xref: /openbmc/linux/net/ipv4/ipmr.c (revision e657c18a)
1 /*
2  *	IP multicast routing support for mrouted 3.6/3.8
3  *
4  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *	  Linux Consultancy and Custom Driver Development
6  *
7  *	This program is free software; you can redistribute it and/or
8  *	modify it under the terms of the GNU General Public License
9  *	as published by the Free Software Foundation; either version
10  *	2 of the License, or (at your option) any later version.
11  *
12  *	Fixes:
13  *	Michael Chastain	:	Incorrect size of copying.
14  *	Alan Cox		:	Added the cache manager code
15  *	Alan Cox		:	Fixed the clone/copy bug and device race.
16  *	Mike McLagan		:	Routing by source
17  *	Malcolm Beattie		:	Buffer handling fixes.
18  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
19  *	SVR Anand		:	Fixed several multicast bugs and problems.
20  *	Alexey Kuznetsov	:	Status, optimisations and more.
21  *	Brad Parker		:	Better behaviour on mrouted upcall
22  *					overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
25  *					Relax this requirement to work with older peers.
26  *
27  */
28 
29 #include <linux/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/cache.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/icmp.h>
56 #include <net/udp.h>
57 #include <net/raw.h>
58 #include <linux/notifier.h>
59 #include <linux/if_arp.h>
60 #include <linux/netfilter_ipv4.h>
61 #include <linux/compat.h>
62 #include <linux/export.h>
63 #include <linux/rhashtable.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 #include <net/nexthop.h>
70 
71 #include <linux/nospec.h>
72 
73 struct ipmr_rule {
74 	struct fib_rule		common;
75 };
76 
77 struct ipmr_result {
78 	struct mr_table		*mrt;
79 };
80 
81 /* Big lock, protecting vif table, mrt cache and mroute socket state.
82  * Note that the changes are semaphored via rtnl_lock.
83  */
84 
85 static DEFINE_RWLOCK(mrt_lock);
86 
87 /* Multicast router control variables */
88 
89 /* Special spinlock for queue of unresolved entries */
90 static DEFINE_SPINLOCK(mfc_unres_lock);
91 
92 /* We return to original Alan's scheme. Hash table of resolved
93  * entries is changed only in process context and protected
94  * with weak lock mrt_lock. Queue of unresolved entries is protected
95  * with strong spinlock mfc_unres_lock.
96  *
97  * In this case data path is free of exclusive locks at all.
98  */
99 
100 static struct kmem_cache *mrt_cachep __ro_after_init;
101 
102 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
103 static void ipmr_free_table(struct mr_table *mrt);
104 
105 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
106 			  struct net_device *dev, struct sk_buff *skb,
107 			  struct mfc_cache *cache, int local);
108 static int ipmr_cache_report(struct mr_table *mrt,
109 			     struct sk_buff *pkt, vifi_t vifi, int assert);
110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
111 				 int cmd);
112 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
113 static void mroute_clean_tables(struct mr_table *mrt, int flags);
114 static void ipmr_expire_process(struct timer_list *t);
115 
116 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
117 #define ipmr_for_each_table(mrt, net) \
118 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
119 
120 static struct mr_table *ipmr_mr_table_iter(struct net *net,
121 					   struct mr_table *mrt)
122 {
123 	struct mr_table *ret;
124 
125 	if (!mrt)
126 		ret = list_entry_rcu(net->ipv4.mr_tables.next,
127 				     struct mr_table, list);
128 	else
129 		ret = list_entry_rcu(mrt->list.next,
130 				     struct mr_table, list);
131 
132 	if (&ret->list == &net->ipv4.mr_tables)
133 		return NULL;
134 	return ret;
135 }
136 
137 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
138 {
139 	struct mr_table *mrt;
140 
141 	ipmr_for_each_table(mrt, net) {
142 		if (mrt->id == id)
143 			return mrt;
144 	}
145 	return NULL;
146 }
147 
148 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
149 			   struct mr_table **mrt)
150 {
151 	int err;
152 	struct ipmr_result res;
153 	struct fib_lookup_arg arg = {
154 		.result = &res,
155 		.flags = FIB_LOOKUP_NOREF,
156 	};
157 
158 	/* update flow if oif or iif point to device enslaved to l3mdev */
159 	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
160 
161 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
162 			       flowi4_to_flowi(flp4), 0, &arg);
163 	if (err < 0)
164 		return err;
165 	*mrt = res.mrt;
166 	return 0;
167 }
168 
169 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
170 			    int flags, struct fib_lookup_arg *arg)
171 {
172 	struct ipmr_result *res = arg->result;
173 	struct mr_table *mrt;
174 
175 	switch (rule->action) {
176 	case FR_ACT_TO_TBL:
177 		break;
178 	case FR_ACT_UNREACHABLE:
179 		return -ENETUNREACH;
180 	case FR_ACT_PROHIBIT:
181 		return -EACCES;
182 	case FR_ACT_BLACKHOLE:
183 	default:
184 		return -EINVAL;
185 	}
186 
187 	arg->table = fib_rule_get_table(rule, arg);
188 
189 	mrt = ipmr_get_table(rule->fr_net, arg->table);
190 	if (!mrt)
191 		return -EAGAIN;
192 	res->mrt = mrt;
193 	return 0;
194 }
195 
196 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
197 {
198 	return 1;
199 }
200 
201 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
202 	FRA_GENERIC_POLICY,
203 };
204 
205 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
206 			       struct fib_rule_hdr *frh, struct nlattr **tb,
207 			       struct netlink_ext_ack *extack)
208 {
209 	return 0;
210 }
211 
212 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
213 			     struct nlattr **tb)
214 {
215 	return 1;
216 }
217 
218 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
219 			  struct fib_rule_hdr *frh)
220 {
221 	frh->dst_len = 0;
222 	frh->src_len = 0;
223 	frh->tos     = 0;
224 	return 0;
225 }
226 
227 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
228 	.family		= RTNL_FAMILY_IPMR,
229 	.rule_size	= sizeof(struct ipmr_rule),
230 	.addr_size	= sizeof(u32),
231 	.action		= ipmr_rule_action,
232 	.match		= ipmr_rule_match,
233 	.configure	= ipmr_rule_configure,
234 	.compare	= ipmr_rule_compare,
235 	.fill		= ipmr_rule_fill,
236 	.nlgroup	= RTNLGRP_IPV4_RULE,
237 	.policy		= ipmr_rule_policy,
238 	.owner		= THIS_MODULE,
239 };
240 
241 static int __net_init ipmr_rules_init(struct net *net)
242 {
243 	struct fib_rules_ops *ops;
244 	struct mr_table *mrt;
245 	int err;
246 
247 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
248 	if (IS_ERR(ops))
249 		return PTR_ERR(ops);
250 
251 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
252 
253 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
254 	if (IS_ERR(mrt)) {
255 		err = PTR_ERR(mrt);
256 		goto err1;
257 	}
258 
259 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
260 	if (err < 0)
261 		goto err2;
262 
263 	net->ipv4.mr_rules_ops = ops;
264 	return 0;
265 
266 err2:
267 	ipmr_free_table(mrt);
268 err1:
269 	fib_rules_unregister(ops);
270 	return err;
271 }
272 
273 static void __net_exit ipmr_rules_exit(struct net *net)
274 {
275 	struct mr_table *mrt, *next;
276 
277 	rtnl_lock();
278 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
279 		list_del(&mrt->list);
280 		ipmr_free_table(mrt);
281 	}
282 	fib_rules_unregister(net->ipv4.mr_rules_ops);
283 	rtnl_unlock();
284 }
285 
286 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
287 {
288 	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR);
289 }
290 
291 static unsigned int ipmr_rules_seq_read(struct net *net)
292 {
293 	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
294 }
295 
296 bool ipmr_rule_default(const struct fib_rule *rule)
297 {
298 	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
299 }
300 EXPORT_SYMBOL(ipmr_rule_default);
301 #else
302 #define ipmr_for_each_table(mrt, net) \
303 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
304 
305 static struct mr_table *ipmr_mr_table_iter(struct net *net,
306 					   struct mr_table *mrt)
307 {
308 	if (!mrt)
309 		return net->ipv4.mrt;
310 	return NULL;
311 }
312 
313 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
314 {
315 	return net->ipv4.mrt;
316 }
317 
318 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
319 			   struct mr_table **mrt)
320 {
321 	*mrt = net->ipv4.mrt;
322 	return 0;
323 }
324 
325 static int __net_init ipmr_rules_init(struct net *net)
326 {
327 	struct mr_table *mrt;
328 
329 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
330 	if (IS_ERR(mrt))
331 		return PTR_ERR(mrt);
332 	net->ipv4.mrt = mrt;
333 	return 0;
334 }
335 
336 static void __net_exit ipmr_rules_exit(struct net *net)
337 {
338 	rtnl_lock();
339 	ipmr_free_table(net->ipv4.mrt);
340 	net->ipv4.mrt = NULL;
341 	rtnl_unlock();
342 }
343 
344 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
345 {
346 	return 0;
347 }
348 
349 static unsigned int ipmr_rules_seq_read(struct net *net)
350 {
351 	return 0;
352 }
353 
354 bool ipmr_rule_default(const struct fib_rule *rule)
355 {
356 	return true;
357 }
358 EXPORT_SYMBOL(ipmr_rule_default);
359 #endif
360 
361 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
362 				const void *ptr)
363 {
364 	const struct mfc_cache_cmp_arg *cmparg = arg->key;
365 	struct mfc_cache *c = (struct mfc_cache *)ptr;
366 
367 	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
368 	       cmparg->mfc_origin != c->mfc_origin;
369 }
370 
371 static const struct rhashtable_params ipmr_rht_params = {
372 	.head_offset = offsetof(struct mr_mfc, mnode),
373 	.key_offset = offsetof(struct mfc_cache, cmparg),
374 	.key_len = sizeof(struct mfc_cache_cmp_arg),
375 	.nelem_hint = 3,
376 	.locks_mul = 1,
377 	.obj_cmpfn = ipmr_hash_cmp,
378 	.automatic_shrinking = true,
379 };
380 
381 static void ipmr_new_table_set(struct mr_table *mrt,
382 			       struct net *net)
383 {
384 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
385 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
386 #endif
387 }
388 
389 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
390 	.mfc_mcastgrp = htonl(INADDR_ANY),
391 	.mfc_origin = htonl(INADDR_ANY),
392 };
393 
394 static struct mr_table_ops ipmr_mr_table_ops = {
395 	.rht_params = &ipmr_rht_params,
396 	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
397 };
398 
399 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
400 {
401 	struct mr_table *mrt;
402 
403 	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
404 	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
405 		return ERR_PTR(-EINVAL);
406 
407 	mrt = ipmr_get_table(net, id);
408 	if (mrt)
409 		return mrt;
410 
411 	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
412 			      ipmr_expire_process, ipmr_new_table_set);
413 }
414 
415 static void ipmr_free_table(struct mr_table *mrt)
416 {
417 	del_timer_sync(&mrt->ipmr_expire_timer);
418 	mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
419 				 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
420 	rhltable_destroy(&mrt->mfc_hash);
421 	kfree(mrt);
422 }
423 
424 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
425 
426 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
427 {
428 	struct net *net = dev_net(dev);
429 
430 	dev_close(dev);
431 
432 	dev = __dev_get_by_name(net, "tunl0");
433 	if (dev) {
434 		const struct net_device_ops *ops = dev->netdev_ops;
435 		struct ifreq ifr;
436 		struct ip_tunnel_parm p;
437 
438 		memset(&p, 0, sizeof(p));
439 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
440 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
441 		p.iph.version = 4;
442 		p.iph.ihl = 5;
443 		p.iph.protocol = IPPROTO_IPIP;
444 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
445 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
446 
