xref: /openbmc/linux/net/ipv4/ipmr.c (revision c4ee0af3)
1 /*
2  *	IP multicast routing support for mrouted 3.6/3.8
3  *
4  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *	  Linux Consultancy and Custom Driver Development
6  *
7  *	This program is free software; you can redistribute it and/or
8  *	modify it under the terms of the GNU General Public License
9  *	as published by the Free Software Foundation; either version
10  *	2 of the License, or (at your option) any later version.
11  *
12  *	Fixes:
13  *	Michael Chastain	:	Incorrect size of copying.
14  *	Alan Cox		:	Added the cache manager code
15  *	Alan Cox		:	Fixed the clone/copy bug and device race.
16  *	Mike McLagan		:	Routing by source
17  *	Malcolm Beattie		:	Buffer handling fixes.
18  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
19  *	SVR Anand		:	Fixed several multicast bugs and problems.
20  *	Alexey Kuznetsov	:	Status, optimisations and more.
21  *	Brad Parker		:	Better behaviour on mrouted upcall
22  *					overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
25  *					Relax this requirement to work with older peers.
26  *
27  */
28 
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 
70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
71 #define CONFIG_IP_PIMSM	1
72 #endif
73 
74 struct mr_table {
75 	struct list_head	list;
76 #ifdef CONFIG_NET_NS
77 	struct net		*net;
78 #endif
79 	u32			id;
80 	struct sock __rcu	*mroute_sk;
81 	struct timer_list	ipmr_expire_timer;
82 	struct list_head	mfc_unres_queue;
83 	struct list_head	mfc_cache_array[MFC_LINES];
84 	struct vif_device	vif_table[MAXVIFS];
85 	int			maxvif;
86 	atomic_t		cache_resolve_queue_len;
87 	bool			mroute_do_assert;
88 	bool			mroute_do_pim;
89 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
90 	int			mroute_reg_vif_num;
91 #endif
92 };
93 
94 struct ipmr_rule {
95 	struct fib_rule		common;
96 };
97 
98 struct ipmr_result {
99 	struct mr_table		*mrt;
100 };
101 
102 /* Big lock, protecting vif table, mrt cache and mroute socket state.
103  * Note that the changes are semaphored via rtnl_lock.
104  */
105 
106 static DEFINE_RWLOCK(mrt_lock);
107 
108 /*
109  *	Multicast router control variables
110  */
111 
112 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
113 
114 /* Special spinlock for queue of unresolved entries */
115 static DEFINE_SPINLOCK(mfc_unres_lock);
116 
117 /* We return to original Alan's scheme. Hash table of resolved
118  * entries is changed only in process context and protected
119  * with weak lock mrt_lock. Queue of unresolved entries is protected
120  * with strong spinlock mfc_unres_lock.
121  *
122  * In this case data path is free of exclusive locks at all.
123  */
124 
125 static struct kmem_cache *mrt_cachep __read_mostly;
126 
127 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
128 static void ipmr_free_table(struct mr_table *mrt);
129 
130 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
131 			  struct sk_buff *skb, struct mfc_cache *cache,
132 			  int local);
133 static int ipmr_cache_report(struct mr_table *mrt,
134 			     struct sk_buff *pkt, vifi_t vifi, int assert);
135 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
136 			      struct mfc_cache *c, struct rtmsg *rtm);
137 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
138 				 int cmd);
139 static void mroute_clean_tables(struct mr_table *mrt);
140 static void ipmr_expire_process(unsigned long arg);
141 
142 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
143 #define ipmr_for_each_table(mrt, net) \
144 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
145 
146 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
147 {
148 	struct mr_table *mrt;
149 
150 	ipmr_for_each_table(mrt, net) {
151 		if (mrt->id == id)
152 			return mrt;
153 	}
154 	return NULL;
155 }
156 
157 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
158 			   struct mr_table **mrt)
159 {
160 	struct ipmr_result res;
161 	struct fib_lookup_arg arg = { .result = &res, };
162 	int err;
163 
164 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
165 			       flowi4_to_flowi(flp4), 0, &arg);
166 	if (err < 0)
167 		return err;
168 	*mrt = res.mrt;
169 	return 0;
170 }
171 
172 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
173 			    int flags, struct fib_lookup_arg *arg)
174 {
175 	struct ipmr_result *res = arg->result;
176 	struct mr_table *mrt;
177 
178 	switch (rule->action) {
179 	case FR_ACT_TO_TBL:
180 		break;
181 	case FR_ACT_UNREACHABLE:
182 		return -ENETUNREACH;
183 	case FR_ACT_PROHIBIT:
184 		return -EACCES;
185 	case FR_ACT_BLACKHOLE:
186 	default:
187 		return -EINVAL;
188 	}
189 
190 	mrt = ipmr_get_table(rule->fr_net, rule->table);
191 	if (mrt == NULL)
192 		return -EAGAIN;
193 	res->mrt = mrt;
194 	return 0;
195 }
196 
197 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
198 {
199 	return 1;
200 }
201 
202 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
203 	FRA_GENERIC_POLICY,
204 };
205 
206 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
207 			       struct fib_rule_hdr *frh, struct nlattr **tb)
208 {
209 	return 0;
210 }
211 
212 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
213 			     struct nlattr **tb)
214 {
215 	return 1;
216 }
217 
218 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
219 			  struct fib_rule_hdr *frh)
220 {
221 	frh->dst_len = 0;
222 	frh->src_len = 0;
223 	frh->tos     = 0;
224 	return 0;
225 }
226 
227 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
228 	.family		= RTNL_FAMILY_IPMR,
229 	.rule_size	= sizeof(struct ipmr_rule),
230 	.addr_size	= sizeof(u32),
231 	.action		= ipmr_rule_action,
232 	.match		= ipmr_rule_match,
233 	.configure	= ipmr_rule_configure,
234 	.compare	= ipmr_rule_compare,
235 	.default_pref	= fib_default_rule_pref,
236 	.fill		= ipmr_rule_fill,
237 	.nlgroup	= RTNLGRP_IPV4_RULE,
238 	.policy		= ipmr_rule_policy,
239 	.owner		= THIS_MODULE,
240 };
241 
242 static int __net_init ipmr_rules_init(struct net *net)
243 {
244 	struct fib_rules_ops *ops;
245 	struct mr_table *mrt;
246 	int err;
247 
248 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
249 	if (IS_ERR(ops))
250 		return PTR_ERR(ops);
251 
252 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
253 
254 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
255 	if (mrt == NULL) {
256 		err = -ENOMEM;
257 		goto err1;
258 	}
259 
260 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
261 	if (err < 0)
262 		goto err2;
263 
264 	net->ipv4.mr_rules_ops = ops;
265 	return 0;
266 
267 err2:
268 	kfree(mrt);
269 err1:
270 	fib_rules_unregister(ops);
271 	return err;
272 }
273 
274 static void __net_exit ipmr_rules_exit(struct net *net)
275 {
276 	struct mr_table *mrt, *next;
277 
278 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
279 		list_del(&mrt->list);
280 		ipmr_free_table(mrt);
281 	}
282 	fib_rules_unregister(net->ipv4.mr_rules_ops);
283 }
284 #else
285 #define ipmr_for_each_table(mrt, net) \
286 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
287 
288 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
289 {
290 	return net->ipv4.mrt;
291 }
292 
293 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
294 			   struct mr_table **mrt)
295 {
296 	*mrt = net->ipv4.mrt;
297 	return 0;
298 }
299 
300 static int __net_init ipmr_rules_init(struct net *net)
301 {
302 	net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
303 	return net->ipv4.mrt ? 0 : -ENOMEM;
304 }
305 
306 static void __net_exit ipmr_rules_exit(struct net *net)
307 {
308 	ipmr_free_table(net->ipv4.mrt);
309 }
310 #endif
311 
312 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
313 {
314 	struct mr_table *mrt;
315 	unsigned int i;
316 
317 	mrt = ipmr_get_table(net, id);
318 	if (mrt != NULL)
319 		return mrt;
320 
321 	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
322 	if (mrt == NULL)
323 		return NULL;
324 	write_pnet(&mrt->net, net);
325 	mrt->id = id;
326 
327 	/* Forwarding cache */
328 	for (i = 0; i < MFC_LINES; i++)
329 		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
330 
331 	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
332 
333 	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
334 		    (unsigned long)mrt);
335 
336 #ifdef CONFIG_IP_PIMSM
337 	mrt->mroute_reg_vif_num = -1;
338 #endif
339 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
340 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
341 #endif
342 	return mrt;
343 }
344 
345 static void ipmr_free_table(struct mr_table *mrt)
346 {
347 	del_timer_sync(&mrt->ipmr_expire_timer);
348 	mroute_clean_tables(mrt);
349 	kfree(mrt);
350 }
351 
352 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
353 
354 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
355 {
356 	struct net *net = dev_net(dev);
357 
358 	dev_close(dev);
359 
360 	dev = __dev_get_by_name(net, "tunl0");
361 	if (dev) {
362 		const struct net_device_ops *ops = dev->netdev_ops;
363 		struct ifreq ifr;
364 		struct ip_tunnel_parm p;
365 
366 		memset(&p, 0, sizeof(p));
367 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
368 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
369 		p.iph.version = 4;
370 		p.iph.ihl = 5;
371 		p.iph.protocol = IPPROTO_IPIP;
372 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
373 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
374 
375 		if (ops->ndo_do_ioctl) {
376 			mm_segment_t oldfs = get_fs();
377 
378 			set_fs(KERNEL_DS);
379 			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
380 			set_fs(oldfs);
381 		}
382 	}
383 }
384 
385 static
386 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
387 {
388 	struct net_device  *dev;
389 
390 	dev = __dev_get_by_name(net, "tunl0");
391 
392 	if (dev) {
393 		const struct net_device_ops *ops = dev->netdev_ops;
394 		int err;
395 		struct ifreq ifr;
396 		struct ip_tunnel_parm p;
397 		struct in_device  *in_dev;
398 
399 		memset(&p, 0, sizeof(p));
400 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
401 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
402 		p.iph.version = 4;
403 		p.iph.ihl = 5;
404 		p.iph.protocol = IPPROTO_IPIP;
405 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
406 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
