute_sk)) 1322 return -EACCES; 1323 return ip_ra_control(sk, 0, NULL); 1324 case MRT_ADD_VIF: 1325 case MRT_DEL_VIF: 1326 if (optlen != sizeof(vif)) 1327 return -EINVAL; 1328 if (copy_from_user(&vif, optval, sizeof(vif))) 1329 return -EFAULT; 1330 if (vif.vifc_vifi >= MAXVIFS) 1331 return -ENFILE; 1332 rtnl_lock(); 1333 if (optname == MRT_ADD_VIF) { 1334 ret = vif_add(net, mrt, &vif, 1335 sk == rtnl_dereference(mrt->mroute_sk)); 1336 } else { 1337 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1338 } 1339 rtnl_unlock(); 1340 return ret; 1341 1342 /* 1343 * Manipulate the forwarding caches. These live 1344 * in a sort of kernel/user symbiosis. 1345 */ 1346 case MRT_ADD_MFC: 1347 case MRT_DEL_MFC: 1348 parent = -1; 1349 case MRT_ADD_MFC_PROXY: 1350 case MRT_DEL_MFC_PROXY: 1351 if (optlen != sizeof(mfc)) 1352 return -EINVAL; 1353 if (copy_from_user(&mfc, optval, sizeof(mfc))) 1354 return -EFAULT; 1355 if (parent == 0) 1356 parent = mfc.mfcc_parent; 1357 rtnl_lock(); 1358 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1359 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1360 else 1361 ret = ipmr_mfc_add(net, mrt, &mfc, 1362 sk == rtnl_dereference(mrt->mroute_sk), 1363 parent); 1364 rtnl_unlock(); 1365 return ret; 1366 /* 1367 * Control PIM assert. 1368 */ 1369 case MRT_ASSERT: 1370 { 1371 int v; 1372 if (optlen != sizeof(v)) 1373 return -EINVAL; 1374 if (get_user(v, (int __user *)optval)) 1375 return -EFAULT; 1376 mrt->mroute_do_assert = v; 1377 return 0; 1378 } 1379 #ifdef CONFIG_IP_PIMSM 1380 case MRT_PIM: 1381 { 1382 int v; 1383 1384 if (optlen != sizeof(v)) 1385 return -EINVAL; 1386 if (get_user(v, (int __user *)optval)) 1387 return -EFAULT; 1388 v = !!v; 1389 1390 rtnl_lock(); 1391 ret = 0; 1392 if (v != mrt->mroute_do_pim) { 1393 mrt->mroute_do_pim = v; 1394 mrt->mroute_do_assert = v; 1395 } 1396 rtnl_unlock(); 1397 return ret; 1398 } 1399 #endif 1400 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 1401 case MRT_TABLE: 1402 { 1403 u32 v; 1404 1405 if (optlen != sizeof(u32)) 1406 return -EINVAL; 1407 if (get_user(v, (u32 __user *)optval)) 1408 return -EFAULT; 1409 1410 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 1411 if (v != RT_TABLE_DEFAULT && v >= 1000000000) 1412 return -EINVAL; 1413 1414 rtnl_lock(); 1415 ret = 0; 1416 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1417 ret = -EBUSY; 1418 } else { 1419 if (!ipmr_new_table(net, v)) 1420 ret = -ENOMEM; 1421 else 1422 raw_sk(sk)->ipmr_table = v; 1423 } 1424 rtnl_unlock(); 1425 return ret; 1426 } 1427 #endif 1428 /* 1429 * Spurious command, or MRT_VERSION which you cannot 1430 * set. 1431 */ 1432 default: 1433 return -ENOPROTOOPT; 1434 } 1435 } 1436 1437 /* 1438 * Getsock opt support for the multicast routing system. 1439 */ 1440 1441 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1442 { 1443 int olr; 1444 int val; 1445 struct net *net = sock_net(sk); 1446 struct mr_table *mrt; 1447 1448 if (sk->sk_type != SOCK_RAW || 1449 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1450 return -EOPNOTSUPP; 1451 1452 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1453 if (!mrt) 1454 return -ENOENT; 1455 1456 if (optname != MRT_VERSION && 1457 #ifdef CONFIG_IP_PIMSM 1458 optname != MRT_PIM && 1459 #endif 1460 optname != MRT_ASSERT) 1461 return -ENOPROTOOPT; 1462 1463 if (get_user(olr, optlen)) 1464 return -EFAULT; 1465 1466 olr = min_t(unsigned int, olr, sizeof(int)); 1467 if (olr < 0) 1468 return -EINVAL; 1469 1470 if (put_user(olr, optlen)) 1471 return -EFAULT; 1472 if (optname == MRT_VERSION) 1473 val = 0x0305; 1474 #ifdef CONFIG_IP_PIMSM 1475 else if (optname == MRT_PIM) 1476 val = mrt->mroute_do_pim; 1477 #endif 1478 else 1479 val = mrt->mroute_do_assert; 1480 if (copy_to_user(optval, &val, olr)) 1481 return -EFAULT; 1482 return 0; 1483 } 1484 1485 /* 1486 * The IP multicast ioctl support routines. 1487 */ 1488 1489 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1490 { 1491 struct sioc_sg_req sr; 1492 struct sioc_vif_req vr; 1493 struct vif_device *vif; 1494 struct mfc_cache *c; 1495 struct net *net = sock_net(sk); 1496 struct mr_table *mrt; 1497 1498 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1499 if (!mrt) 1500 return -ENOENT; 1501 1502 switch (cmd) { 1503 case SIOCGETVIFCNT: 1504 if (copy_from_user(&vr, arg, sizeof(vr))) 1505 return -EFAULT; 1506 if (vr.vifi >= mrt->maxvif) 1507 return -EINVAL; 1508 read_lock(&mrt_lock); 1509 vif = &mrt->vif_table[vr.vifi]; 1510 if (VIF_EXISTS(mrt, vr.vifi)) { 1511 vr.icount = vif->pkt_in; 1512 vr.ocount = vif->pkt_out; 1513 vr.ibytes = vif->bytes_in; 1514 vr.obytes = vif->bytes_out; 1515 read_unlock(&mrt_lock); 1516 1517 if (copy_to_user(arg, &vr, sizeof(vr))) 1518 return -EFAULT; 1519 return 0; 1520 } 1521 read_unlock(&mrt_lock); 1522 return -EADDRNOTAVAIL; 1523 case SIOCGETSGCNT: 1524 if (copy_from_user(&sr, arg, sizeof(sr))) 1525 return -EFAULT; 1526 1527 rcu_read_lock(); 1528 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1529 if (c) { 1530 sr.pktcnt = c->mfc_un.res.pkt; 1531 sr.bytecnt = c->mfc_un.res.bytes; 1532 sr.wrong_if = c->mfc_un.res.wrong_if; 1533 rcu_read_unlock(); 1534 1535 if (copy_to_user(arg, &sr, sizeof(sr))) 1536 return -EFAULT; 1537 return 0; 1538 } 1539 rcu_read_unlock(); 1540 return -EADDRNOTAVAIL; 1541 default: 1542 return -ENOIOCTLCMD; 1543 } 1544 } 1545 1546 #ifdef CONFIG_COMPAT 1547 struct compat_sioc_sg_req { 1548 struct in_addr src; 1549 struct in_addr grp; 1550 compat_ulong_t pktcnt; 1551 compat_ulong_t bytecnt; 1552 compat_ulong_t wrong_if; 1553 }; 1554 1555 struct compat_sioc_vif_req { 1556 vifi_t vifi; /* Which iface */ 1557 compat_ulong_t icount; 1558 compat_ulong_t ocount; 1559 compat_ulong_t ibytes; 1560 compat_ulong_t obytes; 1561 }; 1562 1563 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1564 { 1565 struct compat_sioc_sg_req sr; 1566 struct compat_sioc_vif_req vr; 1567 struct vif_device *vif; 1568 struct mfc_cache *c; 1569 struct net *net = sock_net(sk); 1570 struct mr_table *mrt; 1571 1572 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1573 if (!mrt) 1574 return -ENOENT; 1575 1576 switch (cmd) { 1577 case SIOCGETVIFCNT: 1578 if (copy_from_user(&vr, arg, sizeof(vr))) 1579 return -EFAULT; 1580 if (vr.vifi >= mrt->maxvif) 1581 return -EINVAL; 1582 read_lock(&mrt_lock); 1583 vif = &mrt->vif_table[vr.vifi]; 1584 if (VIF_EXISTS(mrt, vr.vifi)) { 1585 vr.icount = vif->pkt_in; 1586 vr.ocount = vif->pkt_out; 1587 vr.ibytes = vif->bytes_in; 1588 vr.obytes = vif->bytes_out; 1589 read_unlock(&mrt_lock); 1590 1591 if (copy_to_user(arg, &vr, sizeof(vr))) 1592 return -EFAULT; 1593 return 0; 1594 } 1595 read_unlock(&mrt_lock); 1596 return -EADDRNOTAVAIL; 1597 case SIOCGETSGCNT: 1598 if (copy_from_user(&sr, arg, sizeof(sr))) 1599 return -EFAULT; 1600 1601 rcu_read_lock(); 1602 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1603 if (c) { 1604 sr.pktcnt = c->mfc_un.res.pkt; 1605 sr.bytecnt = c->mfc_un.res.bytes; 1606 sr.wrong_if = c->mfc_un.res.wrong_if; 1607 rcu_read_unlock(); 1608 1609 if (copy_to_user(arg, &sr, sizeof(sr))) 1610 return -EFAULT; 1611 return 0; 1612 } 1613 rcu_read_unlock(); 1614 return -EADDRNOTAVAIL; 1615 default: 1616 return -ENOIOCTLCMD; 1617 } 1618 } 1619 #endif 1620 1621 1622 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1623 { 1624 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1625 struct net *net = dev_net(dev); 1626 struct mr_table *mrt; 1627 struct vif_device *v; 1628 int ct; 1629 1630 if (event != NETDEV_UNREGISTER) 1631 return NOTIFY_DONE; 1632 1633 ipmr_for_each_table(mrt, net) { 1634 v = &mrt->vif_table[0]; 1635 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1636 if (v->dev == dev) 1637 vif_delete(mrt, ct, 1, NULL); 1638 } 1639 } 1640 return NOTIFY_DONE; 1641 } 1642 1643 1644 static struct notifier_block ip_mr_notifier = { 1645 .notifier_call = ipmr_device_event, 1646 }; 1647 1648 /* 1649 * Encapsulate a packet by attaching a valid IPIP header to it. 1650 * This avoids tunnel drivers and other mess and gives us the speed so 1651 * important for multicast video. 1652 */ 1653 1654 static void ip_encap(struct net *net, struct sk_buff *skb, 1655 __be32 saddr, __be32 daddr) 1656 { 1657 struct iphdr *iph; 1658 const struct iphdr *old_iph = ip_hdr(skb); 1659 1660 skb_push(skb, sizeof(struct iphdr)); 1661 skb->transport_header = skb->network_header; 1662 skb_reset_network_header(skb); 1663 iph = ip_hdr(skb); 1664 1665 iph->version = 4; 1666 iph->tos = old_iph->tos; 1667 iph->ttl = old_iph->ttl; 1668 iph->frag_off = 0; 1669 iph->daddr = daddr; 1670 iph->saddr = saddr; 1671 iph->protocol = IPPROTO_IPIP; 1672 iph->ihl = 5; 1673 iph->tot_len = htons(skb->len); 1674 ip_select_ident(net, skb, NULL); 1675 ip_send_check(iph); 1676 1677 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1678 nf_reset(skb); 1679 } 1680 1681 static inline int ipmr_forward_finish(struct sock *sk, struct sk_buff *skb) 1682 { 1683 struct ip_options *opt = &(IPCB(skb)->opt); 1684 1685 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS); 1686 IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len); 1687 1688 if (unlikely(opt->optlen)) 1689 ip_forward_options(skb); 1690 1691 return dst_output_sk(sk, skb); 1692 } 1693 1694 /* 1695 * Processing handlers for ipmr_forward 1696 */ 1697 1698 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1699 struct sk_buff *skb, struct mfc_cache *c, int vifi) 1700 { 1701 const struct iphdr *iph = ip_hdr(skb); 1702 struct vif_device *vif = &mrt->vif_table[vifi]; 1703 struct net_device *dev; 1704 struct rtable *rt; 1705 struct flowi4 fl4; 