xref: /openbmc/linux/net/ipv4/ipmr.c (revision c5254e72)
1 /*
2  *	IP multicast routing support for mrouted 3.6/3.8
3  *
4  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *	  Linux Consultancy and Custom Driver Development
6  *
7  *	This program is free software; you can redistribute it and/or
8  *	modify it under the terms of the GNU General Public License
9  *	as published by the Free Software Foundation; either version
10  *	2 of the License, or (at your option) any later version.
11  *
12  *	Fixes:
13  *	Michael Chastain	:	Incorrect size of copying.
14  *	Alan Cox		:	Added the cache manager code
15  *	Alan Cox		:	Fixed the clone/copy bug and device race.
16  *	Mike McLagan		:	Routing by source
17  *	Malcolm Beattie		:	Buffer handling fixes.
18  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
19  *	SVR Anand		:	Fixed several multicast bugs and problems.
20  *	Alexey Kuznetsov	:	Status, optimisations and more.
21  *	Brad Parker		:	Better behaviour on mrouted upcall
22  *					overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
25  *					Relax this requirement to work with older peers.
26  *
27  */
28 
29 #include <linux/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 #include <net/nexthop.h>
70 
71 struct ipmr_rule {
72 	struct fib_rule		common;
73 };
74 
75 struct ipmr_result {
76 	struct mr_table		*mrt;
77 };
78 
79 /* Big lock, protecting vif table, mrt cache and mroute socket state.
80  * Note that the changes are semaphored via rtnl_lock.
81  */
82 
83 static DEFINE_RWLOCK(mrt_lock);
84 
85 /* Multicast router control variables */
86 
87 /* Special spinlock for queue of unresolved entries */
88 static DEFINE_SPINLOCK(mfc_unres_lock);
89 
90 /* We return to original Alan's scheme. Hash table of resolved
91  * entries is changed only in process context and protected
92  * with weak lock mrt_lock. Queue of unresolved entries is protected
93  * with strong spinlock mfc_unres_lock.
94  *
95  * In this case data path is free of exclusive locks at all.
96  */
97 
98 static struct kmem_cache *mrt_cachep __read_mostly;
99 
100 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
101 static void ipmr_free_table(struct mr_table *mrt);
102 
103 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
104 			  struct sk_buff *skb, struct mfc_cache *cache,
105 			  int local);
106 static int ipmr_cache_report(struct mr_table *mrt,
107 			     struct sk_buff *pkt, vifi_t vifi, int assert);
108 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
109 			      struct mfc_cache *c, struct rtmsg *rtm);
110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
111 				 int cmd);
112 static void mroute_clean_tables(struct mr_table *mrt, bool all);
113 static void ipmr_expire_process(unsigned long arg);
114 
115 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
116 #define ipmr_for_each_table(mrt, net) \
117 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
118 
119 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
120 {
121 	struct mr_table *mrt;
122 
123 	ipmr_for_each_table(mrt, net) {
124 		if (mrt->id == id)
125 			return mrt;
126 	}
127 	return NULL;
128 }
129 
130 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
131 			   struct mr_table **mrt)
132 {
133 	int err;
134 	struct ipmr_result res;
135 	struct fib_lookup_arg arg = {
136 		.result = &res,
137 		.flags = FIB_LOOKUP_NOREF,
138 	};
139 
140 	/* update flow if oif or iif point to device enslaved to l3mdev */
141 	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
142 
143 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
144 			       flowi4_to_flowi(flp4), 0, &arg);
145 	if (err < 0)
146 		return err;
147 	*mrt = res.mrt;
148 	return 0;
149 }
150 
151 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
152 			    int flags, struct fib_lookup_arg *arg)
153 {
154 	struct ipmr_result *res = arg->result;
155 	struct mr_table *mrt;
156 
157 	switch (rule->action) {
158 	case FR_ACT_TO_TBL:
159 		break;
160 	case FR_ACT_UNREACHABLE:
161 		return -ENETUNREACH;
162 	case FR_ACT_PROHIBIT:
163 		return -EACCES;
164 	case FR_ACT_BLACKHOLE:
165 	default:
166 		return -EINVAL;
167 	}
168 
169 	arg->table = fib_rule_get_table(rule, arg);
170 
171 	mrt = ipmr_get_table(rule->fr_net, arg->table);
172 	if (!mrt)
173 		return -EAGAIN;
174 	res->mrt = mrt;
175 	return 0;
176 }
177 
178 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
179 {
180 	return 1;
181 }
182 
183 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
184 	FRA_GENERIC_POLICY,
185 };
186 
187 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
188 			       struct fib_rule_hdr *frh, struct nlattr **tb)
189 {
190 	return 0;
191 }
192 
193 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
194 			     struct nlattr **tb)
195 {
196 	return 1;
197 }
198 
199 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
200 			  struct fib_rule_hdr *frh)
201 {
202 	frh->dst_len = 0;
203 	frh->src_len = 0;
204 	frh->tos     = 0;
205 	return 0;
206 }
207 
208 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
209 	.family		= RTNL_FAMILY_IPMR,
210 	.rule_size	= sizeof(struct ipmr_rule),
211 	.addr_size	= sizeof(u32),
212 	.action		= ipmr_rule_action,
213 	.match		= ipmr_rule_match,
214 	.configure	= ipmr_rule_configure,
215 	.compare	= ipmr_rule_compare,
216 	.fill		= ipmr_rule_fill,
217 	.nlgroup	= RTNLGRP_IPV4_RULE,
218 	.policy		= ipmr_rule_policy,
219 	.owner		= THIS_MODULE,
220 };
221 
222 static int __net_init ipmr_rules_init(struct net *net)
223 {
224 	struct fib_rules_ops *ops;
225 	struct mr_table *mrt;
226 	int err;
227 
228 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
229 	if (IS_ERR(ops))
230 		return PTR_ERR(ops);
231 
232 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
233 
234 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
235 	if (IS_ERR(mrt)) {
236 		err = PTR_ERR(mrt);
237 		goto err1;
238 	}
239 
240 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
241 	if (err < 0)
242 		goto err2;
243 
244 	net->ipv4.mr_rules_ops = ops;
245 	return 0;
246 
247 err2:
248 	ipmr_free_table(mrt);
249 err1:
250 	fib_rules_unregister(ops);
251 	return err;
252 }
253 
254 static void __net_exit ipmr_rules_exit(struct net *net)
255 {
256 	struct mr_table *mrt, *next;
257 
258 	rtnl_lock();
259 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
260 		list_del(&mrt->list);
261 		ipmr_free_table(mrt);
262 	}
263 	fib_rules_unregister(net->ipv4.mr_rules_ops);
264 	rtnl_unlock();
265 }
266 #else
267 #define ipmr_for_each_table(mrt, net) \
268 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
269 
270 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
271 {
272 	return net->ipv4.mrt;
273 }
274 
275 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
276 			   struct mr_table **mrt)
277 {
278 	*mrt = net->ipv4.mrt;
279 	return 0;
280 }
281 
282 static int __net_init ipmr_rules_init(struct net *net)
283 {
284 	struct mr_table *mrt;
285 
286 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
287 	if (IS_ERR(mrt))
288 		return PTR_ERR(mrt);
289 	net->ipv4.mrt = mrt;
290 	return 0;
291 }
292 
293 static void __net_exit ipmr_rules_exit(struct net *net)
294 {
295 	rtnl_lock();
296 	ipmr_free_table(net->ipv4.mrt);
297 	net->ipv4.mrt = NULL;
298 	rtnl_unlock();
299 }
300 #endif
301 
302 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
303 {
304 	struct mr_table *mrt;
305 	unsigned int i;
306 
307 	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
308 	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
309 		return ERR_PTR(-EINVAL);
310 
311 	mrt = ipmr_get_table(net, id);
312 	if (mrt)
313 		return mrt;
314 
315 	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
316 	if (!mrt)
317 		return ERR_PTR(-ENOMEM);
318 	write_pnet(&mrt->net, net);
319 	mrt->id = id;
320 
321 	/* Forwarding cache */
322 	for (i = 0; i < MFC_LINES; i++)
323 		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
324 
325 	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
326 
327 	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
328 		    (unsigned long)mrt);
329 
330 	mrt->mroute_reg_vif_num = -1;
331 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
332 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
333 #endif
334 	return mrt;
335 }
336 
337 static void ipmr_free_table(struct mr_table *mrt)
338 {
339 	del_timer_sync(&mrt->ipmr_expire_timer);
340 	mroute_clean_tables(mrt, true);
341 	kfree(mrt);
342 }
343 
344 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
345 
346 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
347 {
348 	struct net *net = dev_net(dev);
349 
350 	dev_close(dev);
351 
352 	dev = __dev_get_by_name(net, "tunl0");
353 	if (dev) {
354 		const struct net_device_ops *ops = dev->netdev_ops;
355 		struct ifreq ifr;
356 		struct ip_tunnel_parm p;
357 
358 		memset(&p, 0, sizeof(p));
359 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
360 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
361 		p.iph.version = 4;
362 		p.iph.ihl = 5;
363 		p.iph.protocol = IPPROTO_IPIP;
364 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
365 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
366 
367 		if (ops->ndo_do_ioctl) {
368 			mm_segment_t oldfs = get_fs();
369 
370 			set_fs(KERNEL_DS);
371 			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
372 			set_fs(oldfs);
373 		}
374 	}
375 }
376 
377 /* Initialize ipmr pimreg/tunnel in_device */
378 static bool ipmr_init_vif_indev(const struct net_device *dev)
379 {
380 	struct in_device *in_dev;
381 
382 	ASSERT_RTNL();
383 
384 	in_dev = __in_dev_get_rtnl(dev);
385 	if (!in_dev)
386 		return false;
387 	ipv4_devconf_setall(in_dev);
388 	neigh_parms_data_state_setall(in_dev->arp_parms);
389 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
390 
391 	return true;
392 }
393 
394 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
395 {
396 	struct net_device  *dev;
397 
398 	dev = __dev_get_by_name(net, "tunl0");
399 
400 	if (dev) {
401 		const struct net_device_ops *ops = dev->netdev_ops;
402 		int err;
403 		struct ifreq ifr;
404 		struct ip_tunnel_parm p;
405 
406 		memset(&p, 0, sizeof(p));
407 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
408 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
409 		p.iph.version = 4;
410 		p.iph.ihl = 5;
411 		p.iph.protocol = IPPROTO_IPIP;
412 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
413 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
414 
415 		if (ops->ndo_do_ioctl) {