407 
408 		if (ops->ndo_do_ioctl) {
409 			mm_segment_t oldfs = get_fs();
410 
411 			set_fs(KERNEL_DS);
412 			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
413 			set_fs(oldfs);
414 		} else {
415 			err = -EOPNOTSUPP;
416 		}
417 		dev = NULL;
418 
419 		if (err == 0 &&
420 		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
421 			dev->flags |= IFF_MULTICAST;
422 
423 			in_dev = __in_dev_get_rtnl(dev);
424 			if (in_dev == NULL)
425 				goto failure;
426 
427 			ipv4_devconf_setall(in_dev);
428 			IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
429 
430 			if (dev_open(dev))
431 				goto failure;
432 			dev_hold(dev);
433 		}
434 	}
435 	return dev;
436 
437 failure:
438 	/* allow the register to be completed before unregistering. */
439 	rtnl_unlock();
440 	rtnl_lock();
441 
442 	unregister_netdevice(dev);
443 	return NULL;
444 }
445 
446 #ifdef CONFIG_IP_PIMSM
447 
448 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
449 {
450 	struct net *net = dev_net(dev);
451 	struct mr_table *mrt;
452 	struct flowi4 fl4 = {
453 		.flowi4_oif	= dev->ifindex,
454 		.flowi4_iif	= skb->skb_iif,
455 		.flowi4_mark	= skb->mark,
456 	};
457 	int err;
458 
459 	err = ipmr_fib_lookup(net, &fl4, &mrt);
460 	if (err < 0) {
461 		kfree_skb(skb);
462 		return err;
463 	}
464 
465 	read_lock(&mrt_lock);
466 	dev->stats.tx_bytes += skb->len;
467 	dev->stats.tx_packets++;
468 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
469 	read_unlock(&mrt_lock);
470 	kfree_skb(skb);
471 	return NETDEV_TX_OK;
472 }
473 
474 static const struct net_device_ops reg_vif_netdev_ops = {
475 	.ndo_start_xmit	= reg_vif_xmit,
476 };
477 
478 static void reg_vif_setup(struct net_device *dev)
479 {
480 	dev->type		= ARPHRD_PIMREG;
481 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
482 	dev->flags		= IFF_NOARP;
483 	dev->netdev_ops		= &reg_vif_netdev_ops,
484 	dev->destructor		= free_netdev;
485 	dev->features		|= NETIF_F_NETNS_LOCAL;
486 }
487 
488 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
489 {
490 	struct net_device *dev;
491 	struct in_device *in_dev;
492 	char name[IFNAMSIZ];
493 
494 	if (mrt->id == RT_TABLE_DEFAULT)
495 		sprintf(name, "pimreg");
496 	else
497 		sprintf(name, "pimreg%u", mrt->id);
498 
499 	dev = alloc_netdev(0, name, reg_vif_setup);
500 
501 	if (dev == NULL)
502 		return NULL;
503 
504 	dev_net_set(dev, net);
505 
506 	if (register_netdevice(dev)) {
507 		free_netdev(dev);
508 		return NULL;
509 	}
510 	dev->iflink = 0;
511 
512 	rcu_read_lock();
513 	in_dev = __in_dev_get_rcu(dev);
514 	if (!in_dev) {
515 		rcu_read_unlock();
516 		goto failure;
517 	}
518 
519 	ipv4_devconf_setall(in_dev);
520 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
521 	rcu_read_unlock();
522 
523 	if (dev_open(dev))
524 		goto failure;
525 
526 	dev_hold(dev);
527 
528 	return dev;
529 
530 failure:
531 	/* allow the register to be completed before unregistering. */
532 	rtnl_unlock();
533 	rtnl_lock();
534 
535 	unregister_netdevice(dev);
536 	return NULL;
537 }
538 #endif
539 
540 /**
541  *	vif_delete - Delete a VIF entry
542  *	@notify: Set to 1, if the caller is a notifier_call
543  */
544 
545 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
546 		      struct list_head *head)
547 {
548 	struct vif_device *v;
549 	struct net_device *dev;
550 	struct in_device *in_dev;
551 
552 	if (vifi < 0 || vifi >= mrt->maxvif)
553 		return -EADDRNOTAVAIL;
554 
555 	v = &mrt->vif_table[vifi];
556 
557 	write_lock_bh(&mrt_lock);
558 	dev = v->dev;
559 	v->dev = NULL;
560 
561 	if (!dev) {
562 		write_unlock_bh(&mrt_lock);
563 		return -EADDRNOTAVAIL;
564 	}
565 
566 #ifdef CONFIG_IP_PIMSM
567 	if (vifi == mrt->mroute_reg_vif_num)
568 		mrt->mroute_reg_vif_num = -1;
569 #endif
570 
571 	if (vifi + 1 == mrt->maxvif) {
572 		int tmp;
573 
574 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
575 			if (VIF_EXISTS(mrt, tmp))
576 				break;
577 		}
578 		mrt->maxvif = tmp+1;
579 	}
580 
581 	write_unlock_bh(&mrt_lock);
582 
583 	dev_set_allmulti(dev, -1);
584 
585 	in_dev = __in_dev_get_rtnl(dev);
586 	if (in_dev) {
587 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
588 		inet_netconf_notify_devconf(dev_net(dev),
589 					    NETCONFA_MC_FORWARDING,
590 					    dev->ifindex, &in_dev->cnf);
591 		ip_rt_multicast_event(in_dev);
592 	}
593 
594 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
595 		unregister_netdevice_queue(dev, head);
596 
597 	dev_put(dev);
598 	return 0;
599 }
600 
601 static void ipmr_cache_free_rcu(struct rcu_head *head)
602 {
603 	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
604 
605 	kmem_cache_free(mrt_cachep, c);
606 }
607 
608 static inline void ipmr_cache_free(struct mfc_cache *c)
609 {
610 	call_rcu(&c->rcu, ipmr_cache_free_rcu);
611 }
612 
613 /* Destroy an unresolved cache entry, killing queued skbs
614  * and reporting error to netlink readers.
615  */
616 
617 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
618 {
619 	struct net *net = read_pnet(&mrt->net);
620 	struct sk_buff *skb;
621 	struct nlmsgerr *e;
622 
623 	atomic_dec(&mrt->cache_resolve_queue_len);
624 
625 	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
626 		if (ip_hdr(skb)->version == 0) {
627 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
628 			nlh->nlmsg_type = NLMSG_ERROR;
629 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
630 			skb_trim(skb, nlh->nlmsg_len);
631 			e = nlmsg_data(nlh);
632 			e->error = -ETIMEDOUT;
633 			memset(&e->msg, 0, sizeof(e->msg));
634 
635 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
636 		} else {
637 			kfree_skb(skb);
638 		}
639 	}
640 
641 	ipmr_cache_free(c);
642 }
643 
644 
645 /* Timer process for the unresolved queue. */
646 
647 static void ipmr_expire_process(unsigned long arg)
648 {
649 	struct mr_table *mrt = (struct mr_table *)arg;
650 	unsigned long now;
651 	unsigned long expires;
652 	struct mfc_cache *c, *next;
653 
654 	if (!spin_trylock(&mfc_unres_lock)) {
655 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
656 		return;
657 	}
658 
659 	if (list_empty(&mrt->mfc_unres_queue))
660 		goto out;
661 
662 	now = jiffies;
663 	expires = 10*HZ;
664 
665 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
666 		if (time_after(c->mfc_un.unres.expires, now)) {
667 			unsigned long interval = c->mfc_un.unres.expires - now;
668 			if (interval < expires)
669 				expires = interval;
670 			continue;
671 		}
672 
673 		list_del(&c->list);
674 		mroute_netlink_event(mrt, c, RTM_DELROUTE);
675 		ipmr_destroy_unres(mrt, c);
676 	}
677 
678 	if (!list_empty(&mrt->mfc_unres_queue))
679 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
680 
681 out:
682 	spin_unlock(&mfc_unres_lock);
683 }
684 
685 /* Fill oifs list. It is called under write locked mrt_lock. */
686 
687 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
688 				   unsigned char *ttls)
689 {
690 	int vifi;
691 
692 	cache->mfc_un.res.minvif = MAXVIFS;
693 	cache->mfc_un.res.maxvif = 0;
694 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
695 
696 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
697 		if (VIF_EXISTS(mrt, vifi) &&
698 		    ttls[vifi] && ttls[vifi] < 255) {
699 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
700 			if (cache->mfc_un.res.minvif > vifi)
701 				cache->mfc_un.res.minvif = vifi;
702 			if (cache->mfc_un.res.maxvif <= vifi)
703 				cache->mfc_un.res.maxvif = vifi + 1;
704 		}
705 	}
706 }
707 
708 static int vif_add(struct net *net, struct mr_table *mrt,
709 		   struct vifctl *vifc, int mrtsock)
710 {
711 	int vifi = vifc->vifc_vifi;
712 	struct vif_device *v = &mrt->vif_table[vifi];
713 	struct net_device *dev;
714 	struct in_device *in_dev;
715 	int err;
716 
717 	/* Is vif busy ? */
718 	if (VIF_EXISTS(mrt, vifi))
719 		return -EADDRINUSE;
720 
721 	switch (vifc->vifc_flags) {
722 #ifdef CONFIG_IP_PIMSM
723 	case VIFF_REGISTER:
724 		/*
725 		 * Special Purpose VIF in PIM
726 		 * All the packets will be sent to the daemon
727 		 */
728 		if (mrt->mroute_reg_vif_num >= 0)
729 			return -EADDRINUSE;
730 		dev = ipmr_reg_vif(net, mrt);
731 		if (!dev)
732 			return -ENOBUFS;
733 		err = dev_set_allmulti(dev, 1);
734 		if (err) {
735 			unregister_netdevice(dev);
736 			dev_put(dev);
737 			return err;
738 		}
739 		break;
740 #endif
741 	case VIFF_TUNNEL:
742 		dev = ipmr_new_tunnel(net, vifc);
743 		if (!dev)
744 			return -ENOBUFS;
745 		err = dev_set_allmulti(dev, 1);
746 		if (err) {
747 			ipmr_del_tunnel(dev, vifc);
748 			dev_put(dev);
749 			return err;
750 		}
751 		break;
752 
753 	case VIFF_USE_IFINDEX:
754 	case 0:
755 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
756 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
757 			if (dev && __in_dev_get_rtnl(dev) == NULL) {
758 				dev_put(dev);
759 				return -EADDRNOTAVAIL;
760 			}
761 		} else {
762 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
763 		}
764 		if (!dev)
765 			return -EADDRNOTAVAIL;
766 		err = dev_set_allmulti(dev, 1);
767 		if (err) {
768 			dev_put(dev);
769 			return err;
770 		}
771 		break;
772 	default:
773 		return -EINVAL;
774 	}
775 
776 	in_dev = __in_dev_get_rtnl(dev);
777 	if (!in_dev) {
778 		dev_put(dev);
779 		return -EADDRNOTAVAIL;
780 	}
781 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
782 	inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
783 				    &in_dev->cnf);
784 	ip_rt_multicast_event(in_dev);
785 
786 	/* Fill in the VIF structures */
787 
788 	v->rate_limit = vifc->vifc_rate_limit;
789 	v->local = vifc->vifc_lcl_addr.s_addr;
790 	v->remote = vifc->vifc_rmt_addr.s_addr;
791 	v->flags = vifc->vifc_flags;
792 	if (!mrtsock)
793 		v->flags |= VIFF_STATIC;
794 	v->threshold = vifc->vifc_threshold;
795 	v->bytes_in = 0;
796 	v->bytes_out = 0;
797 	v->pkt_in = 0;
798 	v->pkt_out = 0;
799 	v->link = dev->ifindex;
800 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
801 		v->link = dev->iflink;
802 
803 	/* And finish update writing critical data */
804 	write_lock_bh(&mrt_lock);
805 	v->dev = dev;
806 #ifdef CONFIG_IP_PIMSM
807 	if (v->flags & VIFF_REGISTER)
808 		mrt->mroute_reg_vif_num = vifi;
809 #endif
810 	if (vifi+1 > mrt->maxvif)
811 		mrt->maxvif = vifi+1;
