1 /* 2 * IP multicast routing support for mrouted 3.6/3.8 3 * 4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 5 * Linux Consultancy and Custom Driver Development 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 * 12 * Fixes: 13 * Michael Chastain : Incorrect size of copying. 14 * Alan Cox : Added the cache manager code 15 * Alan Cox : Fixed the clone/copy bug and device race. 16 * Mike McLagan : Routing by source 17 * Malcolm Beattie : Buffer handling fixes. 18 * Alexey Kuznetsov : Double buffer free and other fixes. 19 * SVR Anand : Fixed several multicast bugs and problems. 20 * Alexey Kuznetsov : Status, optimisations and more. 21 * Brad Parker : Better behaviour on mrouted upcall 22 * overflow. 23 * Carlos Picoto : PIMv1 Support 24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 25 * Relax this requirement to work with older peers. 26 * 27 */ 28 29 #include <linux/uaccess.h> 30 #include <linux/types.h> 31 #include <linux/cache.h> 32 #include <linux/capability.h> 33 #include <linux/errno.h> 34 #include <linux/mm.h> 35 #include <linux/kernel.h> 36 #include <linux/fcntl.h> 37 #include <linux/stat.h> 38 #include <linux/socket.h> 39 #include <linux/in.h> 40 #include <linux/inet.h> 41 #include <linux/netdevice.h> 42 #include <linux/inetdevice.h> 43 #include <linux/igmp.h> 44 #include <linux/proc_fs.h> 45 #include <linux/seq_file.h> 46 #include <linux/mroute.h> 47 #include <linux/init.h> 48 #include <linux/if_ether.h> 49 #include <linux/slab.h> 50 #include <net/net_namespace.h> 51 #include <net/ip.h> 52 #include <net/protocol.h> 53 #include <linux/skbuff.h> 54 #include <net/route.h> 55 #include <net/icmp.h> 56 #include <net/udp.h> 57 #include <net/raw.h> 58 #include <linux/notifier.h> 59 #include <linux/if_arp.h> 60 #include <linux/netfilter_ipv4.h> 61 #include <linux/compat.h> 62 #include <linux/export.h> 63 #include <linux/rhashtable.h> 64 #include <net/ip_tunnels.h> 65 #include <net/checksum.h> 66 #include <net/netlink.h> 67 #include <net/fib_rules.h> 68 #include <linux/netconf.h> 69 #include <net/nexthop.h> 70 #include <net/switchdev.h> 71 72 struct ipmr_rule { 73 struct fib_rule common; 74 }; 75 76 struct ipmr_result { 77 struct mr_table *mrt; 78 }; 79 80 /* Big lock, protecting vif table, mrt cache and mroute socket state. 81 * Note that the changes are semaphored via rtnl_lock. 82 */ 83 84 static DEFINE_RWLOCK(mrt_lock); 85 86 /* Multicast router control variables */ 87 88 /* Special spinlock for queue of unresolved entries */ 89 static DEFINE_SPINLOCK(mfc_unres_lock); 90 91 /* We return to original Alan's scheme. Hash table of resolved 92 * entries is changed only in process context and protected 93 * with weak lock mrt_lock. Queue of unresolved entries is protected 94 * with strong spinlock mfc_unres_lock. 95 * 96 * In this case data path is free of exclusive locks at all. 97 */ 98 99 static struct kmem_cache *mrt_cachep __ro_after_init; 100 101 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 102 static void ipmr_free_table(struct mr_table *mrt); 103 104 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 105 struct net_device *dev, struct sk_buff *skb, 106 struct mfc_cache *cache, int local); 107 static int ipmr_cache_report(struct mr_table *mrt, 108 struct sk_buff *pkt, vifi_t vifi, int assert); 109 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 110 int cmd); 111 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt); 112 static void mroute_clean_tables(struct mr_table *mrt, bool all); 113 static void ipmr_expire_process(struct timer_list *t); 114 115 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 116 #define ipmr_for_each_table(mrt, net) \ 117 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list) 118 119 static struct mr_table *ipmr_mr_table_iter(struct net *net, 120 struct mr_table *mrt) 121 { 122 struct mr_table *ret; 123 124 if (!mrt) 125 ret = list_entry_rcu(net->ipv4.mr_tables.next, 126 struct mr_table, list); 127 else 128 ret = list_entry_rcu(mrt->list.next, 129 struct mr_table, list); 130 131 if (&ret->list == &net->ipv4.mr_tables) 132 return NULL; 133 return ret; 134 } 135 136 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 137 { 138 struct mr_table *mrt; 139 140 ipmr_for_each_table(mrt, net) { 141 if (mrt->id == id) 142 return mrt; 143 } 144 return NULL; 145 } 146 147 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 148 struct mr_table **mrt) 149 { 150 int err; 151 struct ipmr_result res; 152 struct fib_lookup_arg arg = { 153 .result = &res, 154 .flags = FIB_LOOKUP_NOREF, 155 }; 156 157 /* update flow if oif or iif point to device enslaved to l3mdev */ 158 l3mdev_update_flow(net, flowi4_to_flowi(flp4)); 159 160 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 161 flowi4_to_flowi(flp4), 0, &arg); 162 if (err < 0) 163 return err; 164 *mrt = res.mrt; 165 return 0; 166 } 167 168 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 169 int flags, struct fib_lookup_arg *arg) 170 { 171 struct ipmr_result *res = arg->result; 172 struct mr_table *mrt; 173 174 switch (rule->action) { 175 case FR_ACT_TO_TBL: 176 break; 177 case FR_ACT_UNREACHABLE: 178 return -ENETUNREACH; 179 case FR_ACT_PROHIBIT: 180 return -EACCES; 181 case FR_ACT_BLACKHOLE: 182 default: 183 return -EINVAL; 184 } 185 186 arg->table = fib_rule_get_table(rule, arg); 187 188 mrt = ipmr_get_table(rule->fr_net, arg->table); 189 if (!mrt) 190 return -EAGAIN; 191 res->mrt = mrt; 192 return 0; 193 } 194 195 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 196 { 197 return 1; 198 } 199 200 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = { 201 FRA_GENERIC_POLICY, 202 }; 203 204 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 205 struct fib_rule_hdr *frh, struct nlattr **tb, 206 struct netlink_ext_ack *extack) 207 { 208 return 0; 209 } 210 211 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 212 struct nlattr **tb) 213 { 214 return 1; 215 } 216 217 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 218 struct fib_rule_hdr *frh) 219 { 220 frh->dst_len = 0; 221 frh->src_len = 0; 222 frh->tos = 0; 223 return 0; 224 } 225 226 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 227 .family = RTNL_FAMILY_IPMR, 228 .rule_size = sizeof(struct ipmr_rule), 229 .addr_size = sizeof(u32), 230 .action = ipmr_rule_action, 231 .match = ipmr_rule_match, 232 .configure = ipmr_rule_configure, 233 .compare = ipmr_rule_compare, 234 .fill = ipmr_rule_fill, 235 .nlgroup = RTNLGRP_IPV4_RULE, 236 .policy = ipmr_rule_policy, 237 .owner = THIS_MODULE, 238 }; 239 240 static int __net_init ipmr_rules_init(struct net *net) 241 { 242 struct fib_rules_ops *ops; 243 struct mr_table *mrt; 244 int err; 245 246 ops = fib_rules_register(&ipmr_rules_ops_template, net); 247 if (IS_ERR(ops)) 248 return PTR_ERR(ops); 249 250 INIT_LIST_HEAD(&net->ipv4.mr_tables); 251 252 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 253 if (IS_ERR(mrt)) { 254 err = PTR_ERR(mrt); 255 goto err1; 256 } 257 258 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 259 if (err < 0) 260 goto err2; 261 262 net->ipv4.mr_rules_ops = ops; 263 return 0; 264 265 err2: 266 ipmr_free_table(mrt); 267 err1: 268 fib_rules_unregister(ops); 269 return err; 270 } 271 272 static void __net_exit ipmr_rules_exit(struct net *net) 273 { 274 struct mr_table *mrt, *next; 275 276 rtnl_lock(); 277 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 278 list_del(&mrt->list); 279 ipmr_free_table(mrt); 280 } 281 fib_rules_unregister(net->ipv4.mr_rules_ops); 282 rtnl_unlock(); 283 } 284 285 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb) 286 { 287 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR); 288 } 289 290 static unsigned int ipmr_rules_seq_read(struct net *net) 291 { 292 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR); 293 } 294 295 bool ipmr_rule_default(const struct fib_rule *rule) 296 { 297 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT; 298 } 299 EXPORT_SYMBOL(ipmr_rule_default); 300 #else 301 #define ipmr_for_each_table(mrt, net) \ 302 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 303 304 static struct mr_table *ipmr_mr_table_iter(struct net *net, 305 struct mr_table *mrt) 306 { 307 if (!mrt) 308 return net->ipv4.mrt; 309 return NULL; 310 } 311 312 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 313 { 314 return net->ipv4.mrt; 315 } 316 317 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 318 struct mr_table **mrt) 319 { 320 *mrt = net->ipv4.mrt; 321 return 0; 322 } 323 324 static int __net_init ipmr_rules_init(struct net *net) 325 { 326 struct mr_table *mrt; 327 328 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 329 if (IS_ERR(mrt)) 330 return PTR_ERR(mrt); 331 net->ipv4.mrt = mrt; 332 return 0; 333 } 334 335 static void __net_exit ipmr_rules_exit(struct net *net) 336 { 337 rtnl_lock(); 338 ipmr_free_table(net->ipv4.mrt); 339 net->ipv4.mrt = NULL; 340 rtnl_unlock(); 341 } 342 343 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb) 344 { 345 return 0; 346 } 347 348 static unsigned int ipmr_rules_seq_read(struct net *net) 349 { 350 return 0; 351 } 352 353 bool ipmr_rule_default(const struct fib_rule *rule) 354 { 355 return true; 356 } 357 EXPORT_SYMBOL(ipmr_rule_default); 358 #endif 359 360 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg, 361 const void *ptr) 362 { 363 const struct mfc_cache_cmp_arg *cmparg = arg->key; 364 struct mfc_cache *c = (struct mfc_cache *)ptr; 365 366 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp || 367 cmparg->mfc_origin != c->mfc_origin; 368 } 369 370 static const struct rhashtable_params ipmr_rht_params = { 371 .head_offset = offsetof(struct mr_mfc, mnode), 372 .key_offset = offsetof(struct mfc_cache, cmparg), 373 .key_len = sizeof(struct mfc_cache_cmp_arg), 374 .nelem_hint = 3, 375 .locks_mul = 1, 376 .obj_cmpfn = ipmr_hash_cmp, 377 .automatic_shrinking = true, 378 }; 379 380 static void ipmr_new_table_set(struct mr_table *mrt, 381 struct net *net) 382 { 383 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 384 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 385 #endif 386 } 387 388 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = { 389 .mfc_mcastgrp = htonl(INADDR_ANY), 390 .mfc_origin = htonl(INADDR_ANY), 391 }; 392 393 static struct mr_table_ops ipmr_mr_table_ops = { 394 .rht_params = &ipmr_rht_params, 395 .cmparg_any = &ipmr_mr_table_ops_cmparg_any, 396 }; 397 398 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 399 { 400 struct mr_table *mrt; 401 402 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 403 if (id != RT_TABLE_DEFAULT && id >= 1000000000) 404 return ERR_PTR(-EINVAL); 405 406 mrt = ipmr_get_table(net, id); 407 if (mrt) 408 return mrt; 409 410 return mr_table_alloc(net, id, &ipmr_mr_table_ops, 411 ipmr_expire_process, ipmr_new_table_set); 412 } 413 414 static void ipmr_free_table(struct mr_table *mrt) 415 { 416 del_timer_sync(&mrt->ipmr_expire_timer); 417 mroute_clean_tables(mrt, true); 418 rhltable_destroy(&mrt->mfc_hash); 419 kfree(mrt); 420 } 421 422 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 423 424 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v) 425 { 426 struct net *net = dev_net(dev); 427 428 dev_close(dev); 429 430 dev = __dev_get_by_name(net, "tunl0"); 431 if (dev) { 432 const struct net_device_ops *ops = dev->netdev_ops; 433 struct ifreq ifr; 434 struct ip_tunnel_parm p; 435 436 memset(&p, 0, sizeof(p)); 437 p.iph.daddr = v->vifc_rmt_addr.s_addr; 438 p.iph.saddr = v->vifc_lcl_addr.s_addr; 439 p.iph.version = 4; 440 p.iph.ihl = 5; 441 p.iph.protocol = IPPROTO_IPIP; 442 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 443 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 444 445 if (ops->ndo_do_ioctl) { 446 mm_segment_t oldfs = get_fs(); 447 448 set_fs(KERNEL_DS); 449 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL); 450 set_fs(oldfs); 451 } 452 } 453 } 454 455 /* Initialize ipmr pimreg/tunnel in_device */ 456 static bool ipmr_init_vif_indev(const struct net_device *dev) 457 { 458 struct in_device *in_dev; 459 460 ASSERT_RTNL(); 461 462 in_dev = __in_dev_get_rtnl(dev); 463 if (!in_dev) 464 return false; 465 ipv4_devconf_setall(in_dev); 466 neigh_parms_data_state_setall(in_dev->arp_parms); 467 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 468 469 return true; 470 } 471 472 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 473 { 474 struct net_device *dev; 475 476 dev = __dev_get_by_name(net, "tunl0"); 477 478 if (dev) { 479 const struct net_device_ops *ops = dev->netdev_ops; 480 int err; 481 struct ifreq ifr; 482 struct ip_tunnel_parm p; 483 484 memset(&p, 0, sizeof(p)); 485 p.iph.daddr = v->vifc_rmt_addr.s_addr; 486 p.iph.saddr = v->vifc_lcl_addr.s_addr; 487 p.iph.version = 4; 488 p.iph.ihl = 5; 489 p.iph.protocol = IPPROTO_IPIP; 490 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 491 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 492 493 if (ops->ndo_do_ioctl) { 494 mm_segment_t oldfs = get_fs(); 495 496 set_fs(KERNEL_DS); 497 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL); 498 set_fs(oldfs); 499 } else { 500 err = -EOPNOTSUPP; 501 } 502 dev = NULL; 503 504 if (err == 0 && 505 (dev = __dev_get_by_name(net, p.name)) != NULL) { 506 dev->flags |= IFF_MULTICAST; 507 if (!ipmr_init_vif_indev(dev)) 508 goto failure; 509 if (dev_open(dev)) 510 goto failure; 511 dev_hold(dev); 512 } 513 } 514 return dev; 515 516 failure: 517 unregister_netdevice(dev); 518 return NULL; 519 } 520 521 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 522 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 523 { 524 struct net *net = dev_net(dev); 525 struct mr_table *mrt; 526 struct flowi4 fl4 = { 527 .flowi4_oif = dev->ifindex, 528 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 529 .flowi4_mark = skb->mark, 530 }; 531 int err; 532 533 err = ipmr_fib_lookup(net, &fl4, &mrt); 534 if (err < 0) { 535 kfree_skb(skb); 536 return err; 537 } 538 539 read_lock(&mrt_lock); 540 dev->stats.tx_bytes += skb->len; 541 dev->stats.tx_packets++; 542 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT); 543 read_unlock(&mrt_lock); 544 kfree_skb(skb); 545 return NETDEV_TX_OK; 546 } 547 548 static int reg_vif_get_iflink(const struct net_device *dev) 549 { 550 return 0; 551 } 552 553 static const struct net_device_ops reg_vif_netdev_ops = { 554 .ndo_start_xmit = reg_vif_xmit, 555 .ndo_get_iflink = reg_vif_get_iflink, 556 }; 557 558 static void reg_vif_setup(struct net_device *dev) 559 { 560 dev->type = ARPHRD_PIMREG; 561 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 562 dev->flags = IFF_NOARP; 563 dev->netdev_ops = ®_vif_netdev_ops; 564 dev->needs_free_netdev = true; 565 dev->features |= NETIF_F_NETNS_LOCAL; 566 } 567 568 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 569 { 570 struct net_device *dev; 571 char name[IFNAMSIZ]; 572 573 if (mrt->id == RT_TABLE_DEFAULT) 574 sprintf(name, "pimreg"); 575 else 576 sprintf(name, "pimreg%u", mrt->id); 577 578 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 579 580 if (!dev) 581 return NULL; 582 583 dev_net_set(dev, net); 584 585 if (register_netdevice(dev)) { 586 free_netdev(dev); 587 return NULL; 588 } 589 590 if (!ipmr_init_vif_indev(dev)) 591 goto failure; 592 if (dev_open(dev)) 593 goto failure; 594 595 dev_hold(dev); 596 597 return dev; 598 599 failure: 600 unregister_netdevice(dev); 601 return NULL; 602 } 603 604 /* called with rcu_read_lock() */ 605 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 606 unsigned int pimlen) 607 { 608 struct net_device *reg_dev = NULL; 609 struct iphdr *encap; 610 611 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 612 /* Check that: 613 * a. packet is really sent to a multicast group 614 * b. packet is not a NULL-REGISTER 615 * c. packet is not truncated 616 */ 617 if (!ipv4_is_multicast(encap->daddr) || 618 encap->tot_len == 0 || 619 ntohs(encap->tot_len) + pimlen > skb->len) 620 return 1; 621 622 read_lock(&mrt_lock); 623 if (mrt->mroute_reg_vif_num >= 0) 624 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev; 625 read_unlock(&mrt_lock); 626 627 if (!reg_dev) 628 return 1; 629 630 skb->mac_header = skb->network_header; 631 skb_pull(skb, (u8 *)encap - skb->data); 632 skb_reset_network_header(skb); 633 skb->protocol = htons(ETH_P_IP); 634 skb->ip_summed = CHECKSUM_NONE; 635 636 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 637 638 netif_rx(skb); 639 640 return NET_RX_SUCCESS; 641 } 642 #else 643 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 644 { 645 return NULL; 646 } 647 #endif 648 649 static int call_ipmr_vif_entry_notifiers(struct net *net, 650 enum fib_event_type event_type, 651 struct vif_device *vif, 652 vifi_t vif_index, u32 tb_id) 653 { 654 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type, 655 vif, vif_index, tb_id, 656 &net->ipv4.ipmr_seq); 657 } 658 659 static int call_ipmr_mfc_entry_notifiers(struct net *net, 660 enum fib_event_type event_type, 661 struct mfc_cache *mfc, u32 tb_id) 662 { 663 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type, 664 &mfc->_c, tb_id, &net->ipv4.ipmr_seq); 665 } 666 667 /** 668 * vif_delete - Delete a VIF entry 669 * @notify: Set to 1, if the caller is a notifier_call 670 */ 671 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 672 struct list_head *head) 673 { 674 struct net *net = read_pnet(&mrt->net); 675 struct vif_device *v; 676 struct net_device *dev; 677 struct in_device *in_dev; 678 679 if (vifi < 0 || vifi >= mrt->maxvif) 680 return -EADDRNOTAVAIL; 681 682 v = &mrt->vif_table[vifi]; 683 684 if (VIF_EXISTS(mrt, vifi)) 685 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi, 686 mrt->id); 687 688 write_lock_bh(&mrt_lock); 689 dev = v->dev; 690 v->dev = NULL; 691 692 if (!dev) { 693 write_unlock_bh(&mrt_lock); 694 return -EADDRNOTAVAIL; 695 } 696 697 if (vifi == mrt->mroute_reg_vif_num) 698 mrt->mroute_reg_vif_num = -1; 699 700 if (vifi + 1 == mrt->maxvif) { 701 int tmp; 702 703 for (tmp = vifi - 1; tmp >= 0; tmp--) { 704 if (VIF_EXISTS(mrt, tmp)) 705 break; 706 } 707 mrt->maxvif = tmp+1; 708 } 709 710 write_unlock_bh(&mrt_lock); 711 712 dev_set_allmulti(dev, -1); 713 714 in_dev = __in_dev_get_rtnl(dev); 715 if (in_dev) { 716 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 717 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, 718 NETCONFA_MC_FORWARDING, 719 dev->ifindex, &in_dev->cnf); 720 ip_rt_multicast_event(in_dev); 721 } 722 723 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 724 unregister_netdevice_queue(dev, head); 725 726 dev_put(dev); 727 return 0; 728 } 729 730 static void ipmr_cache_free_rcu(struct rcu_head *head) 731 { 732 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu); 733 734 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c); 735 } 736 737 static void ipmr_cache_free(struct mfc_cache *c) 738 { 739 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu); 740 } 741 742 /* Destroy an unresolved cache entry, killing queued skbs 743 * and reporting error to netlink readers. 744 */ 745 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 746 { 747 struct net *net = read_pnet(&mrt->net); 748 struct sk_buff *skb; 749 struct nlmsgerr *e; 750 751 atomic_dec(&mrt->cache_resolve_queue_len); 752 753 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) { 754 if (ip_hdr(skb)->version == 0) { 755 struct nlmsghdr *nlh = skb_pull(skb, 756 sizeof(struct iphdr)); 757 nlh->nlmsg_type = NLMSG_ERROR; 758 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 759 skb_trim(skb, nlh->nlmsg_len); 760 e = nlmsg_data(nlh); 761 e->error = -ETIMEDOUT; 762 memset(&e->msg, 0, sizeof(e->msg)); 763 764 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 765 } else { 766 kfree_skb(skb); 767 } 768 } 769 770 ipmr_cache_free(c); 771 } 772 773 /* Timer process for the unresolved queue. */ 774 static void ipmr_expire_process(struct timer_list *t) 775 { 776 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer); 777 struct mr_mfc *c, *next; 778 unsigned long expires; 779 unsigned long now; 780 781 if (!spin_trylock(&mfc_unres_lock)) { 782 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 783 return; 784 } 785 786 if (list_empty(&mrt->mfc_unres_queue)) 787 goto out; 788 789 now = jiffies; 790 expires = 10*HZ; 791 792 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 793 if (time_after(c->mfc_un.unres.expires, now)) { 794 unsigned long interval = c->mfc_un.unres.expires - now; 795 if (interval < expires) 796 expires = interval; 797 continue; 798 } 799 800 list_del(&c->list); 801 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE); 802 ipmr_destroy_unres(mrt, (struct mfc_cache *)c); 803 } 804 805 if (!list_empty(&mrt->mfc_unres_queue)) 806 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 807 808 out: 809 spin_unlock(&mfc_unres_lock); 810 } 811 812 /* Fill oifs list. It is called under write locked mrt_lock. */ 813 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache, 814 unsigned char *ttls) 815 { 816 int vifi; 817 818 cache->mfc_un.res.minvif = MAXVIFS; 819 cache->mfc_un.res.maxvif = 0; 820 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 821 822 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 823 if (VIF_EXISTS(mrt, vifi) && 824 ttls[vifi] && ttls[vifi] < 255) { 825 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 826 if (cache->mfc_un.res.minvif > vifi) 827 cache->mfc_un.res.minvif = vifi; 828 if (cache->mfc_un.res.maxvif <= vifi) 829 cache->mfc_un.res.maxvif = vifi + 1; 830 } 831 } 832 cache->mfc_un.res.lastuse = jiffies; 833 } 834 835 static int vif_add(struct net *net, struct mr_table *mrt, 836 struct vifctl *vifc, int mrtsock) 837 { 838 int vifi = vifc->vifc_vifi; 839 struct switchdev_attr attr = { 840 .