1 /* 2 * IP multicast routing support for mrouted 3.6/3.8 3 * 4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 5 * Linux Consultancy and Custom Driver Development 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 * 12 * Fixes: 13 * Michael Chastain : Incorrect size of copying. 14 * Alan Cox : Added the cache manager code 15 * Alan Cox : Fixed the clone/copy bug and device race. 16 * Mike McLagan : Routing by source 17 * Malcolm Beattie : Buffer handling fixes. 18 * Alexey Kuznetsov : Double buffer free and other fixes. 19 * SVR Anand : Fixed several multicast bugs and problems. 20 * Alexey Kuznetsov : Status, optimisations and more. 21 * Brad Parker : Better behaviour on mrouted upcall 22 * overflow. 23 * Carlos Picoto : PIMv1 Support 24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 25 * Relax this requirement to work with older peers. 26 * 27 */ 28 29 #include <asm/uaccess.h> 30 #include <linux/types.h> 31 #include <linux/capability.h> 32 #include <linux/errno.h> 33 #include <linux/timer.h> 34 #include <linux/mm.h> 35 #include <linux/kernel.h> 36 #include <linux/fcntl.h> 37 #include <linux/stat.h> 38 #include <linux/socket.h> 39 #include <linux/in.h> 40 #include <linux/inet.h> 41 #include <linux/netdevice.h> 42 #include <linux/inetdevice.h> 43 #include <linux/igmp.h> 44 #include <linux/proc_fs.h> 45 #include <linux/seq_file.h> 46 #include <linux/mroute.h> 47 #include <linux/init.h> 48 #include <linux/if_ether.h> 49 #include <linux/slab.h> 50 #include <net/net_namespace.h> 51 #include <net/ip.h> 52 #include <net/protocol.h> 53 #include <linux/skbuff.h> 54 #include <net/route.h> 55 #include <net/sock.h> 56 #include <net/icmp.h> 57 #include <net/udp.h> 58 #include <net/raw.h> 59 #include <linux/notifier.h> 60 #include <linux/if_arp.h> 61 #include <linux/netfilter_ipv4.h> 62 #include <linux/compat.h> 63 #include <linux/export.h> 64 #include <net/ip_tunnels.h> 65 #include <net/checksum.h> 66 #include <net/netlink.h> 67 #include <net/fib_rules.h> 68 #include <linux/netconf.h> 69 #include <net/nexthop.h> 70 71 struct ipmr_rule { 72 struct fib_rule common; 73 }; 74 75 struct ipmr_result { 76 struct mr_table *mrt; 77 }; 78 79 /* Big lock, protecting vif table, mrt cache and mroute socket state. 80 * Note that the changes are semaphored via rtnl_lock. 81 */ 82 83 static DEFINE_RWLOCK(mrt_lock); 84 85 /* Multicast router control variables */ 86 87 /* Special spinlock for queue of unresolved entries */ 88 static DEFINE_SPINLOCK(mfc_unres_lock); 89 90 /* We return to original Alan's scheme. Hash table of resolved 91 * entries is changed only in process context and protected 92 * with weak lock mrt_lock. Queue of unresolved entries is protected 93 * with strong spinlock mfc_unres_lock. 94 * 95 * In this case data path is free of exclusive locks at all. 96 */ 97 98 static struct kmem_cache *mrt_cachep __read_mostly; 99 100 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 101 static void ipmr_free_table(struct mr_table *mrt); 102 103 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 104 struct sk_buff *skb, struct mfc_cache *cache, 105 int local); 106 static int ipmr_cache_report(struct mr_table *mrt, 107 struct sk_buff *pkt, vifi_t vifi, int assert); 108 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 109 struct mfc_cache *c, struct rtmsg *rtm); 110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 111 int cmd); 112 static void mroute_clean_tables(struct mr_table *mrt, bool all); 113 static void ipmr_expire_process(unsigned long arg); 114 115 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 116 #define ipmr_for_each_table(mrt, net) \ 117 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list) 118 119 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 120 { 121 struct mr_table *mrt; 122 123 ipmr_for_each_table(mrt, net) { 124 if (mrt->id == id) 125 return mrt; 126 } 127 return NULL; 128 } 129 130 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 131 struct mr_table **mrt) 132 { 133 int err; 134 struct ipmr_result res; 135 struct fib_lookup_arg arg = { 136 .result = &res, 137 .flags = FIB_LOOKUP_NOREF, 138 }; 139 140 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 141 flowi4_to_flowi(flp4), 0, &arg); 142 if (err < 0) 143 return err; 144 *mrt = res.mrt; 145 return 0; 146 } 147 148 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 149 int flags, struct fib_lookup_arg *arg) 150 { 151 struct ipmr_result *res = arg->result; 152 struct mr_table *mrt; 153 154 switch (rule->action) { 155 case FR_ACT_TO_TBL: 156 break; 157 case FR_ACT_UNREACHABLE: 158 return -ENETUNREACH; 159 case FR_ACT_PROHIBIT: 160 return -EACCES; 161 case FR_ACT_BLACKHOLE: 162 default: 163 return -EINVAL; 164 } 165 166 mrt = ipmr_get_table(rule->fr_net, rule->table); 