447 		if (ops->ndo_do_ioctl) {
448 			mm_segment_t oldfs = get_fs();
449 
450 			set_fs(KERNEL_DS);
451 			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
452 			set_fs(oldfs);
453 		}
454 	}
455 }
456 
457 /* Initialize ipmr pimreg/tunnel in_device */
458 static bool ipmr_init_vif_indev(const struct net_device *dev)
459 {
460 	struct in_device *in_dev;
461 
462 	ASSERT_RTNL();
463 
464 	in_dev = __in_dev_get_rtnl(dev);
465 	if (!in_dev)
466 		return false;
467 	ipv4_devconf_setall(in_dev);
468 	neigh_parms_data_state_setall(in_dev->arp_parms);
469 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
470 
471 	return true;
472 }
473 
474 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
475 {
476 	struct net_device  *dev;
477 
478 	dev = __dev_get_by_name(net, "tunl0");
479 
480 	if (dev) {
481 		const struct net_device_ops *ops = dev->netdev_ops;
482 		int err;
483 		struct ifreq ifr;
484 		struct ip_tunnel_parm p;
485 
486 		memset(&p, 0, sizeof(p));
487 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
488 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
489 		p.iph.version = 4;
490 		p.iph.ihl = 5;
491 		p.iph.protocol = IPPROTO_IPIP;
492 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
493 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
494 
495 		if (ops->ndo_do_ioctl) {
496 			mm_segment_t oldfs = get_fs();
497 
498 			set_fs(KERNEL_DS);
499 			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
500 			set_fs(oldfs);
501 		} else {
502 			err = -EOPNOTSUPP;
503 		}
504 		dev = NULL;
505 
506 		if (err == 0 &&
507 		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
508 			dev->flags |= IFF_MULTICAST;
509 			if (!ipmr_init_vif_indev(dev))
510 				goto failure;
511 			if (dev_open(dev, NULL))
512 				goto failure;
513 			dev_hold(dev);
514 		}
515 	}
516 	return dev;
517 
518 failure:
519 	unregister_netdevice(dev);
520 	return NULL;
521 }
522 
523 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
524 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
525 {
526 	struct net *net = dev_net(dev);
527 	struct mr_table *mrt;
528 	struct flowi4 fl4 = {
529 		.flowi4_oif	= dev->ifindex,
530 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
531 		.flowi4_mark	= skb->mark,
532 	};
533 	int err;
534 
535 	err = ipmr_fib_lookup(net, &fl4, &mrt);
536 	if (err < 0) {
537 		kfree_skb(skb);
538 		return err;
539 	}
540 
541 	read_lock(&mrt_lock);
542 	dev->stats.tx_bytes += skb->len;
543 	dev->stats.tx_packets++;
544 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
545 	read_unlock(&mrt_lock);
546 	kfree_skb(skb);
547 	return NETDEV_TX_OK;
548 }
549 
550 static int reg_vif_get_iflink(const struct net_device *dev)
551 {
552 	return 0;
553 }
554 
555 static const struct net_device_ops reg_vif_netdev_ops = {
556 	.ndo_start_xmit	= reg_vif_xmit,
557 	.ndo_get_iflink = reg_vif_get_iflink,
558 };
559 
560 static void reg_vif_setup(struct net_device *dev)
561 {
562 	dev->type		= ARPHRD_PIMREG;
563 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
564 	dev->flags		= IFF_NOARP;
565 	dev->netdev_ops		= &reg_vif_netdev_ops;
566 	dev->needs_free_netdev	= true;
567 	dev->features		|= NETIF_F_NETNS_LOCAL;
568 }
569 
570 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
571 {
572 	struct net_device *dev;
573 	char name[IFNAMSIZ];
574 
575 	if (mrt->id == RT_TABLE_DEFAULT)
576 		sprintf(name, "pimreg");
577 	else
578 		sprintf(name, "pimreg%u", mrt->id);
579 
580 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
581 
582 	if (!dev)
583 		return NULL;
584 
585 	dev_net_set(dev, net);
586 
587 	if (register_netdevice(dev)) {
588 		free_netdev(dev);
589 		return NULL;
590 	}
591 
592 	if (!ipmr_init_vif_indev(dev))
593 		goto failure;
594 	if (dev_open(dev, NULL))
595 		goto failure;
596 
597 	dev_hold(dev);
598 
599 	return dev;
600 
601 failure:
602 	unregister_netdevice(dev);
603 	return NULL;
604 }
605 
606 /* called with rcu_read_lock() */
607 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
608 		     unsigned int pimlen)
609 {
610 	struct net_device *reg_dev = NULL;
611 	struct iphdr *encap;
612 
613 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
614 	/* Check that:
615 	 * a. packet is really sent to a multicast group
616 	 * b. packet is not a NULL-REGISTER
617 	 * c. packet is not truncated
618 	 */
619 	if (!ipv4_is_multicast(encap->daddr) ||
620 	    encap->tot_len == 0 ||
621 	    ntohs(encap->tot_len) + pimlen > skb->len)
622 		return 1;
623 
624 	read_lock(&mrt_lock);
625 	if (mrt->mroute_reg_vif_num >= 0)
626 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
627 	read_unlock(&mrt_lock);
628 
629 	if (!reg_dev)
630 		return 1;
631 
632 	skb->mac_header = skb->network_header;
633 	skb_pull(skb, (u8 *)encap - skb->data);
634 	skb_reset_network_header(skb);
635 	skb->protocol = htons(ETH_P_IP);
636 	skb->ip_summed = CHECKSUM_NONE;
637 
638 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
639 
640 	netif_rx(skb);
641 
642 	return NET_RX_SUCCESS;
643 }
644 #else
645 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
646 {
647 	return NULL;
648 }
649 #endif
650 
651 static int call_ipmr_vif_entry_notifiers(struct net *net,
652 					 enum fib_event_type event_type,
653 					 struct vif_device *vif,
654 					 vifi_t vif_index, u32 tb_id)
655 {
656 	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
657 				     vif, vif_index, tb_id,
658 				     &net->ipv4.ipmr_seq);
659 }
660 
661 static int call_ipmr_mfc_entry_notifiers(struct net *net,
662 					 enum fib_event_type event_type,
663 					 struct mfc_cache *mfc, u32 tb_id)
664 {
665 	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
666 				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
667 }
668 
669 /**
670  *	vif_delete - Delete a VIF entry
671  *	@notify: Set to 1, if the caller is a notifier_call
672  */
673 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
674 		      struct list_head *head)
675 {
676 	struct net *net = read_pnet(&mrt->net);
677 	struct vif_device *v;
678 	struct net_device *dev;
679 	struct in_device *in_dev;
680 
681 	if (vifi < 0 || vifi >= mrt->maxvif)
682 		return -EADDRNOTAVAIL;
683 
684 	v = &mrt->vif_table[vifi];
685 
686 	if (VIF_EXISTS(mrt, vifi))
687 		call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
688 					      mrt->id);
689 
690 	write_lock_bh(&mrt_lock);
691 	dev = v->dev;
692 	v->dev = NULL;
693 
694 	if (!dev) {
695 		write_unlock_bh(&mrt_lock);
696 		return -EADDRNOTAVAIL;
697 	}
698 
699 	if (vifi == mrt->mroute_reg_vif_num)
700 		mrt->mroute_reg_vif_num = -1;
701 
702 	if (vifi + 1 == mrt->maxvif) {
703 		int tmp;
704 
705 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
706 			if (VIF_EXISTS(mrt, tmp))
707 				break;
708 		}
709 		mrt->maxvif = tmp+1;
710 	}
711 
712 	write_unlock_bh(&mrt_lock);
713 
714 	dev_set_allmulti(dev, -1);
715 
716 	in_dev = __in_dev_get_rtnl(dev);
717 	if (in_dev) {
718 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
719 		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
720 					    NETCONFA_MC_FORWARDING,
721 					    dev->ifindex, &in_dev->cnf);
722 		ip_rt_multicast_event(in_dev);
723 	}
724 
725 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
726 		unregister_netdevice_queue(dev, head);
727 
728 	dev_put(dev);
729 	return 0;
730 }
731 
732 static void ipmr_cache_free_rcu(struct rcu_head *head)
733 {
734 	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
735 
736 	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
737 }
738 
739 static void ipmr_cache_free(struct mfc_cache *c)
740 {
741 	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
742 }
743 
744 /* Destroy an unresolved cache entry, killing queued skbs
745  * and reporting error to netlink readers.
746  */
747 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
748 {
749 	struct net *net = read_pnet(&mrt->net);
750 	struct sk_buff *skb;
751 	struct nlmsgerr *e;
752 
753 	atomic_dec(&mrt->cache_resolve_queue_len);
754 
755 	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
756 		if (ip_hdr(skb)->version == 0) {
757 			struct nlmsghdr *nlh = skb_pull(skb,
758 							sizeof(struct iphdr));
759 			nlh->nlmsg_type = NLMSG_ERROR;
760 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
761 			skb_trim(skb, nlh->nlmsg_len);
762 			e = nlmsg_data(nlh);
763 			e->error = -ETIMEDOUT;
764 			memset(&e->msg, 0, sizeof(e->msg));
765 
766 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
767 		} else {
768 			kfree_skb(skb);
769 		}
770 	}
771 
772 	ipmr_cache_free(c);
773 }
774 
775 /* Timer process for the unresolved queue. */
776 static void ipmr_expire_process(struct timer_list *t)
777 {
778 	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
779 	struct mr_mfc *c, *next;
780 	unsigned long expires;
781 	unsigned long now;
782 
783 	if (!spin_trylock(&mfc_unres_lock)) {
784 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
785 		return;
786 	}
787 
788 	if (list_empty(&mrt->mfc_unres_queue))
789 		goto out;
790 
791 	now = jiffies;
792 	expires = 10*HZ;
793 
794 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
795 		if (time_after(c->mfc_un.unres.expires, now)) {
796 			unsigned long interval = c->mfc_un.unres.expires - now;
797 			if (interval < expires)
798 				expires = interval;
799 			continue;
800 		}
801 
802 		list_del(&c->list);
803 		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
804 		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
805 	}
806 
807 	if (!list_empty(&mrt->mfc_unres_queue))
808 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
809 
810 out:
811 	spin_unlock(&mfc_unres_lock);
812 }
813 
814 /* Fill oifs list. It is called under write locked mrt_lock. */
815 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
816 				   unsigned char *ttls)
817 {
818 	int vifi;
819 
820 	cache->mfc_un.res.minvif = MAXVIFS;
821 	cache->mfc_un.res.maxvif = 0;
822 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
823 
824 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
825 		if (VIF_EXISTS(mrt, vifi) &&
826 		    ttls[vifi] && ttls[vifi] < 255) {
827 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
828 			if (cache->mfc_un.res.minvif > vifi)
829 				cache->mfc_un.res.minvif = vifi;
830 			if (cache->mfc_un.res.maxvif <= vifi)
831 				cache->mfc_un.res.maxvif = vifi + 1;
832 		}
833 	}
834 	cache->mfc_un.res.lastuse = jiffies;
835 }
836 
837 static int vif_add(struct net *net, struct mr_table *mrt,
838 		   struct vifctl *vifc, int mrtsock)
839 {
840 	struct netdev_phys_item_id ppid = { };
841 	int vifi = vifc->vifc_vifi;
842 	struct vif_device *v = &mrt->vif_table[vifi];
843 	struct net_device *dev;
844 	struct in_device *in_dev;
845 	int err;
846 
847 	/* Is vif busy ? */
848 	if (VIF_EXISTS(mrt, vifi))
849 		return -EADDRINUSE;
850 
851 	switch (vifc->vifc_flags) {
852 	case VIFF_REGISTER:
853 		if (!ipmr_pimsm_enabled())
854 			return -EINVAL;
855 		/* Special Purpose VIF in PIM
856 		 * All the packets will be sent to the daemon
857 		 */
858 		if (mrt->mroute_reg_vif_num >= 0)
859 			return -EADDRINUSE;
860 		dev = ipmr_reg_vif(net, mrt);
861 		if (!dev)
862 			return -ENOBUFS;
863 		err = dev_set_allmulti(dev, 1);
864 		if (err) {
865 			unregister_netdevice(dev);
866 			dev_put(dev);
867 			return err;
868 		}
869 		break;
870 	case VIFF_TUNNEL:
871 		dev = ipmr_new_tunnel(net, vifc);
872 		if (!dev)
873 			return -ENOBUFS;
874 		err = dev_set_allmulti(dev, 1);
875 		if (err) {
876 			ipmr_del_tunnel(dev, vifc);
877 			dev_put(dev);
878 			return err;
879 		}
880 		break;
881 	case VIFF_USE_IFINDEX:
882 	case 0:
883 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
884 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
885 			if (dev && !__in_dev_get_rtnl(dev)) {