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID, 841 }; 842 struct vif_device *v = &mrt->vif_table[vifi]; 843 struct net_device *dev; 844 struct in_device *in_dev; 845 int err; 846 847 /* Is vif busy ? */ 848 if (VIF_EXISTS(mrt, vifi)) 849 return -EADDRINUSE; 850 851 switch (vifc->vifc_flags) { 852 case VIFF_REGISTER: 853 if (!ipmr_pimsm_enabled()) 854 return -EINVAL; 855 /* Special Purpose VIF in PIM 856 * All the packets will be sent to the daemon 857 */ 858 if (mrt->mroute_reg_vif_num >= 0) 859 return -EADDRINUSE; 860 dev = ipmr_reg_vif(net, mrt); 861 if (!dev) 862 return -ENOBUFS; 863 err = dev_set_allmulti(dev, 1); 864 if (err) { 865 unregister_netdevice(dev); 866 dev_put(dev); 867 return err; 868 } 869 break; 870 case VIFF_TUNNEL: 871 dev = ipmr_new_tunnel(net, vifc); 872 if (!dev) 873 return -ENOBUFS; 874 err = dev_set_allmulti(dev, 1); 875 if (err) { 876 ipmr_del_tunnel(dev, vifc); 877 dev_put(dev); 878 return err; 879 } 880 break; 881 case VIFF_USE_IFINDEX: 882 case 0: 883 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 884 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 885 if (dev && !__in_dev_get_rtnl(dev)) { 886 dev_put(dev); 887 return -EADDRNOTAVAIL; 888 } 889 } else { 890 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 891 } 892 if (!dev) 893 return -EADDRNOTAVAIL; 894 err = dev_set_allmulti(dev, 1); 895 if (err) { 896 dev_put(dev); 897 return err; 898 } 899 break; 900 default: 901 return -EINVAL; 902 } 903 904 in_dev = __in_dev_get_rtnl(dev); 905 if (!in_dev) { 906 dev_put(dev); 907 return -EADDRNOTAVAIL; 908 } 909 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 910 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, 911 dev->ifindex, &in_dev->cnf); 912 ip_rt_multicast_event(in_dev); 913 914 /* Fill in the VIF structures */ 915 vif_device_init(v, dev, vifc->vifc_rate_limit, 916 vifc->vifc_threshold, 917 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0), 918 (VIFF_TUNNEL | VIFF_REGISTER)); 919 920 attr.orig_dev = dev; 921 if (!switchdev_port_attr_get(dev, &attr)) { 922 memcpy(v->dev_parent_id.id, attr.u.ppid.id, attr.u.ppid.id_len); 923 v->dev_parent_id.id_len = attr.u.ppid.id_len; 924 } else { 925 v->dev_parent_id.id_len = 0; 926 } 927 928 v->local = vifc->vifc_lcl_addr.s_addr; 929 v->remote = vifc->vifc_rmt_addr.s_addr; 930 931 /* And finish update writing critical data */ 932 write_lock_bh(&mrt_lock); 933 v->dev = dev; 934 if (v->flags & VIFF_REGISTER) 935 mrt->mroute_reg_vif_num = vifi; 936 if (vifi+1 > mrt->maxvif) 937 mrt->maxvif = vifi+1; 938 write_unlock_bh(&mrt_lock); 939 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id); 940 return 0; 941 } 942 943 /* called with rcu_read_lock() */ 944 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 945 __be32 origin, 946 __be32 mcastgrp) 947 { 948 struct mfc_cache_cmp_arg arg = { 949 .mfc_mcastgrp = mcastgrp, 950 .mfc_origin = origin 951 }; 952 953 return mr_mfc_find(mrt, &arg); 954 } 955 956 /* Look for a (*,G) entry */ 957 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 958 __be32 mcastgrp, int vifi) 959 { 960 struct mfc_cache_cmp_arg arg = { 961 .mfc_mcastgrp = mcastgrp, 962 .mfc_origin = htonl(INADDR_ANY) 963 }; 964 965 if (mcastgrp == htonl(INADDR_ANY)) 966 return mr_mfc_find_any_parent(mrt, vifi); 967 return mr_mfc_find_any(mrt, vifi, &arg); 968 } 969 970 /* Look for a (S,G,iif) entry if parent != -1 */ 971 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt, 972 __be32 origin, __be32 mcastgrp, 973 int parent) 974 { 975 struct mfc_cache_cmp_arg arg = { 976 .mfc_mcastgrp = mcastgrp, 977 .mfc_origin = origin, 978 }; 979 980 return mr_mfc_find_parent(mrt, &arg, parent); 981 } 982 983 /* Allocate a multicast cache entry */ 984 static struct mfc_cache *ipmr_cache_alloc(void) 985 { 986 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 987 988 if (c) { 989 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; 990 c->_c.mfc_un.res.minvif = MAXVIFS; 991 c->_c.free = ipmr_cache_free_rcu; 992 refcount_set(&c->_c.mfc_un.res.refcount, 1); 993 } 994 return c; 995 } 996 997 static struct mfc_cache *ipmr_cache_alloc_unres(void) 998 { 999 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 1000 1001 if (c) { 1002 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved); 1003 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ; 1004 } 1005 return c; 1006 } 1007 1008 /* A cache entry has gone into a resolved state from queued */ 1009 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 1010 struct mfc_cache *uc, struct mfc_cache *c) 1011 { 1012 struct sk_buff *skb; 1013 struct nlmsgerr *e; 1014 1015 /* Play the pending entries through our router */ 1016 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) { 1017 if (ip_hdr(skb)->version == 0) { 1018 struct nlmsghdr *nlh = skb_pull(skb, 1019 sizeof(struct iphdr)); 1020 1021 if (mr_fill_mroute(mrt, skb, &c->_c, 1022 nlmsg_data(nlh)) > 0) { 1023 nlh->nlmsg_len = skb_tail_pointer(skb) - 1024 (u8 *)nlh; 1025 } else { 1026 nlh->nlmsg_type = NLMSG_ERROR; 1027 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 1028 skb_trim(skb, nlh->nlmsg_len); 1029 e = nlmsg_data(nlh); 1030 e->error = -EMSGSIZE; 1031 memset(&e->msg, 0, sizeof(e->msg)); 1032 } 1033 1034 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 1035 } else { 1036 ip_mr_forward(net, mrt, skb->dev, skb, c, 0); 1037 } 1038 } 1039 } 1040 1041 /* Bounce a cache query up to mrouted and netlink. 1042 * 1043 * Called under mrt_lock. 1044 */ 1045 static int ipmr_cache_report(struct mr_table *mrt, 1046 struct sk_buff *pkt, vifi_t vifi, int assert) 1047 { 1048 const int ihl = ip_hdrlen(pkt); 1049 struct sock *mroute_sk; 1050 struct igmphdr *igmp; 1051 struct igmpmsg *msg; 1052 struct sk_buff *skb; 1053 int ret; 1054 1055 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) 1056 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 1057 else 1058 skb = alloc_skb(128, GFP_ATOMIC); 1059 1060 if (!skb) 1061 return -ENOBUFS; 1062 1063 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) { 1064 /* Ugly, but we have no choice with this interface. 1065 * Duplicate old header, fix ihl, length etc. 1066 * And all this only to mangle msg->im_msgtype and 1067 * to set msg->im_mbz to "mbz" :-) 1068 */ 1069 skb_push(skb, sizeof(struct iphdr)); 1070 skb_reset_network_header(skb); 1071 skb_reset_transport_header(skb); 1072 msg = (struct igmpmsg *)skb_network_header(skb); 1073 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 1074 msg->im_msgtype = assert; 1075 msg->im_mbz = 0; 1076 if (assert == IGMPMSG_WRVIFWHOLE) 1077 msg->im_vif = vifi; 1078 else 1079 msg->im_vif = mrt->mroute_reg_vif_num; 1080 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 1081 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 1082 sizeof(struct iphdr)); 1083 } else { 1084 /* Copy the IP header */ 1085 skb_set_network_header(skb, skb->len); 1086 skb_put(skb, ihl); 1087 skb_copy_to_linear_data(skb, pkt->data, ihl); 1088 /* Flag to the kernel this is a route add */ 1089 ip_hdr(skb)->protocol = 0; 1090 msg = (struct igmpmsg *)skb_network_header(skb); 1091 msg->im_vif = vifi; 1092 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 1093 /* Add our header */ 1094 igmp = skb_put(skb, sizeof(struct igmphdr)); 1095 igmp->type = assert; 1096 msg->im_msgtype = assert; 1097 igmp->code = 0; 1098 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 1099 skb->transport_header = skb->network_header; 1100 } 1101 1102 rcu_read_lock(); 1103 mroute_sk = rcu_dereference(mrt->mroute_sk); 1104 if (!mroute_sk) { 1105 rcu_read_unlock(); 1106 kfree_skb(skb); 1107 return -EINVAL; 1108 } 1109 1110 igmpmsg_netlink_event(mrt, skb); 1111 1112 /* Deliver to mrouted */ 1113 ret = sock_queue_rcv_skb(mroute_sk, skb); 1114 rcu_read_unlock(); 1115 if (ret < 0) { 1116 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1117 kfree_skb(skb); 1118 } 1119 1120 return ret; 1121 } 1122 1123 /* Queue a packet for resolution. It gets locked cache entry! */ 1124 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, 1125 struct sk_buff *skb, struct net_device *dev) 1126 { 1127 const struct iphdr *iph = ip_hdr(skb); 1128 struct mfc_cache *c; 1129 bool found = false; 1130 int err; 1131 1132 spin_lock_bh(&mfc_unres_lock); 1133 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) { 1134 if (c->mfc_mcastgrp == iph->daddr && 1135 c->mfc_origin == iph->saddr) { 1136 found = true; 1137 break; 1138 } 1139 } 1140 1141 if (!found) { 1142 /* Create a new entry if allowable */ 1143 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 1144 (c = ipmr_cache_alloc_unres()) == NULL) { 1145 spin_unlock_bh(&mfc_unres_lock); 1146 1147 kfree_skb(skb); 1148 return -ENOBUFS; 1149 } 1150 1151 /* Fill in the new cache entry */ 1152 c->_c.mfc_parent = -1; 1153 c->mfc_origin = iph->saddr; 1154 c->mfc_mcastgrp = iph->daddr; 1155 1156 /* Reflect first query at mrouted. */ 1157 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1158 1159 if (err < 0) { 1160 /* If the report failed throw the cache entry 1161 out - Brad Parker 1162 */ 1163 spin_unlock_bh(&mfc_unres_lock); 1164 1165 ipmr_cache_free(c); 1166 kfree_skb(skb); 1167 return err; 1168 } 1169 1170 atomic_inc(&mrt->cache_resolve_queue_len); 