416 			mm_segment_t oldfs = get_fs();
417 
418 			set_fs(KERNEL_DS);
419 			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
420 			set_fs(oldfs);
421 		} else {
422 			err = -EOPNOTSUPP;
423 		}
424 		dev = NULL;
425 
426 		if (err == 0 &&
427 		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
428 			dev->flags |= IFF_MULTICAST;
429 			if (!ipmr_init_vif_indev(dev))
430 				goto failure;
431 			if (dev_open(dev))
432 				goto failure;
433 			dev_hold(dev);
434 		}
435 	}
436 	return dev;
437 
438 failure:
439 	unregister_netdevice(dev);
440 	return NULL;
441 }
442 
443 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
444 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
445 {
446 	struct net *net = dev_net(dev);
447 	struct mr_table *mrt;
448 	struct flowi4 fl4 = {
449 		.flowi4_oif	= dev->ifindex,
450 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
451 		.flowi4_mark	= skb->mark,
452 	};
453 	int err;
454 
455 	err = ipmr_fib_lookup(net, &fl4, &mrt);
456 	if (err < 0) {
457 		kfree_skb(skb);
458 		return err;
459 	}
460 
461 	read_lock(&mrt_lock);
462 	dev->stats.tx_bytes += skb->len;
463 	dev->stats.tx_packets++;
464 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
465 	read_unlock(&mrt_lock);
466 	kfree_skb(skb);
467 	return NETDEV_TX_OK;
468 }
469 
470 static int reg_vif_get_iflink(const struct net_device *dev)
471 {
472 	return 0;
473 }
474 
475 static const struct net_device_ops reg_vif_netdev_ops = {
476 	.ndo_start_xmit	= reg_vif_xmit,
477 	.ndo_get_iflink = reg_vif_get_iflink,
478 };
479 
480 static void reg_vif_setup(struct net_device *dev)
481 {
482 	dev->type		= ARPHRD_PIMREG;
483 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
484 	dev->flags		= IFF_NOARP;
485 	dev->netdev_ops		= &reg_vif_netdev_ops;
486 	dev->destructor		= free_netdev;
487 	dev->features		|= NETIF_F_NETNS_LOCAL;
488 }
489 
490 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
491 {
492 	struct net_device *dev;
493 	char name[IFNAMSIZ];
494 
495 	if (mrt->id == RT_TABLE_DEFAULT)
496 		sprintf(name, "pimreg");
497 	else
498 		sprintf(name, "pimreg%u", mrt->id);
499 
500 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
501 
502 	if (!dev)
503 		return NULL;
504 
505 	dev_net_set(dev, net);
506 
507 	if (register_netdevice(dev)) {
508 		free_netdev(dev);
509 		return NULL;
510 	}
511 
512 	if (!ipmr_init_vif_indev(dev))
513 		goto failure;
514 	if (dev_open(dev))
515 		goto failure;
516 
517 	dev_hold(dev);
518 
519 	return dev;
520 
521 failure:
522 	unregister_netdevice(dev);
523 	return NULL;
524 }
525 
526 /* called with rcu_read_lock() */
527 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
528 		     unsigned int pimlen)
529 {
530 	struct net_device *reg_dev = NULL;
531 	struct iphdr *encap;
532 
533 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
534 	/* Check that:
535 	 * a. packet is really sent to a multicast group
536 	 * b. packet is not a NULL-REGISTER
537 	 * c. packet is not truncated
538 	 */
539 	if (!ipv4_is_multicast(encap->daddr) ||
540 	    encap->tot_len == 0 ||
541 	    ntohs(encap->tot_len) + pimlen > skb->len)
542 		return 1;
543 
544 	read_lock(&mrt_lock);
545 	if (mrt->mroute_reg_vif_num >= 0)
546 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
547 	read_unlock(&mrt_lock);
548 
549 	if (!reg_dev)
550 		return 1;
551 
552 	skb->mac_header = skb->network_header;
553 	skb_pull(skb, (u8 *)encap - skb->data);
554 	skb_reset_network_header(skb);
555 	skb->protocol = htons(ETH_P_IP);
556 	skb->ip_summed = CHECKSUM_NONE;
557 
558 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
559 
560 	netif_rx(skb);
561 
562 	return NET_RX_SUCCESS;
563 }
564 #else
565 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
566 {
567 	return NULL;
568 }
569 #endif
570 
571 /**
572  *	vif_delete - Delete a VIF entry
573  *	@notify: Set to 1, if the caller is a notifier_call
574  */
575 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
576 		      struct list_head *head)
577 {
578 	struct vif_device *v;
579 	struct net_device *dev;
580 	struct in_device *in_dev;
581 
582 	if (vifi < 0 || vifi >= mrt->maxvif)
583 		return -EADDRNOTAVAIL;
584 
585 	v = &mrt->vif_table[vifi];
586 
587 	write_lock_bh(&mrt_lock);
588 	dev = v->dev;
589 	v->dev = NULL;
590 
591 	if (!dev) {
592 		write_unlock_bh(&mrt_lock);
593 		return -EADDRNOTAVAIL;
594 	}
595 
596 	if (vifi == mrt->mroute_reg_vif_num)
597 		mrt->mroute_reg_vif_num = -1;
598 
599 	if (vifi + 1 == mrt->maxvif) {
600 		int tmp;
601 
602 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
603 			if (VIF_EXISTS(mrt, tmp))
604 				break;
605 		}
606 		mrt->maxvif = tmp+1;
607 	}
608 
609 	write_unlock_bh(&mrt_lock);
610 
611 	dev_set_allmulti(dev, -1);
612 
613 	in_dev = __in_dev_get_rtnl(dev);
614 	if (in_dev) {
615 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
616 		inet_netconf_notify_devconf(dev_net(dev),
617 					    NETCONFA_MC_FORWARDING,
618 					    dev->ifindex, &in_dev->cnf);
619 		ip_rt_multicast_event(in_dev);
620 	}
621 
622 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
623 		unregister_netdevice_queue(dev, head);
624 
625 	dev_put(dev);
626 	return 0;
627 }
628 
629 static void ipmr_cache_free_rcu(struct rcu_head *head)
630 {
631 	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
632 
633 	kmem_cache_free(mrt_cachep, c);
634 }
635 
636 static inline void ipmr_cache_free(struct mfc_cache *c)
637 {
638 	call_rcu(&c->rcu, ipmr_cache_free_rcu);
639 }
640 
641 /* Destroy an unresolved cache entry, killing queued skbs
642  * and reporting error to netlink readers.
643  */
644 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
645 {
646 	struct net *net = read_pnet(&mrt->net);
647 	struct sk_buff *skb;
648 	struct nlmsgerr *e;
649 
650 	atomic_dec(&mrt->cache_resolve_queue_len);
651 
652 	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
653 		if (ip_hdr(skb)->version == 0) {
654 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
655 			nlh->nlmsg_type = NLMSG_ERROR;
656 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
657 			skb_trim(skb, nlh->nlmsg_len);
658 			e = nlmsg_data(nlh);
659 			e->error = -ETIMEDOUT;
660 			memset(&e->msg, 0, sizeof(e->msg));
661 
662 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
663 		} else {
664 			kfree_skb(skb);
665 		}
666 	}
667 
668 	ipmr_cache_free(c);
669 }
670 
671 /* Timer process for the unresolved queue. */
672 static void ipmr_expire_process(unsigned long arg)
673 {
674 	struct mr_table *mrt = (struct mr_table *)arg;
675 	unsigned long now;
676 	unsigned long expires;
677 	struct mfc_cache *c, *next;
678 
679 	if (!spin_trylock(&mfc_unres_lock)) {
680 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
681 		return;
682 	}
683 
684 	if (list_empty(&mrt->mfc_unres_queue))
685 		goto out;
686 
687 	now = jiffies;
688 	expires = 10*HZ;
689 
690 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
691 		if (time_after(c->mfc_un.unres.expires, now)) {
692 			unsigned long interval = c->mfc_un.unres.expires - now;
693 			if (interval < expires)
694 				expires = interval;
695 			continue;
696 		}
697 
698 		list_del(&c->list);
699 		mroute_netlink_event(mrt, c, RTM_DELROUTE);
700 		ipmr_destroy_unres(mrt, c);
701 	}
702 
703 	if (!list_empty(&mrt->mfc_unres_queue))
704 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
705 
706 out:
707 	spin_unlock(&mfc_unres_lock);
708 }
709 
710 /* Fill oifs list. It is called under write locked mrt_lock. */
711 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
712 				   unsigned char *ttls)
713 {
714 	int vifi;
715 
716 	cache->mfc_un.res.minvif = MAXVIFS;
717 	cache->mfc_un.res.maxvif = 0;
718 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
719 
720 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
721 		if (VIF_EXISTS(mrt, vifi) &&
722 		    ttls[vifi] && ttls[vifi] < 255) {
723 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
724 			if (cache->mfc_un.res.minvif > vifi)
725 				cache->mfc_un.res.minvif = vifi;
726 			if (cache->mfc_un.res.maxvif <= vifi)
727 				cache->mfc_un.res.maxvif = vifi + 1;
728 		}
729 	}
730 	cache->mfc_un.res.lastuse = jiffies;
731 }
732 
733 static int vif_add(struct net *net, struct mr_table *mrt,
734 		   struct vifctl *vifc, int mrtsock)
735 {
736 	int vifi = vifc->vifc_vifi;
737 	struct vif_device *v = &mrt->vif_table[vifi];
738 	struct net_device *dev;
739 	struct in_device *in_dev;
740 	int err;
741 
742 	/* Is vif busy ? */
743 	if (VIF_EXISTS(mrt, vifi))
744 		return -EADDRINUSE;
745 
746 	switch (vifc->vifc_flags) {
747 	case VIFF_REGISTER:
748 		if (!ipmr_pimsm_enabled())
749 			return -EINVAL;
750 		/* Special Purpose VIF in PIM
751 		 * All the packets will be sent to the daemon
752 		 */
753 		if (mrt->mroute_reg_vif_num >= 0)
754 			return -EADDRINUSE;
755 		dev = ipmr_reg_vif(net, mrt);
756 		if (!dev)
757 			return -ENOBUFS;
758 		err = dev_set_allmulti(dev, 1);
759 		if (err) {
760 			unregister_netdevice(dev);
761 			dev_put(dev);
762 			return err;
763 		}
764 		break;
765 	case VIFF_TUNNEL:
766 		dev = ipmr_new_tunnel(net, vifc);
767 		if (!dev)
768 			return -ENOBUFS;
769 		err = dev_set_allmulti(dev, 1);
770 		if (err) {
771 			ipmr_del_tunnel(dev, vifc);
772 			dev_put(dev);
773 			return err;
774 		}
775 		break;
776 	case VIFF_USE_IFINDEX:
777 	case 0:
778 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
779 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
780 			if (dev && !__in_dev_get_rtnl(dev)) {
781 				dev_put(dev);
782 				return -EADDRNOTAVAIL;
783 			}
784 		} else {
785 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
786 		}
787 		if (!dev)
788 			return -EADDRNOTAVAIL;
789 		err = dev_set_allmulti(dev, 1);
790 		if (err) {
791 			dev_put(dev);
792 			return err;
793 		}
794 		break;
795 	default:
796 		return -EINVAL;
797 	}
798 
799 	in_dev = __in_dev_get_rtnl(dev);
800 	if (!in_dev) {
801 		dev_put(dev);
802 		return -EADDRNOTAVAIL;
803 	}
804 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
805 	inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
806 				    &in_dev->cnf);
807 	ip_rt_multicast_event(in_dev);
808 
809 	/* Fill in the VIF structures */
810 
811 	v->rate_limit = vifc->vifc_rate_limit;
812 	v->local = vifc->vifc_lcl_addr.s_addr;
813 	v->remote = vifc->vifc_rmt_addr.s_addr;
814 	v->flags = vifc->vifc_flags;
815 	if (!mrtsock)
816 		v->flags |= VIFF_STATIC;
817 	v->threshold = vifc->vifc_threshold;
818 	v->bytes_in = 0;
819 	v->bytes_out = 0;