886 				dev_put(dev);
887 				return -EADDRNOTAVAIL;
888 			}
889 		} else {
890 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
891 		}
892 		if (!dev)
893 			return -EADDRNOTAVAIL;
894 		err = dev_set_allmulti(dev, 1);
895 		if (err) {
896 			dev_put(dev);
897 			return err;
898 		}
899 		break;
900 	default:
901 		return -EINVAL;
902 	}
903 
904 	in_dev = __in_dev_get_rtnl(dev);
905 	if (!in_dev) {
906 		dev_put(dev);
907 		return -EADDRNOTAVAIL;
908 	}
909 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
910 	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
911 				    dev->ifindex, &in_dev->cnf);
912 	ip_rt_multicast_event(in_dev);
913 
914 	/* Fill in the VIF structures */
915 	vif_device_init(v, dev, vifc->vifc_rate_limit,
916 			vifc->vifc_threshold,
917 			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
918 			(VIFF_TUNNEL | VIFF_REGISTER));
919 
920 	err = dev_get_port_parent_id(dev, &ppid, true);
921 	if (err == 0) {
922 		memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
923 		v->dev_parent_id.id_len = ppid.id_len;
924 	} else {
925 		v->dev_parent_id.id_len = 0;
926 	}
927 
928 	v->local = vifc->vifc_lcl_addr.s_addr;
929 	v->remote = vifc->vifc_rmt_addr.s_addr;
930 
931 	/* And finish update writing critical data */
932 	write_lock_bh(&mrt_lock);
933 	v->dev = dev;
934 	if (v->flags & VIFF_REGISTER)
935 		mrt->mroute_reg_vif_num = vifi;
936 	if (vifi+1 > mrt->maxvif)
937 		mrt->maxvif = vifi+1;
938 	write_unlock_bh(&mrt_lock);
939 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
940 	return 0;
941 }
942 
943 /* called with rcu_read_lock() */
944 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
945 					 __be32 origin,
946 					 __be32 mcastgrp)
947 {
948 	struct mfc_cache_cmp_arg arg = {
949 			.mfc_mcastgrp = mcastgrp,
950 			.mfc_origin = origin
951 	};
952 
953 	return mr_mfc_find(mrt, &arg);
954 }
955 
956 /* Look for a (*,G) entry */
957 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
958 					     __be32 mcastgrp, int vifi)
959 {
960 	struct mfc_cache_cmp_arg arg = {
961 			.mfc_mcastgrp = mcastgrp,
962 			.mfc_origin = htonl(INADDR_ANY)
963 	};
964 
965 	if (mcastgrp == htonl(INADDR_ANY))
966 		return mr_mfc_find_any_parent(mrt, vifi);
967 	return mr_mfc_find_any(mrt, vifi, &arg);
968 }
969 
970 /* Look for a (S,G,iif) entry if parent != -1 */
971 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
972 						__be32 origin, __be32 mcastgrp,
973 						int parent)
974 {
975 	struct mfc_cache_cmp_arg arg = {
976 			.mfc_mcastgrp = mcastgrp,
977 			.mfc_origin = origin,
978 	};
979 
980 	return mr_mfc_find_parent(mrt, &arg, parent);
981 }
982 
983 /* Allocate a multicast cache entry */
984 static struct mfc_cache *ipmr_cache_alloc(void)
985 {
986 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
987 
988 	if (c) {
989 		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
990 		c->_c.mfc_un.res.minvif = MAXVIFS;
991 		c->_c.free = ipmr_cache_free_rcu;
992 		refcount_set(&c->_c.mfc_un.res.refcount, 1);
993 	}
994 	return c;
995 }
996 
997 static struct mfc_cache *ipmr_cache_alloc_unres(void)
998 {
999 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
1000 
1001 	if (c) {
1002 		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
1003 		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
1004 	}
1005 	return c;
1006 }
1007 
1008 /* A cache entry has gone into a resolved state from queued */
1009 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
1010 			       struct mfc_cache *uc, struct mfc_cache *c)
1011 {
1012 	struct sk_buff *skb;
1013 	struct nlmsgerr *e;
1014 
1015 	/* Play the pending entries through our router */
1016 	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1017 		if (ip_hdr(skb)->version == 0) {
1018 			struct nlmsghdr *nlh = skb_pull(skb,
1019 							sizeof(struct iphdr));
1020 
1021 			if (mr_fill_mroute(mrt, skb, &c->_c,
1022 					   nlmsg_data(nlh)) > 0) {
1023 				nlh->nlmsg_len = skb_tail_pointer(skb) -
1024 						 (u8 *)nlh;
1025 			} else {
1026 				nlh->nlmsg_type = NLMSG_ERROR;
1027 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1028 				skb_trim(skb, nlh->nlmsg_len);
1029 				e = nlmsg_data(nlh);
1030 				e->error = -EMSGSIZE;
1031 				memset(&e->msg, 0, sizeof(e->msg));
1032 			}
1033 
1034 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1035 		} else {
1036 			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1037 		}
1038 	}
1039 }
1040 
1041 /* Bounce a cache query up to mrouted and netlink.
1042  *
1043  * Called under mrt_lock.
1044  */
1045 static int ipmr_cache_report(struct mr_table *mrt,
1046 			     struct sk_buff *pkt, vifi_t vifi, int assert)
1047 {
1048 	const int ihl = ip_hdrlen(pkt);
1049 	struct sock *mroute_sk;
1050 	struct igmphdr *igmp;
1051 	struct igmpmsg *msg;
1052 	struct sk_buff *skb;
1053 	int ret;
1054 
1055 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1056 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1057 	else
1058 		skb = alloc_skb(128, GFP_ATOMIC);
1059 
1060 	if (!skb)
1061 		return -ENOBUFS;
1062 
1063 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1064 		/* Ugly, but we have no choice with this interface.
1065 		 * Duplicate old header, fix ihl, length etc.
1066 		 * And all this only to mangle msg->im_msgtype and
1067 		 * to set msg->im_mbz to "mbz" :-)
1068 		 */
1069 		skb_push(skb, sizeof(struct iphdr));
1070 		skb_reset_network_header(skb);
1071 		skb_reset_transport_header(skb);
1072 		msg = (struct igmpmsg *)skb_network_header(skb);
1073 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1074 		msg->im_msgtype = assert;
1075 		msg->im_mbz = 0;
1076 		if (assert == IGMPMSG_WRVIFWHOLE)
1077 			msg->im_vif = vifi;
1078 		else
1079 			msg->im_vif = mrt->mroute_reg_vif_num;
1080 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1081 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1082 					     sizeof(struct iphdr));
1083 	} else {
1084 		/* Copy the IP header */
1085 		skb_set_network_header(skb, skb->len);
1086 		skb_put(skb, ihl);
1087 		skb_copy_to_linear_data(skb, pkt->data, ihl);
1088 		/* Flag to the kernel this is a route add */
1089 		ip_hdr(skb)->protocol = 0;
1090 		msg = (struct igmpmsg *)skb_network_header(skb);
1091 		msg->im_vif = vifi;
1092 		skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1093 		/* Add our header */
1094 		igmp = skb_put(skb, sizeof(struct igmphdr));
1095 		igmp->type = assert;
1096 		msg->im_msgtype = assert;
1097 		igmp->code = 0;
1098 		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1099 		skb->transport_header = skb->network_header;
1100 	}
1101 
1102 	rcu_read_lock();
1103 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1104 	if (!mroute_sk) {
1105 		rcu_read_unlock();
1106 		kfree_skb(skb);
1107 		return -EINVAL;
1108 	}
1109 
1110 	igmpmsg_netlink_event(mrt, skb);
1111 
1112 	/* Deliver to mrouted */
1113 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1114 	rcu_read_unlock();
1115 	if (ret < 0) {
1116 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1117 		kfree_skb(skb);
1118 	}
1119 
1120 	return ret;
1121 }
1122 
1123 /* Queue a packet for resolution. It gets locked cache entry! */
1124 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1125 				 struct sk_buff *skb, struct net_device *dev)
1126 {
1127 	const struct iphdr *iph = ip_hdr(skb);
1128 	struct mfc_cache *c;
1129 	bool found = false;
1130 	int err;
1131 
1132 	spin_lock_bh(&mfc_unres_lock);
1133 	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1134 		if (c->mfc_mcastgrp == iph->daddr &&
1135 		    c->mfc_origin == iph->saddr) {
1136 			found = true;
1137 			break;
1138 		}
1139 	}
1140 
1141 	if (!found) {
1142 		/* Create a new entry if allowable */
1143 		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1144 		    (c = ipmr_cache_alloc_unres()) == NULL) {
1145 			spin_unlock_bh(&mfc_unres_lock);
1146 
1147 			kfree_skb(skb);
1148 			return -ENOBUFS;
1149 		}
1150 
1151 		/* Fill in the new cache entry */
1152 		c->_c.mfc_parent = -1;
1153 		c->mfc_origin	= iph->saddr;
1154 		c->mfc_mcastgrp	= iph->daddr;
1155 
1156 		/* Reflect first query at mrouted. */
1157 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1158 
1159 		if (err < 0) {
1160 			/* If the report failed throw the cache entry
1161 			   out - Brad Parker
1162 			 */
1163 			spin_unlock_bh(&mfc_unres_lock);
1164 
1165 			ipmr_cache_free(c);
1166 			kfree_skb(skb);
1167 			return err;
1168 		}
1169 
1170 		atomic_inc(&mrt->cache_resolve_queue_len);
1171 		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1172 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1173 
1174 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1175 			mod_timer(&mrt->ipmr_expire_timer,
1176 				  c->_c.mfc_un.unres.expires);
1177 	}
1178 
1179 	/* See if we can append the packet */
1180 	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1181 		kfree_skb(skb);
1182 		err = -ENOBUFS;
1183 	} else {
1184 		if (dev) {
1185 			skb->dev = dev;
1186 			skb->skb_iif = dev->ifindex;
1187 		}
1188 		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1189 		err = 0;
1190 	}
1191 
1192 	spin_unlock_bh(&mfc_unres_lock);
1193 	return err;
1194 }
1195 
1196 /* MFC cache manipulation by user space mroute daemon */
1197 
1198 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1199 {
1200 	struct net *net = read_pnet(&mrt->net);
1201 	struct mfc_cache *c;
1202 
1203 	/* The entries are added/deleted only under RTNL */
1204 	rcu_read_lock();
1205 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1206 				   mfc->mfcc_mcastgrp.s_addr, parent);
1207 	rcu_read_unlock();
1208 	if (!c)
1209 		return -ENOENT;
1210 	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1211 	list_del_rcu(&c->_c.list);
1212 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1213 	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1214 	mr_cache_put(&c->_c);
1215 
1216 	return 0;
1217 }
1218 
1219 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1220 			struct mfcctl *mfc, int mrtsock, int parent)
1221 {
1222 	struct mfc_cache *uc, *c;
1223 	struct mr_mfc *_uc;
1224 	bool found;
1225 	int ret;
1226 
1227 	if (mfc->mfcc_parent >= MAXVIFS)
1228 		return -ENFILE;
1229 
1230 	/* The entries are added/deleted only under RTNL */
1231 	rcu_read_lock();
1232 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1233 				   mfc->mfcc_mcastgrp.s_addr, parent);
1234 	rcu_read_unlock();
1235 	if (c) {
1236 		write_lock_bh(&mrt_lock);
1237 		c->_c.mfc_parent = mfc->mfcc_parent;
1238 		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1239 		if (!mrtsock)
1240 			c->_c.mfc_flags |= MFC_STATIC;
1241 		write_unlock_bh(&mrt_lock);
1242 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1243 					      mrt->id);
1244 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1245 		return 0;
1246 	}
1247 
1248 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1249 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1250 		return -EINVAL;
1251 
1252 	c = ipmr_cache_alloc();
1253 	if (!c)
1254 		return -ENOMEM;
1255 
1256 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1257 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1258 	c->_c.mfc_parent = mfc->mfcc_parent;
1259 	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1260 	if (!mrtsock)
1261 		c->_c.mfc_flags |= MFC_STATIC;
1262 
1263 	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1264 				  ipmr_rht_params);
1265 	if (ret) {
1266 		pr_err("ipmr: rhtable insert error %d\n", ret);
1267 		ipmr_cache_free(c);
1268 		return ret;
1269 	}
1270 	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1271 	/* Check to see if we resolved a queued list. If so we
1272 	 * need to send on the frames and tidy up.