1171 list_add(&c->_c.list, &mrt->mfc_unres_queue); 1172 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1173 1174 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1175 mod_timer(&mrt->ipmr_expire_timer, 1176 c->_c.mfc_un.unres.expires); 1177 } 1178 1179 /* See if we can append the packet */ 1180 if (c->_c.mfc_un.unres.unresolved.qlen > 3) { 1181 kfree_skb(skb); 1182 err = -ENOBUFS; 1183 } else { 1184 if (dev) { 1185 skb->dev = dev; 1186 skb->skb_iif = dev->ifindex; 1187 } 1188 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb); 1189 err = 0; 1190 } 1191 1192 spin_unlock_bh(&mfc_unres_lock); 1193 return err; 1194 } 1195 1196 /* MFC cache manipulation by user space mroute daemon */ 1197 1198 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1199 { 1200 struct net *net = read_pnet(&mrt->net); 1201 struct mfc_cache *c; 1202 1203 /* The entries are added/deleted only under RTNL */ 1204 rcu_read_lock(); 1205 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1206 mfc->mfcc_mcastgrp.s_addr, parent); 1207 rcu_read_unlock(); 1208 if (!c) 1209 return -ENOENT; 1210 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params); 1211 list_del_rcu(&c->_c.list); 1212 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id); 1213 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1214 mr_cache_put(&c->_c); 1215 1216 return 0; 1217 } 1218 1219 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1220 struct mfcctl *mfc, int mrtsock, int parent) 1221 { 1222 struct mfc_cache *uc, *c; 1223 struct mr_mfc *_uc; 1224 bool found; 1225 int ret; 1226 1227 if (mfc->mfcc_parent >= MAXVIFS) 1228 return -ENFILE; 1229 1230 /* The entries are added/deleted only under RTNL */ 1231 rcu_read_lock(); 1232 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1233 mfc->mfcc_mcastgrp.s_addr, parent); 1234 rcu_read_unlock(); 1235 if (c) { 1236 write_lock_bh(&mrt_lock); 1237 c->_c.mfc_parent = mfc->mfcc_parent; 1238 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1239 if (!mrtsock) 1240 c->_c.mfc_flags |= MFC_STATIC; 1241 write_unlock_bh(&mrt_lock); 1242 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c, 1243 mrt->id); 1244 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1245 return 0; 1246 } 1247 1248 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1249 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1250 return -EINVAL; 1251 1252 c = ipmr_cache_alloc(); 1253 if (!c) 1254 return -ENOMEM; 1255 1256 c->mfc_origin = mfc->mfcc_origin.s_addr; 1257 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1258 c->_c.mfc_parent = mfc->mfcc_parent; 1259 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1260 if (!mrtsock) 1261 c->_c.mfc_flags |= MFC_STATIC; 1262 1263 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode, 1264 ipmr_rht_params); 1265 if (ret) { 1266 pr_err("ipmr: rhtable insert error %d\n", ret); 1267 ipmr_cache_free(c); 1268 return ret; 1269 } 1270 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list); 1271 /* Check to see if we resolved a queued list. If so we 1272 * need to send on the frames and tidy up. 1273 */ 1274 found = false; 1275 spin_lock_bh(&mfc_unres_lock); 1276 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) { 1277 uc = (struct mfc_cache *)_uc; 1278 if (uc->mfc_origin == c->mfc_origin && 1279 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1280 list_del(&_uc->list); 1281 atomic_dec(&mrt->cache_resolve_queue_len); 1282 found = true; 1283 break; 1284 } 1285 } 1286 if (list_empty(&mrt->mfc_unres_queue)) 1287 del_timer(&mrt->ipmr_expire_timer); 1288 spin_unlock_bh(&mfc_unres_lock); 1289 1290 if (found) { 1291 ipmr_cache_resolve(net, mrt, uc, c); 1292 ipmr_cache_free(uc); 1293 } 1294 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id); 1295 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1296 return 0; 1297 } 1298 1299 /* Close the multicast socket, and clear the vif tables etc */ 1300 static void mroute_clean_tables(struct mr_table *mrt, bool all) 1301 { 1302 struct net *net = read_pnet(&mrt->net); 1303 struct mr_mfc *c, *tmp; 1304 struct mfc_cache *cache; 1305 LIST_HEAD(list); 1306 int i; 1307 1308 /* Shut down all active vif entries */ 1309 for (i = 0; i < mrt->maxvif; i++) { 1310 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC)) 1311 continue; 1312 vif_delete(mrt, i, 0, &list); 1313 } 1314 unregister_netdevice_many(&list); 1315 1316 /* Wipe the cache */ 1317 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) { 1318 if (!all && (c->mfc_flags & MFC_STATIC)) 1319 continue; 1320 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params); 1321 list_del_rcu(&c->list); 1322 cache = (struct mfc_cache *)c; 1323 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache, 1324 mrt->id); 1325 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1326 mr_cache_put(c); 1327 } 1328 1329 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1330 spin_lock_bh(&mfc_unres_lock); 1331 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) { 1332 list_del(&c->list); 1333 cache = (struct mfc_cache *)c; 1334 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1335 ipmr_destroy_unres(mrt, cache); 1336 } 1337 spin_unlock_bh(&mfc_unres_lock); 1338 } 1339 } 1340 1341 /* called from ip_ra_control(), before an RCU grace period, 1342 * we dont need to call synchronize_rcu() here 1343 */ 1344 static void mrtsock_destruct(struct sock *sk) 1345 { 1346 struct net *net = sock_net(sk); 1347 struct mr_table *mrt; 1348 1349 rtnl_lock(); 1350 ipmr_for_each_table(mrt, net) { 1351 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1352 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1353 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1354 NETCONFA_MC_FORWARDING, 1355 NETCONFA_IFINDEX_ALL, 1356 net->ipv4.devconf_all); 1357 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1358 mroute_clean_tables(mrt, false); 1359 } 1360 } 1361 rtnl_unlock(); 1362 } 1363 1364 /* Socket options and virtual interface manipulation. The whole 1365 * virtual interface system is a complete heap, but unfortunately 1366 * that's how BSD mrouted happens to think. Maybe one day with a proper 1367 * MOSPF/PIM router set up we can clean this up. 1368 */ 1369 1370 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, 1371 unsigned int optlen) 1372 { 1373 struct net *net = sock_net(sk); 1374 int val, ret = 0, parent = 0; 1375 struct mr_table *mrt; 1376 struct vifctl vif; 1377 struct mfcctl mfc; 1378 bool do_wrvifwhole; 1379 u32 uval; 1380 1381 /* There's one exception to the lock - MRT_DONE which needs to unlock */ 1382 rtnl_lock(); 1383 if (sk->sk_type != SOCK_RAW || 1384 inet_sk(sk)->inet_num != IPPROTO_IGMP) { 1385 ret = -EOPNOTSUPP; 1386 goto out_unlock; 1387 } 1388 1389 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1390 if (!mrt) { 1391 ret = -ENOENT; 1392 goto out_unlock; 1393 } 1394 if (optname != MRT_INIT) { 1395 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1396 !ns_capable(net->user_ns, CAP_NET_ADMIN)) { 1397 ret = -EACCES; 1398 goto out_unlock; 1399 } 1400 } 1401 1402 switch (optname) { 1403 case MRT_INIT: 1404 if (optlen != sizeof(int)) { 1405 ret = -EINVAL; 1406 break; 1407 } 1408 if (rtnl_dereference(mrt->mroute_sk)) { 1409 ret = -EADDRINUSE; 1410 break; 1411 } 1412 1413 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1414 if (ret == 0) { 1415 rcu_assign_pointer(mrt->mroute_sk, sk); 1416 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1417 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1418 NETCONFA_MC_FORWARDING, 1419 NETCONFA_IFINDEX_ALL, 1420 net->ipv4.devconf_all); 1421 } 1422 break; 1423 case MRT_DONE: 1424 if (sk != rcu_access_pointer(mrt->mroute_sk)) { 1425 ret = -EACCES; 1426 } else { 1427 /* We need to unlock here because mrtsock_destruct takes 1428 * care of rtnl itself and we can't change that due to 1429 * the IP_ROUTER_ALERT setsockopt which runs without it. 1430 */ 1431 rtnl_unlock(); 1432 ret = ip_ra_control(sk, 0, NULL); 1433 goto out; 1434 } 1435 break; 1436 case MRT_ADD_VIF: 1437 case MRT_DEL_VIF: 1438 if (optlen != sizeof(vif)) { 1439 ret = -EINVAL; 1440 break; 1441 } 1442 if (copy_from_user(&vif, optval, sizeof(vif))) { 1443 ret = -EFAULT; 1444 break; 1445 } 1446 if (vif.vifc_vifi >= MAXVIFS) { 1447 ret = -ENFILE; 1448 break; 1449 } 1450 if (optname == MRT_ADD_VIF) { 1451 ret = vif_add(net, mrt, &vif, 1452 sk == rtnl_dereference(mrt->mroute_sk)); 1453 } else { 1454 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1455 } 1456 break; 1457 /* Manipulate the forwarding caches. These live 1458 * in a sort of kernel/user symbiosis. 1459 */ 1460 case MRT_ADD_MFC: 1461 case MRT_DEL_MFC: 1462 parent = -1; 1463 /* fall through */ 1464 case MRT_ADD_MFC_PROXY: 1465 case MRT_DEL_MFC_PROXY: 1466 if (optlen != sizeof(mfc)) { 1467 ret = -EINVAL; 1468 break; 1469 } 1470 if (copy_from_user(&mfc, optval, sizeof(mfc))) { 1471 ret = -EFAULT; 1472 break; 1473 } 1474 if (parent == 0) 1475 parent = mfc.mfcc_parent; 1476 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1477 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1478 else 1479 ret = ipmr_mfc_add(net, mrt, &mfc, 1480 sk == rtnl_dereference(mrt->mroute_sk), 1481 parent); 1482 break; 1483 /* Control PIM assert. */ 1484 case MRT_ASSERT: 1485 if (optlen != sizeof(val)) { 1486 ret = -EINVAL; 1487 break; 1488 } 1489 if (get_user(val, (int __user *)optval)) { 1490 ret = -EFAULT; 1491 break; 1492 } 1493 mrt->mroute_do_assert = val; 1494 break; 1495 case MRT_PIM: 1496 if (!ipmr_pimsm_enabled()) { 1497 ret = -ENOPROTOOPT; 1498 break; 1499 } 1500 if (optlen != sizeof(val)) { 1501 ret = -EINVAL; 1502 break; 1503 } 1504 if (get_user(val, (int __user *)optval)) { 1505 ret = -EFAULT; 1506 break; 1507 } 1508 1509 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE); 1510 val = !!val; 1511 if (val != mrt->mroute_do_pim) { 1512 mrt->mroute_do_pim = val; 1513 mrt->mroute_do_assert = val; 1514 mrt->mroute_do_wrvifwhole = do_wrvifwhole; 1515 } 1516 break; 1517 case MRT_TABLE: 1518 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) { 1519 ret = -ENOPROTOOPT; 1520 break; 1521 } 1522 if (optlen != sizeof(uval)) { 1523 ret = -EINVAL; 1524 break; 1525 } 1526 if (get_user(uval, (u32 __user *)optval)) { 1527 ret = -EFAULT; 1528 break; 1529 } 1530 1531 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1532 