812 	write_unlock_bh(&mrt_lock);
813 	return 0;
814 }
815 
816 /* called with rcu_read_lock() */
817 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
818 					 __be32 origin,
819 					 __be32 mcastgrp)
820 {
821 	int line = MFC_HASH(mcastgrp, origin);
822 	struct mfc_cache *c;
823 
824 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
825 		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
826 			return c;
827 	}
828 	return NULL;
829 }
830 
831 /* Look for a (*,*,oif) entry */
832 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
833 						    int vifi)
834 {
835 	int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
836 	struct mfc_cache *c;
837 
838 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
839 		if (c->mfc_origin == htonl(INADDR_ANY) &&
840 		    c->mfc_mcastgrp == htonl(INADDR_ANY) &&
841 		    c->mfc_un.res.ttls[vifi] < 255)
842 			return c;
843 
844 	return NULL;
845 }
846 
847 /* Look for a (*,G) entry */
848 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
849 					     __be32 mcastgrp, int vifi)
850 {
851 	int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
852 	struct mfc_cache *c, *proxy;
853 
854 	if (mcastgrp == htonl(INADDR_ANY))
855 		goto skip;
856 
857 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
858 		if (c->mfc_origin == htonl(INADDR_ANY) &&
859 		    c->mfc_mcastgrp == mcastgrp) {
860 			if (c->mfc_un.res.ttls[vifi] < 255)
861 				return c;
862 
863 			/* It's ok if the vifi is part of the static tree */
864 			proxy = ipmr_cache_find_any_parent(mrt,
865 							   c->mfc_parent);
866 			if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
867 				return c;
868 		}
869 
870 skip:
871 	return ipmr_cache_find_any_parent(mrt, vifi);
872 }
873 
874 /*
875  *	Allocate a multicast cache entry
876  */
877 static struct mfc_cache *ipmr_cache_alloc(void)
878 {
879 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
880 
881 	if (c)
882 		c->mfc_un.res.minvif = MAXVIFS;
883 	return c;
884 }
885 
886 static struct mfc_cache *ipmr_cache_alloc_unres(void)
887 {
888 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
889 
890 	if (c) {
891 		skb_queue_head_init(&c->mfc_un.unres.unresolved);
892 		c->mfc_un.unres.expires = jiffies + 10*HZ;
893 	}
894 	return c;
895 }
896 
897 /*
898  *	A cache entry has gone into a resolved state from queued
899  */
900 
901 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
902 			       struct mfc_cache *uc, struct mfc_cache *c)
903 {
904 	struct sk_buff *skb;
905 	struct nlmsgerr *e;
906 
907 	/* Play the pending entries through our router */
908 
909 	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
910 		if (ip_hdr(skb)->version == 0) {
911 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
912 
913 			if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
914 				nlh->nlmsg_len = skb_tail_pointer(skb) -
915 						 (u8 *)nlh;
916 			} else {
917 				nlh->nlmsg_type = NLMSG_ERROR;
918 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
919 				skb_trim(skb, nlh->nlmsg_len);
920 				e = nlmsg_data(nlh);
921 				e->error = -EMSGSIZE;
922 				memset(&e->msg, 0, sizeof(e->msg));
923 			}
924 
925 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
926 		} else {
927 			ip_mr_forward(net, mrt, skb, c, 0);
928 		}
929 	}
930 }
931 
932 /*
933  *	Bounce a cache query up to mrouted. We could use netlink for this but mrouted
934  *	expects the following bizarre scheme.
935  *
936  *	Called under mrt_lock.
937  */
938 
939 static int ipmr_cache_report(struct mr_table *mrt,
940 			     struct sk_buff *pkt, vifi_t vifi, int assert)
941 {
942 	struct sk_buff *skb;
943 	const int ihl = ip_hdrlen(pkt);
944 	struct igmphdr *igmp;
945 	struct igmpmsg *msg;
946 	struct sock *mroute_sk;
947 	int ret;
948 
949 #ifdef CONFIG_IP_PIMSM
950 	if (assert == IGMPMSG_WHOLEPKT)
951 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
952 	else
953 #endif
954 		skb = alloc_skb(128, GFP_ATOMIC);
955 
956 	if (!skb)
957 		return -ENOBUFS;
958 
959 #ifdef CONFIG_IP_PIMSM
960 	if (assert == IGMPMSG_WHOLEPKT) {
961 		/* Ugly, but we have no choice with this interface.
962 		 * Duplicate old header, fix ihl, length etc.
963 		 * And all this only to mangle msg->im_msgtype and
964 		 * to set msg->im_mbz to "mbz" :-)
965 		 */
966 		skb_push(skb, sizeof(struct iphdr));
967 		skb_reset_network_header(skb);
968 		skb_reset_transport_header(skb);
969 		msg = (struct igmpmsg *)skb_network_header(skb);
970 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
971 		msg->im_msgtype = IGMPMSG_WHOLEPKT;
972 		msg->im_mbz = 0;
973 		msg->im_vif = mrt->mroute_reg_vif_num;
974 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
975 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
976 					     sizeof(struct iphdr));
977 	} else
978 #endif
979 	{
980 
981 	/* Copy the IP header */
982 
983 	skb_set_network_header(skb, skb->len);
984 	skb_put(skb, ihl);
985 	skb_copy_to_linear_data(skb, pkt->data, ihl);
986 	ip_hdr(skb)->protocol = 0;	/* Flag to the kernel this is a route add */
987 	msg = (struct igmpmsg *)skb_network_header(skb);
988 	msg->im_vif = vifi;
989 	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
990 
991 	/* Add our header */
992 
993 	igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
994 	igmp->type	=
995 	msg->im_msgtype = assert;
996 	igmp->code	= 0;
997 	ip_hdr(skb)->tot_len = htons(skb->len);		/* Fix the length */
998 	skb->transport_header = skb->network_header;
999 	}
1000 
1001 	rcu_read_lock();
1002 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1003 	if (mroute_sk == NULL) {
1004 		rcu_read_unlock();
1005 		kfree_skb(skb);
1006 		return -EINVAL;
1007 	}
1008 
1009 	/* Deliver to mrouted */
1010 
1011 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1012 	rcu_read_unlock();
1013 	if (ret < 0) {
1014 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1015 		kfree_skb(skb);
1016 	}
1017 
1018 	return ret;
1019 }
1020 
1021 /*
1022  *	Queue a packet for resolution. It gets locked cache entry!
1023  */
1024 
1025 static int
1026 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
1027 {
1028 	bool found = false;
1029 	int err;
1030 	struct mfc_cache *c;
1031 	const struct iphdr *iph = ip_hdr(skb);
1032 
1033 	spin_lock_bh(&mfc_unres_lock);
1034 	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1035 		if (c->mfc_mcastgrp == iph->daddr &&
1036 		    c->mfc_origin == iph->saddr) {
1037 			found = true;
1038 			break;
1039 		}
1040 	}
1041 
1042 	if (!found) {
1043 		/* Create a new entry if allowable */
1044 
1045 		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1046 		    (c = ipmr_cache_alloc_unres()) == NULL) {
1047 			spin_unlock_bh(&mfc_unres_lock);
1048 
1049 			kfree_skb(skb);
1050 			return -ENOBUFS;
1051 		}
1052 
1053 		/* Fill in the new cache entry */
1054 
1055 		c->mfc_parent	= -1;
1056 		c->mfc_origin	= iph->saddr;
1057 		c->mfc_mcastgrp	= iph->daddr;
1058 
1059 		/* Reflect first query at mrouted. */
1060 
1061 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1062 		if (err < 0) {
1063 			/* If the report failed throw the cache entry
1064 			   out - Brad Parker
1065 			 */
1066 			spin_unlock_bh(&mfc_unres_lock);
1067 
1068 			ipmr_cache_free(c);
1069 			kfree_skb(skb);
1070 			return err;
1071 		}
1072 
1073 		atomic_inc(&mrt->cache_resolve_queue_len);
1074 		list_add(&c->list, &mrt->mfc_unres_queue);
1075 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1076 
1077 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1078 			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1079 	}
1080 
1081 	/* See if we can append the packet */
1082 
1083 	if (c->mfc_un.unres.unresolved.qlen > 3) {
1084 		kfree_skb(skb);
1085 		err = -ENOBUFS;
1086 	} else {
1087 		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1088 		err = 0;
1089 	}
1090 
1091 	spin_unlock_bh(&mfc_unres_lock);
1092 	return err;
1093 }
1094 
1095 /*
1096  *	MFC cache manipulation by user space mroute daemon
1097  */
1098 
1099 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1100 {
1101 	int line;
1102 	struct mfc_cache *c, *next;
1103 
1104 	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1105 
1106 	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1107 		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1108 		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1109 		    (parent == -1 || parent == c->mfc_parent)) {
1110 			list_del_rcu(&c->list);
1111 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1112 			ipmr_cache_free(c);
1113 			return 0;
1114 		}
1115 	}
1116 	return -ENOENT;
1117 }
1118 
1119 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1120 			struct mfcctl *mfc, int mrtsock, int parent)
1121 {
1122 	bool found = false;
1123 	int line;
1124 	struct mfc_cache *uc, *c;
1125 
1126 	if (mfc->mfcc_parent >= MAXVIFS)
1127 		return -ENFILE;
1128 
1129 	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1130 
1131 	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1132 		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1133 		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1134 		    (parent == -1 || parent == c->mfc_parent)) {
1135 			found = true;
1136 			break;
1137 		}
1138 	}
1139 
1140 	if (found) {
1141 		write_lock_bh(&mrt_lock);
1142 		c->mfc_parent = mfc->mfcc_parent;
1143 		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1144 		if (!mrtsock)
1145 			c->mfc_flags |= MFC_STATIC;
1146 		write_unlock_bh(&mrt_lock);
1147 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1148 		return 0;
1149 	}
1150 
1151 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1152 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1153 		return -EINVAL;
1154 
1155 	c = ipmr_cache_alloc();
1156 	if (c == NULL)
1157 		return -ENOMEM;
1158 
1159 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1160 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1161 	c->mfc_parent = mfc->mfcc_parent;
1162 	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1163 	if (!mrtsock)
1164 		c->mfc_flags |= MFC_STATIC;
1165 
1166 	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1167 
1168 	/*
1169 	 *	Check to see if we resolved a queued list. If so we
1170 	 *	need to send on the frames and tidy up.