1273 	 */
1274 	found = false;
1275 	spin_lock_bh(&mfc_unres_lock);
1276 	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1277 		uc = (struct mfc_cache *)_uc;
1278 		if (uc->mfc_origin == c->mfc_origin &&
1279 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1280 			list_del(&_uc->list);
1281 			atomic_dec(&mrt->cache_resolve_queue_len);
1282 			found = true;
1283 			break;
1284 		}
1285 	}
1286 	if (list_empty(&mrt->mfc_unres_queue))
1287 		del_timer(&mrt->ipmr_expire_timer);
1288 	spin_unlock_bh(&mfc_unres_lock);
1289 
1290 	if (found) {
1291 		ipmr_cache_resolve(net, mrt, uc, c);
1292 		ipmr_cache_free(uc);
1293 	}
1294 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1295 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1296 	return 0;
1297 }
1298 
1299 /* Close the multicast socket, and clear the vif tables etc */
1300 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1301 {
1302 	struct net *net = read_pnet(&mrt->net);
1303 	struct mr_mfc *c, *tmp;
1304 	struct mfc_cache *cache;
1305 	LIST_HEAD(list);
1306 	int i;
1307 
1308 	/* Shut down all active vif entries */
1309 	if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1310 		for (i = 0; i < mrt->maxvif; i++) {
1311 			if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1312 			     !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1313 			    (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1314 				continue;
1315 			vif_delete(mrt, i, 0, &list);
1316 		}
1317 		unregister_netdevice_many(&list);
1318 	}
1319 
1320 	/* Wipe the cache */
1321 	if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1322 		list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1323 			if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1324 			    (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1325 				continue;
1326 			rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1327 			list_del_rcu(&c->list);
1328 			cache = (struct mfc_cache *)c;
1329 			call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1330 						      mrt->id);
1331 			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1332 			mr_cache_put(c);
1333 		}
1334 	}
1335 
1336 	if (flags & MRT_FLUSH_MFC) {
1337 		if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1338 			spin_lock_bh(&mfc_unres_lock);
1339 			list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1340 				list_del(&c->list);
1341 				cache = (struct mfc_cache *)c;
1342 				mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1343 				ipmr_destroy_unres(mrt, cache);
1344 			}
1345 			spin_unlock_bh(&mfc_unres_lock);
1346 		}
1347 	}
1348 }
1349 
1350 /* called from ip_ra_control(), before an RCU grace period,
1351  * we dont need to call synchronize_rcu() here
1352  */
1353 static void mrtsock_destruct(struct sock *sk)
1354 {
1355 	struct net *net = sock_net(sk);
1356 	struct mr_table *mrt;
1357 
1358 	rtnl_lock();
1359 	ipmr_for_each_table(mrt, net) {
1360 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1361 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1362 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1363 						    NETCONFA_MC_FORWARDING,
1364 						    NETCONFA_IFINDEX_ALL,
1365 						    net->ipv4.devconf_all);
1366 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1367 			mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1368 		}
1369 	}
1370 	rtnl_unlock();
1371 }
1372 
1373 /* Socket options and virtual interface manipulation. The whole
1374  * virtual interface system is a complete heap, but unfortunately
1375  * that's how BSD mrouted happens to think. Maybe one day with a proper
1376  * MOSPF/PIM router set up we can clean this up.
1377  */
1378 
1379 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1380 			 unsigned int optlen)
1381 {
1382 	struct net *net = sock_net(sk);
1383 	int val, ret = 0, parent = 0;
1384 	struct mr_table *mrt;
1385 	struct vifctl vif;
1386 	struct mfcctl mfc;
1387 	bool do_wrvifwhole;
1388 	u32 uval;
1389 
1390 	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1391 	rtnl_lock();
1392 	if (sk->sk_type != SOCK_RAW ||
1393 	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1394 		ret = -EOPNOTSUPP;
1395 		goto out_unlock;
1396 	}
1397 
1398 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1399 	if (!mrt) {
1400 		ret = -ENOENT;
1401 		goto out_unlock;
1402 	}
1403 	if (optname != MRT_INIT) {
1404 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1405 		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1406 			ret = -EACCES;
1407 			goto out_unlock;
1408 		}
1409 	}
1410 
1411 	switch (optname) {
1412 	case MRT_INIT:
1413 		if (optlen != sizeof(int)) {
1414 			ret = -EINVAL;
1415 			break;
1416 		}
1417 		if (rtnl_dereference(mrt->mroute_sk)) {
1418 			ret = -EADDRINUSE;
1419 			break;
1420 		}
1421 
1422 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1423 		if (ret == 0) {
1424 			rcu_assign_pointer(mrt->mroute_sk, sk);
1425 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1426 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1427 						    NETCONFA_MC_FORWARDING,
1428 						    NETCONFA_IFINDEX_ALL,
1429 						    net->ipv4.devconf_all);
1430 		}
1431 		break;
1432 	case MRT_DONE:
1433 		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1434 			ret = -EACCES;
1435 		} else {
1436 			/* We need to unlock here because mrtsock_destruct takes
1437 			 * care of rtnl itself and we can't change that due to
1438 			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1439 			 */
1440 			rtnl_unlock();
1441 			ret = ip_ra_control(sk, 0, NULL);
1442 			goto out;
1443 		}
1444 		break;
1445 	case MRT_ADD_VIF:
1446 	case MRT_DEL_VIF:
1447 		if (optlen != sizeof(vif)) {
1448 			ret = -EINVAL;
1449 			break;
1450 		}
1451 		if (copy_from_user(&vif, optval, sizeof(vif))) {
1452 			ret = -EFAULT;
1453 			break;
1454 		}
1455 		if (vif.vifc_vifi >= MAXVIFS) {
1456 			ret = -ENFILE;
1457 			break;
1458 		}
1459 		if (optname == MRT_ADD_VIF) {
1460 			ret = vif_add(net, mrt, &vif,
1461 				      sk == rtnl_dereference(mrt->mroute_sk));
1462 		} else {
1463 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1464 		}
1465 		break;
1466 	/* Manipulate the forwarding caches. These live
1467 	 * in a sort of kernel/user symbiosis.
1468 	 */
1469 	case MRT_ADD_MFC:
1470 	case MRT_DEL_MFC:
1471 		parent = -1;
1472 		/* fall through */
1473 	case MRT_ADD_MFC_PROXY:
1474 	case MRT_DEL_MFC_PROXY:
1475 		if (optlen != sizeof(mfc)) {
1476 			ret = -EINVAL;
1477 			break;
1478 		}
1479 		if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1480 			ret = -EFAULT;
1481 			break;
1482 		}
1483 		if (parent == 0)
1484 			parent = mfc.mfcc_parent;
1485 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1486 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1487 		else
1488 			ret = ipmr_mfc_add(net, mrt, &mfc,
1489 					   sk == rtnl_dereference(mrt->mroute_sk),
1490 					   parent);
1491 		break;
1492 	case MRT_FLUSH:
1493 		if (optlen != sizeof(val)) {
1494 			ret = -EINVAL;
1495 			break;
1496 		}
1497 		if (get_user(val, (int __user *)optval)) {
1498 			ret = -EFAULT;
1499 			break;
1500 		}
1501 		mroute_clean_tables(mrt, val);
1502 		break;
1503 	/* Control PIM assert. */
1504 	case MRT_ASSERT:
1505 		if (optlen != sizeof(val)) {
1506 			ret = -EINVAL;
1507 			break;
1508 		}
1509 		if (get_user(val, (int __user *)optval)) {
1510 			ret = -EFAULT;
1511 			break;
1512 		}
1513 		mrt->mroute_do_assert = val;
1514 		break;
1515 	case MRT_PIM:
1516 		if (!ipmr_pimsm_enabled()) {
1517 			ret = -ENOPROTOOPT;
1518 			break;
1519 		}
1520 		if (optlen != sizeof(val)) {
1521 			ret = -EINVAL;
1522 			break;
1523 		}
1524 		if (get_user(val, (int __user *)optval)) {
1525 			ret = -EFAULT;
1526 			break;
1527 		}
1528 
1529 		do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1530 		val = !!val;
1531 		if (val != mrt->mroute_do_pim) {
1532 			mrt->mroute_do_pim = val;
1533 			mrt->mroute_do_assert = val;
1534 			mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1535 		}
1536 		break;
1537 	case MRT_TABLE:
1538 		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1539 			ret = -ENOPROTOOPT;
1540 			break;
1541 		}
1542 		if (optlen != sizeof(uval)) {
1543 			ret = -EINVAL;
1544 			break;
1545 		}
1546 		if (get_user(uval, (u32 __user *)optval)) {
1547 			ret = -EFAULT;
1548 			break;
1549 		}
1550 
1551 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1552 			ret = -EBUSY;
1553 		} else {
1554 			mrt = ipmr_new_table(net, uval);
1555 			if (IS_ERR(mrt))
1556 				ret = PTR_ERR(mrt);
1557 			else
1558 				raw_sk(sk)->ipmr_table = uval;
1559 		}
1560 		break;
1561 	/* Spurious command, or MRT_VERSION which you cannot set. */
1562 	default:
1563 		ret = -ENOPROTOOPT;
1564 	}
1565 out_unlock:
1566 	rtnl_unlock();
1567 out:
1568 	return ret;
1569 }
1570 
1571 /* Getsock opt support for the multicast routing system. */
1572 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1573 {
1574 	int olr;
1575 	int val;
1576 	struct net *net = sock_net(sk);
1577 	struct mr_table *mrt;
1578 
1579 	if (sk->sk_type != SOCK_RAW ||
1580 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1581 		return -EOPNOTSUPP;
1582 
1583 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1584 	if (!mrt)
1585 		return -ENOENT;
1586 
1587 	switch (optname) {
1588 	case MRT_VERSION:
1589 		val = 0x0305;
1590 		break;
1591 	case MRT_PIM:
1592 		if (!ipmr_pimsm_enabled())
1593 			return -ENOPROTOOPT;
1594 		val = mrt->mroute_do_pim;
1595 		break;
1596 	case MRT_ASSERT:
1597 		val = mrt->mroute_do_assert;
1598 		break;
1599 	default:
1600 		return -ENOPROTOOPT;
1601 	}
1602 
1603 	if (get_user(olr, optlen))
1604 		return -EFAULT;
1605 	olr = min_t(unsigned int, olr, sizeof(int));
1606 	if (olr < 0)
1607 		return -EINVAL;
1608 	if (put_user(olr, optlen))
1609 		return -EFAULT;
1610 	if (copy_to_user(optval, &val, olr))
1611 		return -EFAULT;
1612 	return 0;
1613 }
1614 
1615 /* The IP multicast ioctl support routines. */
1616 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1617 {
1618 	struct sioc_sg_req sr;
1619 	struct sioc_vif_req vr;
1620 	struct vif_device *vif;
1621 	struct mfc_cache *c;
1622 	struct net *net = sock_net(sk);
1623 	struct mr_table *mrt;
1624 
1625 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1626 	if (!mrt)
1627 		return -ENOENT;
1628 
1629 	switch (cmd) {
1630 	case SIOCGETVIFCNT:
1631 		if (copy_from_user(&vr, arg, sizeof(vr)))
1632 			return -EFAULT;
1633 		if (vr.vifi >= mrt->maxvif)