820 	v->pkt_in = 0;
821 	v->pkt_out = 0;
822 	v->link = dev->ifindex;
823 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
824 		v->link = dev_get_iflink(dev);
825 
826 	/* And finish update writing critical data */
827 	write_lock_bh(&mrt_lock);
828 	v->dev = dev;
829 	if (v->flags & VIFF_REGISTER)
830 		mrt->mroute_reg_vif_num = vifi;
831 	if (vifi+1 > mrt->maxvif)
832 		mrt->maxvif = vifi+1;
833 	write_unlock_bh(&mrt_lock);
834 	return 0;
835 }
836 
837 /* called with rcu_read_lock() */
838 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
839 					 __be32 origin,
840 					 __be32 mcastgrp)
841 {
842 	int line = MFC_HASH(mcastgrp, origin);
843 	struct mfc_cache *c;
844 
845 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
846 		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
847 			return c;
848 	}
849 	return NULL;
850 }
851 
852 /* Look for a (*,*,oif) entry */
853 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
854 						    int vifi)
855 {
856 	int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
857 	struct mfc_cache *c;
858 
859 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
860 		if (c->mfc_origin == htonl(INADDR_ANY) &&
861 		    c->mfc_mcastgrp == htonl(INADDR_ANY) &&
862 		    c->mfc_un.res.ttls[vifi] < 255)
863 			return c;
864 
865 	return NULL;
866 }
867 
868 /* Look for a (*,G) entry */
869 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
870 					     __be32 mcastgrp, int vifi)
871 {
872 	int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
873 	struct mfc_cache *c, *proxy;
874 
875 	if (mcastgrp == htonl(INADDR_ANY))
876 		goto skip;
877 
878 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
879 		if (c->mfc_origin == htonl(INADDR_ANY) &&
880 		    c->mfc_mcastgrp == mcastgrp) {
881 			if (c->mfc_un.res.ttls[vifi] < 255)
882 				return c;
883 
884 			/* It's ok if the vifi is part of the static tree */
885 			proxy = ipmr_cache_find_any_parent(mrt,
886 							   c->mfc_parent);
887 			if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
888 				return c;
889 		}
890 
891 skip:
892 	return ipmr_cache_find_any_parent(mrt, vifi);
893 }
894 
895 /* Allocate a multicast cache entry */
896 static struct mfc_cache *ipmr_cache_alloc(void)
897 {
898 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
899 
900 	if (c) {
901 		c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
902 		c->mfc_un.res.minvif = MAXVIFS;
903 	}
904 	return c;
905 }
906 
907 static struct mfc_cache *ipmr_cache_alloc_unres(void)
908 {
909 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
910 
911 	if (c) {
912 		skb_queue_head_init(&c->mfc_un.unres.unresolved);
913 		c->mfc_un.unres.expires = jiffies + 10*HZ;
914 	}
915 	return c;
916 }
917 
918 /* A cache entry has gone into a resolved state from queued */
919 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
920 			       struct mfc_cache *uc, struct mfc_cache *c)
921 {
922 	struct sk_buff *skb;
923 	struct nlmsgerr *e;
924 
925 	/* Play the pending entries through our router */
926 	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
927 		if (ip_hdr(skb)->version == 0) {
928 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
929 
930 			if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
931 				nlh->nlmsg_len = skb_tail_pointer(skb) -
932 						 (u8 *)nlh;
933 			} else {
934 				nlh->nlmsg_type = NLMSG_ERROR;
935 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
936 				skb_trim(skb, nlh->nlmsg_len);
937 				e = nlmsg_data(nlh);
938 				e->error = -EMSGSIZE;
939 				memset(&e->msg, 0, sizeof(e->msg));
940 			}
941 
942 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
943 		} else {
944 			ip_mr_forward(net, mrt, skb, c, 0);
945 		}
946 	}
947 }
948 
949 /* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
950  * expects the following bizarre scheme.
951  *
952  * Called under mrt_lock.
953  */
954 static int ipmr_cache_report(struct mr_table *mrt,
955 			     struct sk_buff *pkt, vifi_t vifi, int assert)
956 {
957 	const int ihl = ip_hdrlen(pkt);
958 	struct sock *mroute_sk;
959 	struct igmphdr *igmp;
960 	struct igmpmsg *msg;
961 	struct sk_buff *skb;
962 	int ret;
963 
964 	if (assert == IGMPMSG_WHOLEPKT)
965 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
966 	else
967 		skb = alloc_skb(128, GFP_ATOMIC);
968 
969 	if (!skb)
970 		return -ENOBUFS;
971 
972 	if (assert == IGMPMSG_WHOLEPKT) {
973 		/* Ugly, but we have no choice with this interface.
974 		 * Duplicate old header, fix ihl, length etc.
975 		 * And all this only to mangle msg->im_msgtype and
976 		 * to set msg->im_mbz to "mbz" :-)
977 		 */
978 		skb_push(skb, sizeof(struct iphdr));
979 		skb_reset_network_header(skb);
980 		skb_reset_transport_header(skb);
981 		msg = (struct igmpmsg *)skb_network_header(skb);
982 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
983 		msg->im_msgtype = IGMPMSG_WHOLEPKT;
984 		msg->im_mbz = 0;
985 		msg->im_vif = mrt->mroute_reg_vif_num;
986 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
987 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
988 					     sizeof(struct iphdr));
989 	} else {
990 		/* Copy the IP header */
991 		skb_set_network_header(skb, skb->len);
992 		skb_put(skb, ihl);
993 		skb_copy_to_linear_data(skb, pkt->data, ihl);
994 		/* Flag to the kernel this is a route add */
995 		ip_hdr(skb)->protocol = 0;
996 		msg = (struct igmpmsg *)skb_network_header(skb);
997 		msg->im_vif = vifi;
998 		skb_dst_set(skb, dst_clone(skb_dst(pkt)));
999 		/* Add our header */
1000 		igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
1001 		igmp->type = assert;
1002 		msg->im_msgtype = assert;
1003 		igmp->code = 0;
1004 		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1005 		skb->transport_header = skb->network_header;
1006 	}
1007 
1008 	rcu_read_lock();
1009 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1010 	if (!mroute_sk) {
1011 		rcu_read_unlock();
1012 		kfree_skb(skb);
1013 		return -EINVAL;
1014 	}
1015 
1016 	/* Deliver to mrouted */
1017 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1018 	rcu_read_unlock();
1019 	if (ret < 0) {
1020 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1021 		kfree_skb(skb);
1022 	}
1023 
1024 	return ret;
1025 }
1026 
1027 /* Queue a packet for resolution. It gets locked cache entry! */
1028 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1029 				 struct sk_buff *skb)
1030 {
1031 	bool found = false;
1032 	int err;
1033 	struct mfc_cache *c;
1034 	const struct iphdr *iph = ip_hdr(skb);
1035 
1036 	spin_lock_bh(&mfc_unres_lock);
1037 	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1038 		if (c->mfc_mcastgrp == iph->daddr &&
1039 		    c->mfc_origin == iph->saddr) {
1040 			found = true;
1041 			break;
1042 		}
1043 	}
1044 
1045 	if (!found) {
1046 		/* Create a new entry if allowable */
1047 		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1048 		    (c = ipmr_cache_alloc_unres()) == NULL) {
1049 			spin_unlock_bh(&mfc_unres_lock);
1050 
1051 			kfree_skb(skb);
1052 			return -ENOBUFS;
1053 		}
1054 
1055 		/* Fill in the new cache entry */
1056 		c->mfc_parent	= -1;
1057 		c->mfc_origin	= iph->saddr;
1058 		c->mfc_mcastgrp	= iph->daddr;
1059 
1060 		/* Reflect first query at mrouted. */
1061 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1062 		if (err < 0) {
1063 			/* If the report failed throw the cache entry
1064 			   out - Brad Parker
1065 			 */
1066 			spin_unlock_bh(&mfc_unres_lock);
1067 
1068 			ipmr_cache_free(c);
1069 			kfree_skb(skb);
1070 			return err;
1071 		}
1072 
1073 		atomic_inc(&mrt->cache_resolve_queue_len);
1074 		list_add(&c->list, &mrt->mfc_unres_queue);
1075 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1076 
1077 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1078 			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1079 	}
1080 
1081 	/* See if we can append the packet */
1082 	if (c->mfc_un.unres.unresolved.qlen > 3) {
1083 		kfree_skb(skb);
1084 		err = -ENOBUFS;
1085 	} else {
1086 		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1087 		err = 0;
1088 	}
1089 
1090 	spin_unlock_bh(&mfc_unres_lock);
1091 	return err;
1092 }
1093 
1094 /* MFC cache manipulation by user space mroute daemon */
1095 
1096 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1097 {
1098 	int line;
1099 	struct mfc_cache *c, *next;
1100 
1101 	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1102 
1103 	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1104 		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1105 		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1106 		    (parent == -1 || parent == c->mfc_parent)) {
1107 			list_del_rcu(&c->list);
1108 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1109 			ipmr_cache_free(c);
1110 			return 0;
1111 		}
1112 	}
1113 	return -ENOENT;
1114 }
1115 
1116 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1117 			struct mfcctl *mfc, int mrtsock, int parent)
1118 {
1119 	bool found = false;
1120 	int line;
1121 	struct mfc_cache *uc, *c;
1122 
1123 	if (mfc->mfcc_parent >= MAXVIFS)
1124 		return -ENFILE;
1125 
1126 	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1127 
1128 	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1129 		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1130 		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1131 		    (parent == -1 || parent == c->mfc_parent)) {
1132 			found = true;
1133 			break;
1134 		}
1135 	}
1136 
1137 	if (found) {
1138 		write_lock_bh(&mrt_lock);
1139 		c->mfc_parent = mfc->mfcc_parent;
1140 		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1141 		if (!mrtsock)
1142 			c->mfc_flags |= MFC_STATIC;
1143 		write_unlock_bh(&mrt_lock);
1144 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1145 		return 0;
1146 	}
1147 
1148 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1149 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1150 		return -EINVAL;
1151 
1152 	c = ipmr_cache_alloc();
1153 	if (!c)
1154 		return -ENOMEM;
1155 
1156 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1157 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1158 	c->mfc_parent = mfc->mfcc_parent;
1159 	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1160 	if (!mrtsock)
1161 		c->mfc_flags |= MFC_STATIC;
1162 
1163 	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1164 
1165 	/* Check to see if we resolved a queued list. If so we
1166 	 * need to send on the frames and tidy up.