ret = -EBUSY; 1533 } else { 1534 mrt = ipmr_new_table(net, uval); 1535 if (IS_ERR(mrt)) 1536 ret = PTR_ERR(mrt); 1537 else 1538 raw_sk(sk)->ipmr_table = uval; 1539 } 1540 break; 1541 /* Spurious command, or MRT_VERSION which you cannot set. */ 1542 default: 1543 ret = -ENOPROTOOPT; 1544 } 1545 out_unlock: 1546 rtnl_unlock(); 1547 out: 1548 return ret; 1549 } 1550 1551 /* Getsock opt support for the multicast routing system. */ 1552 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1553 { 1554 int olr; 1555 int val; 1556 struct net *net = sock_net(sk); 1557 struct mr_table *mrt; 1558 1559 if (sk->sk_type != SOCK_RAW || 1560 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1561 return -EOPNOTSUPP; 1562 1563 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1564 if (!mrt) 1565 return -ENOENT; 1566 1567 switch (optname) { 1568 case MRT_VERSION: 1569 val = 0x0305; 1570 break; 1571 case MRT_PIM: 1572 if (!ipmr_pimsm_enabled()) 1573 return -ENOPROTOOPT; 1574 val = mrt->mroute_do_pim; 1575 break; 1576 case MRT_ASSERT: 1577 val = mrt->mroute_do_assert; 1578 break; 1579 default: 1580 return -ENOPROTOOPT; 1581 } 1582 1583 if (get_user(olr, optlen)) 1584 return -EFAULT; 1585 olr = min_t(unsigned int, olr, sizeof(int)); 1586 if (olr < 0) 1587 return -EINVAL; 1588 if (put_user(olr, optlen)) 1589 return -EFAULT; 1590 if (copy_to_user(optval, &val, olr)) 1591 return -EFAULT; 1592 return 0; 1593 } 1594 1595 /* The IP multicast ioctl support routines. */ 1596 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1597 { 1598 struct sioc_sg_req sr; 1599 struct sioc_vif_req vr; 1600 struct vif_device *vif; 1601 struct mfc_cache *c; 1602 struct net *net = sock_net(sk); 1603 struct mr_table *mrt; 1604 1605 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1606 if (!mrt) 1607 return -ENOENT; 1608 1609 switch (cmd) { 1610 case SIOCGETVIFCNT: 1611 if (copy_from_user(&vr, arg, sizeof(vr))) 1612 return -EFAULT; 1613 if (vr.vifi >= mrt->maxvif) 1614 return -EINVAL; 1615 read_lock(&mrt_lock); 1616 vif = &mrt->vif_table[vr.vifi]; 1617 if (VIF_EXISTS(mrt, vr.vifi)) { 1618 vr.icount = vif->pkt_in; 1619 vr.ocount = vif->pkt_out; 1620 vr.ibytes = vif->bytes_in; 1621 vr.obytes = vif->bytes_out; 1622 read_unlock(&mrt_lock); 1623 1624 if (copy_to_user(arg, &vr, sizeof(vr))) 1625 return -EFAULT; 1626 return 0; 1627 } 1628 read_unlock(&mrt_lock); 1629 return -EADDRNOTAVAIL; 1630 case SIOCGETSGCNT: 1631 if (copy_from_user(&sr, arg, sizeof(sr))) 1632 return -EFAULT; 1633 1634 rcu_read_lock(); 1635 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1636 if (c) { 1637 sr.pktcnt = c->_c.mfc_un.res.pkt; 1638 sr.bytecnt = c->_c.mfc_un.res.bytes; 1639 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1640 rcu_read_unlock(); 1641 1642 if (copy_to_user(arg, &sr, sizeof(sr))) 1643 return -EFAULT; 1644 return 0; 1645 } 1646 rcu_read_unlock(); 1647 return -EADDRNOTAVAIL; 1648 default: 1649 return -ENOIOCTLCMD; 1650 } 1651 } 1652 1653 #ifdef CONFIG_COMPAT 1654 struct compat_sioc_sg_req { 1655 struct in_addr src; 1656 struct in_addr grp; 1657 compat_ulong_t pktcnt; 1658 compat_ulong_t bytecnt; 1659 compat_ulong_t wrong_if; 1660 }; 1661 1662 struct compat_sioc_vif_req { 1663 vifi_t vifi; /* Which iface */ 1664 compat_ulong_t icount; 1665 compat_ulong_t ocount; 1666 compat_ulong_t ibytes; 1667 compat_ulong_t obytes; 1668 }; 1669 1670 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1671 { 1672 struct compat_sioc_sg_req sr; 1673 struct compat_sioc_vif_req vr; 1674 struct vif_device *vif; 1675 struct mfc_cache *c; 1676 struct net *net = sock_net(sk); 1677 struct mr_table *mrt; 1678 1679 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1680 if (!mrt) 1681 return -ENOENT; 1682 1683 switch (cmd) { 1684 case SIOCGETVIFCNT: 1685 if (copy_from_user(&vr, arg, sizeof(vr))) 1686 return -EFAULT; 1687 if (vr.vifi >= mrt->maxvif) 1688 return -EINVAL; 1689 read_lock(&mrt_lock); 1690 vif = &mrt->vif_table[vr.vifi]; 1691 if (VIF_EXISTS(mrt, vr.vifi)) { 1692 vr.icount = vif->pkt_in; 1693 vr.ocount = vif->pkt_out; 1694 vr.ibytes = vif->bytes_in; 1695 vr.obytes = vif->bytes_out; 1696 read_unlock(&mrt_lock); 1697 1698 if (copy_to_user(arg, &vr, sizeof(vr))) 1699 return -EFAULT; 1700 return 0; 1701 } 1702 read_unlock(&mrt_lock); 1703 return -EADDRNOTAVAIL; 1704 case SIOCGETSGCNT: 1705 if (copy_from_user(&sr, arg, sizeof(sr))) 1706 return -EFAULT; 1707 1708 rcu_read_lock(); 1709 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1710 if (c) { 1711 sr.pktcnt = c->_c.mfc_un.res.pkt; 1712 sr.bytecnt = c->_c.mfc_un.res.bytes; 1713 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1714 rcu_read_unlock(); 1715 1716 if (copy_to_user(arg, &sr, sizeof(sr))) 1717 return -EFAULT; 1718 return 0; 1719 } 1720 rcu_read_unlock(); 1721 return -EADDRNOTAVAIL; 1722 default: 1723 return -ENOIOCTLCMD; 1724 } 1725 } 1726 #endif 1727 1728 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1729 { 1730 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1731 struct net *net = dev_net(dev); 1732 struct mr_table *mrt; 1733 struct vif_device *v; 1734 int ct; 1735 1736 if (event != NETDEV_UNREGISTER) 1737 return NOTIFY_DONE; 1738 1739 ipmr_for_each_table(mrt, net) { 1740 v = &mrt->vif_table[0]; 1741 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1742 if (v->dev == dev) 1743 vif_delete(mrt, ct, 1, NULL); 1744 } 1745 } 1746 return NOTIFY_DONE; 1747 } 1748 1749 static struct notifier_block ip_mr_notifier = { 1750 .notifier_call = ipmr_device_event, 1751 }; 1752 1753 /* Encapsulate a packet by attaching a valid IPIP header to it. 1754 * This avoids tunnel drivers and other mess and gives us the speed so 1755 * important for multicast video. 1756 */ 1757 static void ip_encap(struct net *net, struct sk_buff *skb, 1758 __be32 saddr, __be32 daddr) 1759 { 1760 struct iphdr *iph; 1761 const struct iphdr *old_iph = ip_hdr(skb); 1762 1763 skb_push(skb, sizeof(struct iphdr)); 1764 skb->transport_header = skb->network_header; 1765 skb_reset_network_header(skb); 1766 iph = ip_hdr(skb); 1767 1768 iph->version = 4; 1769 iph->tos = old_iph->tos; 1770 iph->ttl = old_iph->ttl; 1771 iph->frag_off = 0; 1772 iph->daddr = daddr; 1773 iph->saddr = saddr; 1774 iph->protocol = IPPROTO_IPIP; 1775 iph->ihl = 5; 1776 iph->tot_len = htons(skb->len); 1777 ip_select_ident(net, skb, NULL); 1778 ip_send_check(iph); 1779 1780 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1781 nf_reset(skb); 1782 } 1783 1784 static inline int ipmr_forward_finish(struct net *net, struct sock *sk, 1785 struct sk_buff *skb) 1786 { 1787 struct ip_options *opt = &(IPCB(skb)->opt); 1788 1789 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS); 1790 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len); 1791 1792 if (unlikely(opt->optlen)) 1793 ip_forward_options(skb); 1794 1795 return dst_output(net, sk, skb); 1796 } 1797 1798 #ifdef CONFIG_NET_SWITCHDEV 1799 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1800 int in_vifi, int out_vifi) 1801 { 1802 struct vif_device *out_vif = &mrt->vif_table[out_vifi]; 1803 struct vif_device *in_vif = &mrt->vif_table[in_vifi]; 1804 1805 if (!skb->offload_mr_fwd_mark) 1806 return false; 1807 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len) 1808 return false; 1809 return netdev_phys_item_id_same(&out_vif->dev_parent_id, 1810 &in_vif->dev_parent_id); 1811 } 1812 #else 1813 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1814 int in_vifi, int out_vifi) 1815 { 1816 return false; 1817 } 1818 #endif 1819 1820 /* Processing handlers for ipmr_forward */ 1821 1822 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1823 int in_vifi, struct sk_buff *skb, 1824 struct mfc_cache *c, int vifi) 1825 { 1826 const struct iphdr *iph = ip_hdr(skb); 1827 struct vif_device *vif = &mrt->vif_table[vifi]; 1828 struct net_device *dev; 1829 struct rtable *rt; 1830 struct flowi4 fl4; 1831 int encap = 0; 1832 1833 if (!vif->dev) 1834 goto out_free; 1835 1836 if (vif->flags & VIFF_REGISTER) { 1837 vif->pkt_out++; 1838 vif->bytes_out += skb->len; 1839 vif->dev->stats.tx_bytes += skb->len; 1840 vif->dev->stats.tx_packets++; 1841 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1842 goto out_free; 1843 } 1844 1845 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi)) 1846 goto out_free; 1847 1848 if (vif->flags & VIFF_TUNNEL) { 1849 rt = ip_route_output_ports(net, &fl4, NULL, 1850 vif->remote, vif->local, 1851 0, 0, 1852 IPPROTO_IPIP, 1853 RT_TOS(iph->tos), vif->link); 1854 if (IS_ERR(rt)) 1855 goto out_free; 1856 encap = sizeof(struct iphdr); 1857 } else { 1858 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1859 0, 0, 1860 IPPROTO_IPIP, 1861 RT_TOS(iph->tos), vif->link); 1862 if (IS_ERR(rt)) 1863 goto out_free; 1864 } 1865 1866 dev = rt->dst.dev; 1867 1868 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1869 /* Do not fragment multicasts. Alas, IPv4 does not 1870 * allow to send ICMP, so that packets will disappear 1871 * to blackhole. 1872 */ 1873 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 1874 ip_rt_put(rt); 1875 goto out_free; 1876 } 1877 1878 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1879 1880 if (skb_cow(skb, encap)) { 1881 ip_rt_put(rt); 1882 goto out_free; 1883 } 1884 1885 vif->pkt_out++; 1886 vif->bytes_out += skb->len; 1887 1888 skb_dst_drop(skb); 1889 skb_dst_set(skb, &rt->dst); 1890 ip_decrease_ttl(ip_hdr(skb)); 1891 1892 /* FIXME: forward and output firewalls used to be called here. 1893 * What do we do with netfilter? -- RR 1894 */ 1895 if (vif->flags & VIFF_TUNNEL) { 1896 ip_encap(net, skb, vif->local, vif->remote); 1897 /* FIXME: extra output firewall step used to be here. --RR */ 1898 vif->dev->stats.tx_packets++; 1899 vif->dev->stats.tx_bytes += skb->len; 1900 } 1901 1902 IPCB(skb)->flags |= IPSKB_FORWARDED; 1903 1904 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1905 * not only before forwarding, but after forwarding on all output 1906 * interfaces. It is clear, if mrouter runs a multicasting 1907 * program, it should receive packets not depending to what interface 1908 * program is joined. 1909 * If we will not make it, the program will have to join on all 1910 * interfaces. On the other hand, multihoming host (or router, but 1911 * not mrouter) cannot join to more than one interface - it will 1912 * result in receiving multiple packets. 