1171 	 */
1172 	found = false;
1173 	spin_lock_bh(&mfc_unres_lock);
1174 	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1175 		if (uc->mfc_origin == c->mfc_origin &&
1176 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1177 			list_del(&uc->list);
1178 			atomic_dec(&mrt->cache_resolve_queue_len);
1179 			found = true;
1180 			break;
1181 		}
1182 	}
1183 	if (list_empty(&mrt->mfc_unres_queue))
1184 		del_timer(&mrt->ipmr_expire_timer);
1185 	spin_unlock_bh(&mfc_unres_lock);
1186 
1187 	if (found) {
1188 		ipmr_cache_resolve(net, mrt, uc, c);
1189 		ipmr_cache_free(uc);
1190 	}
1191 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1192 	return 0;
1193 }
1194 
1195 /*
1196  *	Close the multicast socket, and clear the vif tables etc
1197  */
1198 
1199 static void mroute_clean_tables(struct mr_table *mrt)
1200 {
1201 	int i;
1202 	LIST_HEAD(list);
1203 	struct mfc_cache *c, *next;
1204 
1205 	/* Shut down all active vif entries */
1206 
1207 	for (i = 0; i < mrt->maxvif; i++) {
1208 		if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1209 			vif_delete(mrt, i, 0, &list);
1210 	}
1211 	unregister_netdevice_many(&list);
1212 
1213 	/* Wipe the cache */
1214 
1215 	for (i = 0; i < MFC_LINES; i++) {
1216 		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1217 			if (c->mfc_flags & MFC_STATIC)
1218 				continue;
1219 			list_del_rcu(&c->list);
1220 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1221 			ipmr_cache_free(c);
1222 		}
1223 	}
1224 
1225 	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1226 		spin_lock_bh(&mfc_unres_lock);
1227 		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1228 			list_del(&c->list);
1229 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1230 			ipmr_destroy_unres(mrt, c);
1231 		}
1232 		spin_unlock_bh(&mfc_unres_lock);
1233 	}
1234 }
1235 
1236 /* called from ip_ra_control(), before an RCU grace period,
1237  * we dont need to call synchronize_rcu() here
1238  */
1239 static void mrtsock_destruct(struct sock *sk)
1240 {
1241 	struct net *net = sock_net(sk);
1242 	struct mr_table *mrt;
1243 
1244 	rtnl_lock();
1245 	ipmr_for_each_table(mrt, net) {
1246 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1247 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1248 			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1249 						    NETCONFA_IFINDEX_ALL,
1250 						    net->ipv4.devconf_all);
1251 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1252 			mroute_clean_tables(mrt);
1253 		}
1254 	}
1255 	rtnl_unlock();
1256 }
1257 
1258 /*
1259  *	Socket options and virtual interface manipulation. The whole
1260  *	virtual interface system is a complete heap, but unfortunately
1261  *	that's how BSD mrouted happens to think. Maybe one day with a proper
1262  *	MOSPF/PIM router set up we can clean this up.
1263  */
1264 
1265 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1266 {
1267 	int ret, parent = 0;
1268 	struct vifctl vif;
1269 	struct mfcctl mfc;
1270 	struct net *net = sock_net(sk);
1271 	struct mr_table *mrt;
1272 
1273 	if (sk->sk_type != SOCK_RAW ||
1274 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1275 		return -EOPNOTSUPP;
1276 
1277 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1278 	if (mrt == NULL)
1279 		return -ENOENT;
1280 
1281 	if (optname != MRT_INIT) {
1282 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1283 		    !ns_capable(net->user_ns, CAP_NET_ADMIN))
1284 			return -EACCES;
1285 	}
1286 
1287 	switch (optname) {
1288 	case MRT_INIT:
1289 		if (optlen != sizeof(int))
1290 			return -EINVAL;
1291 
1292 		rtnl_lock();
1293 		if (rtnl_dereference(mrt->mroute_sk)) {
1294 			rtnl_unlock();
1295 			return -EADDRINUSE;
1296 		}
1297 
1298 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1299 		if (ret == 0) {
1300 			rcu_assign_pointer(mrt->mroute_sk, sk);
1301 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1302 			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1303 						    NETCONFA_IFINDEX_ALL,
1304 						    net->ipv4.devconf_all);
1305 		}
1306 		rtnl_unlock();
1307 		return ret;
1308 	case MRT_DONE:
1309 		if (sk != rcu_access_pointer(mrt->mroute_sk))
1310 			return -EACCES;
1311 		return ip_ra_control(sk, 0, NULL);
1312 	case MRT_ADD_VIF:
1313 	case MRT_DEL_VIF:
1314 		if (optlen != sizeof(vif))
1315 			return -EINVAL;
1316 		if (copy_from_user(&vif, optval, sizeof(vif)))
1317 			return -EFAULT;
1318 		if (vif.vifc_vifi >= MAXVIFS)
1319 			return -ENFILE;
1320 		rtnl_lock();
1321 		if (optname == MRT_ADD_VIF) {
1322 			ret = vif_add(net, mrt, &vif,
1323 				      sk == rtnl_dereference(mrt->mroute_sk));
1324 		} else {
1325 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1326 		}
1327 		rtnl_unlock();
1328 		return ret;
1329 
1330 		/*
1331 		 *	Manipulate the forwarding caches. These live
1332 		 *	in a sort of kernel/user symbiosis.
1333 		 */
1334 	case MRT_ADD_MFC:
1335 	case MRT_DEL_MFC:
1336 		parent = -1;
1337 	case MRT_ADD_MFC_PROXY:
1338 	case MRT_DEL_MFC_PROXY:
1339 		if (optlen != sizeof(mfc))
1340 			return -EINVAL;
1341 		if (copy_from_user(&mfc, optval, sizeof(mfc)))
1342 			return -EFAULT;
1343 		if (parent == 0)
1344 			parent = mfc.mfcc_parent;
1345 		rtnl_lock();
1346 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1347 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1348 		else
1349 			ret = ipmr_mfc_add(net, mrt, &mfc,
1350 					   sk == rtnl_dereference(mrt->mroute_sk),
1351 					   parent);
1352 		rtnl_unlock();
1353 		return ret;
1354 		/*
1355 		 *	Control PIM assert.
1356 		 */
1357 	case MRT_ASSERT:
1358 	{
1359 		int v;
1360 		if (optlen != sizeof(v))
1361 			return -EINVAL;
1362 		if (get_user(v, (int __user *)optval))
1363 			return -EFAULT;
1364 		mrt->mroute_do_assert = v;
1365 		return 0;
1366 	}
1367 #ifdef CONFIG_IP_PIMSM
1368 	case MRT_PIM:
1369 	{
1370 		int v;
1371 
1372 		if (optlen != sizeof(v))
1373 			return -EINVAL;
1374 		if (get_user(v, (int __user *)optval))
1375 			return -EFAULT;
1376 		v = !!v;
1377 
1378 		rtnl_lock();
1379 		ret = 0;
1380 		if (v != mrt->mroute_do_pim) {
1381 			mrt->mroute_do_pim = v;
1382 			mrt->mroute_do_assert = v;
1383 		}
1384 		rtnl_unlock();
1385 		return ret;
1386 	}
1387 #endif
1388 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1389 	case MRT_TABLE:
1390 	{
1391 		u32 v;
1392 
1393 		if (optlen != sizeof(u32))
1394 			return -EINVAL;
1395 		if (get_user(v, (u32 __user *)optval))
1396 			return -EFAULT;
1397 
1398 		/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1399 		if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1400 			return -EINVAL;
1401 
1402 		rtnl_lock();
1403 		ret = 0;
1404 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1405 			ret = -EBUSY;
1406 		} else {
1407 			if (!ipmr_new_table(net, v))
1408 				ret = -ENOMEM;
1409 			else
1410 				raw_sk(sk)->ipmr_table = v;
1411 		}
1412 		rtnl_unlock();
1413 		return ret;
1414 	}
1415 #endif
1416 	/*
1417 	 *	Spurious command, or MRT_VERSION which you cannot
1418 	 *	set.
1419 	 */
1420 	default:
1421 		return -ENOPROTOOPT;
1422 	}
1423 }
1424 
1425 /*
1426  *	Getsock opt support for the multicast routing system.
1427  */
1428 
1429 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1430 {
1431 	int olr;
1432 	int val;
1433 	struct net *net = sock_net(sk);
1434 	struct mr_table *mrt;
1435 
1436 	if (sk->sk_type != SOCK_RAW ||
1437 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1438 		return -EOPNOTSUPP;
1439 
1440 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1441 	if (mrt == NULL)
1442 		return -ENOENT;
1443 
1444 	if (optname != MRT_VERSION &&
1445 #ifdef CONFIG_IP_PIMSM
1446 	   optname != MRT_PIM &&
1447 #endif
1448 	   optname != MRT_ASSERT)
1449 		return -ENOPROTOOPT;
1450 
1451 	if (get_user(olr, optlen))
1452 		return -EFAULT;
1453 
1454 	olr = min_t(unsigned int, olr, sizeof(int));
1455 	if (olr < 0)
1456 		return -EINVAL;
1457 
1458 	if (put_user(olr, optlen))
1459 		return -EFAULT;
1460 	if (optname == MRT_VERSION)
1461 		val = 0x0305;
1462 #ifdef CONFIG_IP_PIMSM
1463 	else if (optname == MRT_PIM)
1464 		val = mrt->mroute_do_pim;
1465 #endif
1466 	else
1467 		val = mrt->mroute_do_assert;
1468 	if (copy_to_user(optval, &val, olr))
1469 		return -EFAULT;
1470 	return 0;
1471 }
1472 
1473 /*
1474  *	The IP multicast ioctl support routines.