1706 int encap = 0; 1707 1708 if (!vif->dev) 1709 goto out_free; 1710 1711 #ifdef CONFIG_IP_PIMSM 1712 if (vif->flags & VIFF_REGISTER) { 1713 vif->pkt_out++; 1714 vif->bytes_out += skb->len; 1715 vif->dev->stats.tx_bytes += skb->len; 1716 vif->dev->stats.tx_packets++; 1717 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1718 goto out_free; 1719 } 1720 #endif 1721 1722 if (vif->flags & VIFF_TUNNEL) { 1723 rt = ip_route_output_ports(net, &fl4, NULL, 1724 vif->remote, vif->local, 1725 0, 0, 1726 IPPROTO_IPIP, 1727 RT_TOS(iph->tos), vif->link); 1728 if (IS_ERR(rt)) 1729 goto out_free; 1730 encap = sizeof(struct iphdr); 1731 } else { 1732 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1733 0, 0, 1734 IPPROTO_IPIP, 1735 RT_TOS(iph->tos), vif->link); 1736 if (IS_ERR(rt)) 1737 goto out_free; 1738 } 1739 1740 dev = rt->dst.dev; 1741 1742 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1743 /* Do not fragment multicasts. Alas, IPv4 does not 1744 * allow to send ICMP, so that packets will disappear 1745 * to blackhole. 1746 */ 1747 1748 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS); 1749 ip_rt_put(rt); 1750 goto out_free; 1751 } 1752 1753 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1754 1755 if (skb_cow(skb, encap)) { 1756 ip_rt_put(rt); 1757 goto out_free; 1758 } 1759 1760 vif->pkt_out++; 1761 vif->bytes_out += skb->len; 1762 1763 skb_dst_drop(skb); 1764 skb_dst_set(skb, &rt->dst); 1765 ip_decrease_ttl(ip_hdr(skb)); 1766 1767 /* FIXME: forward and output firewalls used to be called here. 1768 * What do we do with netfilter? -- RR 1769 */ 1770 if (vif->flags & VIFF_TUNNEL) { 1771 ip_encap(net, skb, vif->local, vif->remote); 1772 /* FIXME: extra output firewall step used to be here. --RR */ 1773 vif->dev->stats.tx_packets++; 1774 vif->dev->stats.tx_bytes += skb->len; 1775 } 1776 1777 IPCB(skb)->flags |= IPSKB_FORWARDED; 1778 1779 /* 1780 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1781 * not only before forwarding, but after forwarding on all output 1782 * interfaces. It is clear, if mrouter runs a multicasting 1783 * program, it should receive packets not depending to what interface 1784 * program is joined. 1785 * If we will not make it, the program will have to join on all 1786 * interfaces. On the other hand, multihoming host (or router, but 1787 * not mrouter) cannot join to more than one interface - it will 1788 * result in receiving multiple packets. 1789 */ 1790 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, NULL, skb, 1791 skb->dev, dev, 1792 ipmr_forward_finish); 1793 return; 1794 1795 out_free: 1796 kfree_skb(skb); 1797 } 1798 1799 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev) 1800 { 1801 int ct; 1802 1803 for (ct = mrt->maxvif-1; ct >= 0; ct--) { 1804 if (mrt->vif_table[ct].dev == dev) 1805 break; 1806 } 1807 return ct; 1808 } 1809 1810 /* "local" means that we should preserve one skb (for local delivery) */ 1811 1812 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1813 struct sk_buff *skb, struct mfc_cache *cache, 1814 int local) 1815 { 1816 int psend = -1; 1817 int vif, ct; 1818 int true_vifi = ipmr_find_vif(mrt, skb->dev); 1819 1820 vif = cache->mfc_parent; 1821 cache->mfc_un.res.pkt++; 1822 cache->mfc_un.res.bytes += skb->len; 1823 1824 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1825 struct mfc_cache *cache_proxy; 1826 1827 /* For an (*,G) entry, we only check that the incomming 1828 * interface is part of the static tree. 1829 */ 1830 cache_proxy = ipmr_cache_find_any_parent(mrt, vif); 1831 if (cache_proxy && 1832 cache_proxy->mfc_un.res.ttls[true_vifi] < 255) 1833 goto forward; 1834 } 1835 1836 /* 1837 * Wrong interface: drop packet and (maybe) send PIM assert. 1838 */ 1839 if (mrt->vif_table[vif].dev != skb->dev) { 1840 if (rt_is_output_route(skb_rtable(skb))) { 1841 /* It is our own packet, looped back. 1842 * Very complicated situation... 1843 * 1844 * The best workaround until routing daemons will be 1845 * fixed is not to redistribute packet, if it was 1846 * send through wrong interface. It means, that 1847 * multicast applications WILL NOT work for 1848 * (S,G), which have default multicast route pointing 1849 * to wrong oif. In any case, it is not a good 1850 * idea to use multicasting applications on router. 