1167 	 */
1168 	found = false;
1169 	spin_lock_bh(&mfc_unres_lock);
1170 	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1171 		if (uc->mfc_origin == c->mfc_origin &&
1172 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1173 			list_del(&uc->list);
1174 			atomic_dec(&mrt->cache_resolve_queue_len);
1175 			found = true;
1176 			break;
1177 		}
1178 	}
1179 	if (list_empty(&mrt->mfc_unres_queue))
1180 		del_timer(&mrt->ipmr_expire_timer);
1181 	spin_unlock_bh(&mfc_unres_lock);
1182 
1183 	if (found) {
1184 		ipmr_cache_resolve(net, mrt, uc, c);
1185 		ipmr_cache_free(uc);
1186 	}
1187 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1188 	return 0;
1189 }
1190 
1191 /* Close the multicast socket, and clear the vif tables etc */
1192 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1193 {
1194 	int i;
1195 	LIST_HEAD(list);
1196 	struct mfc_cache *c, *next;
1197 
1198 	/* Shut down all active vif entries */
1199 	for (i = 0; i < mrt->maxvif; i++) {
1200 		if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1201 			continue;
1202 		vif_delete(mrt, i, 0, &list);
1203 	}
1204 	unregister_netdevice_many(&list);
1205 
1206 	/* Wipe the cache */
1207 	for (i = 0; i < MFC_LINES; i++) {
1208 		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1209 			if (!all && (c->mfc_flags & MFC_STATIC))
1210 				continue;
1211 			list_del_rcu(&c->list);
1212 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1213 			ipmr_cache_free(c);
1214 		}
1215 	}
1216 
1217 	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1218 		spin_lock_bh(&mfc_unres_lock);
1219 		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1220 			list_del(&c->list);
1221 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1222 			ipmr_destroy_unres(mrt, c);
1223 		}
1224 		spin_unlock_bh(&mfc_unres_lock);
1225 	}
1226 }
1227 
1228 /* called from ip_ra_control(), before an RCU grace period,
1229  * we dont need to call synchronize_rcu() here
1230  */
1231 static void mrtsock_destruct(struct sock *sk)
1232 {
1233 	struct net *net = sock_net(sk);
1234 	struct mr_table *mrt;
1235 
1236 	rtnl_lock();
1237 	ipmr_for_each_table(mrt, net) {
1238 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1239 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1240 			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1241 						    NETCONFA_IFINDEX_ALL,
1242 						    net->ipv4.devconf_all);
1243 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1244 			mroute_clean_tables(mrt, false);
1245 		}
1246 	}
1247 	rtnl_unlock();
1248 }
1249 
1250 /* Socket options and virtual interface manipulation. The whole
1251  * virtual interface system is a complete heap, but unfortunately
1252  * that's how BSD mrouted happens to think. Maybe one day with a proper
1253  * MOSPF/PIM router set up we can clean this up.
1254  */
1255 
1256 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1257 			 unsigned int optlen)
1258 {
1259 	struct net *net = sock_net(sk);
1260 	int val, ret = 0, parent = 0;
1261 	struct mr_table *mrt;
1262 	struct vifctl vif;
1263 	struct mfcctl mfc;
1264 	u32 uval;
1265 
1266 	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1267 	rtnl_lock();
1268 	if (sk->sk_type != SOCK_RAW ||
1269 	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1270 		ret = -EOPNOTSUPP;
1271 		goto out_unlock;
1272 	}
1273 
1274 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1275 	if (!mrt) {
1276 		ret = -ENOENT;
1277 		goto out_unlock;
1278 	}
1279 	if (optname != MRT_INIT) {
1280 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1281 		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1282 			ret = -EACCES;
1283 			goto out_unlock;
1284 		}
1285 	}
1286 
1287 	switch (optname) {
1288 	case MRT_INIT:
1289 		if (optlen != sizeof(int)) {
1290 			ret = -EINVAL;
1291 			break;
1292 		}
1293 		if (rtnl_dereference(mrt->mroute_sk)) {
1294 			ret = -EADDRINUSE;
1295 			break;
1296 		}
1297 
1298 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1299 		if (ret == 0) {
1300 			rcu_assign_pointer(mrt->mroute_sk, sk);
1301 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1302 			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1303 						    NETCONFA_IFINDEX_ALL,
1304 						    net->ipv4.devconf_all);
1305 		}
1306 		break;
1307 	case MRT_DONE:
1308 		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1309 			ret = -EACCES;
1310 		} else {
1311 			/* We need to unlock here because mrtsock_destruct takes
1312 			 * care of rtnl itself and we can't change that due to
1313 			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1314 			 */
1315 			rtnl_unlock();
1316 			ret = ip_ra_control(sk, 0, NULL);
1317 			goto out;
1318 		}
1319 		break;
1320 	case MRT_ADD_VIF:
1321 	case MRT_DEL_VIF:
1322 		if (optlen != sizeof(vif)) {
1323 			ret = -EINVAL;
1324 			break;
1325 		}
1326 		if (copy_from_user(&vif, optval, sizeof(vif))) {
1327 			ret = -EFAULT;
1328 			break;
1329 		}
1330 		if (vif.vifc_vifi >= MAXVIFS) {
1331 			ret = -ENFILE;
1332 			break;
1333 		}
1334 		if (optname == MRT_ADD_VIF) {
1335 			ret = vif_add(net, mrt, &vif,
1336 				      sk == rtnl_dereference(mrt->mroute_sk));
1337 		} else {
1338 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1339 		}
1340 		break;
1341 	/* Manipulate the forwarding caches. These live
1342 	 * in a sort of kernel/user symbiosis.
1343 	 */
1344 	case MRT_ADD_MFC:
1345 	case MRT_DEL_MFC:
1346 		parent = -1;
1347 	case MRT_ADD_MFC_PROXY:
1348 	case MRT_DEL_MFC_PROXY:
1349 		if (optlen != sizeof(mfc)) {
1350 			ret = -EINVAL;
1351 			break;
1352 		}
1353 		if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1354 			ret = -EFAULT;
1355 			break;
1356 		}
1357 		if (parent == 0)
1358 			parent = mfc.mfcc_parent;
1359 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1360 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1361 		else
1362 			ret = ipmr_mfc_add(net, mrt, &mfc,
1363 					   sk == rtnl_dereference(mrt->mroute_sk),
1364 					   parent);
1365 		break;
1366 	/* Control PIM assert. */
1367 	case MRT_ASSERT:
1368 		if (optlen != sizeof(val)) {
1369 			ret = -EINVAL;
1370 			break;
1371 		}
1372 		if (get_user(val, (int __user *)optval)) {
1373 			ret = -EFAULT;
1374 			break;
1375 		}
1376 		mrt->mroute_do_assert = val;
1377 		break;
1378 	case MRT_PIM:
1379 		if (!ipmr_pimsm_enabled()) {
1380 			ret = -ENOPROTOOPT;
1381 			break;
1382 		}
1383 		if (optlen != sizeof(val)) {
1384 			ret = -EINVAL;
1385 			break;
1386 		}
1387 		if (get_user(val, (int __user *)optval)) {
1388 			ret = -EFAULT;
1389 			break;
1390 		}
1391 
1392 		val = !!val;
1393 		if (val != mrt->mroute_do_pim) {
1394 			mrt->mroute_do_pim = val;
1395 			mrt->mroute_do_assert = val;
1396 		}
1397 		break;
1398 	case MRT_TABLE:
1399 		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1400 			ret = -ENOPROTOOPT;
1401 			break;
1402 		}
1403 		if (optlen != sizeof(uval)) {
1404 			ret = -EINVAL;
1405 			break;
1406 		}
1407 		if (get_user(uval, (u32 __user *)optval)) {
1408 			ret = -EFAULT;
1409 			break;
1410 		}
1411 
1412 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1413 			ret = -EBUSY;
1414 		} else {
1415 			mrt = ipmr_new_table(net, uval);
1416 			if (IS_ERR(mrt))
1417 				ret = PTR_ERR(mrt);
1418 			else
1419 				raw_sk(sk)->ipmr_table = uval;
1420 		}
1421 		break;
1422 	/* Spurious command, or MRT_VERSION which you cannot set. */
1423 	default:
1424 		ret = -ENOPROTOOPT;
1425 	}
1426 out_unlock:
1427 	rtnl_unlock();
1428 out:
1429 	return ret;
1430 }
1431 
1432 /* Getsock opt support for the multicast routing system. */
1433 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1434 {
1435 	int olr;
1436 	int val;
1437 	struct net *net = sock_net(sk);
1438 	struct mr_table *mrt;
1439 
1440 	if (sk->sk_type != SOCK_RAW ||
1441 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1442 		return -EOPNOTSUPP;
1443 
1444 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1445 	if (!mrt)
1446 		return -ENOENT;
1447 
1448 	switch (optname) {
1449 	case MRT_VERSION:
1450 		val = 0x0305;
1451 		break;
1452 	case MRT_PIM:
1453 		if (!ipmr_pimsm_enabled())
1454 			return -ENOPROTOOPT;
1455 		val = mrt->mroute_do_pim;
1456 		break;
1457 	case MRT_ASSERT:
1458 		val = mrt->mroute_do_assert;
1459 		break;
1460 	default:
1461 		return -ENOPROTOOPT;
1462 	}
1463 
1464 	if (get_user(olr, optlen))
1465 		return -EFAULT;
1466 	olr = min_t(unsigned int, olr, sizeof(int));
1467 	if (olr < 0)
1468 		return -EINVAL;
1469 	if (put_user(olr, optlen))
1470 		return -EFAULT;
1471 	if (copy_to_user(optval, &val, olr))
1472 		return -EFAULT;
1473 	return 0;
1474 }
1475 
1476 /* The IP multicast ioctl support routines. */
1477 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1478 {
1479 	struct sioc_sg_req sr;
1480 	struct sioc_vif_req vr;
1481 	struct vif_device *vif;
1482 	struct mfc_cache *c;
1483 	struct net *net = sock_net(sk);
1484 	struct mr_table *mrt;
1485 
1486 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1487 	if (!mrt)
1488 		return -ENOENT;
1489 
1490 	switch (cmd) {
1491 	case SIOCGETVIFCNT:
1492 		if (copy_from_user(&vr, arg, sizeof(vr)))
1493 			return -EFAULT;
1494 		if (vr.vifi >= mrt->maxvif)
1495 			return -EINVAL;
1496 		read_lock(&mrt_lock);
1497 		vif = &mrt->vif_table[vr.vifi];
1498 		if (VIF_EXISTS(mrt, vr.vifi)) {
1499 			vr.icount = vif->pkt_in;
1500 			vr.ocount = vif->pkt_out;
1501 			vr.ibytes = vif->bytes_in;
1502 			vr.obytes = vif->bytes_out;