1475  */
1476 
1477 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1478 {
1479 	struct sioc_sg_req sr;
1480 	struct sioc_vif_req vr;
1481 	struct vif_device *vif;
1482 	struct mfc_cache *c;
1483 	struct net *net = sock_net(sk);
1484 	struct mr_table *mrt;
1485 
1486 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1487 	if (mrt == NULL)
1488 		return -ENOENT;
1489 
1490 	switch (cmd) {
1491 	case SIOCGETVIFCNT:
1492 		if (copy_from_user(&vr, arg, sizeof(vr)))
1493 			return -EFAULT;
1494 		if (vr.vifi >= mrt->maxvif)
1495 			return -EINVAL;
1496 		read_lock(&mrt_lock);
1497 		vif = &mrt->vif_table[vr.vifi];
1498 		if (VIF_EXISTS(mrt, vr.vifi)) {
1499 			vr.icount = vif->pkt_in;
1500 			vr.ocount = vif->pkt_out;
1501 			vr.ibytes = vif->bytes_in;
1502 			vr.obytes = vif->bytes_out;
1503 			read_unlock(&mrt_lock);
1504 
1505 			if (copy_to_user(arg, &vr, sizeof(vr)))
1506 				return -EFAULT;
1507 			return 0;
1508 		}
1509 		read_unlock(&mrt_lock);
1510 		return -EADDRNOTAVAIL;
1511 	case SIOCGETSGCNT:
1512 		if (copy_from_user(&sr, arg, sizeof(sr)))
1513 			return -EFAULT;
1514 
1515 		rcu_read_lock();
1516 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1517 		if (c) {
1518 			sr.pktcnt = c->mfc_un.res.pkt;
1519 			sr.bytecnt = c->mfc_un.res.bytes;
1520 			sr.wrong_if = c->mfc_un.res.wrong_if;
1521 			rcu_read_unlock();
1522 
1523 			if (copy_to_user(arg, &sr, sizeof(sr)))
1524 				return -EFAULT;
1525 			return 0;
1526 		}
1527 		rcu_read_unlock();
1528 		return -EADDRNOTAVAIL;
1529 	default:
1530 		return -ENOIOCTLCMD;
1531 	}
1532 }
1533 
1534 #ifdef CONFIG_COMPAT
1535 struct compat_sioc_sg_req {
1536 	struct in_addr src;
1537 	struct in_addr grp;
1538 	compat_ulong_t pktcnt;
1539 	compat_ulong_t bytecnt;
1540 	compat_ulong_t wrong_if;
1541 };
1542 
1543 struct compat_sioc_vif_req {
1544 	vifi_t	vifi;		/* Which iface */
1545 	compat_ulong_t icount;
1546 	compat_ulong_t ocount;
1547 	compat_ulong_t ibytes;
1548 	compat_ulong_t obytes;
1549 };
1550 
1551 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1552 {
1553 	struct compat_sioc_sg_req sr;
1554 	struct compat_sioc_vif_req vr;
1555 	struct vif_device *vif;
1556 	struct mfc_cache *c;
1557 	struct net *net = sock_net(sk);
1558 	struct mr_table *mrt;
1559 
1560 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1561 	if (mrt == NULL)
1562 		return -ENOENT;
1563 
1564 	switch (cmd) {
1565 	case SIOCGETVIFCNT:
1566 		if (copy_from_user(&vr, arg, sizeof(vr)))
1567 			return -EFAULT;
1568 		if (vr.vifi >= mrt->maxvif)
1569 			return -EINVAL;
1570 		read_lock(&mrt_lock);
1571 		vif = &mrt->vif_table[vr.vifi];
1572 		if (VIF_EXISTS(mrt, vr.vifi)) {
1573 			vr.icount = vif->pkt_in;
1574 			vr.ocount = vif->pkt_out;
1575 			vr.ibytes = vif->bytes_in;
1576 			vr.obytes = vif->bytes_out;
1577 			read_unlock(&mrt_lock);
1578 
1579 			if (copy_to_user(arg, &vr, sizeof(vr)))
1580 				return -EFAULT;
1581 			return 0;
1582 		}
1583 		read_unlock(&mrt_lock);
1584 		return -EADDRNOTAVAIL;
1585 	case SIOCGETSGCNT:
1586 		if (copy_from_user(&sr, arg, sizeof(sr)))
1587 			return -EFAULT;
1588 
1589 		rcu_read_lock();
1590 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1591 		if (c) {
1592 			sr.pktcnt = c->mfc_un.res.pkt;
1593 			sr.bytecnt = c->mfc_un.res.bytes;
1594 			sr.wrong_if = c->mfc_un.res.wrong_if;
1595 			rcu_read_unlock();
1596 
1597 			if (copy_to_user(arg, &sr, sizeof(sr)))
1598 				return -EFAULT;
1599 			return 0;
1600 		}
1601 		rcu_read_unlock();
1602 		return -EADDRNOTAVAIL;
1603 	default:
1604 		return -ENOIOCTLCMD;
1605 	}
1606 }
1607 #endif
1608 
1609 
1610 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1611 {
1612 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1613 	struct net *net = dev_net(dev);
1614 	struct mr_table *mrt;
1615 	struct vif_device *v;
1616 	int ct;
1617 
1618 	if (event != NETDEV_UNREGISTER)
1619 		return NOTIFY_DONE;
1620 
1621 	ipmr_for_each_table(mrt, net) {
1622 		v = &mrt->vif_table[0];
1623 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1624 			if (v->dev == dev)
1625 				vif_delete(mrt, ct, 1, NULL);
1626 		}
1627 	}
1628 	return NOTIFY_DONE;
1629 }
1630 
1631 
1632 static struct notifier_block ip_mr_notifier = {
1633 	.notifier_call = ipmr_device_event,
1634 };
1635 
1636 /*
1637  *	Encapsulate a packet by attaching a valid IPIP header to it.
1638  *	This avoids tunnel drivers and other mess and gives us the speed so
1639  *	important for multicast video.
1640  */
1641 
1642 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1643 {
1644 	struct iphdr *iph;
1645 	const struct iphdr *old_iph = ip_hdr(skb);
1646 
1647 	skb_push(skb, sizeof(struct iphdr));
1648 	skb->transport_header = skb->network_header;
1649 	skb_reset_network_header(skb);
1650 	iph = ip_hdr(skb);
1651 
1652 	iph->version	=	4;
1653 	iph->tos	=	old_iph->tos;
1654 	iph->ttl	=	old_iph->ttl;
1655 	iph->frag_off	=	0;
1656 	iph->daddr	=	daddr;
1657 	iph->saddr	=	saddr;
1658 	iph->protocol	=	IPPROTO_IPIP;
1659 	iph->ihl	=	5;
1660 	iph->tot_len	=	htons(skb->len);
1661 	ip_select_ident(skb, skb_dst(skb), NULL);
1662 	ip_send_check(iph);
1663 
1664 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1665 	nf_reset(skb);
1666 }
1667 
1668 static inline int ipmr_forward_finish(struct sk_buff *skb)
1669 {
1670 	struct ip_options *opt = &(IPCB(skb)->opt);
1671 
1672 	IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1673 	IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1674 
1675 	if (unlikely(opt->optlen))
1676 		ip_forward_options(skb);
1677 
1678 	return dst_output(skb);
1679 }
1680 
1681 /*
1682  *	Processing handlers for ipmr_forward
1683  */
1684 
1685 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1686 			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1687 {
1688 	const struct iphdr *iph = ip_hdr(skb);
1689 	struct vif_device *vif = &mrt->vif_table[vifi];
1690 	struct net_device *dev;
1691 	struct rtable *rt;
1692 	struct flowi4 fl4;
1693 	int    encap = 0;
1694 
1695 	if (vif->dev == NULL)
1696 		goto out_free;
1697 
1698 #ifdef CONFIG_IP_PIMSM
1699 	if (vif->flags & VIFF_REGISTER) {
1700 		vif->pkt_out++;
1701 		vif->bytes_out += skb->len;
1702 		vif->dev->stats.tx_bytes += skb->len;
1703 		vif->dev->stats.tx_packets++;
1704 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1705 		goto out_free;
1706 	}
1707 #endif
1708 
1709 	if (vif->flags & VIFF_TUNNEL) {
1710 		rt = ip_route_output_ports(net, &fl4, NULL,
1711 					   vif->remote, vif->local,
1712 					   0, 0,
1713 					   IPPROTO_IPIP,
1714 					   RT_TOS(iph->tos), vif->link);
1715 		if (IS_ERR(rt))
1716 			goto out_free;
1717 		encap = sizeof(struct iphdr);
1718 	} else {
1719 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1720 					   0, 0,
1721 					   IPPROTO_IPIP,
1722 					   RT_TOS(iph->tos), vif->link);
1723 		if (IS_ERR(rt))
1724 			goto out_free;
1725 	}
1726 
1727 	dev = rt->dst.dev;
1728 
1729 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1730 		/* Do not fragment multicasts. Alas, IPv4 does not
1731 		 * allow to send ICMP, so that packets will disappear
1732 		 * to blackhole.
1733 		 */
1734 
1735 		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1736 		ip_rt_put(rt);
1737 		goto out_free;
1738 	}
1739 
1740 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1741 
1742 	if (skb_cow(skb, encap)) {
1743 		ip_rt_put(rt);
1744 		goto out_free;
1745 	}
1746 
1747 	vif->pkt_out++;
1748 	vif->bytes_out += skb->len;
1749 
1750 	skb_dst_drop(skb);
1751 	skb_dst_set(skb, &rt->dst);
1752 	ip_decrease_ttl(ip_hdr(skb));
1753 
1754 	/* FIXME: forward and output firewalls used to be called here.
1755 	 * What do we do with netfilter? -- RR
1756 	 */
1757 	if (vif->flags & VIFF_TUNNEL) {
1758 		ip_encap(skb, vif->local, vif->remote);
1759 		/* FIXME: extra output firewall step used to be here. --RR */
1760 		vif->dev->stats.tx_packets++;
1761 		vif->dev->stats.tx_bytes += skb->len;
1762 	}
1763 
1764 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1765 
1766 	/*
1767 	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1768 	 * not only before forwarding, but after forwarding on all output
1769 	 * interfaces. It is clear, if mrouter runs a multicasting
1770 	 * program, it should receive packets not depending to what interface
1771 	 * program is joined.
1772 	 * If we will not make it, the program will have to join on all
1773 	 * interfaces. On the other hand, multihoming host (or router, but
1774 	 * not mrouter) cannot join to more than one interface - it will
1775 	 * result in receiving multiple packets.