1851 */ 1852 goto dont_forward; 1853 } 1854 1855 cache->mfc_un.res.wrong_if++; 1856 1857 if (true_vifi >= 0 && mrt->mroute_do_assert && 1858 /* pimsm uses asserts, when switching from RPT to SPT, 1859 * so that we cannot check that packet arrived on an oif. 1860 * It is bad, but otherwise we would need to move pretty 1861 * large chunk of pimd to kernel. Ough... --ANK 1862 */ 1863 (mrt->mroute_do_pim || 1864 cache->mfc_un.res.ttls[true_vifi] < 255) && 1865 time_after(jiffies, 1866 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { 1867 cache->mfc_un.res.last_assert = jiffies; 1868 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 1869 } 1870 goto dont_forward; 1871 } 1872 1873 forward: 1874 mrt->vif_table[vif].pkt_in++; 1875 mrt->vif_table[vif].bytes_in += skb->len; 1876 1877 /* 1878 * Forward the frame 1879 */ 1880 if (cache->mfc_origin == htonl(INADDR_ANY) && 1881 cache->mfc_mcastgrp == htonl(INADDR_ANY)) { 1882 if (true_vifi >= 0 && 1883 true_vifi != cache->mfc_parent && 1884 ip_hdr(skb)->ttl > 1885 cache->mfc_un.res.ttls[cache->mfc_parent]) { 1886 /* It's an (*,*) entry and the packet is not coming from 1887 * the upstream: forward the packet to the upstream 1888 * only. 1889 */ 1890 psend = cache->mfc_parent; 1891 goto last_forward; 1892 } 1893 goto dont_forward; 1894 } 1895 for (ct = cache->mfc_un.res.maxvif - 1; 1896 ct >= cache->mfc_un.res.minvif; ct--) { 1897 /* For (*,G) entry, don't forward to the incoming interface */ 1898 if ((cache->mfc_origin != htonl(INADDR_ANY) || 1899 ct != true_vifi) && 1900 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) { 1901 if (psend != -1) { 1902 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1903 1904 if (skb2) 1905 ipmr_queue_xmit(net, mrt, skb2, cache, 1906 psend); 1907 } 1908 psend = ct; 1909 } 1910 } 1911 last_forward: 1912 if (psend != -1) { 1913 if (local) { 1914 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1915 1916 if (skb2) 1917 ipmr_queue_xmit(net, mrt, skb2, cache, psend); 1918 } else { 1919 ipmr_queue_xmit(net, mrt, skb, cache, psend); 1920 return; 1921 } 1922 } 1923 1924 dont_forward: 1925 if (!local) 1926 kfree_skb(skb); 1927 } 1928 1929 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 1930 { 1931 struct rtable *rt = skb_rtable(skb); 1932 struct iphdr *iph = ip_hdr(skb); 1933 struct flowi4 fl4 = { 1934 .daddr = iph->daddr, 1935 .saddr = iph->saddr, 1936 .flowi4_tos = RT_TOS(iph->tos), 1937 .flowi4_oif = (rt_is_output_route(rt) ? 1938 skb->dev->ifindex : 0), 1939 .flowi4_iif = (rt_is_output_route(rt) ? 1940 LOOPBACK_IFINDEX : 1941 skb->dev->ifindex), 1942 .flowi4_mark = skb->mark, 1943 }; 1944 struct mr_table *mrt; 1945 int err; 1946 1947 err = ipmr_fib_lookup(net, &fl4, &mrt); 1948 if (err) 1949 return ERR_PTR(err); 1950 return mrt; 1951 } 1952 1953 /* 1954 * Multicast packets for forwarding arrive here 1955 * Called with rcu_read_lock(); 1956 */ 1957 1958 int ip_mr_input(struct sk_buff *skb) 1959 { 1960 struct mfc_cache *cache; 1961 struct net *net = dev_net(skb->dev); 1962 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 1963 struct mr_table *mrt; 1964 1965 /* Packet is looped back after forward, it should not be 1966 * forwarded second time, but still can be delivered locally. 1967 */ 1968 if (IPCB(skb)->flags & IPSKB_FORWARDED) 1969 goto dont_forward; 1970 1971 mrt = ipmr_rt_fib_lookup(net, skb); 1972 if (IS_ERR(mrt)) { 1973 kfree_skb(skb); 1974 return PTR_ERR(mrt); 1975 } 1976 if (!local) { 1977 if (IPCB(skb)->opt.router_alert) { 1978 if (ip_call_ra_chain(skb)) 1979 return 0; 1980 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 1981 /* IGMPv1 (and broken IGMPv2 implementations sort of 1982 * Cisco IOS <= 11.2(8)) do not put router alert 1983 * option to IGMP packets destined to routable 1984 * groups. It is very bad, because it means 1985 * that we can forward NO IGMP messages. 1986 */ 1987 struct sock *mroute_sk; 1988 1989 mroute_sk = rcu_dereference(mrt->mroute_sk); 1990 if (mroute_sk) { 1991 nf_reset(skb); 1992 raw_rcv(mroute_sk, skb); 1993 return 0; 1994 } 1995 } 1996 } 1997 1998 /* already under rcu_read_lock() */ 1999 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 2000 if (!cache) { 2001 int vif = ipmr_find_vif(mrt, skb->dev); 2002 2003 if (vif >= 0) 2004 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 2005 vif); 2006 } 2007 2008 /* 2009 * No usable cache entry 2010 */ 2011 if (!cache) { 2012 int vif; 2013 2014 if (local) { 2015 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2016 ip_local_deliver(skb); 2017 if (!skb2) 2018 return -ENOBUFS; 2019 skb = skb2; 2020 } 2021 2022 read_lock(&mrt_lock); 2023 vif = ipmr_find_vif(mrt, skb->dev); 2024 if (vif >= 0) { 2025 int err2 = ipmr_cache_unresolved(mrt, vif, skb); 2026 read_unlock(&mrt_lock); 2027 2028 return err2; 2029 } 2030 read_unlock(&mrt_lock); 2031 kfree_skb(skb); 2032 return -ENODEV; 2033 } 2034 2035 read_lock(&mrt_lock); 2036 ip_mr_forward(net, mrt, skb, cache, local); 2037 read_unlock(&mrt_lock); 2038 2039 if (local) 2040 return ip_local_deliver(skb); 2041 2042 return 0; 2043 2044 dont_forward: 2045 if (local) 2046 return ip_local_deliver(skb); 2047 kfree_skb(skb); 2048 return 0; 2049 } 2050 2051 #ifdef CONFIG_IP_PIMSM 2052 /* called with rcu_read_lock() */ 2053 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 