1503 			read_unlock(&mrt_lock);
1504 
1505 			if (copy_to_user(arg, &vr, sizeof(vr)))
1506 				return -EFAULT;
1507 			return 0;
1508 		}
1509 		read_unlock(&mrt_lock);
1510 		return -EADDRNOTAVAIL;
1511 	case SIOCGETSGCNT:
1512 		if (copy_from_user(&sr, arg, sizeof(sr)))
1513 			return -EFAULT;
1514 
1515 		rcu_read_lock();
1516 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1517 		if (c) {
1518 			sr.pktcnt = c->mfc_un.res.pkt;
1519 			sr.bytecnt = c->mfc_un.res.bytes;
1520 			sr.wrong_if = c->mfc_un.res.wrong_if;
1521 			rcu_read_unlock();
1522 
1523 			if (copy_to_user(arg, &sr, sizeof(sr)))
1524 				return -EFAULT;
1525 			return 0;
1526 		}
1527 		rcu_read_unlock();
1528 		return -EADDRNOTAVAIL;
1529 	default:
1530 		return -ENOIOCTLCMD;
1531 	}
1532 }
1533 
1534 #ifdef CONFIG_COMPAT
1535 struct compat_sioc_sg_req {
1536 	struct in_addr src;
1537 	struct in_addr grp;
1538 	compat_ulong_t pktcnt;
1539 	compat_ulong_t bytecnt;
1540 	compat_ulong_t wrong_if;
1541 };
1542 
1543 struct compat_sioc_vif_req {
1544 	vifi_t	vifi;		/* Which iface */
1545 	compat_ulong_t icount;
1546 	compat_ulong_t ocount;
1547 	compat_ulong_t ibytes;
1548 	compat_ulong_t obytes;
1549 };
1550 
1551 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1552 {
1553 	struct compat_sioc_sg_req sr;
1554 	struct compat_sioc_vif_req vr;
1555 	struct vif_device *vif;
1556 	struct mfc_cache *c;
1557 	struct net *net = sock_net(sk);
1558 	struct mr_table *mrt;
1559 
1560 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1561 	if (!mrt)
1562 		return -ENOENT;
1563 
1564 	switch (cmd) {
1565 	case SIOCGETVIFCNT:
1566 		if (copy_from_user(&vr, arg, sizeof(vr)))
1567 			return -EFAULT;
1568 		if (vr.vifi >= mrt->maxvif)
1569 			return -EINVAL;
1570 		read_lock(&mrt_lock);
1571 		vif = &mrt->vif_table[vr.vifi];
1572 		if (VIF_EXISTS(mrt, vr.vifi)) {
1573 			vr.icount = vif->pkt_in;
1574 			vr.ocount = vif->pkt_out;
1575 			vr.ibytes = vif->bytes_in;
1576 			vr.obytes = vif->bytes_out;
1577 			read_unlock(&mrt_lock);
1578 
1579 			if (copy_to_user(arg, &vr, sizeof(vr)))
1580 				return -EFAULT;
1581 			return 0;
1582 		}
1583 		read_unlock(&mrt_lock);
1584 		return -EADDRNOTAVAIL;
1585 	case SIOCGETSGCNT:
1586 		if (copy_from_user(&sr, arg, sizeof(sr)))
1587 			return -EFAULT;
1588 
1589 		rcu_read_lock();
1590 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1591 		if (c) {
1592 			sr.pktcnt = c->mfc_un.res.pkt;
1593 			sr.bytecnt = c->mfc_un.res.bytes;
1594 			sr.wrong_if = c->mfc_un.res.wrong_if;
1595 			rcu_read_unlock();
1596 
1597 			if (copy_to_user(arg, &sr, sizeof(sr)))
1598 				return -EFAULT;
1599 			return 0;
1600 		}
1601 		rcu_read_unlock();
1602 		return -EADDRNOTAVAIL;
1603 	default:
1604 		return -ENOIOCTLCMD;
1605 	}
1606 }
1607 #endif
1608 
1609 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1610 {
1611 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1612 	struct net *net = dev_net(dev);
1613 	struct mr_table *mrt;
1614 	struct vif_device *v;
1615 	int ct;
1616 
1617 	if (event != NETDEV_UNREGISTER)
1618 		return NOTIFY_DONE;
1619 
1620 	ipmr_for_each_table(mrt, net) {
1621 		v = &mrt->vif_table[0];
1622 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1623 			if (v->dev == dev)
1624 				vif_delete(mrt, ct, 1, NULL);
1625 		}
1626 	}
1627 	return NOTIFY_DONE;
1628 }
1629 
1630 static struct notifier_block ip_mr_notifier = {
1631 	.notifier_call = ipmr_device_event,
1632 };
1633 
1634 /* Encapsulate a packet by attaching a valid IPIP header to it.
1635  * This avoids tunnel drivers and other mess and gives us the speed so
1636  * important for multicast video.
1637  */
1638 static void ip_encap(struct net *net, struct sk_buff *skb,
1639 		     __be32 saddr, __be32 daddr)
1640 {
1641 	struct iphdr *iph;
1642 	const struct iphdr *old_iph = ip_hdr(skb);
1643 
1644 	skb_push(skb, sizeof(struct iphdr));
1645 	skb->transport_header = skb->network_header;
1646 	skb_reset_network_header(skb);
1647 	iph = ip_hdr(skb);
1648 
1649 	iph->version	=	4;
1650 	iph->tos	=	old_iph->tos;
1651 	iph->ttl	=	old_iph->ttl;
1652 	iph->frag_off	=	0;
1653 	iph->daddr	=	daddr;
1654 	iph->saddr	=	saddr;
1655 	iph->protocol	=	IPPROTO_IPIP;
1656 	iph->ihl	=	5;
1657 	iph->tot_len	=	htons(skb->len);
1658 	ip_select_ident(net, skb, NULL);
1659 	ip_send_check(iph);
1660 
1661 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1662 	nf_reset(skb);
1663 }
1664 
1665 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1666 				      struct sk_buff *skb)
1667 {
1668 	struct ip_options *opt = &(IPCB(skb)->opt);
1669 
1670 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1671 	IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1672 
1673 	if (unlikely(opt->optlen))
1674 		ip_forward_options(skb);
1675 
1676 	return dst_output(net, sk, skb);
1677 }
1678 
1679 /* Processing handlers for ipmr_forward */
1680 
1681 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1682 			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1683 {
1684 	const struct iphdr *iph = ip_hdr(skb);
1685 	struct vif_device *vif = &mrt->vif_table[vifi];
1686 	struct net_device *dev;
1687 	struct rtable *rt;
1688 	struct flowi4 fl4;
1689 	int    encap = 0;
1690 
1691 	if (!vif->dev)
1692 		goto out_free;
1693 
1694 	if (vif->flags & VIFF_REGISTER) {
1695 		vif->pkt_out++;
1696 		vif->bytes_out += skb->len;
1697 		vif->dev->stats.tx_bytes += skb->len;
1698 		vif->dev->stats.tx_packets++;
1699 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1700 		goto out_free;
1701 	}
1702 
1703 	if (vif->flags & VIFF_TUNNEL) {
1704 		rt = ip_route_output_ports(net, &fl4, NULL,
1705 					   vif->remote, vif->local,
1706 					   0, 0,
1707 					   IPPROTO_IPIP,
1708 					   RT_TOS(iph->tos), vif->link);
1709 		if (IS_ERR(rt))
1710 			goto out_free;
1711 		encap = sizeof(struct iphdr);
1712 	} else {
1713 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1714 					   0, 0,
1715 					   IPPROTO_IPIP,
1716 					   RT_TOS(iph->tos), vif->link);
1717 		if (IS_ERR(rt))
1718 			goto out_free;
1719 	}
1720 
1721 	dev = rt->dst.dev;
1722 
1723 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1724 		/* Do not fragment multicasts. Alas, IPv4 does not
1725 		 * allow to send ICMP, so that packets will disappear
1726 		 * to blackhole.
1727 		 */
1728 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1729 		ip_rt_put(rt);
1730 		goto out_free;
1731 	}
1732 
1733 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1734 
1735 	if (skb_cow(skb, encap)) {
1736 		ip_rt_put(rt);
1737 		goto out_free;
1738 	}
1739 
1740 	vif->pkt_out++;
1741 	vif->bytes_out += skb->len;
1742 
1743 	skb_dst_drop(skb);
1744 	skb_dst_set(skb, &rt->dst);
1745 	ip_decrease_ttl(ip_hdr(skb));
1746 
1747 	/* FIXME: forward and output firewalls used to be called here.
1748 	 * What do we do with netfilter? -- RR
1749 	 */
1750 	if (vif->flags & VIFF_TUNNEL) {
1751 		ip_encap(net, skb, vif->local, vif->remote);
1752 		/* FIXME: extra output firewall step used to be here. --RR */
1753 		vif->dev->stats.tx_packets++;
1754 		vif->dev->stats.tx_bytes += skb->len;
1755 	}
1756 
1757 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1758 
1759 	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1760 	 * not only before forwarding, but after forwarding on all output
1761 	 * interfaces. It is clear, if mrouter runs a multicasting
1762 	 * program, it should receive packets not depending to what interface
1763 	 * program is joined.
1764 	 * If we will not make it, the program will have to join on all
1765 	 * interfaces. On the other hand, multihoming host (or router, but
1766 	 * not mrouter) cannot join to more than one interface - it will
1767 	 * result in receiving multiple packets.
1768 	 */
1769 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1770 		net, NULL, skb, skb->dev, dev,
1771 		ipmr_forward_finish);
1772 	return;
1773 
1774 out_free:
1775 	kfree_skb(skb);
1776 }
1777 
1778 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1779 {
1780 	int ct;
1781 
1782 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1783 		if (mrt->vif_table[ct].dev == dev)
1784 			break;
1785 	}
1786 	return ct;
1787 }
1788 
1789 /* "local" means that we should preserve one skb (for local delivery) */
1790 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1791 			  struct sk_buff *skb, struct mfc_cache *cache,
1792 			  int local)
1793 {
1794 	int psend = -1;
1795 	int vif, ct;
1796 	int true_vifi = ipmr_find_vif(mrt, skb->dev);
1797 
1798 	vif = cache->mfc_parent;
1799 	cache->mfc_un.res.pkt++;
1800 	cache->mfc_un.res.bytes += skb->len;
1801 	cache->mfc_un.res.lastuse = jiffies;
1802 
1803 	if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1804 		struct mfc_cache *cache_proxy;
1805 
1806 		/* For an (*,G) entry, we only check that the incomming
1807 		 * interface is part of the static tree.
1808 		 */
1809 		cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1810 		if (cache_proxy &&
1811 		    cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1812 			goto forward;
1813 	}
1814 
1815 	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1816 	if (mrt->vif_table[vif].dev != skb->dev) {
1817 		struct net_device *mdev;
1818 
1819 		mdev = l3mdev_master_dev_rcu(mrt->vif_table[vif].dev);
1820 		if (mdev == skb->dev)
1821 			goto forward;
1822 
1823 		if (rt_is_output_route(skb_rtable(skb))) {
1824 			/* It is our own packet, looped back.
1825 			 * Very complicated situation...