1776 	 */
1777 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1778 		ipmr_forward_finish);
1779 	return;
1780 
1781 out_free:
1782 	kfree_skb(skb);
1783 }
1784 
1785 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1786 {
1787 	int ct;
1788 
1789 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1790 		if (mrt->vif_table[ct].dev == dev)
1791 			break;
1792 	}
1793 	return ct;
1794 }
1795 
1796 /* "local" means that we should preserve one skb (for local delivery) */
1797 
1798 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1799 			  struct sk_buff *skb, struct mfc_cache *cache,
1800 			  int local)
1801 {
1802 	int psend = -1;
1803 	int vif, ct;
1804 	int true_vifi = ipmr_find_vif(mrt, skb->dev);
1805 
1806 	vif = cache->mfc_parent;
1807 	cache->mfc_un.res.pkt++;
1808 	cache->mfc_un.res.bytes += skb->len;
1809 
1810 	if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1811 		struct mfc_cache *cache_proxy;
1812 
1813 		/* For an (*,G) entry, we only check that the incomming
1814 		 * interface is part of the static tree.
1815 		 */
1816 		cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1817 		if (cache_proxy &&
1818 		    cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1819 			goto forward;
1820 	}
1821 
1822 	/*
1823 	 * Wrong interface: drop packet and (maybe) send PIM assert.
1824 	 */
1825 	if (mrt->vif_table[vif].dev != skb->dev) {
1826 		if (rt_is_output_route(skb_rtable(skb))) {
1827 			/* It is our own packet, looped back.
1828 			 * Very complicated situation...
1829 			 *
1830 			 * The best workaround until routing daemons will be
1831 			 * fixed is not to redistribute packet, if it was
1832 			 * send through wrong interface. It means, that
1833 			 * multicast applications WILL NOT work for
1834 			 * (S,G), which have default multicast route pointing
1835 			 * to wrong oif. In any case, it is not a good
1836 			 * idea to use multicasting applications on router.
1837 			 */
1838 			goto dont_forward;
1839 		}
1840 
1841 		cache->mfc_un.res.wrong_if++;
1842 
1843 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1844 		    /* pimsm uses asserts, when switching from RPT to SPT,
1845 		     * so that we cannot check that packet arrived on an oif.
1846 		     * It is bad, but otherwise we would need to move pretty
1847 		     * large chunk of pimd to kernel. Ough... --ANK
1848 		     */
1849 		    (mrt->mroute_do_pim ||
1850 		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1851 		    time_after(jiffies,
1852 			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1853 			cache->mfc_un.res.last_assert = jiffies;
1854 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1855 		}
1856 		goto dont_forward;
1857 	}
1858 
1859 forward:
1860 	mrt->vif_table[vif].pkt_in++;
1861 	mrt->vif_table[vif].bytes_in += skb->len;
1862 
1863 	/*
1864 	 *	Forward the frame
1865 	 */
1866 	if (cache->mfc_origin == htonl(INADDR_ANY) &&
1867 	    cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1868 		if (true_vifi >= 0 &&
1869 		    true_vifi != cache->mfc_parent &&
1870 		    ip_hdr(skb)->ttl >
1871 				cache->mfc_un.res.ttls[cache->mfc_parent]) {
1872 			/* It's an (*,*) entry and the packet is not coming from
1873 			 * the upstream: forward the packet to the upstream
1874 			 * only.
1875 			 */
1876 			psend = cache->mfc_parent;
1877 			goto last_forward;
1878 		}
1879 		goto dont_forward;
1880 	}
1881 	for (ct = cache->mfc_un.res.maxvif - 1;
1882 	     ct >= cache->mfc_un.res.minvif; ct--) {
1883 		/* For (*,G) entry, don't forward to the incoming interface */
1884 		if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1885 		     ct != true_vifi) &&
1886 		    ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1887 			if (psend != -1) {
1888 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1889 
1890 				if (skb2)
1891 					ipmr_queue_xmit(net, mrt, skb2, cache,
1892 							psend);
1893 			}
1894 			psend = ct;
1895 		}
1896 	}
1897 last_forward:
1898 	if (psend != -1) {
1899 		if (local) {
1900 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1901 
1902 			if (skb2)
1903 				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1904 		} else {
1905 			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1906 			return;
1907 		}
1908 	}
1909 
1910 dont_forward:
1911 	if (!local)
1912 		kfree_skb(skb);
1913 }
1914 
1915 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1916 {
1917 	struct rtable *rt = skb_rtable(skb);
1918 	struct iphdr *iph = ip_hdr(skb);
1919 	struct flowi4 fl4 = {
1920 		.daddr = iph->daddr,
1921 		.saddr = iph->saddr,
1922 		.flowi4_tos = RT_TOS(iph->tos),
1923 		.flowi4_oif = (rt_is_output_route(rt) ?
1924 			       skb->dev->ifindex : 0),
1925 		.flowi4_iif = (rt_is_output_route(rt) ?
1926 			       LOOPBACK_IFINDEX :
1927 			       skb->dev->ifindex),
1928 		.flowi4_mark = skb->mark,
1929 	};
1930 	struct mr_table *mrt;
1931 	int err;
1932 
1933 	err = ipmr_fib_lookup(net, &fl4, &mrt);
1934 	if (err)
1935 		return ERR_PTR(err);
1936 	return mrt;
1937 }
1938 
1939 /*
1940  *	Multicast packets for forwarding arrive here
1941  *	Called with rcu_read_lock();
1942  */
1943 
1944 int ip_mr_input(struct sk_buff *skb)
1945 {
1946 	struct mfc_cache *cache;
1947 	struct net *net = dev_net(skb->dev);
1948 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1949 	struct mr_table *mrt;
1950 
1951 	/* Packet is looped back after forward, it should not be
1952 	 * forwarded second time, but still can be delivered locally.
1953 	 */
1954 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1955 		goto dont_forward;
1956 
1957 	mrt = ipmr_rt_fib_lookup(net, skb);
1958 	if (IS_ERR(mrt)) {
1959 		kfree_skb(skb);
1960 		return PTR_ERR(mrt);
1961 	}
1962 	if (!local) {
1963 		if (IPCB(skb)->opt.router_alert) {
1964 			if (ip_call_ra_chain(skb))
1965 				return 0;
1966 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1967 			/* IGMPv1 (and broken IGMPv2 implementations sort of
1968 			 * Cisco IOS <= 11.2(8)) do not put router alert
1969 			 * option to IGMP packets destined to routable
1970 			 * groups. It is very bad, because it means
1971 			 * that we can forward NO IGMP messages.
1972 			 */
1973 			struct sock *mroute_sk;
1974 
1975 			mroute_sk = rcu_dereference(mrt->mroute_sk);
1976 			if (mroute_sk) {
1977 				nf_reset(skb);
1978 				raw_rcv(mroute_sk, skb);
1979 				return 0;
1980 			}
1981 		    }
1982 	}
1983 
1984 	/* already under rcu_read_lock() */
1985 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1986 	if (cache == NULL) {
1987 		int vif = ipmr_find_vif(mrt, skb->dev);
1988 
1989 		if (vif >= 0)
1990 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1991 						    vif);
1992 	}
1993 
1994 	/*
1995 	 *	No usable cache entry
1996 	 */
1997 	if (cache == NULL) {
1998 		int vif;
1999 
2000 		if (local) {
2001 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2002 			ip_local_deliver(skb);
2003 			if (skb2 == NULL)
2004 				return -ENOBUFS;
2005 			skb = skb2;
2006 		}
2007 
2008 		read_lock(&mrt_lock);
2009 		vif = ipmr_find_vif(mrt, skb->dev);
2010 		if (vif >= 0) {
2011 			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2012 			read_unlock(&mrt_lock);
2013 
2014 			return err2;
2015 		}
2016 		read_unlock(&mrt_lock);
2017 		kfree_skb(skb);
2018 		return -ENODEV;
2019 	}
2020 
2021 	read_lock(&mrt_lock);
2022 	ip_mr_forward(net, mrt, skb, cache, local);
2023 	read_unlock(&mrt_lock);
2024 
2025 	if (local)
2026 		return ip_local_deliver(skb);
2027 
2028 	return 0;
2029 
2030 dont_forward:
2031 	if (local)
2032 		return ip_local_deliver(skb);
2033 	kfree_skb(skb);
2034 	return 0;
2035 }
2036 
2037 #ifdef CONFIG_IP_PIMSM
2038 /* called with rcu_read_lock() */
2039 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
2040 		     unsigned int pimlen)
2041 {
2042 	struct net_device *reg_dev = NULL;
2043 	struct iphdr *encap;
2044 
2045 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
2046 	/*
2047 	 * Check that:
2048 	 * a. packet is really sent to a multicast group
2049 	 * b. packet is not a NULL-REGISTER
2050 	 * c. packet is not truncated
2051 	 */
2052 	if (!ipv4_is_multicast(encap->daddr) ||
2053 	    encap->tot_len == 0 ||
2054 	    ntohs(encap->tot_len) + pimlen > skb->len)
2055 		return 1;
2056 
2057 	read_lock(&mrt_lock);
2058 	if (mrt->mroute_reg_vif_num >= 0)
2059 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
2060 	read_unlock(&mrt_lock);
2061 
2062 	if (reg_dev == NULL)
2063 		return 1;
2064 
2065 	skb->mac_header = skb->network_header;
2066 	skb_pull(skb, (u8 *)encap - skb->data);
2067 	skb_reset_network_header(skb);
2068 	skb->protocol = htons(ETH_P_IP);
2069 	skb->ip_summed = CHECKSUM_NONE;
2070 
2071 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
2072 
2073 	netif_rx(skb);
2074 
2075 	return NET_RX_SUCCESS;
2076 }
2077 #endif
2078 
2079 #ifdef CONFIG_IP_PIMSM_V1
2080 /*
2081  * Handle IGMP messages of PIMv1
2082  */
2083 
2084 int pim_rcv_v1(struct sk_buff *skb)
2085 {
2086 	struct igmphdr *pim;
2087 	struct net *net = dev_net(skb->dev);
2088 	struct mr_table *mrt;
2089 
2090 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2091 		goto drop;
2092 
2093 	pim = igmp_hdr(skb);
2094 
2095 	mrt = ipmr_rt_fib_lookup(net, skb);
2096 	if (IS_ERR(mrt))
2097 		goto drop;
2098 	if (!mrt->mroute_do_pim ||