2054 unsigned int pimlen) 2055 { 2056 struct net_device *reg_dev = NULL; 2057 struct iphdr *encap; 2058 2059 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 2060 /* 2061 * Check that: 2062 * a. packet is really sent to a multicast group 2063 * b. packet is not a NULL-REGISTER 2064 * c. packet is not truncated 2065 */ 2066 if (!ipv4_is_multicast(encap->daddr) || 2067 encap->tot_len == 0 || 2068 ntohs(encap->tot_len) + pimlen > skb->len) 2069 return 1; 2070 2071 read_lock(&mrt_lock); 2072 if (mrt->mroute_reg_vif_num >= 0) 2073 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev; 2074 read_unlock(&mrt_lock); 2075 2076 if (!reg_dev) 2077 return 1; 2078 2079 skb->mac_header = skb->network_header; 2080 skb_pull(skb, (u8 *)encap - skb->data); 2081 skb_reset_network_header(skb); 2082 skb->protocol = htons(ETH_P_IP); 2083 skb->ip_summed = CHECKSUM_NONE; 2084 2085 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 2086 2087 netif_rx(skb); 2088 2089 return NET_RX_SUCCESS; 2090 } 2091 #endif 2092 2093 #ifdef CONFIG_IP_PIMSM_V1 2094 /* 2095 * Handle IGMP messages of PIMv1 2096 */ 2097 2098 int pim_rcv_v1(struct sk_buff *skb) 2099 { 2100 struct igmphdr *pim; 2101 struct net *net = dev_net(skb->dev); 2102 struct mr_table *mrt; 2103 2104 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2105 goto drop; 2106 2107 pim = igmp_hdr(skb); 2108 2109 mrt = ipmr_rt_fib_lookup(net, skb); 2110 if (IS_ERR(mrt)) 2111 goto drop; 2112 if (!mrt->mroute_do_pim || 2113 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2114 goto drop; 2115 2116 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2117 drop: 2118 kfree_skb(skb); 2119 } 2120 return 0; 2121 } 2122 #endif 2123 2124 #ifdef CONFIG_IP_PIMSM_V2 2125 static int pim_rcv(struct sk_buff *skb) 2126 { 2127 struct pimreghdr *pim; 2128 struct net *net = dev_net(skb->dev); 2129 struct mr_table *mrt; 2130 2131 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2132 goto drop; 2133 2134 pim = (struct pimreghdr *)skb_transport_header(skb); 2135 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) || 2136 (pim->flags & PIM_NULL_REGISTER) || 2137 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2138 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2139 goto drop; 2140 2141 mrt = ipmr_rt_fib_lookup(net, skb); 2142 if (IS_ERR(mrt)) 2143 goto drop; 2144 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2145 drop: 2146 kfree_skb(skb); 2147 } 2148 return 0; 2149 } 2150 #endif 2151 2152 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2153 struct mfc_cache *c, struct rtmsg *rtm) 2154 { 2155 int ct; 2156 struct rtnexthop *nhp; 2157 struct nlattr *mp_attr; 2158 struct rta_mfc_stats mfcs; 2159 2160 /* If cache is unresolved, don't try to parse IIF and OIF */ 2161 if (c->mfc_parent >= MAXVIFS) 2162 return -ENOENT; 2163 2164 if (VIF_EXISTS(mrt, c->mfc_parent) && 2165 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0) 2166 return -EMSGSIZE; 2167 2168 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH))) 2169 return -EMSGSIZE; 2170 2171 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { 2172 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) { 2173 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) { 2174 nla_nest_cancel(skb, mp_attr); 2175 return -EMSGSIZE; 2176 } 2177 2178 nhp->rtnh_flags = 0; 2179 nhp->rtnh_hops = c->mfc_un.res.ttls[ct]; 2180 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex; 2181 nhp->rtnh_len = sizeof(*nhp); 2182 } 2183 } 2184 2185 nla_nest_end(skb, mp_attr); 2186 2187 mfcs.mfcs_packets = c->mfc_un.res.pkt; 2188 mfcs.mfcs_bytes = c->mfc_un.res.bytes; 2189 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if; 2190 if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0) 2191 return -EMSGSIZE; 2192 2193 rtm->rtm_type = RTN_MULTICAST; 2194 return 1; 2195 } 2196 2197 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2198 __be32 saddr, __be32 daddr, 2199 struct rtmsg *rtm, int nowait) 2200 { 2201 struct mfc_cache *cache; 2202 struct mr_table *mrt; 2203 int err; 2204 2205 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2206 if (!mrt) 2207 return -ENOENT; 2208 2209 rcu_read_lock(); 2210 cache = ipmr_cache_find(mrt, saddr, daddr); 2211 if (!cache && skb->dev) { 2212 int vif = ipmr_find_vif(mrt, skb->dev); 2213 2214 if (vif >= 0) 2215 cache = ipmr_cache_find_any(mrt, daddr, vif); 2216 } 2217 if (!cache) { 2218 struct sk_buff *skb2; 2219 struct iphdr *iph; 2220 struct net_device *dev; 2221 int vif = -1; 2222 2223 if (nowait) { 2224 rcu_read_unlock(); 2225 return -EAGAIN; 2226 } 2227 2228 dev = skb->dev; 2229 read_lock(&mrt_lock); 2230 if (dev) 2231 vif = ipmr_find_vif(mrt, dev); 2232 if (vif < 0) { 2233 read_unlock(&mrt_lock); 2234 rcu_read_unlock(); 2235 return -ENODEV; 2236 } 2237 skb2 = skb_clone(skb, GFP_ATOMIC); 2238 if (!skb2) { 2239 read_unlock(&mrt_lock); 2240 rcu_read_unlock(); 2241 return -ENOMEM; 2242 } 2243 2244 skb_push(skb2, sizeof(struct iphdr)); 2245 skb_reset_network_header(skb2); 2246 iph = ip_hdr(skb2); 2247 iph->ihl = sizeof(struct iphdr) >> 2; 2248 iph->saddr = saddr; 2249 iph->daddr = daddr; 2250 iph->version = 0; 2251 err = ipmr_cache_unresolved(mrt, vif, skb2); 2252 read_unlock(&mrt_lock); 2253 rcu_read_unlock(); 2254 return err; 2255 } 2256 2257 read_lock(&mrt_lock); 2258 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY)) 2259 cache->mfc_flags |= MFC_NOTIFY; 2260 err = __ipmr_fill_mroute(mrt, skb, cache, rtm); 2261 read_unlock(&mrt_lock); 2262 rcu_read_unlock(); 2263 return err; 2264 } 2265 2266 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2267 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2268 int flags) 2269 { 2270 struct nlmsghdr *nlh; 2271 struct rtmsg *rtm; 2272 int err; 2273 2274 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2275 if (!nlh) 2276 return -EMSGSIZE; 2277 2278 rtm = nlmsg_data(nlh); 2279 rtm->rtm_family = RTNL_FAMILY_IPMR; 2280 rtm->rtm_dst_len = 32; 2281 rtm->rtm_src_len = 32; 2282 rtm->rtm_tos = 0; 2283 rtm->rtm_table = mrt->id; 2284 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2285 goto nla_put_failure; 2286 rtm->rtm_type = RTN_MULTICAST; 2287 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2288 if (c->mfc_flags & MFC_STATIC) 2289 rtm->rtm_protocol = RTPROT_STATIC; 2290 else 2291 rtm->rtm_protocol = RTPROT_MROUTED; 2292 rtm->rtm_flags = 0; 2293 2294 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || 2295 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) 2296 goto nla_put_failure; 2297 err = __ipmr_fill_mroute(mrt, skb, c, rtm); 2298 /* do not break the dump if cache is unresolved */ 2299 if (err < 0 && err != -ENOENT) 2300 goto nla_put_failure; 2301 2302 nlmsg_end(skb, nlh); 2303 return 0; 2304 2305 nla_put_failure: 2306 nlmsg_cancel(skb, nlh); 2307 return -EMSGSIZE; 2308 } 2309 2310 static size_t mroute_msgsize(bool unresolved, int maxvif) 2311 { 2312 size_t len = 2313 NLMSG_ALIGN(sizeof(struct rtmsg)) 2314 + nla_total_size(4) /* RTA_TABLE */ 2315 + nla_total_size(4) /* RTA_SRC */ 2316 + nla_total_size(4) /* RTA_DST */ 2317 ; 2318 2319 if (!unresolved) 2320 len = len 2321 + nla_total_size(4) /* RTA_IIF */ 2322 + nla_total_size(0) /* RTA_MULTIPATH */ 2323 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2324 /* RTA_MFC_STATS */ 2325 + nla_total_size(sizeof(struct rta_mfc_stats)) 2326 ; 2327 2328 return len; 2329 } 2330 2331 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2332 int cmd) 2333 { 2334 struct net *net = read_pnet(&mrt->net); 2335 struct sk_buff *skb; 2336 int err = -ENOBUFS; 2337 2338 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif), 2339 GFP_ATOMIC); 2340 if (!skb) 2341 goto errout; 2342 2343 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2344 if (err < 0) 2345 goto errout; 2346 2347 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2348 return; 2349 2350 errout: 2351 kfree_skb(skb); 2352 if (err < 0) 2353 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2354 } 2355 2356 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2357 { 2358 struct net *net = sock_net(skb->sk); 2359 struct mr_table *mrt; 2360 struct mfc_cache *mfc; 2361 unsigned int t = 0, s_t; 2362 unsigned int h = 0, s_h; 2363 unsigned int e = 0, s_e; 2364 2365 s_t = cb->args[0]; 2366 s_h = cb->args[1]; 2367 s_e = cb->args[2]; 2368 2369 rcu_read_lock(); 2370 ipmr_for_each_table(mrt, net) { 2371 if (t < s_t) 2372 goto next_table; 2373 if (t > s_t) 2374 s_h = 0; 2375 for (h = s_h; h < MFC_LINES; h++) { 2376 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) { 2377 if (e < s_e) 2378 goto next_entry; 2379 if (ipmr_fill_mroute(mrt, skb, 2380 NETLINK_CB(cb->skb).portid, 2381 cb->nlh->nlmsg_seq, 2382 mfc, RTM_NEWROUTE, 2383 NLM_F_MULTI) < 0) 2384 goto done; 2385 next_entry: 2386 e++; 2387 } 2388 e = s_e = 0; 2389 } 2390 spin_lock_bh(&mfc_unres_lock); 2391 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) { 2392 if (e < s_e) 2393 goto next_entry2; 2394 if (ipmr_fill_mroute(mrt, skb, 2395 NETLINK_CB(cb->skb).portid, 2396 cb->nlh->nlmsg_seq, 2397 mfc, RTM_NEWROUTE, 2398 NLM_F_MULTI) < 0) { 2399 spin_unlock_bh(&mfc_unres_lock); 2400 goto done; 2401 } 2402 next_entry2: 2403 e++; 2404 } 2405 spin_unlock_bh(&mfc_unres_lock); 2406 e = s_e = 0; 2407 s_h = 0; 2408 next_table: 2409 t++; 2410 } 2411 done: 2412 rcu_read_unlock(); 2413 2414 cb->args[2] = e; 2415 cb->args[1] = h; 2416 cb->args[0] = t; 2417 2418 return skb->len; 2419 } 2420 2421 #ifdef CONFIG_PROC_FS 2422 /* 2423 * The /proc interfaces to multicast routing : 2424 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2425 */ 2426 struct