1826 			 *
1827 			 * The best workaround until routing daemons will be
1828 			 * fixed is not to redistribute packet, if it was
1829 			 * send through wrong interface. It means, that
1830 			 * multicast applications WILL NOT work for
1831 			 * (S,G), which have default multicast route pointing
1832 			 * to wrong oif. In any case, it is not a good
1833 			 * idea to use multicasting applications on router.
1834 			 */
1835 			goto dont_forward;
1836 		}
1837 
1838 		cache->mfc_un.res.wrong_if++;
1839 
1840 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1841 		    /* pimsm uses asserts, when switching from RPT to SPT,
1842 		     * so that we cannot check that packet arrived on an oif.
1843 		     * It is bad, but otherwise we would need to move pretty
1844 		     * large chunk of pimd to kernel. Ough... --ANK
1845 		     */
1846 		    (mrt->mroute_do_pim ||
1847 		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1848 		    time_after(jiffies,
1849 			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1850 			cache->mfc_un.res.last_assert = jiffies;
1851 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1852 		}
1853 		goto dont_forward;
1854 	}
1855 
1856 forward:
1857 	mrt->vif_table[vif].pkt_in++;
1858 	mrt->vif_table[vif].bytes_in += skb->len;
1859 
1860 	/* Forward the frame */
1861 	if (cache->mfc_origin == htonl(INADDR_ANY) &&
1862 	    cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1863 		if (true_vifi >= 0 &&
1864 		    true_vifi != cache->mfc_parent &&
1865 		    ip_hdr(skb)->ttl >
1866 				cache->mfc_un.res.ttls[cache->mfc_parent]) {
1867 			/* It's an (*,*) entry and the packet is not coming from
1868 			 * the upstream: forward the packet to the upstream
1869 			 * only.
1870 			 */
1871 			psend = cache->mfc_parent;
1872 			goto last_forward;
1873 		}
1874 		goto dont_forward;
1875 	}
1876 	for (ct = cache->mfc_un.res.maxvif - 1;
1877 	     ct >= cache->mfc_un.res.minvif; ct--) {
1878 		/* For (*,G) entry, don't forward to the incoming interface */
1879 		if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1880 		     ct != true_vifi) &&
1881 		    ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1882 			if (psend != -1) {
1883 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1884 
1885 				if (skb2)
1886 					ipmr_queue_xmit(net, mrt, skb2, cache,
1887 							psend);
1888 			}
1889 			psend = ct;
1890 		}
1891 	}
1892 last_forward:
1893 	if (psend != -1) {
1894 		if (local) {
1895 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1896 
1897 			if (skb2)
1898 				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1899 		} else {
1900 			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1901 			return;
1902 		}
1903 	}
1904 
1905 dont_forward:
1906 	if (!local)
1907 		kfree_skb(skb);
1908 }
1909 
1910 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1911 {
1912 	struct rtable *rt = skb_rtable(skb);
1913 	struct iphdr *iph = ip_hdr(skb);
1914 	struct flowi4 fl4 = {
1915 		.daddr = iph->daddr,
1916 		.saddr = iph->saddr,
1917 		.flowi4_tos = RT_TOS(iph->tos),
1918 		.flowi4_oif = (rt_is_output_route(rt) ?
1919 			       skb->dev->ifindex : 0),
1920 		.flowi4_iif = (rt_is_output_route(rt) ?
1921 			       LOOPBACK_IFINDEX :
1922 			       skb->dev->ifindex),
1923 		.flowi4_mark = skb->mark,
1924 	};
1925 	struct mr_table *mrt;
1926 	int err;
1927 
1928 	err = ipmr_fib_lookup(net, &fl4, &mrt);
1929 	if (err)
1930 		return ERR_PTR(err);
1931 	return mrt;
1932 }
1933 
1934 /* Multicast packets for forwarding arrive here
1935  * Called with rcu_read_lock();
1936  */
1937 int ip_mr_input(struct sk_buff *skb)
1938 {
1939 	struct mfc_cache *cache;
1940 	struct net *net = dev_net(skb->dev);
1941 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1942 	struct mr_table *mrt;
1943 
1944 	/* Packet is looped back after forward, it should not be
1945 	 * forwarded second time, but still can be delivered locally.
1946 	 */
1947 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1948 		goto dont_forward;
1949 
1950 	mrt = ipmr_rt_fib_lookup(net, skb);
1951 	if (IS_ERR(mrt)) {
1952 		kfree_skb(skb);
1953 		return PTR_ERR(mrt);
1954 	}
1955 	if (!local) {
1956 		if (IPCB(skb)->opt.router_alert) {
1957 			if (ip_call_ra_chain(skb))
1958 				return 0;
1959 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1960 			/* IGMPv1 (and broken IGMPv2 implementations sort of
1961 			 * Cisco IOS <= 11.2(8)) do not put router alert
1962 			 * option to IGMP packets destined to routable
1963 			 * groups. It is very bad, because it means
1964 			 * that we can forward NO IGMP messages.
1965 			 */
1966 			struct sock *mroute_sk;
1967 
1968 			mroute_sk = rcu_dereference(mrt->mroute_sk);
1969 			if (mroute_sk) {
1970 				nf_reset(skb);
1971 				raw_rcv(mroute_sk, skb);
1972 				return 0;
1973 			}
1974 		    }
1975 	}
1976 
1977 	/* already under rcu_read_lock() */
1978 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1979 	if (!cache) {
1980 		int vif = ipmr_find_vif(mrt, skb->dev);
1981 
1982 		if (vif >= 0)
1983 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1984 						    vif);
1985 	}
1986 
1987 	/* No usable cache entry */
1988 	if (!cache) {
1989 		int vif;
1990 
1991 		if (local) {
1992 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1993 			ip_local_deliver(skb);
1994 			if (!skb2)
1995 				return -ENOBUFS;
1996 			skb = skb2;
1997 		}
1998 
1999 		read_lock(&mrt_lock);
2000 		vif = ipmr_find_vif(mrt, skb->dev);
2001 		if (vif >= 0) {
2002 			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2003 			read_unlock(&mrt_lock);
2004 
2005 			return err2;
2006 		}
2007 		read_unlock(&mrt_lock);
2008 		kfree_skb(skb);
2009 		return -ENODEV;
2010 	}
2011 
2012 	read_lock(&mrt_lock);
2013 	ip_mr_forward(net, mrt, skb, cache, local);
2014 	read_unlock(&mrt_lock);
2015 
2016 	if (local)
2017 		return ip_local_deliver(skb);
2018 
2019 	return 0;
2020 
2021 dont_forward:
2022 	if (local)
2023 		return ip_local_deliver(skb);
2024 	kfree_skb(skb);
2025 	return 0;
2026 }
2027 
2028 #ifdef CONFIG_IP_PIMSM_V1
2029 /* Handle IGMP messages of PIMv1 */
2030 int pim_rcv_v1(struct sk_buff *skb)
2031 {
2032 	struct igmphdr *pim;
2033 	struct net *net = dev_net(skb->dev);
2034 	struct mr_table *mrt;
2035 
2036 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2037 		goto drop;
2038 
2039 	pim = igmp_hdr(skb);
2040 
2041 	mrt = ipmr_rt_fib_lookup(net, skb);
2042 	if (IS_ERR(mrt))
2043 		goto drop;
2044 	if (!mrt->mroute_do_pim ||
2045 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2046 		goto drop;
2047 
2048 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2049 drop:
2050 		kfree_skb(skb);
2051 	}
2052 	return 0;
2053 }
2054 #endif
2055 
2056 #ifdef CONFIG_IP_PIMSM_V2
2057 static int pim_rcv(struct sk_buff *skb)
2058 {
2059 	struct pimreghdr *pim;
2060 	struct net *net = dev_net(skb->dev);
2061 	struct mr_table *mrt;
2062 
2063 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2064 		goto drop;
2065 
2066 	pim = (struct pimreghdr *)skb_transport_header(skb);
2067 	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2068 	    (pim->flags & PIM_NULL_REGISTER) ||
2069 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2070 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2071 		goto drop;
2072 
2073 	mrt = ipmr_rt_fib_lookup(net, skb);
2074 	if (IS_ERR(mrt))
2075 		goto drop;
2076 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2077 drop:
2078 		kfree_skb(skb);
2079 	}
2080 	return 0;
2081 }
2082 #endif
2083 
2084 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2085 			      struct mfc_cache *c, struct rtmsg *rtm)
2086 {
2087 	struct rta_mfc_stats mfcs;
2088 	struct nlattr *mp_attr;
2089 	struct rtnexthop *nhp;
2090 	unsigned long lastuse;
2091 	int ct;
2092 
2093 	/* If cache is unresolved, don't try to parse IIF and OIF */
2094 	if (c->mfc_parent >= MAXVIFS)
2095 		return -ENOENT;
2096 
2097 	if (VIF_EXISTS(mrt, c->mfc_parent) &&
2098 	    nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2099 		return -EMSGSIZE;
2100 
2101 	if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2102 		return -EMSGSIZE;
2103 
2104 	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2105 		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2106 			if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2107 				nla_nest_cancel(skb, mp_attr);
2108 				return -EMSGSIZE;
2109 			}
2110 
2111 			nhp->rtnh_flags = 0;
2112 			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2113 			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2114 			nhp->rtnh_len = sizeof(*nhp);
2115 		}
2116 	}
2117 
2118 	nla_nest_end(skb, mp_attr);
2119 
2120 	lastuse = READ_ONCE(c->mfc_un.res.lastuse);
2121 	lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0;
2122 
2123 	mfcs.mfcs_packets = c->mfc_un.res.pkt;
2124 	mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2125 	mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2126 	if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) ||
2127 	    nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse),
2128 			      RTA_PAD))
2129 		return -EMSGSIZE;
2130 
2131 	rtm->rtm_type = RTN_MULTICAST;
2132 	return 1;
2133 }
2134 
2135 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2136 		   __be32 saddr, __be32 daddr,
2137 		   struct rtmsg *rtm, int nowait, u32 portid)
2138 {
2139 	struct mfc_cache *cache;
2140 	struct mr_table *mrt;
2141 	int err;
2142 
2143 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2144 	if (!mrt)
2145 		return -ENOENT;
2146 
2147 	rcu_read_lock();
2148 	cache = ipmr_cache_find(mrt, saddr, daddr);
2149 	if (!cache && skb->dev) {
2150 		int vif = ipmr_find_vif(mrt, skb->dev);