1913 */ 1914 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, 1915 net, NULL, skb, skb->dev, dev, 1916 ipmr_forward_finish); 1917 return; 1918 1919 out_free: 1920 kfree_skb(skb); 1921 } 1922 1923 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev) 1924 { 1925 int ct; 1926 1927 for (ct = mrt->maxvif-1; ct >= 0; ct--) { 1928 if (mrt->vif_table[ct].dev == dev) 1929 break; 1930 } 1931 return ct; 1932 } 1933 1934 /* "local" means that we should preserve one skb (for local delivery) */ 1935 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1936 struct net_device *dev, struct sk_buff *skb, 1937 struct mfc_cache *c, int local) 1938 { 1939 int true_vifi = ipmr_find_vif(mrt, dev); 1940 int psend = -1; 1941 int vif, ct; 1942 1943 vif = c->_c.mfc_parent; 1944 c->_c.mfc_un.res.pkt++; 1945 c->_c.mfc_un.res.bytes += skb->len; 1946 c->_c.mfc_un.res.lastuse = jiffies; 1947 1948 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1949 struct mfc_cache *cache_proxy; 1950 1951 /* For an (*,G) entry, we only check that the incomming 1952 * interface is part of the static tree. 1953 */ 1954 cache_proxy = mr_mfc_find_any_parent(mrt, vif); 1955 if (cache_proxy && 1956 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255) 1957 goto forward; 1958 } 1959 1960 /* Wrong interface: drop packet and (maybe) send PIM assert. */ 1961 if (mrt->vif_table[vif].dev != dev) { 1962 if (rt_is_output_route(skb_rtable(skb))) { 1963 /* It is our own packet, looped back. 1964 * Very complicated situation... 1965 * 1966 * The best workaround until routing daemons will be 1967 * fixed is not to redistribute packet, if it was 1968 * send through wrong interface. It means, that 1969 * multicast applications WILL NOT work for 1970 * (S,G), which have default multicast route pointing 1971 * to wrong oif. In any case, it is not a good 1972 * idea to use multicasting applications on router. 1973 */ 1974 goto dont_forward; 1975 } 1976 1977 c->_c.mfc_un.res.wrong_if++; 1978 1979 if (true_vifi >= 0 && mrt->mroute_do_assert && 1980 /* pimsm uses asserts, when switching from RPT to SPT, 1981 * so that we cannot check that packet arrived on an oif. 1982 * It is bad, but otherwise we would need to move pretty 1983 * large chunk of pimd to kernel. Ough... --ANK 1984 */ 1985 (mrt->mroute_do_pim || 1986 c->_c.mfc_un.res.ttls[true_vifi] < 255) && 1987 time_after(jiffies, 1988 c->_c.mfc_un.res.last_assert + 1989 MFC_ASSERT_THRESH)) { 1990 c->_c.mfc_un.res.last_assert = jiffies; 1991 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 1992 if (mrt->mroute_do_wrvifwhole) 1993 ipmr_cache_report(mrt, skb, true_vifi, 1994 IGMPMSG_WRVIFWHOLE); 1995 } 1996 goto dont_forward; 1997 } 1998 1999 forward: 2000 mrt->vif_table[vif].pkt_in++; 2001 mrt->vif_table[vif].bytes_in += skb->len; 2002 2003 /* Forward the frame */ 2004 if (c->mfc_origin == htonl(INADDR_ANY) && 2005 c->mfc_mcastgrp == htonl(INADDR_ANY)) { 2006 if (true_vifi >= 0 && 2007 true_vifi != c->_c.mfc_parent && 2008 ip_hdr(skb)->ttl > 2009 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) { 2010 /* It's an (*,*) entry and the packet is not coming from 2011 * the upstream: forward the packet to the upstream 2012 * only. 2013 */ 2014 psend = c->_c.mfc_parent; 2015 goto last_forward; 2016 } 2017 goto dont_forward; 2018 } 2019 for (ct = c->_c.mfc_un.res.maxvif - 1; 2020 ct >= c->_c.mfc_un.res.minvif; ct--) { 2021 /* For (*,G) entry, don't forward to the incoming interface */ 2022 if ((c->mfc_origin != htonl(INADDR_ANY) || 2023 ct != true_vifi) && 2024 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) { 2025 if (psend != -1) { 2026 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2027 2028 if (skb2) 2029 ipmr_queue_xmit(net, mrt, true_vifi, 2030 skb2, c, psend); 2031 } 2032 psend = ct; 2033 } 2034 } 2035 last_forward: 2036 if (psend != -1) { 2037 if (local) { 2038 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2039 2040 if (skb2) 2041 ipmr_queue_xmit(net, mrt, true_vifi, skb2, 2042 c, psend); 2043 } else { 2044 ipmr_queue_xmit(net, mrt, true_vifi, skb, c, psend); 2045 return; 2046 } 2047 } 2048 2049 dont_forward: 2050 if (!local) 2051 kfree_skb(skb); 2052 } 2053 2054 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 2055 { 2056 struct rtable *rt = skb_rtable(skb); 2057 struct iphdr *iph = ip_hdr(skb); 2058 struct flowi4 fl4 = { 2059 .daddr = iph->daddr, 2060 .saddr = iph->saddr, 2061 .flowi4_tos = RT_TOS(iph->tos), 2062 .flowi4_oif = (rt_is_output_route(rt) ? 2063 skb->dev->ifindex : 0), 2064 .flowi4_iif = (rt_is_output_route(rt) ? 2065 LOOPBACK_IFINDEX : 2066 skb->dev->ifindex), 2067 .flowi4_mark = skb->mark, 2068 }; 2069 struct mr_table *mrt; 2070 int err; 2071 2072 err = ipmr_fib_lookup(net, &fl4, &mrt); 2073 if (err) 2074 return ERR_PTR(err); 2075 return mrt; 2076 } 2077 2078 /* Multicast packets for forwarding arrive here 2079 * Called with rcu_read_lock(); 2080 */ 2081 int ip_mr_input(struct sk_buff *skb) 2082 { 2083 struct mfc_cache *cache; 2084 struct net *net = dev_net(skb->dev); 2085 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 2086 struct mr_table *mrt; 2087 struct net_device *dev; 2088 2089 /* skb->dev passed in is the loX master dev for vrfs. 2090 * As there are no vifs associated with loopback devices, 2091 * get the proper interface that does have a vif associated with it. 2092 */ 2093 dev = skb->dev; 2094 if (netif_is_l3_master(skb->dev)) { 2095 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); 2096 if (!dev) { 2097 kfree_skb(skb); 2098 return -ENODEV; 2099 } 2100 } 2101 2102 /* Packet is looped back after forward, it should not be 2103 * forwarded second time, but still can be delivered locally. 2104 */ 2105 if (IPCB(skb)->flags & IPSKB_FORWARDED) 2106 goto dont_forward; 2107 2108 mrt = ipmr_rt_fib_lookup(net, skb); 2109 if (IS_ERR(mrt)) { 2110 kfree_skb(skb); 2111 return PTR_ERR(mrt); 2112 } 2113 if (!local) { 2114 if (IPCB(skb)->opt.router_alert) { 2115 if (ip_call_ra_chain(skb)) 2116 return 0; 2117 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 2118 /* IGMPv1 (and broken IGMPv2 implementations sort of 2119 * Cisco IOS <= 11.2(8)) do not put router alert 2120 * option to IGMP packets destined to routable 2121 * groups. It is very bad, because it means 2122 * that we can forward NO IGMP messages. 2123 */ 2124 struct sock *mroute_sk; 2125 2126 mroute_sk = rcu_dereference(mrt->mroute_sk); 2127 if (mroute_sk) { 2128 nf_reset(skb); 2129 raw_rcv(mroute_sk, skb); 2130 return 0; 2131 } 2132 } 2133 } 2134 2135 /* already under rcu_read_lock() */ 2136 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 2137 if (!cache) { 2138 int vif = ipmr_find_vif(mrt, dev); 2139 2140 if (vif >= 0) 2141 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 2142 vif); 2143 } 2144 2145 /* No usable cache entry */ 2146 if (!cache) { 2147 int vif; 2148 2149 if (local) { 2150 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2151 ip_local_deliver(skb); 2152 if (!skb2) 2153 return -ENOBUFS; 2154 skb = skb2; 2155 } 2156 2157 read_lock(&mrt_lock); 2158 vif = ipmr_find_vif(mrt, dev); 2159 if (vif >= 0) { 2160 int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev); 2161 read_unlock(&mrt_lock); 2162 2163 return err2; 2164 } 2165 read_unlock(&mrt_lock); 2166 kfree_skb(skb); 2167 return -ENODEV; 2168 } 2169 2170 read_lock(&mrt_lock); 2171 ip_mr_forward(net, mrt, dev, skb, cache, local); 2172 read_unlock(&mrt_lock); 2173 2174 if (local) 2175 return ip_local_deliver(skb); 2176 2177 return 0; 2178 2179 dont_forward: 2180 if (local) 2181 return ip_local_deliver(skb); 2182 kfree_skb(skb); 2183 return 0; 2184 } 2185 2186 #ifdef CONFIG_IP_PIMSM_V1 2187 /* Handle IGMP messages of PIMv1 */ 2188 int pim_rcv_v1(struct sk_buff *skb) 2189 { 2190 struct igmphdr *pim; 2191 struct net *net = dev_net(skb->dev); 2192 struct mr_table *mrt; 2193 2194 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2195 goto drop; 2196 2197 pim = igmp_hdr(skb); 2198 2199 mrt = ipmr_rt_fib_lookup(net, skb); 2200 if (IS_ERR(mrt)) 2201 goto drop; 2202 if (!mrt->mroute_do_pim || 2203 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2204 goto drop; 2205 2206 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2207 drop: 2208 kfree_skb(skb); 2209 } 2210 return 0; 2211 } 2212 #endif 2213 2214 #ifdef CONFIG_IP_PIMSM_V2 2215 static int pim_rcv(struct sk_buff *skb) 2216 { 2217 struct pimreghdr *pim; 2218 struct net *net = dev_net(skb->dev); 2219 struct mr_table *mrt; 2220 2221 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2222 goto drop; 2223 2224 pim = (struct pimreghdr *)skb_transport_header(skb); 2225 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) || 2226 (pim->flags & PIM_NULL_REGISTER) || 2227 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2228 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2229 goto drop; 2230 2231 mrt = ipmr_rt_fib_lookup(net, skb); 2232 if (IS_ERR(mrt)) 2233 goto drop; 2234 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2235 drop: 2236 kfree_skb(skb); 2237 } 2238 return 0; 2239 } 2240 #endif 2241 2242 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2243 __be32 saddr, __be32 daddr, 2244 struct rtmsg *rtm, u32 portid) 2245 { 2246 struct mfc_cache *cache; 2247 struct mr_table *mrt; 2248 int err; 2249 2250 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2251 if (!mrt) 2252 return -ENOENT; 2253 2254 rcu_read_lock(); 2255 cache = ipmr_cache_find(mrt, saddr, daddr); 2256 if (!cache && skb->dev) { 2257 int vif = ipmr_find_vif(mrt, skb->dev); 2258 2259 if (vif >= 0) 2260 cache = ipmr_cache_find_any(mrt, daddr, vif); 2261 } 2262 if (!cache) { 2263 struct sk_buff *skb2; 2264 struct iphdr *iph; 2265 struct net_device *dev; 2266 int vif = -1; 2267 2268 dev = skb->dev; 2269 read_lock(&mrt_lock); 2270 if (dev) 2271 vif = ipmr_find_vif(mrt, dev); 2272 if (vif < 0) { 2273 read_unlock(&mrt_lock); 2274 rcu_read_unlock(); 2275 return -ENODEV; 2276 } 2277 skb2 = skb_clone(skb, GFP_ATOMIC); 2278 if (!skb2) { 2279 read_unlock(&mrt_lock); 2280 rcu_read_unlock(); 2281 return -ENOMEM; 2282 } 2283 2284 NETLINK_CB(skb2).portid = portid; 2285 skb_push(skb2, sizeof(struct iphdr)); 2286 skb_reset_network_header(skb2); 2287 iph = ip_hdr(skb2); 2288 iph->ihl = sizeof(struct iphdr) >> 2; 2289 