2099 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2100 		goto drop;
2101 
2102 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2103 drop:
2104 		kfree_skb(skb);
2105 	}
2106 	return 0;
2107 }
2108 #endif
2109 
2110 #ifdef CONFIG_IP_PIMSM_V2
2111 static int pim_rcv(struct sk_buff *skb)
2112 {
2113 	struct pimreghdr *pim;
2114 	struct net *net = dev_net(skb->dev);
2115 	struct mr_table *mrt;
2116 
2117 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2118 		goto drop;
2119 
2120 	pim = (struct pimreghdr *)skb_transport_header(skb);
2121 	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2122 	    (pim->flags & PIM_NULL_REGISTER) ||
2123 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2124 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2125 		goto drop;
2126 
2127 	mrt = ipmr_rt_fib_lookup(net, skb);
2128 	if (IS_ERR(mrt))
2129 		goto drop;
2130 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2131 drop:
2132 		kfree_skb(skb);
2133 	}
2134 	return 0;
2135 }
2136 #endif
2137 
2138 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2139 			      struct mfc_cache *c, struct rtmsg *rtm)
2140 {
2141 	int ct;
2142 	struct rtnexthop *nhp;
2143 	struct nlattr *mp_attr;
2144 	struct rta_mfc_stats mfcs;
2145 
2146 	/* If cache is unresolved, don't try to parse IIF and OIF */
2147 	if (c->mfc_parent >= MAXVIFS)
2148 		return -ENOENT;
2149 
2150 	if (VIF_EXISTS(mrt, c->mfc_parent) &&
2151 	    nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2152 		return -EMSGSIZE;
2153 
2154 	if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2155 		return -EMSGSIZE;
2156 
2157 	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2158 		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2159 			if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2160 				nla_nest_cancel(skb, mp_attr);
2161 				return -EMSGSIZE;
2162 			}
2163 
2164 			nhp->rtnh_flags = 0;
2165 			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2166 			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2167 			nhp->rtnh_len = sizeof(*nhp);
2168 		}
2169 	}
2170 
2171 	nla_nest_end(skb, mp_attr);
2172 
2173 	mfcs.mfcs_packets = c->mfc_un.res.pkt;
2174 	mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2175 	mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2176 	if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2177 		return -EMSGSIZE;
2178 
2179 	rtm->rtm_type = RTN_MULTICAST;
2180 	return 1;
2181 }
2182 
2183 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2184 		   __be32 saddr, __be32 daddr,
2185 		   struct rtmsg *rtm, int nowait)
2186 {
2187 	struct mfc_cache *cache;
2188 	struct mr_table *mrt;
2189 	int err;
2190 
2191 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2192 	if (mrt == NULL)
2193 		return -ENOENT;
2194 
2195 	rcu_read_lock();
2196 	cache = ipmr_cache_find(mrt, saddr, daddr);
2197 	if (cache == NULL && skb->dev) {
2198 		int vif = ipmr_find_vif(mrt, skb->dev);
2199 
2200 		if (vif >= 0)
2201 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2202 	}
2203 	if (cache == NULL) {
2204 		struct sk_buff *skb2;
2205 		struct iphdr *iph;
2206 		struct net_device *dev;
2207 		int vif = -1;
2208 
2209 		if (nowait) {
2210 			rcu_read_unlock();
2211 			return -EAGAIN;
2212 		}
2213 
2214 		dev = skb->dev;
2215 		read_lock(&mrt_lock);
2216 		if (dev)
2217 			vif = ipmr_find_vif(mrt, dev);
2218 		if (vif < 0) {
2219 			read_unlock(&mrt_lock);
2220 			rcu_read_unlock();
2221 			return -ENODEV;
2222 		}
2223 		skb2 = skb_clone(skb, GFP_ATOMIC);
2224 		if (!skb2) {
2225 			read_unlock(&mrt_lock);
2226 			rcu_read_unlock();
2227 			return -ENOMEM;
2228 		}
2229 
2230 		skb_push(skb2, sizeof(struct iphdr));
2231 		skb_reset_network_header(skb2);
2232 		iph = ip_hdr(skb2);
2233 		iph->ihl = sizeof(struct iphdr) >> 2;
2234 		iph->saddr = saddr;
2235 		iph->daddr = daddr;
2236 		iph->version = 0;
2237 		err = ipmr_cache_unresolved(mrt, vif, skb2);
2238 		read_unlock(&mrt_lock);
2239 		rcu_read_unlock();
2240 		return err;
2241 	}
2242 
2243 	read_lock(&mrt_lock);
2244 	if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2245 		cache->mfc_flags |= MFC_NOTIFY;
2246 	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2247 	read_unlock(&mrt_lock);
2248 	rcu_read_unlock();
2249 	return err;
2250 }
2251 
2252 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2253 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd)
2254 {
2255 	struct nlmsghdr *nlh;
2256 	struct rtmsg *rtm;
2257 	int err;
2258 
2259 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), NLM_F_MULTI);
2260 	if (nlh == NULL)
2261 		return -EMSGSIZE;
2262 
2263 	rtm = nlmsg_data(nlh);
2264 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2265 	rtm->rtm_dst_len  = 32;
2266 	rtm->rtm_src_len  = 32;
2267 	rtm->rtm_tos      = 0;
2268 	rtm->rtm_table    = mrt->id;
2269 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2270 		goto nla_put_failure;
2271 	rtm->rtm_type     = RTN_MULTICAST;
2272 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2273 	if (c->mfc_flags & MFC_STATIC)
2274 		rtm->rtm_protocol = RTPROT_STATIC;
2275 	else
2276 		rtm->rtm_protocol = RTPROT_MROUTED;
2277 	rtm->rtm_flags    = 0;
2278 
2279 	if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2280 	    nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2281 		goto nla_put_failure;
2282 	err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2283 	/* do not break the dump if cache is unresolved */
2284 	if (err < 0 && err != -ENOENT)
2285 		goto nla_put_failure;
2286 
2287 	return nlmsg_end(skb, nlh);
2288 
2289 nla_put_failure:
2290 	nlmsg_cancel(skb, nlh);
2291 	return -EMSGSIZE;
2292 }
2293 
2294 static size_t mroute_msgsize(bool unresolved, int maxvif)
2295 {
2296 	size_t len =
2297 		NLMSG_ALIGN(sizeof(struct rtmsg))
2298 		+ nla_total_size(4)	/* RTA_TABLE */
2299 		+ nla_total_size(4)	/* RTA_SRC */
2300 		+ nla_total_size(4)	/* RTA_DST */
2301 		;
2302 
2303 	if (!unresolved)
2304 		len = len
2305 		      + nla_total_size(4)	/* RTA_IIF */
2306 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2307 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2308 						/* RTA_MFC_STATS */
2309 		      + nla_total_size(sizeof(struct rta_mfc_stats))
2310 		;
2311 
2312 	return len;
2313 }
2314 
2315 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2316 				 int cmd)
2317 {
2318 	struct net *net = read_pnet(&mrt->net);
2319 	struct sk_buff *skb;
2320 	int err = -ENOBUFS;
2321 
2322 	skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2323 			GFP_ATOMIC);
2324 	if (skb == NULL)
2325 		goto errout;
2326 
2327 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd);
2328 	if (err < 0)
2329 		goto errout;
2330 
2331 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2332 	return;
2333 
2334 errout:
2335 	kfree_skb(skb);
2336 	if (err < 0)
2337 		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2338 }
2339 
2340 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2341 {
2342 	struct net *net = sock_net(skb->sk);
2343 	struct mr_table *mrt;
2344 	struct mfc_cache *mfc;
2345 	unsigned int t = 0, s_t;
2346 	unsigned int h = 0, s_h;
2347 	unsigned int e = 0, s_e;
2348 
2349 	s_t = cb->args[0];
2350 	s_h = cb->args[1];
2351 	s_e = cb->args[2];
2352 
2353 	rcu_read_lock();
2354 	ipmr_for_each_table(mrt, net) {
2355 		if (t < s_t)
2356 			goto next_table;
2357 		if (t > s_t)
2358 			s_h = 0;
2359 		for (h = s_h; h < MFC_LINES; h++) {
2360 			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2361 				if (e < s_e)
2362 					goto next_entry;
2363 				if (ipmr_fill_mroute(mrt, skb,
2364 						     NETLINK_CB(cb->skb).portid,
2365 						     cb->nlh->nlmsg_seq,
2366 						     mfc, RTM_NEWROUTE) < 0)
2367 					goto done;
2368 next_entry:
2369 				e++;
2370 			}
2371 			e = s_e = 0;
2372 		}
2373 		spin_lock_bh(&mfc_unres_lock);
2374 		list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2375 			if (e < s_e)
2376 				goto next_entry2;
2377 			if (ipmr_fill_mroute(mrt, skb,
2378 					     NETLINK_CB(cb->skb).portid,
2379 					     cb->nlh->nlmsg_seq,
2380 					     mfc, RTM_NEWROUTE) < 0) {
2381 				spin_unlock_bh(&mfc_unres_lock);
2382 				goto done;
2383 			}
2384 next_entry2:
2385 			e++;
2386 		}
2387 		spin_unlock_bh(&mfc_unres_lock);
2388 		e = s_e = 0;
2389 		s_h = 0;
2390 next_table:
2391 		t++;
2392 	}
2393 done:
2394 	rcu_read_unlock();
2395 
2396 	cb->args[2] = e;
2397 	cb->args[1] = h;
2398 	cb->args[0] = t;
2399 
2400 	return skb->len;
2401 }
2402 
2403 #ifdef CONFIG_PROC_FS
2404 /*
2405  *	The /proc interfaces to multicast routing :
2406  *	/proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2407  */
2408 struct ipmr_vif_iter {
2409 	struct seq_net_private p;
2410 	struct mr_table *mrt;
2411 	int ct;
2412 };
2413 
2414 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2415 					   struct ipmr_vif_iter *iter,
2416 					   loff_t pos)
2417 {
2418 	struct mr_table *mrt = iter->mrt;
2419 
2420 	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2421 		if (!VIF_EXISTS(mrt, iter->ct))
2422 			continue;
2423 		if (pos-- == 0)
2424 			return &mrt->vif_table[iter->ct];
2425 	}
2426 	return NULL;
2427 }
2428 
2429 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2430 	__acquires(mrt_lock)
2431 {
2432 	struct ipmr_vif_iter *iter = seq->private;
2433 	struct net *net = seq_file_net(seq);
2434 	struct mr_table *mrt;