2151 
2152 		if (vif >= 0)
2153 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2154 	}
2155 	if (!cache) {
2156 		struct sk_buff *skb2;
2157 		struct iphdr *iph;
2158 		struct net_device *dev;
2159 		int vif = -1;
2160 
2161 		if (nowait) {
2162 			rcu_read_unlock();
2163 			return -EAGAIN;
2164 		}
2165 
2166 		dev = skb->dev;
2167 		read_lock(&mrt_lock);
2168 		if (dev)
2169 			vif = ipmr_find_vif(mrt, dev);
2170 		if (vif < 0) {
2171 			read_unlock(&mrt_lock);
2172 			rcu_read_unlock();
2173 			return -ENODEV;
2174 		}
2175 		skb2 = skb_clone(skb, GFP_ATOMIC);
2176 		if (!skb2) {
2177 			read_unlock(&mrt_lock);
2178 			rcu_read_unlock();
2179 			return -ENOMEM;
2180 		}
2181 
2182 		NETLINK_CB(skb2).portid = portid;
2183 		skb_push(skb2, sizeof(struct iphdr));
2184 		skb_reset_network_header(skb2);
2185 		iph = ip_hdr(skb2);
2186 		iph->ihl = sizeof(struct iphdr) >> 2;
2187 		iph->saddr = saddr;
2188 		iph->daddr = daddr;
2189 		iph->version = 0;
2190 		err = ipmr_cache_unresolved(mrt, vif, skb2);
2191 		read_unlock(&mrt_lock);
2192 		rcu_read_unlock();
2193 		return err;
2194 	}
2195 
2196 	read_lock(&mrt_lock);
2197 	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2198 	read_unlock(&mrt_lock);
2199 	rcu_read_unlock();
2200 	return err;
2201 }
2202 
2203 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2204 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2205 			    int flags)
2206 {
2207 	struct nlmsghdr *nlh;
2208 	struct rtmsg *rtm;
2209 	int err;
2210 
2211 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2212 	if (!nlh)
2213 		return -EMSGSIZE;
2214 
2215 	rtm = nlmsg_data(nlh);
2216 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2217 	rtm->rtm_dst_len  = 32;
2218 	rtm->rtm_src_len  = 32;
2219 	rtm->rtm_tos      = 0;
2220 	rtm->rtm_table    = mrt->id;
2221 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2222 		goto nla_put_failure;
2223 	rtm->rtm_type     = RTN_MULTICAST;
2224 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2225 	if (c->mfc_flags & MFC_STATIC)
2226 		rtm->rtm_protocol = RTPROT_STATIC;
2227 	else
2228 		rtm->rtm_protocol = RTPROT_MROUTED;
2229 	rtm->rtm_flags    = 0;
2230 
2231 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2232 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2233 		goto nla_put_failure;
2234 	err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2235 	/* do not break the dump if cache is unresolved */
2236 	if (err < 0 && err != -ENOENT)
2237 		goto nla_put_failure;
2238 
2239 	nlmsg_end(skb, nlh);
2240 	return 0;
2241 
2242 nla_put_failure:
2243 	nlmsg_cancel(skb, nlh);
2244 	return -EMSGSIZE;
2245 }
2246 
2247 static size_t mroute_msgsize(bool unresolved, int maxvif)
2248 {
2249 	size_t len =
2250 		NLMSG_ALIGN(sizeof(struct rtmsg))
2251 		+ nla_total_size(4)	/* RTA_TABLE */
2252 		+ nla_total_size(4)	/* RTA_SRC */
2253 		+ nla_total_size(4)	/* RTA_DST */
2254 		;
2255 
2256 	if (!unresolved)
2257 		len = len
2258 		      + nla_total_size(4)	/* RTA_IIF */
2259 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2260 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2261 						/* RTA_MFC_STATS */
2262 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2263 		;
2264 
2265 	return len;
2266 }
2267 
2268 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2269 				 int cmd)
2270 {
2271 	struct net *net = read_pnet(&mrt->net);
2272 	struct sk_buff *skb;
2273 	int err = -ENOBUFS;
2274 
2275 	skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2276 			GFP_ATOMIC);
2277 	if (!skb)
2278 		goto errout;
2279 
2280 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2281 	if (err < 0)
2282 		goto errout;
2283 
2284 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2285 	return;
2286 
2287 errout:
2288 	kfree_skb(skb);
2289 	if (err < 0)
2290 		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2291 }
2292 
2293 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2294 {
2295 	struct net *net = sock_net(skb->sk);
2296 	struct mr_table *mrt;
2297 	struct mfc_cache *mfc;
2298 	unsigned int t = 0, s_t;
2299 	unsigned int h = 0, s_h;
2300 	unsigned int e = 0, s_e;
2301 
2302 	s_t = cb->args[0];
2303 	s_h = cb->args[1];
2304 	s_e = cb->args[2];
2305 
2306 	rcu_read_lock();
2307 	ipmr_for_each_table(mrt, net) {
2308 		if (t < s_t)
2309 			goto next_table;
2310 		if (t > s_t)
2311 			s_h = 0;
2312 		for (h = s_h; h < MFC_LINES; h++) {
2313 			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2314 				if (e < s_e)
2315 					goto next_entry;
2316 				if (ipmr_fill_mroute(mrt, skb,
2317 						     NETLINK_CB(cb->skb).portid,
2318 						     cb->nlh->nlmsg_seq,
2319 						     mfc, RTM_NEWROUTE,
2320 						     NLM_F_MULTI) < 0)
2321 					goto done;
2322 next_entry:
2323 				e++;
2324 			}
2325 			e = s_e = 0;
2326 		}
2327 		spin_lock_bh(&mfc_unres_lock);
2328 		list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2329 			if (e < s_e)
2330 				goto next_entry2;
2331 			if (ipmr_fill_mroute(mrt, skb,
2332 					     NETLINK_CB(cb->skb).portid,
2333 					     cb->nlh->nlmsg_seq,
2334 					     mfc, RTM_NEWROUTE,
2335 					     NLM_F_MULTI) < 0) {
2336 				spin_unlock_bh(&mfc_unres_lock);
2337 				goto done;
2338 			}
2339 next_entry2:
2340 			e++;
2341 		}
2342 		spin_unlock_bh(&mfc_unres_lock);
2343 		e = s_e = 0;
2344 		s_h = 0;
2345 next_table:
2346 		t++;
2347 	}
2348 done:
2349 	rcu_read_unlock();
2350 
2351 	cb->args[2] = e;
2352 	cb->args[1] = h;
2353 	cb->args[0] = t;
2354 
2355 	return skb->len;
2356 }
2357 
2358 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2359 	[RTA_SRC]	= { .type = NLA_U32 },
2360 	[RTA_DST]	= { .type = NLA_U32 },
2361 	[RTA_IIF]	= { .type = NLA_U32 },
2362 	[RTA_TABLE]	= { .type = NLA_U32 },
2363 	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2364 };
2365 
2366 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2367 {
2368 	switch (rtm_protocol) {
2369 	case RTPROT_STATIC:
2370 	case RTPROT_MROUTED:
2371 		return true;
2372 	}
2373 	return false;
2374 }
2375 
2376 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2377 {
2378 	struct rtnexthop *rtnh = nla_data(nla);
2379 	int remaining = nla_len(nla), vifi = 0;
2380 
2381 	while (rtnh_ok(rtnh, remaining)) {
2382 		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2383 		if (++vifi == MAXVIFS)
2384 			break;
2385 		rtnh = rtnh_next(rtnh, &remaining);
2386 	}
2387 
2388 	return remaining > 0 ? -EINVAL : vifi;
2389 }
2390 
2391 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2392 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2393 			    struct mfcctl *mfcc, int *mrtsock,
2394 			    struct mr_table **mrtret)
2395 {
2396 	struct net_device *dev = NULL;
2397 	u32 tblid = RT_TABLE_DEFAULT;
2398 	struct mr_table *mrt;
2399 	struct nlattr *attr;
2400 	struct rtmsg *rtm;
2401 	int ret, rem;
2402 
2403 	ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy);
2404 	if (ret < 0)
2405 		goto out;
2406 	rtm = nlmsg_data(nlh);
2407 
2408 	ret = -EINVAL;
2409 	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2410 	    rtm->rtm_type != RTN_MULTICAST ||
2411 	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2412 	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2413 		goto out;
2414 
2415 	memset(mfcc, 0, sizeof(*mfcc));
2416 	mfcc->mfcc_parent = -1;
2417 	ret = 0;
2418 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2419 		switch (nla_type(attr)) {
2420 		case RTA_SRC:
2421 			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2422 			break;
2423 		case RTA_DST:
2424 			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2425 			break;
2426 		case RTA_IIF:
2427 			dev = __dev_get_by_index(net, nla_get_u32(attr));
2428 			if (!dev) {
2429 				ret = -ENODEV;
2430 				goto out;
2431 			}
2432 			break;
2433 		case RTA_MULTIPATH:
2434 			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2435 				ret = -EINVAL;
2436 				goto out;
2437 			}
2438 			break;
2439 		case RTA_PREFSRC:
2440 			ret = 1;
2441 			break;
2442 		case RTA_TABLE:
2443 			tblid = nla_get_u32(attr);
2444 			break;
2445 		}
2446 	}
2447 	mrt = ipmr_get_table(net, tblid);
2448 	if (!mrt) {
2449 		ret = -ENOENT;
2450 		goto out;
2451 	}
2452 	*mrtret = mrt;
2453 	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2454 	if (dev)
2455 		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2456 
2457 out:
2458 	return ret;
2459 }
2460 
2461 /* takes care of both newroute and delroute */
2462 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh)
2463 {
2464 	struct net *net = sock_net(skb->sk);
2465 	int ret, mrtsock, parent;
2466 	struct mr_table *tbl;
2467 	struct mfcctl mfcc;
2468 
2469 	mrtsock = 0;
2470 	tbl = NULL;
2471 	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl);
2472 	if (ret < 0)
2473 		return ret;
2474 
2475 	parent = ret ? mfcc.mfcc_parent : -1;
2476 	if (nlh->nlmsg_type == RTM_NEWROUTE)
2477 		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2478 	else
2479 		return ipmr_mfc_delete(tbl, &mfcc, parent);
2480 }
2481 
2482 #ifdef CONFIG_PROC_FS
2483 /* The /proc interfaces to multicast routing :
2484  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2485  */
2486 struct ipmr_vif_iter {
2487 	struct seq_net_private p;
2488 	struct mr_table *mrt;
2489 	int ct;
2490 };
2491 
2492 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2493 					   struct ipmr_vif_iter *iter,
2494 					   loff_t pos)
2495 {
2496 	struct mr_table *mrt = iter->mrt;
2497 
2498 	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2499 		if (!VIF_EXISTS(mrt, iter->ct))
2500 			continue;
2501 		if (pos-- == 0)
2502 			return &mrt->vif_table[iter->ct];
2503 	}
2504 	return NULL;
2505 }
2506 