ipmr_vif_iter { 2427 struct seq_net_private p; 2428 struct mr_table *mrt; 2429 int ct; 2430 }; 2431 2432 static struct vif_device *ipmr_vif_seq_idx(struct net *net, 2433 struct ipmr_vif_iter *iter, 2434 loff_t pos) 2435 { 2436 struct mr_table *mrt = iter->mrt; 2437 2438 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) { 2439 if (!VIF_EXISTS(mrt, iter->ct)) 2440 continue; 2441 if (pos-- == 0) 2442 return &mrt->vif_table[iter->ct]; 2443 } 2444 return NULL; 2445 } 2446 2447 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2448 __acquires(mrt_lock) 2449 { 2450 struct ipmr_vif_iter *iter = seq->private; 2451 struct net *net = seq_file_net(seq); 2452 struct mr_table *mrt; 2453 2454 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2455 if (!mrt) 2456 return ERR_PTR(-ENOENT); 2457 2458 iter->mrt = mrt; 2459 2460 read_lock(&mrt_lock); 2461 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1) 2462 : SEQ_START_TOKEN; 2463 } 2464 2465 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2466 { 2467 struct ipmr_vif_iter *iter = seq->private; 2468 struct net *net = seq_file_net(seq); 2469 struct mr_table *mrt = iter->mrt; 2470 2471 ++*pos; 2472 if (v == SEQ_START_TOKEN) 2473 return ipmr_vif_seq_idx(net, iter, 0); 2474 2475 while (++iter->ct < mrt->maxvif) { 2476 if (!VIF_EXISTS(mrt, iter->ct)) 2477 continue; 2478 return &mrt->vif_table[iter->ct]; 2479 } 2480 return NULL; 2481 } 2482 2483 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2484 __releases(mrt_lock) 2485 { 2486 read_unlock(&mrt_lock); 2487 } 2488 2489 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2490 { 2491 struct ipmr_vif_iter *iter = seq->private; 2492 struct mr_table *mrt = iter->mrt; 2493 2494 if (v == SEQ_START_TOKEN) { 2495 seq_puts(seq, 2496 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2497 } else { 2498 const struct vif_device *vif = v; 2499 const char *name = vif->dev ? vif->dev->name : "none"; 2500 2501 seq_printf(seq, 2502 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2503 vif - mrt->vif_table, 2504 name, vif->bytes_in, vif->pkt_in, 2505 vif->bytes_out, vif->pkt_out, 2506 vif->flags, vif->local, vif->remote); 2507 } 2508 return 0; 2509 } 2510 2511 static const struct seq_operations ipmr_vif_seq_ops = { 2512 .start = ipmr_vif_seq_start, 2513 .next = ipmr_vif_seq_next, 2514 .stop = ipmr_vif_seq_stop, 2515 .show = ipmr_vif_seq_show, 2516 }; 2517 2518 static int ipmr_vif_open(struct inode *inode, struct file *file) 2519 { 2520 return seq_open_net(inode, file, &ipmr_vif_seq_ops, 2521 sizeof(struct ipmr_vif_iter)); 2522 } 2523 2524 static const struct file_operations ipmr_vif_fops = { 2525 .owner = THIS_MODULE, 2526 .open = ipmr_vif_open, 2527 .read = seq_read, 2528 .llseek = seq_lseek, 2529 .release = seq_release_net, 2530 }; 2531 2532 struct ipmr_mfc_iter { 2533 struct seq_net_private p; 2534 struct mr_table *mrt; 2535 struct list_head *cache; 2536 int ct; 2537 }; 2538 2539 2540 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net, 2541 struct ipmr_mfc_iter *it, loff_t pos) 2542 { 2543 struct mr_table *mrt = it->mrt; 2544 struct mfc_cache *mfc; 2545 2546 rcu_read_lock(); 2547 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) { 2548 it->cache = &mrt->mfc_cache_array[it->ct]; 2549 list_for_each_entry_rcu(mfc, it->cache, list) 2550 if (pos-- == 0) 2551 return mfc; 2552 } 2553 rcu_read_unlock(); 2554 2555 spin_lock_bh(&mfc_unres_lock); 2556 it->cache = &mrt->mfc_unres_queue; 2557 list_for_each_entry(mfc, it->cache, list) 2558 if (pos-- == 0) 2559 return mfc; 2560 spin_unlock_bh(&mfc_unres_lock); 2561 2562 it->cache = NULL; 2563 return NULL; 2564 } 2565 2566 2567 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2568 { 2569 struct ipmr_mfc_iter *it = seq->private; 2570 struct net *net = seq_file_net(seq); 2571 struct mr_table *mrt; 2572 2573 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2574 if (!mrt) 2575 return ERR_PTR(-ENOENT); 2576 2577 it->mrt = mrt; 2578 it->cache = NULL; 2579 it->ct = 0; 2580 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1) 2581 : SEQ_START_TOKEN; 2582 } 2583 2584 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2585 { 2586 struct mfc_cache *mfc = v; 2587 struct ipmr_mfc_iter *it = seq->private; 2588 struct net *net = seq_file_net(seq); 2589 struct mr_table *mrt = it->mrt; 2590 2591 ++*pos; 2592 2593 if (v == SEQ_START_TOKEN) 2594 return ipmr_mfc_seq_idx(net, seq->private, 0); 2595 2596 if (mfc->list.next != it->cache) 2597 return list_entry(mfc->list.next, struct mfc_cache, list); 2598 2599 if (it->cache == &mrt->mfc_unres_queue) 2600 goto end_of_list; 2601 2602 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]); 2603 2604 while (++it->ct < MFC_LINES) { 2605 it->cache = &mrt->mfc_cache_array[it->ct]; 2606 if (list_empty(it->cache)) 2607 