1634 			return -EINVAL;
1635 		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1636 		read_lock(&mrt_lock);
1637 		vif = &mrt->vif_table[vr.vifi];
1638 		if (VIF_EXISTS(mrt, vr.vifi)) {
1639 			vr.icount = vif->pkt_in;
1640 			vr.ocount = vif->pkt_out;
1641 			vr.ibytes = vif->bytes_in;
1642 			vr.obytes = vif->bytes_out;
1643 			read_unlock(&mrt_lock);
1644 
1645 			if (copy_to_user(arg, &vr, sizeof(vr)))
1646 				return -EFAULT;
1647 			return 0;
1648 		}
1649 		read_unlock(&mrt_lock);
1650 		return -EADDRNOTAVAIL;
1651 	case SIOCGETSGCNT:
1652 		if (copy_from_user(&sr, arg, sizeof(sr)))
1653 			return -EFAULT;
1654 
1655 		rcu_read_lock();
1656 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1657 		if (c) {
1658 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1659 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1660 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1661 			rcu_read_unlock();
1662 
1663 			if (copy_to_user(arg, &sr, sizeof(sr)))
1664 				return -EFAULT;
1665 			return 0;
1666 		}
1667 		rcu_read_unlock();
1668 		return -EADDRNOTAVAIL;
1669 	default:
1670 		return -ENOIOCTLCMD;
1671 	}
1672 }
1673 
1674 #ifdef CONFIG_COMPAT
1675 struct compat_sioc_sg_req {
1676 	struct in_addr src;
1677 	struct in_addr grp;
1678 	compat_ulong_t pktcnt;
1679 	compat_ulong_t bytecnt;
1680 	compat_ulong_t wrong_if;
1681 };
1682 
1683 struct compat_sioc_vif_req {
1684 	vifi_t	vifi;		/* Which iface */
1685 	compat_ulong_t icount;
1686 	compat_ulong_t ocount;
1687 	compat_ulong_t ibytes;
1688 	compat_ulong_t obytes;
1689 };
1690 
1691 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1692 {
1693 	struct compat_sioc_sg_req sr;
1694 	struct compat_sioc_vif_req vr;
1695 	struct vif_device *vif;
1696 	struct mfc_cache *c;
1697 	struct net *net = sock_net(sk);
1698 	struct mr_table *mrt;
1699 
1700 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1701 	if (!mrt)
1702 		return -ENOENT;
1703 
1704 	switch (cmd) {
1705 	case SIOCGETVIFCNT:
1706 		if (copy_from_user(&vr, arg, sizeof(vr)))
1707 			return -EFAULT;
1708 		if (vr.vifi >= mrt->maxvif)
1709 			return -EINVAL;
1710 		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1711 		read_lock(&mrt_lock);
1712 		vif = &mrt->vif_table[vr.vifi];
1713 		if (VIF_EXISTS(mrt, vr.vifi)) {
1714 			vr.icount = vif->pkt_in;
1715 			vr.ocount = vif->pkt_out;
1716 			vr.ibytes = vif->bytes_in;
1717 			vr.obytes = vif->bytes_out;
1718 			read_unlock(&mrt_lock);
1719 
1720 			if (copy_to_user(arg, &vr, sizeof(vr)))
1721 				return -EFAULT;
1722 			return 0;
1723 		}
1724 		read_unlock(&mrt_lock);
1725 		return -EADDRNOTAVAIL;
1726 	case SIOCGETSGCNT:
1727 		if (copy_from_user(&sr, arg, sizeof(sr)))
1728 			return -EFAULT;
1729 
1730 		rcu_read_lock();
1731 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1732 		if (c) {
1733 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1734 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1735 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1736 			rcu_read_unlock();
1737 
1738 			if (copy_to_user(arg, &sr, sizeof(sr)))
1739 				return -EFAULT;
1740 			return 0;
1741 		}
1742 		rcu_read_unlock();
1743 		return -EADDRNOTAVAIL;
1744 	default:
1745 		return -ENOIOCTLCMD;
1746 	}
1747 }
1748 #endif
1749 
1750 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1751 {
1752 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1753 	struct net *net = dev_net(dev);
1754 	struct mr_table *mrt;
1755 	struct vif_device *v;
1756 	int ct;
1757 
1758 	if (event != NETDEV_UNREGISTER)
1759 		return NOTIFY_DONE;
1760 
1761 	ipmr_for_each_table(mrt, net) {
1762 		v = &mrt->vif_table[0];
1763 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1764 			if (v->dev == dev)
1765 				vif_delete(mrt, ct, 1, NULL);
1766 		}
1767 	}
1768 	return NOTIFY_DONE;
1769 }
1770 
1771 static struct notifier_block ip_mr_notifier = {
1772 	.notifier_call = ipmr_device_event,
1773 };
1774 
1775 /* Encapsulate a packet by attaching a valid IPIP header to it.
1776  * This avoids tunnel drivers and other mess and gives us the speed so
1777  * important for multicast video.
1778  */
1779 static void ip_encap(struct net *net, struct sk_buff *skb,
1780 		     __be32 saddr, __be32 daddr)
1781 {
1782 	struct iphdr *iph;
1783 	const struct iphdr *old_iph = ip_hdr(skb);
1784 
1785 	skb_push(skb, sizeof(struct iphdr));
1786 	skb->transport_header = skb->network_header;
1787 	skb_reset_network_header(skb);
1788 	iph = ip_hdr(skb);
1789 
1790 	iph->version	=	4;
1791 	iph->tos	=	old_iph->tos;
1792 	iph->ttl	=	old_iph->ttl;
1793 	iph->frag_off	=	0;
1794 	iph->daddr	=	daddr;
1795 	iph->saddr	=	saddr;
1796 	iph->protocol	=	IPPROTO_IPIP;
1797 	iph->ihl	=	5;
1798 	iph->tot_len	=	htons(skb->len);
1799 	ip_select_ident(net, skb, NULL);
1800 	ip_send_check(iph);
1801 
1802 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1803 	nf_reset(skb);
1804 }
1805 
1806 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1807 				      struct sk_buff *skb)
1808 {
1809 	struct ip_options *opt = &(IPCB(skb)->opt);
1810 
1811 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1812 	IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1813 
1814 	if (unlikely(opt->optlen))
1815 		ip_forward_options(skb);
1816 
1817 	return dst_output(net, sk, skb);
1818 }
1819 
1820 #ifdef CONFIG_NET_SWITCHDEV
1821 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1822 				   int in_vifi, int out_vifi)
1823 {
1824 	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1825 	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1826 
1827 	if (!skb->offload_l3_fwd_mark)
1828 		return false;
1829 	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1830 		return false;
1831 	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1832 					&in_vif->dev_parent_id);
1833 }
1834 #else
1835 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1836 				   int in_vifi, int out_vifi)
1837 {
1838 	return false;
1839 }
1840 #endif
1841 
1842 /* Processing handlers for ipmr_forward */
1843 
1844 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1845 			    int in_vifi, struct sk_buff *skb, int vifi)
1846 {
1847 	const struct iphdr *iph = ip_hdr(skb);
1848 	struct vif_device *vif = &mrt->vif_table[vifi];
1849 	struct net_device *dev;
1850 	struct rtable *rt;
1851 	struct flowi4 fl4;
1852 	int    encap = 0;
1853 
1854 	if (!vif->dev)
1855 		goto out_free;
1856 
1857 	if (vif->flags & VIFF_REGISTER) {
1858 		vif->pkt_out++;
1859 		vif->bytes_out += skb->len;
1860 		vif->dev->stats.tx_bytes += skb->len;
1861 		vif->dev->stats.tx_packets++;
1862 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1863 		goto out_free;
1864 	}
1865 
1866 	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1867 		goto out_free;
1868 
1869 	if (vif->flags & VIFF_TUNNEL) {
1870 		rt = ip_route_output_ports(net, &fl4, NULL,
1871 					   vif->remote, vif->local,
1872 					   0, 0,
1873 					   IPPROTO_IPIP,
1874 					   RT_TOS(iph->tos), vif->link);
1875 		if (IS_ERR(rt))
1876 			goto out_free;
1877 		encap = sizeof(struct iphdr);
1878 	} else {
1879 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1880 					   0, 0,
1881 					   IPPROTO_IPIP,
1882 					   RT_TOS(iph->tos), vif->link);
1883 		if (IS_ERR(rt))
1884 			goto out_free;
1885 	}
1886 
1887 	dev = rt->dst.dev;
1888 
1889 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1890 		/* Do not fragment multicasts. Alas, IPv4 does not
1891 		 * allow to send ICMP, so that packets will disappear
1892 		 * to blackhole.
1893 		 */
1894 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1895 		ip_rt_put(rt);
1896 		goto out_free;
1897 	}
1898 
1899 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1900 
1901 	if (skb_cow(skb, encap)) {
1902 		ip_rt_put(rt);
1903 		goto out_free;
1904 	}
1905 
1906 	vif->pkt_out++;
1907 	vif->bytes_out += skb->len;
1908 
1909 	skb_dst_drop(skb);
1910 	skb_dst_set(skb, &rt->dst);
1911 	ip_decrease_ttl(ip_hdr(skb));
1912 
1913 	/* FIXME: forward and output firewalls used to be called here.
1914 	 * What do we do with netfilter? -- RR
1915 	 */
1916 	if (vif->flags & VIFF_TUNNEL) {
1917 		ip_encap(net, skb, vif->local, vif->remote);
1918 		/* FIXME: extra output firewall step used to be here. --RR */
1919 		vif->dev->stats.tx_packets++;
1920 		vif->dev->stats.tx_bytes += skb->len;
1921 	}
1922 
1923 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1924 
1925 	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1926 	 * not only before forwarding, but after forwarding on all output
1927 	 * interfaces. It is clear, if mrouter runs a multicasting
1928 	 * program, it should receive packets not depending to what interface
1929 	 * program is joined.
1930 	 * If we will not make it, the program will have to join on all
1931 	 * interfaces. On the other hand, multihoming host (or router, but
1932 	 * not mrouter) cannot join to more than one interface - it will
1933 	 * result in receiving multiple packets.
1934 	 */
1935 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1936 		net, NULL, skb, skb->dev, dev,
1937 		ipmr_forward_finish);
1938 	return;
1939 
1940 out_free:
1941 	kfree_skb(skb);
1942 }
1943 
1944 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1945 {
1946 	int ct;
1947 
1948 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1949 		if (mrt->vif_table[ct].dev == dev)
1950 			break;
1951 	}
1952 	return ct;
1953 }
1954 
1955 /* "local" means that we should preserve one skb (for local delivery) */
1956 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1957 			  struct net_device *dev, struct sk_buff *skb,
1958 			  struct mfc_cache *c, int local)
1959 {
1960 	int true_vifi = ipmr_find_vif(mrt, dev);
1961 	int psend = -1;
1962 	int vif, ct;
1963 
1964 	vif = c->_c.mfc_parent;
1965 	c->_c.mfc_un.res.pkt++;
1966 	c->_c.mfc_un.res.bytes += skb->len;
1967 	c->_c.mfc_un.res.lastuse = jiffies;
1968 
1969 	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1970 		struct mfc_cache *cache_proxy;
1971 
1972 		/* For an (*,G) entry, we only check that the incomming
1973 		 * interface is part of the static tree.
1974 		 */
1975 		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1976 		if (cache_proxy &&
1977 		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1978 			goto forward;
1979 	}
1980 
1981 	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1982 	if (mrt->vif_table[vif].dev != dev) {
1983 		if (rt_is_output_route(skb_rtable(skb))) {
1984 			/* It is our own packet, looped back.