2435 
2436 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2437 	if (mrt == NULL)
2438 		return ERR_PTR(-ENOENT);
2439 
2440 	iter->mrt = mrt;
2441 
2442 	read_lock(&mrt_lock);
2443 	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2444 		: SEQ_START_TOKEN;
2445 }
2446 
2447 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2448 {
2449 	struct ipmr_vif_iter *iter = seq->private;
2450 	struct net *net = seq_file_net(seq);
2451 	struct mr_table *mrt = iter->mrt;
2452 
2453 	++*pos;
2454 	if (v == SEQ_START_TOKEN)
2455 		return ipmr_vif_seq_idx(net, iter, 0);
2456 
2457 	while (++iter->ct < mrt->maxvif) {
2458 		if (!VIF_EXISTS(mrt, iter->ct))
2459 			continue;
2460 		return &mrt->vif_table[iter->ct];
2461 	}
2462 	return NULL;
2463 }
2464 
2465 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2466 	__releases(mrt_lock)
2467 {
2468 	read_unlock(&mrt_lock);
2469 }
2470 
2471 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2472 {
2473 	struct ipmr_vif_iter *iter = seq->private;
2474 	struct mr_table *mrt = iter->mrt;
2475 
2476 	if (v == SEQ_START_TOKEN) {
2477 		seq_puts(seq,
2478 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2479 	} else {
2480 		const struct vif_device *vif = v;
2481 		const char *name =  vif->dev ? vif->dev->name : "none";
2482 
2483 		seq_printf(seq,
2484 			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2485 			   vif - mrt->vif_table,
2486 			   name, vif->bytes_in, vif->pkt_in,
2487 			   vif->bytes_out, vif->pkt_out,
2488 			   vif->flags, vif->local, vif->remote);
2489 	}
2490 	return 0;
2491 }
2492 
2493 static const struct seq_operations ipmr_vif_seq_ops = {
2494 	.start = ipmr_vif_seq_start,
2495 	.next  = ipmr_vif_seq_next,
2496 	.stop  = ipmr_vif_seq_stop,
2497 	.show  = ipmr_vif_seq_show,
2498 };
2499 
2500 static int ipmr_vif_open(struct inode *inode, struct file *file)
2501 {
2502 	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2503 			    sizeof(struct ipmr_vif_iter));
2504 }
2505 
2506 static const struct file_operations ipmr_vif_fops = {
2507 	.owner	 = THIS_MODULE,
2508 	.open    = ipmr_vif_open,
2509 	.read    = seq_read,
2510 	.llseek  = seq_lseek,
2511 	.release = seq_release_net,
2512 };
2513 
2514 struct ipmr_mfc_iter {
2515 	struct seq_net_private p;
2516 	struct mr_table *mrt;
2517 	struct list_head *cache;
2518 	int ct;
2519 };
2520 
2521 
2522 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2523 					  struct ipmr_mfc_iter *it, loff_t pos)
2524 {
2525 	struct mr_table *mrt = it->mrt;
2526 	struct mfc_cache *mfc;
2527 
2528 	rcu_read_lock();
2529 	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2530 		it->cache = &mrt->mfc_cache_array[it->ct];
2531 		list_for_each_entry_rcu(mfc, it->cache, list)
2532 			if (pos-- == 0)
2533 				return mfc;
2534 	}
2535 	rcu_read_unlock();
2536 
2537 	spin_lock_bh(&mfc_unres_lock);
2538 	it->cache = &mrt->mfc_unres_queue;
2539 	list_for_each_entry(mfc, it->cache, list)
2540 		if (pos-- == 0)
2541 			return mfc;
2542 	spin_unlock_bh(&mfc_unres_lock);
2543 
2544 	it->cache = NULL;
2545 	return NULL;
2546 }
2547 
2548 
2549 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2550 {
2551 	struct ipmr_mfc_iter *it = seq->private;
2552 	struct net *net = seq_file_net(seq);
2553 	struct mr_table *mrt;
2554 
2555 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2556 	if (mrt == NULL)
2557 		return ERR_PTR(-ENOENT);
2558 
2559 	it->mrt = mrt;
2560 	it->cache = NULL;
2561 	it->ct = 0;
2562 	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2563 		: SEQ_START_TOKEN;
2564 }
2565 
2566 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2567 {
2568 	struct mfc_cache *mfc = v;
2569 	struct ipmr_mfc_iter *it = seq->private;
2570 	struct net *net = seq_file_net(seq);
2571 	struct mr_table *mrt = it->mrt;
2572 
2573 	++*pos;
2574 
2575 	if (v == SEQ_START_TOKEN)
2576 		return ipmr_mfc_seq_idx(net, seq->private, 0);
2577 
2578 	if (mfc->list.next != it->cache)
2579 		return list_entry(mfc->list.next, struct mfc_cache, list);
2580 
2581 	if (it->cache == &mrt->mfc_unres_queue)
2582 		goto end_of_list;
2583 
2584 	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2585 
2586 	while (++it->ct < MFC_LINES) {
2587 		it->cache = &mrt->mfc_cache_array[it->ct];
2588 		if (list_empty(it->cache))
2589 			continue;
2590 		return list_first_entry(it->cache, struct mfc_cache, list);
2591 	}
2592 
2593 	/* exhausted cache_array, show unresolved */
2594 	rcu_read_unlock();
2595 	it->cache = &mrt->mfc_unres_queue;
2596 	it->ct = 0;
2597 
2598 	spin_lock_bh(&mfc_unres_lock);
2599 	if (!list_empty(it->cache))
2600 		return list_first_entry(it->cache, struct mfc_cache, list);
2601 
2602 end_of_list:
2603 	spin_unlock_bh(&mfc_unres_lock);
2604 	it->cache = NULL;
2605 
2606 	return NULL;
2607 }
2608 
2609 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2610 {
2611 	struct ipmr_mfc_iter *it = seq->private;
2612 	struct mr_table *mrt = it->mrt;
2613 
2614 	if (it->cache == &mrt->mfc_unres_queue)
2615 		spin_unlock_bh(&mfc_unres_lock);
2616 	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2617 		rcu_read_unlock();
2618 }
2619 
2620 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2621 {
2622 	int n;
2623 
2624 	if (v == SEQ_START_TOKEN) {
2625 		seq_puts(seq,
2626 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2627 	} else {
2628 		const struct mfc_cache *mfc = v;
2629 		const struct ipmr_mfc_iter *it = seq->private;
2630 		const struct mr_table *mrt = it->mrt;
2631 
2632 		seq_printf(seq, "%08X %08X %-3hd",
2633 			   (__force u32) mfc->mfc_mcastgrp,
2634 			   (__force u32) mfc->mfc_origin,
2635 			   mfc->mfc_parent);
2636 
2637 		if (it->cache != &mrt->mfc_unres_queue) {
2638 			seq_printf(seq, " %8lu %8lu %8lu",
2639 				   mfc->mfc_un.res.pkt,
2640 				   mfc->mfc_un.res.bytes,
2641 				   mfc->mfc_un.res.wrong_if);
2642 			for (n = mfc->mfc_un.res.minvif;
2643 			     n < mfc->mfc_un.res.maxvif; n++) {
2644 				if (VIF_EXISTS(mrt, n) &&
2645 				    mfc->mfc_un.res.ttls[n] < 255)
2646 					seq_printf(seq,
2647 					   " %2d:%-3d",
2648 					   n, mfc->mfc_un.res.ttls[n]);
2649 			}
2650 		} else {
2651 			/* unresolved mfc_caches don't contain
2652 			 * pkt, bytes and wrong_if values
2653 			 */
2654 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2655 		}
2656 		seq_putc(seq, '\n');
2657 	}
2658 	return 0;
2659 }
2660 
2661 static const struct seq_operations ipmr_mfc_seq_ops = {
2662 	.start = ipmr_mfc_seq_start,
2663 	.next  = ipmr_mfc_seq_next,
2664 	.stop  = ipmr_mfc_seq_stop,
2665 	.show  = ipmr_mfc_seq_show,
2666 };
2667 
2668 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2669 {
2670 	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2671 			    sizeof(struct ipmr_mfc_iter));
2672 }
2673 
2674 static const struct file_operations ipmr_mfc_fops = {
2675 	.owner	 = THIS_MODULE,
2676 	.open    = ipmr_mfc_open,
2677 	.read    = seq_read,
2678 	.llseek  = seq_lseek,
2679 	.release = seq_release_net,
2680 };
2681 #endif
2682 
2683 #ifdef CONFIG_IP_PIMSM_V2
2684 static const struct net_protocol pim_protocol = {
2685 	.handler	=	pim_rcv,
2686 	.netns_ok	=	1,
2687 };
2688 #endif
2689 
2690 
2691 /*
2692  *	Setup for IP multicast routing
2693  */
2694 static int __net_init ipmr_net_init(struct net *net)
2695 {
2696 	int err;
2697 
2698 	err = ipmr_rules_init(net);
2699 	if (err < 0)
2700 		goto fail;
2701 
2702 #ifdef CONFIG_PROC_FS
2703 	err = -ENOMEM;
2704 	if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2705 		goto proc_vif_fail;
2706 	if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2707 		goto proc_cache_fail;
2708 #endif
2709 	return 0;
2710 
2711 #ifdef CONFIG_PROC_FS
2712 proc_cache_fail:
2713 	remove_proc_entry("ip_mr_vif", net->proc_net);
2714 proc_vif_fail:
2715 	ipmr_rules_exit(net);
2716 #endif
2717 fail:
2718 	return err;
2719 }
2720 
2721 static void __net_exit ipmr_net_exit(struct net *net)
2722 {
2723 #ifdef CONFIG_PROC_FS
2724 	remove_proc_entry("ip_mr_cache", net->proc_net);
2725 	remove_proc_entry("ip_mr_vif", net->proc_net);
2726 #endif
2727 	ipmr_rules_exit(net);
2728 }
2729 
2730 static struct pernet_operations ipmr_net_ops = {
2731 	.init = ipmr_net_init,
2732 	.exit = ipmr_net_exit,
2733 };
2734 
2735 int __init ip_mr_init(void)
2736 {
2737 	int err;
2738 
2739 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2740 				       sizeof(struct mfc_cache),
2741 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2742 				       NULL);
2743 	if (!mrt_cachep)
2744 		return -ENOMEM;
2745 
2746 	err = register_pernet_subsys(&ipmr_net_ops);
2747 	if (err)
2748 		goto reg_pernet_fail;
2749 
2750 	err = register_netdevice_notifier(&ip_mr_notifier);
2751 	if (err)
2752 		goto reg_notif_fail;
2753 #ifdef CONFIG_IP_PIMSM_V2
2754 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2755 		pr_err("%s: can't add PIM protocol\n", __func__);
2756 		err = -EAGAIN;
2757 		goto add_proto_fail;
2758 	}
2759 #endif
2760 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2761 		      NULL, ipmr_rtm_dumproute, NULL);
2762 	return 0;
2763 
2764 #ifdef CONFIG_IP_PIMSM_V2
2765 add_proto_fail:
2766 	unregister_netdevice_notifier(&ip_mr_notifier);
2767 #endif
2768 reg_notif_fail:
2769 	unregister_pernet_subsys(&ipmr_net_ops);
2770 reg_pernet_fail:
2771 	kmem_cache_destroy(mrt_cachep);
2772 	return err;
2773 }
2774