continue; 2608 return list_first_entry(it->cache, struct mfc_cache, list); 2609 } 2610 2611 /* exhausted cache_array, show unresolved */ 2612 rcu_read_unlock(); 2613 it->cache = &mrt->mfc_unres_queue; 2614 it->ct = 0; 2615 2616 spin_lock_bh(&mfc_unres_lock); 2617 if (!list_empty(it->cache)) 2618 return list_first_entry(it->cache, struct mfc_cache, list); 2619 2620 end_of_list: 2621 spin_unlock_bh(&mfc_unres_lock); 2622 it->cache = NULL; 2623 2624 return NULL; 2625 } 2626 2627 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v) 2628 { 2629 struct ipmr_mfc_iter *it = seq->private; 2630 struct mr_table *mrt = it->mrt; 2631 2632 if (it->cache == &mrt->mfc_unres_queue) 2633 spin_unlock_bh(&mfc_unres_lock); 2634 else if (it->cache == &mrt->mfc_cache_array[it->ct]) 2635 rcu_read_unlock(); 2636 } 2637 2638 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2639 { 2640 int n; 2641 2642 if (v == SEQ_START_TOKEN) { 2643 seq_puts(seq, 2644 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2645 } else { 2646 const struct mfc_cache *mfc = v; 2647 const struct ipmr_mfc_iter *it = seq->private; 2648 const struct mr_table *mrt = it->mrt; 2649 2650 seq_printf(seq, "%08X %08X %-3hd", 2651 (__force u32) mfc->mfc_mcastgrp, 2652 (__force u32) mfc->mfc_origin, 2653 mfc->mfc_parent); 2654 2655 if (it->cache != &mrt->mfc_unres_queue) { 2656 seq_printf(seq, " %8lu %8lu %8lu", 2657 mfc->mfc_un.res.pkt, 2658 mfc->mfc_un.res.bytes, 2659 mfc->mfc_un.res.wrong_if); 2660 for (n = mfc->mfc_un.res.minvif; 2661 n < mfc->mfc_un.res.maxvif; n++) { 2662 if (VIF_EXISTS(mrt, n) && 2663 mfc->mfc_un.res.ttls[n] < 255) 2664 seq_printf(seq, 2665 " %2d:%-3d", 2666 n, mfc->mfc_un.res.ttls[n]); 2667 } 2668 } else { 2669 /* unresolved mfc_caches don't contain 2670 * pkt, bytes and wrong_if values 2671 */ 2672 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 2673 } 2674 seq_putc(seq, '\n'); 2675 } 2676 return 0; 2677 } 2678 2679 static const struct seq_operations ipmr_mfc_seq_ops = { 2680 .start = ipmr_mfc_seq_start, 2681 .next = ipmr_mfc_seq_next, 2682 .stop = ipmr_mfc_seq_stop, 2683 .show = ipmr_mfc_seq_show, 2684 }; 2685 2686 static int ipmr_mfc_open(struct inode *inode, struct file *file) 2687 { 2688 return seq_open_net(inode, file, &ipmr_mfc_seq_ops, 2689 sizeof(struct ipmr_mfc_iter)); 2690 } 2691 2692 static const struct file_operations ipmr_mfc_fops = { 2693 .owner = THIS_MODULE, 2694 .open = ipmr_mfc_open, 2695 .read = seq_read, 2696 .llseek = seq_lseek, 2697 .release = seq_release_net, 2698 }; 2699 #endif 2700 2701 #ifdef CONFIG_IP_PIMSM_V2 2702 static const struct net_protocol pim_protocol = { 2703 .handler = pim_rcv, 2704 .netns_ok = 1, 2705 }; 2706 #endif 2707 2708 2709 /* 2710 * Setup for IP multicast routing 2711 */ 2712 static int __net_init ipmr_net_init(struct net *net) 2713 { 2714 int err; 2715 2716 err = ipmr_rules_init(net); 2717 if (err < 0) 2718 goto fail; 2719 2720 #ifdef CONFIG_PROC_FS 2721 err = -ENOMEM; 2722 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops)) 2723 goto proc_vif_fail; 2724 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops)) 2725 goto proc_cache_fail; 2726 #endif 2727 return 0; 2728 2729 #ifdef CONFIG_PROC_FS 2730 proc_cache_fail: 2731 remove_proc_entry("ip_mr_vif", net->proc_net); 2732 proc_vif_fail: 2733 ipmr_rules_exit(net); 2734 #endif 2735 fail: 2736 return err; 2737 } 2738 2739 static void __net_exit ipmr_net_exit(struct net *net) 2740 { 2741 #ifdef CONFIG_PROC_FS 2742 remove_proc_entry("ip_mr_cache", net->proc_net); 2743 remove_proc_entry("ip_mr_vif", net->proc_net); 2744 #endif 2745 ipmr_rules_exit(net); 2746 } 2747 2748 static struct pernet_operations ipmr_net_ops = { 2749 .init = ipmr_net_init, 2750 .exit = ipmr_net_exit, 2751 }; 2752 2753 int __init ip_mr_init(void) 2754 { 2755 int err; 2756 2757 mrt_cachep = kmem_cache_create("ip_mrt_cache", 2758 sizeof(struct mfc_cache), 2759 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 2760 NULL); 2761 if (!mrt_cachep) 2762 return -ENOMEM; 2763 2764 err = register_pernet_subsys(&ipmr_net_ops); 2765 if (err) 2766 goto reg_pernet_fail; 2767 2768 err = register_netdevice_notifier(&ip_mr_notifier); 2769 if (err) 2770 goto reg_notif_fail; 2771 #ifdef CONFIG_IP_PIMSM_V2 2772 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 2773 pr_err("%s: can't add PIM protocol\n", __func__); 2774 err = -EAGAIN; 2775 goto add_proto_fail; 2776 } 2777 #endif 2778 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 2779 NULL, ipmr_rtm_dumproute, NULL); 2780 return 0; 2781 2782 #ifdef CONFIG_IP_PIMSM_V2 2783 add_proto_fail: 2784 unregister_netdevice_notifier(&ip_mr_notifier); 2785 #endif 2786 reg_notif_fail: 2787 unregister_pernet_subsys(&ipmr_net_ops); 2788 reg_pernet_fail: 2789 kmem_cache_destroy(mrt_cachep); 2790 return err; 2791 } 2792