1985 			 * Very complicated situation...
1986 			 *
1987 			 * The best workaround until routing daemons will be
1988 			 * fixed is not to redistribute packet, if it was
1989 			 * send through wrong interface. It means, that
1990 			 * multicast applications WILL NOT work for
1991 			 * (S,G), which have default multicast route pointing
1992 			 * to wrong oif. In any case, it is not a good
1993 			 * idea to use multicasting applications on router.
1994 			 */
1995 			goto dont_forward;
1996 		}
1997 
1998 		c->_c.mfc_un.res.wrong_if++;
1999 
2000 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
2001 		    /* pimsm uses asserts, when switching from RPT to SPT,
2002 		     * so that we cannot check that packet arrived on an oif.
2003 		     * It is bad, but otherwise we would need to move pretty
2004 		     * large chunk of pimd to kernel. Ough... --ANK
2005 		     */
2006 		    (mrt->mroute_do_pim ||
2007 		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2008 		    time_after(jiffies,
2009 			       c->_c.mfc_un.res.last_assert +
2010 			       MFC_ASSERT_THRESH)) {
2011 			c->_c.mfc_un.res.last_assert = jiffies;
2012 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2013 			if (mrt->mroute_do_wrvifwhole)
2014 				ipmr_cache_report(mrt, skb, true_vifi,
2015 						  IGMPMSG_WRVIFWHOLE);
2016 		}
2017 		goto dont_forward;
2018 	}
2019 
2020 forward:
2021 	mrt->vif_table[vif].pkt_in++;
2022 	mrt->vif_table[vif].bytes_in += skb->len;
2023 
2024 	/* Forward the frame */
2025 	if (c->mfc_origin == htonl(INADDR_ANY) &&
2026 	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2027 		if (true_vifi >= 0 &&
2028 		    true_vifi != c->_c.mfc_parent &&
2029 		    ip_hdr(skb)->ttl >
2030 				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2031 			/* It's an (*,*) entry and the packet is not coming from
2032 			 * the upstream: forward the packet to the upstream
2033 			 * only.
2034 			 */
2035 			psend = c->_c.mfc_parent;
2036 			goto last_forward;
2037 		}
2038 		goto dont_forward;
2039 	}
2040 	for (ct = c->_c.mfc_un.res.maxvif - 1;
2041 	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2042 		/* For (*,G) entry, don't forward to the incoming interface */
2043 		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2044 		     ct != true_vifi) &&
2045 		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2046 			if (psend != -1) {
2047 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2048 
2049 				if (skb2)
2050 					ipmr_queue_xmit(net, mrt, true_vifi,
2051 							skb2, psend);
2052 			}
2053 			psend = ct;
2054 		}
2055 	}
2056 last_forward:
2057 	if (psend != -1) {
2058 		if (local) {
2059 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2060 
2061 			if (skb2)
2062 				ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2063 						psend);
2064 		} else {
2065 			ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2066 			return;
2067 		}
2068 	}
2069 
2070 dont_forward:
2071 	if (!local)
2072 		kfree_skb(skb);
2073 }
2074 
2075 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2076 {
2077 	struct rtable *rt = skb_rtable(skb);
2078 	struct iphdr *iph = ip_hdr(skb);
2079 	struct flowi4 fl4 = {
2080 		.daddr = iph->daddr,
2081 		.saddr = iph->saddr,
2082 		.flowi4_tos = RT_TOS(iph->tos),
2083 		.flowi4_oif = (rt_is_output_route(rt) ?
2084 			       skb->dev->ifindex : 0),
2085 		.flowi4_iif = (rt_is_output_route(rt) ?
2086 			       LOOPBACK_IFINDEX :
2087 			       skb->dev->ifindex),
2088 		.flowi4_mark = skb->mark,
2089 	};
2090 	struct mr_table *mrt;
2091 	int err;
2092 
2093 	err = ipmr_fib_lookup(net, &fl4, &mrt);
2094 	if (err)
2095 		return ERR_PTR(err);
2096 	return mrt;
2097 }
2098 
2099 /* Multicast packets for forwarding arrive here
2100  * Called with rcu_read_lock();
2101  */
2102 int ip_mr_input(struct sk_buff *skb)
2103 {
2104 	struct mfc_cache *cache;
2105 	struct net *net = dev_net(skb->dev);
2106 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2107 	struct mr_table *mrt;
2108 	struct net_device *dev;
2109 
2110 	/* skb->dev passed in is the loX master dev for vrfs.
2111 	 * As there are no vifs associated with loopback devices,
2112 	 * get the proper interface that does have a vif associated with it.
2113 	 */
2114 	dev = skb->dev;
2115 	if (netif_is_l3_master(skb->dev)) {
2116 		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2117 		if (!dev) {
2118 			kfree_skb(skb);
2119 			return -ENODEV;
2120 		}
2121 	}
2122 
2123 	/* Packet is looped back after forward, it should not be
2124 	 * forwarded second time, but still can be delivered locally.
2125 	 */
2126 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2127 		goto dont_forward;
2128 
2129 	mrt = ipmr_rt_fib_lookup(net, skb);
2130 	if (IS_ERR(mrt)) {
2131 		kfree_skb(skb);
2132 		return PTR_ERR(mrt);
2133 	}
2134 	if (!local) {
2135 		if (IPCB(skb)->opt.router_alert) {
2136 			if (ip_call_ra_chain(skb))
2137 				return 0;
2138 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2139 			/* IGMPv1 (and broken IGMPv2 implementations sort of
2140 			 * Cisco IOS <= 11.2(8)) do not put router alert
2141 			 * option to IGMP packets destined to routable
2142 			 * groups. It is very bad, because it means
2143 			 * that we can forward NO IGMP messages.
2144 			 */
2145 			struct sock *mroute_sk;
2146 
2147 			mroute_sk = rcu_dereference(mrt->mroute_sk);
2148 			if (mroute_sk) {
2149 				nf_reset(skb);
2150 				raw_rcv(mroute_sk, skb);
2151 				return 0;
2152 			}
2153 		    }
2154 	}
2155 
2156 	/* already under rcu_read_lock() */
2157 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2158 	if (!cache) {
2159 		int vif = ipmr_find_vif(mrt, dev);
2160 
2161 		if (vif >= 0)
2162 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2163 						    vif);
2164 	}
2165 
2166 	/* No usable cache entry */
2167 	if (!cache) {
2168 		int vif;
2169 
2170 		if (local) {
2171 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2172 			ip_local_deliver(skb);
2173 			if (!skb2)
2174 				return -ENOBUFS;
2175 			skb = skb2;
2176 		}
2177 
2178 		read_lock(&mrt_lock);
2179 		vif = ipmr_find_vif(mrt, dev);
2180 		if (vif >= 0) {
2181 			int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2182 			read_unlock(&mrt_lock);
2183 
2184 			return err2;
2185 		}
2186 		read_unlock(&mrt_lock);
2187 		kfree_skb(skb);
2188 		return -ENODEV;
2189 	}
2190 
2191 	read_lock(&mrt_lock);
2192 	ip_mr_forward(net, mrt, dev, skb, cache, local);
2193 	read_unlock(&mrt_lock);
2194 
2195 	if (local)
2196 		return ip_local_deliver(skb);
2197 
2198 	return 0;
2199 
2200 dont_forward:
2201 	if (local)
2202 		return ip_local_deliver(skb);
2203 	kfree_skb(skb);
2204 	return 0;
2205 }
2206 
2207 #ifdef CONFIG_IP_PIMSM_V1
2208 /* Handle IGMP messages of PIMv1 */
2209 int pim_rcv_v1(struct sk_buff *skb)
2210 {
2211 	struct igmphdr *pim;
2212 	struct net *net = dev_net(skb->dev);
2213 	struct mr_table *mrt;
2214 
2215 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2216 		goto drop;
2217 
2218 	pim = igmp_hdr(skb);
2219 
2220 	mrt = ipmr_rt_fib_lookup(net, skb);
2221 	if (IS_ERR(mrt))
2222 		goto drop;
2223 	if (!mrt->mroute_do_pim ||
2224 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2225 		goto drop;
2226 
2227 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2228 drop:
2229 		kfree_skb(skb);
2230 	}
2231 	return 0;
2232 }
2233 #endif
2234 
2235 #ifdef CONFIG_IP_PIMSM_V2
2236 static int pim_rcv(struct sk_buff *skb)
2237 {
2238 	struct pimreghdr *pim;
2239 	struct net *net = dev_net(skb->dev);
2240 	struct mr_table *mrt;
2241 
2242 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2243 		goto drop;
2244 
2245 	pim = (struct pimreghdr *)skb_transport_header(skb);
2246 	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2247 	    (pim->flags & PIM_NULL_REGISTER) ||
2248 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2249 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2250 		goto drop;
2251 
2252 	mrt = ipmr_rt_fib_lookup(net, skb);
2253 	if (IS_ERR(mrt))
2254 		goto drop;
2255 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2256 drop:
2257 		kfree_skb(skb);
2258 	}
2259 	return 0;
2260 }
2261 #endif
2262 
2263 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2264 		   __be32 saddr, __be32 daddr,
2265 		   struct rtmsg *rtm, u32 portid)
2266 {
2267 	struct mfc_cache *cache;
2268 	struct mr_table *mrt;
2269 	int err;
2270 
2271 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2272 	if (!mrt)
2273 		return -ENOENT;
2274 
2275 	rcu_read_lock();
2276 	cache = ipmr_cache_find(mrt, saddr, daddr);
2277 	if (!cache && skb->dev) {
2278 		int vif = ipmr_find_vif(mrt, skb->dev);
2279 
2280 		if (vif >= 0)
2281 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2282 	}
2283 	if (!cache) {
2284 		struct sk_buff *skb2;
2285 		struct iphdr *iph;
2286 		struct net_device *dev;
2287 		int vif = -1;
2288 
2289 		dev = skb->dev;
2290 		read_lock(&mrt_lock);
2291 		if (dev)
2292 			vif = ipmr_find_vif(mrt, dev);
2293 		if (vif < 0) {
2294 			read_unlock(&mrt_lock);
2295 			rcu_read_unlock();
2296 			return -ENODEV;
2297 		}
2298 		skb2 = skb_clone(skb, GFP_ATOMIC);
2299 		if (!skb2) {
2300 			read_unlock(&mrt_lock);
2301 			rcu_read_unlock();
2302 			return -ENOMEM;
2303 		}
2304 
2305 		NETLINK_CB(skb2).portid = portid;
2306 		skb_push(skb2, sizeof(struct iphdr));
2307 		skb_reset_network_header(skb2);
2308 		iph = ip_hdr(skb2);
2309 		iph->ihl = sizeof(struct iphdr) >> 2;
2310 		iph->saddr = saddr;
2311 		iph->daddr = daddr;
2312 		iph->version = 0;
2313 		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2314 		read_unlock(&mrt_lock);
2315 		rcu_read_unlock();
2316 		return err;
2317 	}
2318 
2319 	read_lock(&mrt_lock);
2320 	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2321 	read_unlock(&mrt_lock);
2322 	rcu_read_unlock();
2323 	return err;
2324 }
2325 
2326 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2327 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2328 			    int flags)
2329 {
2330 	struct nlmsghdr *nlh;
2331 	struct rtmsg *rtm;
2332 	int err;
2333 
2334 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2335 	if (!nlh)
2336 		return -EMSGSIZE;
2337 
2338 	rtm = nlmsg_data(nlh);
2339 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2340 	rtm->rtm_dst_len  = 32;
2341 	rtm->rtm_src_len  = 32;
2342 	rtm->rtm_tos      = 0;
2343 	rtm->rtm_table    = mrt->id;
2344 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2345 		goto nla_put_failure;
2346 	rtm->rtm_type     = RTN_MULTICAST;
2347 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2348 	if (c->_c.mfc_flags & MFC_STATIC)
2349 		rtm->rtm_protocol = RTPROT_STATIC;
2350 	else
2351 		rtm->rtm_protocol = RTPROT_MROUTED;
2352 	rtm->rtm_flags    = 0;
2353 
2354 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2355 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2356 		goto nla_put_failure;
2357 	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2358 	/* do not break the dump if cache is unresolved */
2359 	if (err < 0 && err != -ENOENT)
2360 		goto nla_put_failure;
2361 
2362 	nlmsg_end(skb, nlh);
2363 	return 0;
2364 
2365 nla_put_failure:
2366 	nlmsg_cancel(skb, nlh);
2367 	return -EMSGSIZE;
2368 }
2369 
2370 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2371 			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2372 			     int flags)
2373 {