iph->saddr = saddr; 2290 iph->daddr = daddr; 2291 iph->version = 0; 2292 err = ipmr_cache_unresolved(mrt, vif, skb2, dev); 2293 read_unlock(&mrt_lock); 2294 rcu_read_unlock(); 2295 return err; 2296 } 2297 2298 read_lock(&mrt_lock); 2299 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm); 2300 read_unlock(&mrt_lock); 2301 rcu_read_unlock(); 2302 return err; 2303 } 2304 2305 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2306 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2307 int flags) 2308 { 2309 struct nlmsghdr *nlh; 2310 struct rtmsg *rtm; 2311 int err; 2312 2313 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2314 if (!nlh) 2315 return -EMSGSIZE; 2316 2317 rtm = nlmsg_data(nlh); 2318 rtm->rtm_family = RTNL_FAMILY_IPMR; 2319 rtm->rtm_dst_len = 32; 2320 rtm->rtm_src_len = 32; 2321 rtm->rtm_tos = 0; 2322 rtm->rtm_table = mrt->id; 2323 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2324 goto nla_put_failure; 2325 rtm->rtm_type = RTN_MULTICAST; 2326 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2327 if (c->_c.mfc_flags & MFC_STATIC) 2328 rtm->rtm_protocol = RTPROT_STATIC; 2329 else 2330 rtm->rtm_protocol = RTPROT_MROUTED; 2331 rtm->rtm_flags = 0; 2332 2333 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || 2334 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) 2335 goto nla_put_failure; 2336 err = mr_fill_mroute(mrt, skb, &c->_c, rtm); 2337 /* do not break the dump if cache is unresolved */ 2338 if (err < 0 && err != -ENOENT) 2339 goto nla_put_failure; 2340 2341 nlmsg_end(skb, nlh); 2342 return 0; 2343 2344 nla_put_failure: 2345 nlmsg_cancel(skb, nlh); 2346 return -EMSGSIZE; 2347 } 2348 2349 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2350 u32 portid, u32 seq, struct mr_mfc *c, int cmd, 2351 int flags) 2352 { 2353 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c, 2354 cmd, flags); 2355 } 2356 2357 static size_t mroute_msgsize(bool unresolved, int maxvif) 2358 { 2359 size_t len = 2360 NLMSG_ALIGN(sizeof(struct rtmsg)) 2361 + nla_total_size(4) /* RTA_TABLE */ 2362 + nla_total_size(4) /* RTA_SRC */ 2363 + nla_total_size(4) /* RTA_DST */ 2364 ; 2365 2366 if (!unresolved) 2367 len = len 2368 + nla_total_size(4) /* RTA_IIF */ 2369 + nla_total_size(0) /* RTA_MULTIPATH */ 2370 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2371 /* RTA_MFC_STATS */ 2372 + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) 2373 ; 2374 2375 return len; 2376 } 2377 2378 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2379 int cmd) 2380 { 2381 struct net *net = read_pnet(&mrt->net); 2382 struct sk_buff *skb; 2383 int err = -ENOBUFS; 2384 2385 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS, 2386 mrt->maxvif), 2387 GFP_ATOMIC); 2388 if (!skb) 2389 goto errout; 2390 2391 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2392 if (err < 0) 2393 goto errout; 2394 2395 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2396 return; 2397 2398 errout: 2399 kfree_skb(skb); 2400 if (err < 0) 2401 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2402 } 2403 2404 static size_t igmpmsg_netlink_msgsize(size_t payloadlen) 2405 { 2406 size_t len = 2407 NLMSG_ALIGN(sizeof(struct rtgenmsg)) 2408 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */ 2409 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */ 2410 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */ 2411 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */ 2412 /* IPMRA_CREPORT_PKT */ 2413 + nla_total_size(payloadlen) 2414 ; 2415 2416 return len; 2417 } 2418 2419 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt) 2420 { 2421 struct net *net = read_pnet(&mrt->net); 2422 struct nlmsghdr *nlh; 2423 struct rtgenmsg *rtgenm; 2424 struct igmpmsg *msg; 2425 struct sk_buff *skb; 2426 struct nlattr *nla; 2427 int payloadlen; 2428 2429 payloadlen = pkt->len - sizeof(struct igmpmsg); 2430 msg = (struct igmpmsg *)skb_network_header(pkt); 2431 2432 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC); 2433 if (!skb) 2434 goto errout; 2435 2436 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT, 2437 sizeof(struct rtgenmsg), 0); 2438 if (!nlh) 2439 goto errout; 2440 rtgenm = nlmsg_data(nlh); 2441 rtgenm->rtgen_family = RTNL_FAMILY_IPMR; 2442 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) || 2443 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) || 2444 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR, 2445 msg->im_src.s_addr) || 2446 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR, 2447 msg->im_dst.s_addr)) 2448 goto nla_put_failure; 2449 2450 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen); 2451 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg), 2452 nla_data(nla), payloadlen)) 2453 goto nla_put_failure; 2454 2455 nlmsg_end(skb, nlh); 2456 2457 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC); 2458 return; 2459 2460 nla_put_failure: 2461 nlmsg_cancel(skb, nlh); 2462 errout: 2463 kfree_skb(skb); 2464 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS); 2465 } 2466 2467 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2468 struct netlink_ext_ack *extack) 2469 { 2470 struct net *net = sock_net(in_skb->sk); 2471 struct nlattr *tb[RTA_MAX + 1]; 2472 struct sk_buff *skb = NULL; 2473 struct mfc_cache *cache; 2474 struct mr_table *mrt; 2475 struct rtmsg *rtm; 2476 __be32 src, grp; 2477 u32 tableid; 2478 int err; 2479 2480 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, 2481 rtm_ipv4_policy, extack); 2482 if (err < 0) 2483 goto errout; 2484 2485 rtm = nlmsg_data(nlh); 2486 2487 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0; 2488 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0; 2489 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0; 2490 2491 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT); 2492 if (!mrt) { 2493 err = -ENOENT; 2494 goto errout_free; 2495 } 2496 2497 /* entries are added/deleted only under RTNL */ 2498 rcu_read_lock(); 2499 cache = ipmr_cache_find(mrt, src, grp); 2500 rcu_read_unlock(); 2501 if (!cache) { 2502 err = -ENOENT; 2503 goto errout_free; 2504 } 2505 2506 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL); 2507 if (!skb) { 2508 err = -ENOBUFS; 2509 goto errout_free; 2510 } 2511 2512 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid, 2513 nlh->nlmsg_seq, cache, 2514 RTM_NEWROUTE, 0); 2515 if (err < 0) 2516 goto errout_free; 2517 2518 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 2519 2520 errout: 2521 return err; 2522 2523 errout_free: 2524 kfree_skb(skb); 2525 goto errout; 2526 } 2527 2528 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2529 { 2530 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter, 2531 _ipmr_fill_mroute, &mfc_unres_lock); 2532 } 2533 2534 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = { 2535 [RTA_SRC] = { .type = NLA_U32 }, 2536 [RTA_DST] = { .type = NLA_U32 }, 2537 [RTA_IIF] = { .type = NLA_U32 }, 2538 [RTA_TABLE] = { .type = NLA_U32 }, 2539 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 2540 }; 2541 2542 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol) 2543 { 2544 switch (rtm_protocol) { 2545 case RTPROT_STATIC: 2546 case RTPROT_MROUTED: 2547 return true; 2548 } 2549 return false; 2550 } 2551 2552 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc) 2553 { 2554 struct rtnexthop *rtnh = nla_data(nla); 2555 int remaining = nla_len(nla), vifi = 0; 2556 2557 while (rtnh_ok(rtnh, remaining)) { 2558 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops; 2559 if (++vifi == MAXVIFS) 2560 break; 2561 rtnh = rtnh_next(rtnh, &remaining); 2562 } 2563 2564 return remaining > 0 ? -EINVAL : vifi; 2565 } 2566 2567 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */ 2568 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh, 2569 struct mfcctl *mfcc, int *mrtsock, 2570 struct mr_table **mrtret, 2571 struct netlink_ext_ack *extack) 2572 { 2573 struct net_device *dev = NULL; 2574 u32 tblid = RT_TABLE_DEFAULT; 2575 struct mr_table *mrt; 2576 struct nlattr *attr; 2577 struct rtmsg *rtm; 2578 int ret, rem; 2579 2580 ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy, 2581 extack); 2582 if (ret < 0) 2583 goto out; 2584 rtm = nlmsg_data(nlh); 2585 2586 ret = -EINVAL; 2587 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 || 2588 rtm->rtm_type != RTN_MULTICAST || 2589 rtm->rtm_scope != RT_SCOPE_UNIVERSE || 2590 !ipmr_rtm_validate_proto(rtm->rtm_protocol)) 2591 goto out; 2592 2593 memset(mfcc, 0, sizeof(*mfcc)); 2594 mfcc->mfcc_parent = -1; 2595 ret = 0; 2596 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) { 2597 switch (nla_type(attr)) { 2598 case RTA_SRC: 2599 mfcc->mfcc_origin.s_addr = nla_get_be32(attr); 2600 break; 2601 case RTA_DST: 2602 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr); 2603 break; 2604 case RTA_IIF: 2605 dev = __dev_get_by_index(net, nla_get_u32(attr)); 2606 if (!dev) { 2607 ret = -ENODEV; 2608 goto out; 2609 } 2610 break; 2611 case RTA_MULTIPATH: 2612 if (ipmr_nla_get_ttls(attr, mfcc) < 0) { 2613 ret = -EINVAL; 2614 goto out; 2615 } 2616 break; 2617 case RTA_PREFSRC: 2618 ret = 1; 2619 break; 2620 case RTA_TABLE: 2621 tblid = nla_get_u32(attr); 2622 break; 2623 } 2624 } 2625 mrt = ipmr_get_table(net, tblid); 2626 if (!mrt) { 2627 ret = -ENOENT; 2628 goto out; 2629 } 2630 *mrtret = mrt; 2631 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0; 2632 if (dev) 2633 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev); 2634 2635 out: 2636 return ret; 2637 } 2638 2639 /* takes care of both newroute and delroute */ 2640 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh, 2641 struct netlink_ext_ack *extack) 2642 { 2643 struct net *net = sock_net(skb->sk); 2644 int ret, mrtsock, parent; 2645 struct mr_table *tbl; 2646 struct mfcctl mfcc; 2647 2648 mrtsock = 0; 2649 tbl = NULL; 2650 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack); 2651 if (ret < 0) 2652 return ret; 2653 2654 parent = ret ? mfcc.mfcc_parent : -1; 2655 if (nlh->nlmsg_type == RTM_NEWROUTE) 2656 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent); 2657 else 2658 return ipmr_mfc_delete(tbl, &mfcc, parent); 2659 } 2660 2661 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb) 2662 { 2663 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len); 2664 2665 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) || 