2507 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2508 	__acquires(mrt_lock)
2509 {
2510 	struct ipmr_vif_iter *iter = seq->private;
2511 	struct net *net = seq_file_net(seq);
2512 	struct mr_table *mrt;
2513 
2514 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2515 	if (!mrt)
2516 		return ERR_PTR(-ENOENT);
2517 
2518 	iter->mrt = mrt;
2519 
2520 	read_lock(&mrt_lock);
2521 	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2522 		: SEQ_START_TOKEN;
2523 }
2524 
2525 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2526 {
2527 	struct ipmr_vif_iter *iter = seq->private;
2528 	struct net *net = seq_file_net(seq);
2529 	struct mr_table *mrt = iter->mrt;
2530 
2531 	++*pos;
2532 	if (v == SEQ_START_TOKEN)
2533 		return ipmr_vif_seq_idx(net, iter, 0);
2534 
2535 	while (++iter->ct < mrt->maxvif) {
2536 		if (!VIF_EXISTS(mrt, iter->ct))
2537 			continue;
2538 		return &mrt->vif_table[iter->ct];
2539 	}
2540 	return NULL;
2541 }
2542 
2543 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2544 	__releases(mrt_lock)
2545 {
2546 	read_unlock(&mrt_lock);
2547 }
2548 
2549 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2550 {
2551 	struct ipmr_vif_iter *iter = seq->private;
2552 	struct mr_table *mrt = iter->mrt;
2553 
2554 	if (v == SEQ_START_TOKEN) {
2555 		seq_puts(seq,
2556 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2557 	} else {
2558 		const struct vif_device *vif = v;
2559 		const char *name =  vif->dev ? vif->dev->name : "none";
2560 
2561 		seq_printf(seq,
2562 			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2563 			   vif - mrt->vif_table,
2564 			   name, vif->bytes_in, vif->pkt_in,
2565 			   vif->bytes_out, vif->pkt_out,
2566 			   vif->flags, vif->local, vif->remote);
2567 	}
2568 	return 0;
2569 }
2570 
2571 static const struct seq_operations ipmr_vif_seq_ops = {
2572 	.start = ipmr_vif_seq_start,
2573 	.next  = ipmr_vif_seq_next,
2574 	.stop  = ipmr_vif_seq_stop,
2575 	.show  = ipmr_vif_seq_show,
2576 };
2577 
2578 static int ipmr_vif_open(struct inode *inode, struct file *file)
2579 {
2580 	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2581 			    sizeof(struct ipmr_vif_iter));
2582 }
2583 
2584 static const struct file_operations ipmr_vif_fops = {
2585 	.owner	 = THIS_MODULE,
2586 	.open    = ipmr_vif_open,
2587 	.read    = seq_read,
2588 	.llseek  = seq_lseek,
2589 	.release = seq_release_net,
2590 };
2591 
2592 struct ipmr_mfc_iter {
2593 	struct seq_net_private p;
2594 	struct mr_table *mrt;
2595 	struct list_head *cache;
2596 	int ct;
2597 };
2598 
2599 
2600 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2601 					  struct ipmr_mfc_iter *it, loff_t pos)
2602 {
2603 	struct mr_table *mrt = it->mrt;
2604 	struct mfc_cache *mfc;
2605 
2606 	rcu_read_lock();
2607 	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2608 		it->cache = &mrt->mfc_cache_array[it->ct];
2609 		list_for_each_entry_rcu(mfc, it->cache, list)
2610 			if (pos-- == 0)
2611 				return mfc;
2612 	}
2613 	rcu_read_unlock();
2614 
2615 	spin_lock_bh(&mfc_unres_lock);
2616 	it->cache = &mrt->mfc_unres_queue;
2617 	list_for_each_entry(mfc, it->cache, list)
2618 		if (pos-- == 0)
2619 			return mfc;
2620 	spin_unlock_bh(&mfc_unres_lock);
2621 
2622 	it->cache = NULL;
2623 	return NULL;
2624 }
2625 
2626 
2627 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2628 {
2629 	struct ipmr_mfc_iter *it = seq->private;
2630 	struct net *net = seq_file_net(seq);
2631 	struct mr_table *mrt;
2632 
2633 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2634 	if (!mrt)
2635 		return ERR_PTR(-ENOENT);
2636 
2637 	it->mrt = mrt;
2638 	it->cache = NULL;
2639 	it->ct = 0;
2640 	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2641 		: SEQ_START_TOKEN;
2642 }
2643 
2644 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2645 {
2646 	struct mfc_cache *mfc = v;
2647 	struct ipmr_mfc_iter *it = seq->private;
2648 	struct net *net = seq_file_net(seq);
2649 	struct mr_table *mrt = it->mrt;
2650 
2651 	++*pos;
2652 
2653 	if (v == SEQ_START_TOKEN)
2654 		return ipmr_mfc_seq_idx(net, seq->private, 0);
2655 
2656 	if (mfc->list.next != it->cache)
2657 		return list_entry(mfc->list.next, struct mfc_cache, list);
2658 
2659 	if (it->cache == &mrt->mfc_unres_queue)
2660 		goto end_of_list;
2661 
2662 	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2663 
2664 	while (++it->ct < MFC_LINES) {
2665 		it->cache = &mrt->mfc_cache_array[it->ct];
2666 		if (list_empty(it->cache))
2667 			continue;
2668 		return list_first_entry(it->cache, struct mfc_cache, list);
2669 	}
2670 
2671 	/* exhausted cache_array, show unresolved */
2672 	rcu_read_unlock();
2673 	it->cache = &mrt->mfc_unres_queue;
2674 	it->ct = 0;
2675 
2676 	spin_lock_bh(&mfc_unres_lock);
2677 	if (!list_empty(it->cache))
2678 		return list_first_entry(it->cache, struct mfc_cache, list);
2679 
2680 end_of_list:
2681 	spin_unlock_bh(&mfc_unres_lock);
2682 	it->cache = NULL;
2683 
2684 	return NULL;
2685 }
2686 
2687 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2688 {
2689 	struct ipmr_mfc_iter *it = seq->private;
2690 	struct mr_table *mrt = it->mrt;
2691 
2692 	if (it->cache == &mrt->mfc_unres_queue)
2693 		spin_unlock_bh(&mfc_unres_lock);
2694 	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2695 		rcu_read_unlock();
2696 }
2697 
2698 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2699 {
2700 	int n;
2701 
2702 	if (v == SEQ_START_TOKEN) {
2703 		seq_puts(seq,
2704 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2705 	} else {
2706 		const struct mfc_cache *mfc = v;
2707 		const struct ipmr_mfc_iter *it = seq->private;
2708 		const struct mr_table *mrt = it->mrt;
2709 
2710 		seq_printf(seq, "%08X %08X %-3hd",
2711 			   (__force u32) mfc->mfc_mcastgrp,
2712 			   (__force u32) mfc->mfc_origin,
2713 			   mfc->mfc_parent);
2714 
2715 		if (it->cache != &mrt->mfc_unres_queue) {
2716 			seq_printf(seq, " %8lu %8lu %8lu",
2717 				   mfc->mfc_un.res.pkt,
2718 				   mfc->mfc_un.res.bytes,
2719 				   mfc->mfc_un.res.wrong_if);
2720 			for (n = mfc->mfc_un.res.minvif;
2721 			     n < mfc->mfc_un.res.maxvif; n++) {
2722 				if (VIF_EXISTS(mrt, n) &&
2723 				    mfc->mfc_un.res.ttls[n] < 255)
2724 					seq_printf(seq,
2725 					   " %2d:%-3d",
2726 					   n, mfc->mfc_un.res.ttls[n]);
2727 			}
2728 		} else {
2729 			/* unresolved mfc_caches don't contain
2730 			 * pkt, bytes and wrong_if values
2731 			 */
2732 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2733 		}
2734 		seq_putc(seq, '\n');
2735 	}
2736 	return 0;
2737 }
2738 
2739 static const struct seq_operations ipmr_mfc_seq_ops = {
2740 	.start = ipmr_mfc_seq_start,
2741 	.next  = ipmr_mfc_seq_next,
2742 	.stop  = ipmr_mfc_seq_stop,
2743 	.show  = ipmr_mfc_seq_show,
2744 };
2745 
2746 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2747 {
2748 	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2749 			    sizeof(struct ipmr_mfc_iter));
2750 }
2751 
2752 static const struct file_operations ipmr_mfc_fops = {
2753 	.owner	 = THIS_MODULE,
2754 	.open    = ipmr_mfc_open,
2755 	.read    = seq_read,
2756 	.llseek  = seq_lseek,
2757 	.release = seq_release_net,
2758 };
2759 #endif
2760 
2761 #ifdef CONFIG_IP_PIMSM_V2
2762 static const struct net_protocol pim_protocol = {
2763 	.handler	=	pim_rcv,
2764 	.netns_ok	=	1,
2765 };
2766 #endif
2767 
2768 /* Setup for IP multicast routing */
2769 static int __net_init ipmr_net_init(struct net *net)
2770 {
2771 	int err;
2772 
2773 	err = ipmr_rules_init(net);
2774 	if (err < 0)
2775 		goto fail;
2776 
2777 #ifdef CONFIG_PROC_FS
2778 	err = -ENOMEM;
2779 	if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2780 		goto proc_vif_fail;
2781 	if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2782 		goto proc_cache_fail;
2783 #endif
2784 	return 0;
2785 
2786 #ifdef CONFIG_PROC_FS
2787 proc_cache_fail:
2788 	remove_proc_entry("ip_mr_vif", net->proc_net);
2789 proc_vif_fail:
2790 	ipmr_rules_exit(net);
2791 #endif
2792 fail:
2793 	return err;
2794 }
2795 
2796 static void __net_exit ipmr_net_exit(struct net *net)
2797 {
2798 #ifdef CONFIG_PROC_FS
2799 	remove_proc_entry("ip_mr_cache", net->proc_net);
2800 	remove_proc_entry("ip_mr_vif", net->proc_net);
2801 #endif
2802 	ipmr_rules_exit(net);
2803 }
2804 
2805 static struct pernet_operations ipmr_net_ops = {
2806 	.init = ipmr_net_init,
2807 	.exit = ipmr_net_exit,
2808 };
2809 
2810 int __init ip_mr_init(void)
2811 {
2812 	int err;
2813 
2814 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2815 				       sizeof(struct mfc_cache),
2816 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2817 				       NULL);
2818 
2819 	err = register_pernet_subsys(&ipmr_net_ops);
2820 	if (err)
2821 		goto reg_pernet_fail;
2822 
2823 	err = register_netdevice_notifier(&ip_mr_notifier);
2824 	if (err)
2825 		goto reg_notif_fail;
2826 #ifdef CONFIG_IP_PIMSM_V2
2827 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2828 		pr_err("%s: can't add PIM protocol\n", __func__);
2829 		err = -EAGAIN;
2830 		goto add_proto_fail;
2831 	}
2832 #endif
2833 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2834 		      NULL, ipmr_rtm_dumproute, NULL);
2835 	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
2836 		      ipmr_rtm_route, NULL, NULL);
2837 	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
2838 		      ipmr_rtm_route, NULL, NULL);
2839 	return 0;
2840 
2841 #ifdef CONFIG_IP_PIMSM_V2
2842 add_proto_fail:
2843 	unregister_netdevice_notifier(&ip_mr_notifier);
2844 #endif
2845 reg_notif_fail:
2846 	unregister_pernet_subsys(&ipmr_net_ops);
2847 reg_pernet_fail:
2848 	kmem_cache_destroy(mrt_cachep);
2849 	return err;
2850 }
2851