2374 	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2375 				cmd, flags);
2376 }
2377 
2378 static size_t mroute_msgsize(bool unresolved, int maxvif)
2379 {
2380 	size_t len =
2381 		NLMSG_ALIGN(sizeof(struct rtmsg))
2382 		+ nla_total_size(4)	/* RTA_TABLE */
2383 		+ nla_total_size(4)	/* RTA_SRC */
2384 		+ nla_total_size(4)	/* RTA_DST */
2385 		;
2386 
2387 	if (!unresolved)
2388 		len = len
2389 		      + nla_total_size(4)	/* RTA_IIF */
2390 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2391 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2392 						/* RTA_MFC_STATS */
2393 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2394 		;
2395 
2396 	return len;
2397 }
2398 
2399 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2400 				 int cmd)
2401 {
2402 	struct net *net = read_pnet(&mrt->net);
2403 	struct sk_buff *skb;
2404 	int err = -ENOBUFS;
2405 
2406 	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2407 				       mrt->maxvif),
2408 			GFP_ATOMIC);
2409 	if (!skb)
2410 		goto errout;
2411 
2412 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2413 	if (err < 0)
2414 		goto errout;
2415 
2416 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2417 	return;
2418 
2419 errout:
2420 	kfree_skb(skb);
2421 	if (err < 0)
2422 		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2423 }
2424 
2425 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2426 {
2427 	size_t len =
2428 		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2429 		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2430 		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2431 		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2432 		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2433 					/* IPMRA_CREPORT_PKT */
2434 		+ nla_total_size(payloadlen)
2435 		;
2436 
2437 	return len;
2438 }
2439 
2440 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2441 {
2442 	struct net *net = read_pnet(&mrt->net);
2443 	struct nlmsghdr *nlh;
2444 	struct rtgenmsg *rtgenm;
2445 	struct igmpmsg *msg;
2446 	struct sk_buff *skb;
2447 	struct nlattr *nla;
2448 	int payloadlen;
2449 
2450 	payloadlen = pkt->len - sizeof(struct igmpmsg);
2451 	msg = (struct igmpmsg *)skb_network_header(pkt);
2452 
2453 	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2454 	if (!skb)
2455 		goto errout;
2456 
2457 	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2458 			sizeof(struct rtgenmsg), 0);
2459 	if (!nlh)
2460 		goto errout;
2461 	rtgenm = nlmsg_data(nlh);
2462 	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2463 	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2464 	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
2465 	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2466 			    msg->im_src.s_addr) ||
2467 	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2468 			    msg->im_dst.s_addr))
2469 		goto nla_put_failure;
2470 
2471 	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2472 	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2473 				  nla_data(nla), payloadlen))
2474 		goto nla_put_failure;
2475 
2476 	nlmsg_end(skb, nlh);
2477 
2478 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2479 	return;
2480 
2481 nla_put_failure:
2482 	nlmsg_cancel(skb, nlh);
2483 errout:
2484 	kfree_skb(skb);
2485 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2486 }
2487 
2488 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2489 				       const struct nlmsghdr *nlh,
2490 				       struct nlattr **tb,
2491 				       struct netlink_ext_ack *extack)
2492 {
2493 	struct rtmsg *rtm;
2494 	int i, err;
2495 
2496 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2497 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2498 		return -EINVAL;
2499 	}
2500 
2501 	if (!netlink_strict_get_check(skb))
2502 		return nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX,
2503 				   rtm_ipv4_policy, extack);
2504 
2505 	rtm = nlmsg_data(nlh);
2506 	if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2507 	    (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2508 	    rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2509 	    rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2510 		NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2511 		return -EINVAL;
2512 	}
2513 
2514 	err = nlmsg_parse_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2515 				 rtm_ipv4_policy, extack);
2516 	if (err)
2517 		return err;
2518 
2519 	if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2520 	    (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2521 		NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2522 		return -EINVAL;
2523 	}
2524 
2525 	for (i = 0; i <= RTA_MAX; i++) {
2526 		if (!tb[i])
2527 			continue;
2528 
2529 		switch (i) {
2530 		case RTA_SRC:
2531 		case RTA_DST:
2532 		case RTA_TABLE:
2533 			break;
2534 		default:
2535 			NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2536 			return -EINVAL;
2537 		}
2538 	}
2539 
2540 	return 0;
2541 }
2542 
2543 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2544 			     struct netlink_ext_ack *extack)
2545 {
2546 	struct net *net = sock_net(in_skb->sk);
2547 	struct nlattr *tb[RTA_MAX + 1];
2548 	struct sk_buff *skb = NULL;
2549 	struct mfc_cache *cache;
2550 	struct mr_table *mrt;
2551 	__be32 src, grp;
2552 	u32 tableid;
2553 	int err;
2554 
2555 	err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2556 	if (err < 0)
2557 		goto errout;
2558 
2559 	src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2560 	grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2561 	tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2562 
2563 	mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2564 	if (!mrt) {
2565 		err = -ENOENT;
2566 		goto errout_free;
2567 	}
2568 
2569 	/* entries are added/deleted only under RTNL */
2570 	rcu_read_lock();
2571 	cache = ipmr_cache_find(mrt, src, grp);
2572 	rcu_read_unlock();
2573 	if (!cache) {
2574 		err = -ENOENT;
2575 		goto errout_free;
2576 	}
2577 
2578 	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2579 	if (!skb) {
2580 		err = -ENOBUFS;
2581 		goto errout_free;
2582 	}
2583 
2584 	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2585 			       nlh->nlmsg_seq, cache,
2586 			       RTM_NEWROUTE, 0);
2587 	if (err < 0)
2588 		goto errout_free;
2589 
2590 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2591 
2592 errout:
2593 	return err;
2594 
2595 errout_free:
2596 	kfree_skb(skb);
2597 	goto errout;
2598 }
2599 
2600 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2601 {
2602 	struct fib_dump_filter filter = {};
2603 	int err;
2604 
2605 	if (cb->strict_check) {
2606 		err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2607 					    &filter, cb);
2608 		if (err < 0)
2609 			return err;
2610 	}
2611 
2612 	if (filter.table_id) {
2613 		struct mr_table *mrt;
2614 
2615 		mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id);
2616 		if (!mrt) {
2617 			if (filter.dump_all_families)
2618 				return skb->len;
2619 
2620 			NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2621 			return -ENOENT;
2622 		}
2623 		err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2624 				    &mfc_unres_lock, &filter);
2625 		return skb->len ? : err;
2626 	}
2627 
2628 	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2629 				_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2630 }
2631 
2632 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2633 	[RTA_SRC]	= { .type = NLA_U32 },
2634 	[RTA_DST]	= { .type = NLA_U32 },
2635 	[RTA_IIF]	= { .type = NLA_U32 },
2636 	[RTA_TABLE]	= { .type = NLA_U32 },
2637 	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2638 };
2639 
2640 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2641 {
2642 	switch (rtm_protocol) {
2643 	case RTPROT_STATIC:
2644 	case RTPROT_MROUTED:
2645 		return true;
2646 	}
2647 	return false;
2648 }
2649 
2650 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2651 {
2652 	struct rtnexthop *rtnh = nla_data(nla);
2653 	int remaining = nla_len(nla), vifi = 0;
2654 
2655 	while (rtnh_ok(rtnh, remaining)) {
2656 		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2657 		if (++vifi == MAXVIFS)
2658 			break;
2659 		rtnh = rtnh_next(rtnh, &remaining);
2660 	}
2661 
2662 	return remaining > 0 ? -EINVAL : vifi;
2663 }
2664 
2665 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2666 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2667 			    struct mfcctl *mfcc, int *mrtsock,
2668 			    struct mr_table **mrtret,
2669 			    struct netlink_ext_ack *extack)
2670 {
2671 	struct net_device *dev = NULL;
2672 	u32 tblid = RT_TABLE_DEFAULT;
2673 	struct mr_table *mrt;
2674 	struct nlattr *attr;
2675 	struct rtmsg *rtm;
2676 	int ret, rem;
2677 
2678 	ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy,
2679 			     extack);
2680 	if (ret < 0)
2681 		goto out;
2682 	rtm = nlmsg_data(nlh);
2683 
2684 	ret = -EINVAL;
2685 	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2686 	    rtm->rtm_type != RTN_MULTICAST ||
2687 	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2688 	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2689 		goto out;
2690 
2691 	memset(mfcc, 0, sizeof(*mfcc));
2692 	mfcc->mfcc_parent = -1;
2693 	ret = 0;
2694 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2695 		switch (nla_type(attr)) {
2696 		case RTA_SRC:
2697 			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2698 			break;
2699 		case RTA_DST:
2700 			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2701 			break;
2702 		case RTA_IIF:
2703 			dev = __dev_get_by_index(net, nla_get_u32(attr));
2704 			if (!dev) {
2705 				ret = -ENODEV;
2706 				goto out;
2707 			}
2708 			break;
2709 		case RTA_MULTIPATH:
2710 			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2711 				ret = -EINVAL;
2712 				goto out;
2713 			}
2714 			break;
2715 		case RTA_PREFSRC:
2716 			ret = 1;
2717 			break;
2718 		case RTA_TABLE:
2719 			tblid = nla_get_u32(attr);
2720 			break;
2721 		}
2722 	}
2723 	mrt = ipmr_get_table(net, tblid);
2724 	if (!mrt) {
2725 		ret = -ENOENT;
2726 		goto out;
2727 	}
2728 	*mrtret = mrt;
2729 	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2730 	if (dev)
2731 		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2732 
2733 out:
2734 	return ret;
2735 }
2736 
2737 /* takes care of both newroute and delroute */
2738 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2739 			  struct netlink_ext_ack *extack)
2740 {
2741 	struct net *net = sock_net(skb->sk);
2742 	int ret, mrtsock, parent;
2743 	struct mr_table *tbl;
2744 	struct mfcctl mfcc;
2745 
2746 	mrtsock = 0;
2747 	tbl = NULL;
2748 	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2749 	if (ret < 0)
2750 		return ret;
2751 
2752 	parent = ret ? mfcc.mfcc_parent : -1;
2753 	if (nlh->nlmsg_type == RTM_NEWROUTE)
2754 		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2755 	else
2756 		return ipmr_mfc_delete(tbl, &mfcc, parent);
2757 }
2758 
2759 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2760 {
2761 	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2762 
2763 	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2764 	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2765 	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2766 			mrt->mroute_reg_vif_num) ||
2767 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2768 		       mrt->mroute_do_assert) ||