2666 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) || 2667 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM, 2668 mrt->mroute_reg_vif_num) || 2669 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT, 2670 mrt->mroute_do_assert) || 2671 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) || 2672 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE, 2673 mrt->mroute_do_wrvifwhole)) 2674 return false; 2675 2676 return true; 2677 } 2678 2679 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb) 2680 { 2681 struct nlattr *vif_nest; 2682 struct vif_device *vif; 2683 2684 /* if the VIF doesn't exist just continue */ 2685 if (!VIF_EXISTS(mrt, vifid)) 2686 return true; 2687 2688 vif = &mrt->vif_table[vifid]; 2689 vif_nest = nla_nest_start(skb, IPMRA_VIF); 2690 if (!vif_nest) 2691 return false; 2692 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) || 2693 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) || 2694 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) || 2695 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in, 2696 IPMRA_VIFA_PAD) || 2697 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out, 2698 IPMRA_VIFA_PAD) || 2699 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in, 2700 IPMRA_VIFA_PAD) || 2701 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out, 2702 IPMRA_VIFA_PAD) || 2703 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) || 2704 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) { 2705 nla_nest_cancel(skb, vif_nest); 2706 return false; 2707 } 2708 nla_nest_end(skb, vif_nest); 2709 2710 return true; 2711 } 2712 2713 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb) 2714 { 2715 struct net *net = sock_net(skb->sk); 2716 struct nlmsghdr *nlh = NULL; 2717 unsigned int t = 0, s_t; 2718 unsigned int e = 0, s_e; 2719 struct mr_table *mrt; 2720 2721 s_t = cb->args[0]; 2722 s_e = cb->args[1]; 2723 2724 ipmr_for_each_table(mrt, net) { 2725 struct nlattr *vifs, *af; 2726 struct ifinfomsg *hdr; 2727 u32 i; 2728 2729 if (t < s_t) 2730 goto skip_table; 2731 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, 2732 cb->nlh->nlmsg_seq, RTM_NEWLINK, 2733 sizeof(*hdr), NLM_F_MULTI); 2734 if (!nlh) 2735 break; 2736 2737 hdr = nlmsg_data(nlh); 2738 memset(hdr, 0, sizeof(*hdr)); 2739 hdr->ifi_family = RTNL_FAMILY_IPMR; 2740 2741 af = nla_nest_start(skb, IFLA_AF_SPEC); 2742 if (!af) { 2743 nlmsg_cancel(skb, nlh); 2744 goto out; 2745 } 2746 2747 if (!ipmr_fill_table(mrt, skb)) { 2748 nlmsg_cancel(skb, nlh); 2749 goto out; 2750 } 2751 2752 vifs = nla_nest_start(skb, IPMRA_TABLE_VIFS); 2753 if (!vifs) { 2754 nla_nest_end(skb, af); 2755 nlmsg_end(skb, nlh); 2756 goto out; 2757 } 2758 for (i = 0; i < mrt->maxvif; i++) { 2759 if (e < s_e) 2760 goto skip_entry; 2761 if (!ipmr_fill_vif(mrt, i, skb)) { 2762 nla_nest_end(skb, vifs); 2763 nla_nest_end(skb, af); 2764 nlmsg_end(skb, nlh); 2765 goto out; 2766 } 2767 skip_entry: 2768 e++; 2769 } 2770 s_e = 0; 2771 e = 0; 2772 nla_nest_end(skb, vifs); 2773 nla_nest_end(skb, af); 2774 nlmsg_end(skb, nlh); 2775 skip_table: 2776 t++; 2777 } 2778 2779 out: 2780 cb->args[1] = e; 2781 cb->args[0] = t; 2782 2783 return skb->len; 2784 } 2785 2786 #ifdef CONFIG_PROC_FS 2787 /* The /proc interfaces to multicast routing : 2788 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2789 */ 2790 2791 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2792 __acquires(mrt_lock) 2793 { 2794 struct mr_vif_iter *iter = seq->private; 2795 struct net *net = seq_file_net(seq); 2796 struct mr_table *mrt; 2797 2798 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2799 if (!mrt) 2800 return ERR_PTR(-ENOENT); 2801 2802 iter->mrt = mrt; 2803 2804 read_lock(&mrt_lock); 2805 return mr_vif_seq_start(seq, pos); 2806 } 2807 2808 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2809 __releases(mrt_lock) 2810 { 2811 read_unlock(&mrt_lock); 2812 } 2813 2814 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2815 { 2816 struct mr_vif_iter *iter = seq->private; 2817 struct mr_table *mrt = iter->mrt; 2818 2819 if (v == SEQ_START_TOKEN) { 2820 seq_puts(seq, 2821 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2822 } else { 2823 const struct vif_device *vif = v; 2824 const char *name = vif->dev ? 2825 vif->dev->name : "none"; 2826 2827 seq_printf(seq, 2828 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2829 vif - mrt->vif_table, 2830 name, vif->bytes_in, vif->pkt_in, 2831 vif->bytes_out, vif->pkt_out, 2832 vif->flags, vif->local, vif->remote); 2833 } 2834 return 0; 2835 } 2836 2837 static const struct seq_operations ipmr_vif_seq_ops = { 2838 .start = ipmr_vif_seq_start, 2839 .next = mr_vif_seq_next, 2840 .stop = ipmr_vif_seq_stop, 2841 .show = ipmr_vif_seq_show, 2842 }; 2843 2844 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2845 { 2846 struct net *net = seq_file_net(seq); 2847 struct mr_table *mrt; 2848 2849 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2850 if (!mrt) 2851 return ERR_PTR(-ENOENT); 2852 2853 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock); 2854 } 2855 2856 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2857 { 2858 int n; 2859 2860 if (v == SEQ_START_TOKEN) { 2861 seq_puts(seq, 2862 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2863 } else { 2864 const struct mfc_cache *mfc = v; 2865 const struct mr_mfc_iter *it = seq->private; 2866 const struct mr_table *mrt = it->mrt; 2867 2868 seq_printf(seq, "%08X %08X %-3hd", 2869 (__force u32) mfc->mfc_mcastgrp, 2870 (__force u32) mfc->mfc_origin, 2871 mfc->_c.mfc_parent); 2872 2873 if (it->cache != &mrt->mfc_unres_queue) { 2874 seq_printf(seq, " %8lu %8lu %8lu", 2875 mfc->_c.mfc_un.res.pkt, 2876 mfc->_c.mfc_un.res.bytes, 2877 mfc->_c.mfc_un.res.wrong_if); 2878 for (n = mfc->_c.mfc_un.res.minvif; 2879 n < mfc->_c.mfc_un.res.maxvif; n++) { 2880 if (VIF_EXISTS(mrt, n) && 2881 mfc->_c.mfc_un.res.ttls[n] < 255) 2882 seq_printf(seq, 2883 " %2d:%-3d", 2884 n, mfc->_c.mfc_un.res.ttls[n]); 2885 } 2886 } else { 2887 /* unresolved mfc_caches don't contain 2888 * pkt, bytes and wrong_if values 2889 */ 2890 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 2891 } 2892 seq_putc(seq, '\n'); 2893 } 2894 return 0; 2895 } 2896 2897 static const struct seq_operations ipmr_mfc_seq_ops = { 2898 .start = ipmr_mfc_seq_start, 2899 .next = mr_mfc_seq_next, 2900 .stop = mr_mfc_seq_stop, 2901 .show = ipmr_mfc_seq_show, 2902 }; 2903 #endif 2904 2905 #ifdef CONFIG_IP_PIMSM_V2 2906 static const struct net_protocol pim_protocol = { 2907 .handler = pim_rcv, 2908 .netns_ok = 1, 2909 }; 2910 #endif 2911 2912 static unsigned int ipmr_seq_read(struct net *net) 2913 { 2914 ASSERT_RTNL(); 2915 2916 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net); 2917 } 2918 2919 static int ipmr_dump(struct net *net, struct notifier_block *nb) 2920 { 2921 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump, 2922 ipmr_mr_table_iter, &mrt_lock); 2923 } 2924 2925 static const struct fib_notifier_ops ipmr_notifier_ops_template = { 2926 .family = RTNL_FAMILY_IPMR, 2927 .fib_seq_read = ipmr_seq_read, 2928 .fib_dump = ipmr_dump, 2929 .owner = THIS_MODULE, 2930 }; 2931 2932 static int __net_init ipmr_notifier_init(struct net *net) 2933 { 2934 struct fib_notifier_ops *ops; 2935 2936 net->ipv4.ipmr_seq = 0; 2937 2938 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net); 2939 if (IS_ERR(ops)) 2940 return PTR_ERR(ops); 2941 net->ipv4.ipmr_notifier_ops = ops; 2942 2943 return 0; 2944 } 2945 2946 static void __net_exit ipmr_notifier_exit(struct net *net) 2947 { 2948 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops); 2949 net->ipv4.ipmr_notifier_ops = NULL; 2950 } 2951 2952 /* Setup for IP multicast routing */ 2953 static int __net_init ipmr_net_init(struct net *net) 2954 { 2955 int err; 2956 2957 err = ipmr_notifier_init(net); 2958 if (err) 2959 goto ipmr_notifier_fail; 2960 2961 err = ipmr_rules_init(net); 2962 if (err < 0) 2963 goto ipmr_rules_fail; 2964 2965 #ifdef CONFIG_PROC_FS 2966 err = -ENOMEM; 2967 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops, 2968 sizeof(struct mr_vif_iter))) 2969 goto proc_vif_fail; 2970 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops, 2971 sizeof(struct mr_mfc_iter))) 2972 goto proc_cache_fail; 2973 #endif 2974 return 0; 2975 2976 #ifdef CONFIG_PROC_FS 2977 proc_cache_fail: 2978 remove_proc_entry("ip_mr_vif", net->proc_net); 2979 proc_vif_fail: 2980 ipmr_rules_exit(net); 2981 #endif 2982 ipmr_rules_fail: 2983 ipmr_notifier_exit(net); 2984 ipmr_notifier_fail: 2985 return err; 2986 } 2987 2988 static void __net_exit ipmr_net_exit(struct net *net) 2989 { 2990 #ifdef CONFIG_PROC_FS 2991 remove_proc_entry("ip_mr_cache", net->proc_net); 2992 remove_proc_entry("ip_mr_vif", net->proc_net); 2993 #endif 2994 ipmr_notifier_exit(net); 2995 ipmr_rules_exit(net); 2996 } 2997 2998 static struct pernet_operations ipmr_net_ops = { 2999 .init = ipmr_net_init, 3000 .exit = ipmr_net_exit, 3001 }; 3002 3003 int __init ip_mr_init(void) 3004 { 3005 int err; 3006 3007 mrt_cachep = kmem_cache_create("ip_mrt_cache", 3008 sizeof(struct mfc_cache), 3009 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 3010 NULL); 3011 3012 err = register_pernet_subsys(&ipmr_net_ops); 3013 if (err) 3014 goto reg_pernet_fail; 3015 3016 err = register_netdevice_notifier(&ip_mr_notifier); 3017 if (err) 3018 goto reg_notif_fail; 3019 #ifdef CONFIG_IP_PIMSM_V2 3020 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 3021 pr_err("%s: can't add PIM protocol\n", __func__); 3022 err = -EAGAIN; 3023 goto add_proto_fail; 3024 } 3025 #endif 3026 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 3027 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0); 3028 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE, 3029 ipmr_rtm_route, NULL, 0); 3030 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE, 3031 ipmr_rtm_route, NULL, 0); 3032 3033 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK, 3034 NULL, ipmr_rtm_dumplink, 0); 3035 return 0; 3036 3037 #ifdef CONFIG_IP_PIMSM_V2 3038 add_proto_fail: 3039 unregister_netdevice_notifier(&ip_mr_notifier); 3040 #endif 3041 reg_notif_fail: 3042 unregister_pernet_subsys(&ipmr_net_ops); 3043 reg_pernet_fail: 3044 kmem_cache_destroy(mrt_cachep); 3045 return err; 3046 } 3047