2769 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2770 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2771 		       mrt->mroute_do_wrvifwhole))
2772 		return false;
2773 
2774 	return true;
2775 }
2776 
2777 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2778 {
2779 	struct nlattr *vif_nest;
2780 	struct vif_device *vif;
2781 
2782 	/* if the VIF doesn't exist just continue */
2783 	if (!VIF_EXISTS(mrt, vifid))
2784 		return true;
2785 
2786 	vif = &mrt->vif_table[vifid];
2787 	vif_nest = nla_nest_start(skb, IPMRA_VIF);
2788 	if (!vif_nest)
2789 		return false;
2790 	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2791 	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2792 	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2793 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2794 			      IPMRA_VIFA_PAD) ||
2795 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2796 			      IPMRA_VIFA_PAD) ||
2797 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2798 			      IPMRA_VIFA_PAD) ||
2799 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2800 			      IPMRA_VIFA_PAD) ||
2801 	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2802 	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2803 		nla_nest_cancel(skb, vif_nest);
2804 		return false;
2805 	}
2806 	nla_nest_end(skb, vif_nest);
2807 
2808 	return true;
2809 }
2810 
2811 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2812 			       struct netlink_ext_ack *extack)
2813 {
2814 	struct ifinfomsg *ifm;
2815 
2816 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2817 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2818 		return -EINVAL;
2819 	}
2820 
2821 	if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2822 		NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2823 		return -EINVAL;
2824 	}
2825 
2826 	ifm = nlmsg_data(nlh);
2827 	if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2828 	    ifm->ifi_change || ifm->ifi_index) {
2829 		NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2830 		return -EINVAL;
2831 	}
2832 
2833 	return 0;
2834 }
2835 
2836 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2837 {
2838 	struct net *net = sock_net(skb->sk);
2839 	struct nlmsghdr *nlh = NULL;
2840 	unsigned int t = 0, s_t;
2841 	unsigned int e = 0, s_e;
2842 	struct mr_table *mrt;
2843 
2844 	if (cb->strict_check) {
2845 		int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2846 
2847 		if (err < 0)
2848 			return err;
2849 	}
2850 
2851 	s_t = cb->args[0];
2852 	s_e = cb->args[1];
2853 
2854 	ipmr_for_each_table(mrt, net) {
2855 		struct nlattr *vifs, *af;
2856 		struct ifinfomsg *hdr;
2857 		u32 i;
2858 
2859 		if (t < s_t)
2860 			goto skip_table;
2861 		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2862 				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2863 				sizeof(*hdr), NLM_F_MULTI);
2864 		if (!nlh)
2865 			break;
2866 
2867 		hdr = nlmsg_data(nlh);
2868 		memset(hdr, 0, sizeof(*hdr));
2869 		hdr->ifi_family = RTNL_FAMILY_IPMR;
2870 
2871 		af = nla_nest_start(skb, IFLA_AF_SPEC);
2872 		if (!af) {
2873 			nlmsg_cancel(skb, nlh);
2874 			goto out;
2875 		}
2876 
2877 		if (!ipmr_fill_table(mrt, skb)) {
2878 			nlmsg_cancel(skb, nlh);
2879 			goto out;
2880 		}
2881 
2882 		vifs = nla_nest_start(skb, IPMRA_TABLE_VIFS);
2883 		if (!vifs) {
2884 			nla_nest_end(skb, af);
2885 			nlmsg_end(skb, nlh);
2886 			goto out;
2887 		}
2888 		for (i = 0; i < mrt->maxvif; i++) {
2889 			if (e < s_e)
2890 				goto skip_entry;
2891 			if (!ipmr_fill_vif(mrt, i, skb)) {
2892 				nla_nest_end(skb, vifs);
2893 				nla_nest_end(skb, af);
2894 				nlmsg_end(skb, nlh);
2895 				goto out;
2896 			}
2897 skip_entry:
2898 			e++;
2899 		}
2900 		s_e = 0;
2901 		e = 0;
2902 		nla_nest_end(skb, vifs);
2903 		nla_nest_end(skb, af);
2904 		nlmsg_end(skb, nlh);
2905 skip_table:
2906 		t++;
2907 	}
2908 
2909 out:
2910 	cb->args[1] = e;
2911 	cb->args[0] = t;
2912 
2913 	return skb->len;
2914 }
2915 
2916 #ifdef CONFIG_PROC_FS
2917 /* The /proc interfaces to multicast routing :
2918  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2919  */
2920 
2921 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2922 	__acquires(mrt_lock)
2923 {
2924 	struct mr_vif_iter *iter = seq->private;
2925 	struct net *net = seq_file_net(seq);
2926 	struct mr_table *mrt;
2927 
2928 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2929 	if (!mrt)
2930 		return ERR_PTR(-ENOENT);
2931 
2932 	iter->mrt = mrt;
2933 
2934 	read_lock(&mrt_lock);
2935 	return mr_vif_seq_start(seq, pos);
2936 }
2937 
2938 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2939 	__releases(mrt_lock)
2940 {
2941 	read_unlock(&mrt_lock);
2942 }
2943 
2944 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2945 {
2946 	struct mr_vif_iter *iter = seq->private;
2947 	struct mr_table *mrt = iter->mrt;
2948 
2949 	if (v == SEQ_START_TOKEN) {
2950 		seq_puts(seq,
2951 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2952 	} else {
2953 		const struct vif_device *vif = v;
2954 		const char *name =  vif->dev ?
2955 				    vif->dev->name : "none";
2956 
2957 		seq_printf(seq,
2958 			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2959 			   vif - mrt->vif_table,
2960 			   name, vif->bytes_in, vif->pkt_in,
2961 			   vif->bytes_out, vif->pkt_out,
2962 			   vif->flags, vif->local, vif->remote);
2963 	}
2964 	return 0;
2965 }
2966 
2967 static const struct seq_operations ipmr_vif_seq_ops = {
2968 	.start = ipmr_vif_seq_start,
2969 	.next  = mr_vif_seq_next,
2970 	.stop  = ipmr_vif_seq_stop,
2971 	.show  = ipmr_vif_seq_show,
2972 };
2973 
2974 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2975 {
2976 	struct net *net = seq_file_net(seq);
2977 	struct mr_table *mrt;
2978 
2979 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2980 	if (!mrt)
2981 		return ERR_PTR(-ENOENT);
2982 
2983 	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2984 }
2985 
2986 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2987 {
2988 	int n;
2989 
2990 	if (v == SEQ_START_TOKEN) {
2991 		seq_puts(seq,
2992 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2993 	} else {
2994 		const struct mfc_cache *mfc = v;
2995 		const struct mr_mfc_iter *it = seq->private;
2996 		const struct mr_table *mrt = it->mrt;
2997 
2998 		seq_printf(seq, "%08X %08X %-3hd",
2999 			   (__force u32) mfc->mfc_mcastgrp,
3000 			   (__force u32) mfc->mfc_origin,
3001 			   mfc->_c.mfc_parent);
3002 
3003 		if (it->cache != &mrt->mfc_unres_queue) {
3004 			seq_printf(seq, " %8lu %8lu %8lu",
3005 				   mfc->_c.mfc_un.res.pkt,
3006 				   mfc->_c.mfc_un.res.bytes,
3007 				   mfc->_c.mfc_un.res.wrong_if);
3008 			for (n = mfc->_c.mfc_un.res.minvif;
3009 			     n < mfc->_c.mfc_un.res.maxvif; n++) {
3010 				if (VIF_EXISTS(mrt, n) &&
3011 				    mfc->_c.mfc_un.res.ttls[n] < 255)
3012 					seq_printf(seq,
3013 					   " %2d:%-3d",
3014 					   n, mfc->_c.mfc_un.res.ttls[n]);
3015 			}
3016 		} else {
3017 			/* unresolved mfc_caches don't contain
3018 			 * pkt, bytes and wrong_if values
3019 			 */
3020 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3021 		}
3022 		seq_putc(seq, '\n');
3023 	}
3024 	return 0;
3025 }
3026 
3027 static const struct seq_operations ipmr_mfc_seq_ops = {
3028 	.start = ipmr_mfc_seq_start,
3029 	.next  = mr_mfc_seq_next,
3030 	.stop  = mr_mfc_seq_stop,
3031 	.show  = ipmr_mfc_seq_show,
3032 };
3033 #endif
3034 
3035 #ifdef CONFIG_IP_PIMSM_V2
3036 static const struct net_protocol pim_protocol = {
3037 	.handler	=	pim_rcv,
3038 	.netns_ok	=	1,
3039 };
3040 #endif
3041 
3042 static unsigned int ipmr_seq_read(struct net *net)
3043 {
3044 	ASSERT_RTNL();
3045 
3046 	return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3047 }
3048 
3049 static int ipmr_dump(struct net *net, struct notifier_block *nb)
3050 {
3051 	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3052 		       ipmr_mr_table_iter, &mrt_lock);
3053 }
3054 
3055 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3056 	.family		= RTNL_FAMILY_IPMR,
3057 	.fib_seq_read	= ipmr_seq_read,
3058 	.fib_dump	= ipmr_dump,
3059 	.owner		= THIS_MODULE,
3060 };
3061 
3062 static int __net_init ipmr_notifier_init(struct net *net)
3063 {
3064 	struct fib_notifier_ops *ops;
3065 
3066 	net->ipv4.ipmr_seq = 0;
3067 
3068 	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3069 	if (IS_ERR(ops))
3070 		return PTR_ERR(ops);
3071 	net->ipv4.ipmr_notifier_ops = ops;
3072 
3073 	return 0;
3074 }
3075 
3076 static void __net_exit ipmr_notifier_exit(struct net *net)
3077 {
3078 	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3079 	net->ipv4.ipmr_notifier_ops = NULL;
3080 }
3081 
3082 /* Setup for IP multicast routing */
3083 static int __net_init ipmr_net_init(struct net *net)
3084 {
3085 	int err;
3086 
3087 	err = ipmr_notifier_init(net);
3088 	if (err)
3089 		goto ipmr_notifier_fail;
3090 
3091 	err = ipmr_rules_init(net);
3092 	if (err < 0)
3093 		goto ipmr_rules_fail;
3094 
3095 #ifdef CONFIG_PROC_FS
3096 	err = -ENOMEM;
3097 	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3098 			sizeof(struct mr_vif_iter)))
3099 		goto proc_vif_fail;
3100 	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3101 			sizeof(struct mr_mfc_iter)))
3102 		goto proc_cache_fail;
3103 #endif
3104 	return 0;
3105 
3106 #ifdef CONFIG_PROC_FS
3107 proc_cache_fail:
3108 	remove_proc_entry("ip_mr_vif", net->proc_net);
3109 proc_vif_fail:
3110 	ipmr_rules_exit(net);
3111 #endif
3112 ipmr_rules_fail:
3113 	ipmr_notifier_exit(net);
3114 ipmr_notifier_fail:
3115 	return err;
3116 }
3117 
3118 static void __net_exit ipmr_net_exit(struct net *net)
3119 {
3120 #ifdef CONFIG_PROC_FS
3121 	remove_proc_entry("ip_mr_cache", net->proc_net);
3122 	remove_proc_entry("ip_mr_vif", net->proc_net);
3123 #endif
3124 	ipmr_notifier_exit(net);
3125 	ipmr_rules_exit(net);
3126 }
3127 
3128 static struct pernet_operations ipmr_net_ops = {
3129 	.init = ipmr_net_init,
3130 	.exit = ipmr_net_exit,
3131 };
3132 
3133 int __init ip_mr_init(void)
3134 {
3135 	int err;
3136 
3137 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
3138 				       sizeof(struct mfc_cache),
3139 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3140 				       NULL);
3141 
3142 	err = register_pernet_subsys(&ipmr_net_ops);
3143 	if (err)
3144 		goto reg_pernet_fail;
3145 
3146 	err = register_netdevice_notifier(&ip_mr_notifier);
3147 	if (err)
3148 		goto reg_notif_fail;
3149 #ifdef CONFIG_IP_PIMSM_V2
3150 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3151 		pr_err("%s: can't add PIM protocol\n", __func__);
3152 		err = -EAGAIN;
3153 		goto add_proto_fail;
3154 	}
3155 #endif
3156 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3157 		      ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3158 	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3159 		      ipmr_rtm_route, NULL, 0);
3160 	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3161 		      ipmr_rtm_route, NULL, 0);
3162 
3163 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3164 		      NULL, ipmr_rtm_dumplink, 0);
3165 	return 0;
3166 
3167 #ifdef CONFIG_IP_PIMSM_V2
3168 add_proto_fail:
3169 	unregister_netdevice_notifier(&ip_mr_notifier);
3170 #endif
3171 reg_notif_fail:
3172 	unregister_pernet_subsys(&ipmr_net_ops);
3173 reg_pernet_fail:
3174 	kmem_cache_destroy(mrt_cachep);
3175 	return err;
3176 }
3177