167 if (!mrt) 168 return -EAGAIN; 169 res->mrt = mrt; 170 return 0; 171 } 172 173 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 174 { 175 return 1; 176 } 177 178 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = { 179 FRA_GENERIC_POLICY, 180 }; 181 182 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 183 struct fib_rule_hdr *frh, struct nlattr **tb) 184 { 185 return 0; 186 } 187 188 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 189 struct nlattr **tb) 190 { 191 return 1; 192 } 193 194 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 195 struct fib_rule_hdr *frh) 196 { 197 frh->dst_len = 0; 198 frh->src_len = 0; 199 frh->tos = 0; 200 return 0; 201 } 202 203 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 204 .family = RTNL_FAMILY_IPMR, 205 .rule_size = sizeof(struct ipmr_rule), 206 .addr_size = sizeof(u32), 207 .action = ipmr_rule_action, 208 .match = ipmr_rule_match, 209 .configure = ipmr_rule_configure, 210 .compare = ipmr_rule_compare, 211 .fill = ipmr_rule_fill, 212 .nlgroup = RTNLGRP_IPV4_RULE, 213 .policy = ipmr_rule_policy, 214 .owner = THIS_MODULE, 215 }; 216 217 static int __net_init ipmr_rules_init(struct net *net) 218 { 219 struct fib_rules_ops *ops; 220 struct mr_table *mrt; 221 int err; 222 223 ops = fib_rules_register(&ipmr_rules_ops_template, net); 224 if (IS_ERR(ops)) 225 return PTR_ERR(ops); 226 227 INIT_LIST_HEAD(&net->ipv4.mr_tables); 228 229 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 230 if (IS_ERR(mrt)) { 231 err = PTR_ERR(mrt); 232 goto err1; 233 } 234 235 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 236 if (err < 0) 237 goto err2; 238 239 net->ipv4.mr_rules_ops = ops; 240 return 0; 241 242 err2: 243 ipmr_free_table(mrt); 244 err1: 245 fib_rules_unregister(ops); 246 return err; 247 } 248 249 static void __net_exit ipmr_rules_exit(struct net *net) 250 { 251 struct mr_table *mrt, *next; 252 253 rtnl_lock(); 254 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 255 list_del(&mrt->list); 256 ipmr_free_table(mrt); 257 } 258 fib_rules_unregister(net->ipv4.mr_rules_ops); 259 rtnl_unlock(); 260 } 261 #else 262 #define ipmr_for_each_table(mrt, net) \ 263 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 264 265 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 266 { 267 return net->ipv4.mrt; 268 } 269 270 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 271 struct mr_table **mrt) 272 { 273 *mrt = net->ipv4.mrt; 274 return 0; 275 } 276 277 static int __net_init ipmr_rules_init(struct net *net) 278 { 279 struct mr_table *mrt; 280 281 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 282 if (IS_ERR(mrt)) 283 return PTR_ERR(mrt); 284 net->ipv4.mrt = mrt; 285 return 0; 286 } 287 288 static void __net_exit ipmr_rules_exit(struct net *net) 289 { 290 rtnl_lock(); 291 ipmr_free_table(net->ipv4.mrt); 292 net->ipv4.mrt = NULL; 293 rtnl_unlock(); 294 } 295 #endif 296 297 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 298 { 299 struct mr_table *mrt; 300 unsigned int i; 301 302 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 303 if (id != RT_TABLE_DEFAULT && id >= 1000000000) 304 return ERR_PTR(-EINVAL); 305 306 mrt = ipmr_get_table(net, id); 307 if (mrt) 308 return mrt; 309 310 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL); 311 if (!mrt) 312 return ERR_PTR(-ENOMEM); 313 write_pnet(&mrt->net, net); 314 mrt->id = id; 315 316 /* Forwarding cache */ 317 for (i = 0; i < MFC_LINES; i++) 318 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]); 319 320 INIT_LIST_HEAD(&mrt->mfc_unres_queue); 321 322 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process, 323 (unsigned long)mrt); 324 325 mrt->mroute_reg_vif_num = -1; 326 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 327 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 328 #endif 329 return mrt; 330 } 331 332 static void ipmr_free_table(struct mr_table *mrt) 333 { 334 del_timer_sync(&mrt->ipmr_expire_timer); 335 mroute_clean_tables(mrt, true); 336 kfree(mrt); 337 } 338 339 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 340 341 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v) 342 { 343 struct net *net = dev_net(dev); 344 345 dev_close(dev); 346 347 dev = __dev_get_by_name(net, "tunl0"); 348 if (dev) { 349 const struct net_device_ops *ops = dev->netdev_ops; 350 struct ifreq ifr; 351 struct ip_tunnel_parm p; 352 353 memset(&p, 0, sizeof(p)); 354 p.iph.daddr = v->vifc_rmt_addr.s_addr; 355 p.iph.saddr = v->vifc_lcl_addr.s_addr; 356 p.iph.version = 4; 357 p.iph.ihl = 5; 358 p.iph.protocol = IPPROTO_IPIP; 359 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 360 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 361 362 if (ops->ndo_do_ioctl) { 363 mm_segment_t oldfs = get_fs(); 364 365 set_fs(KERNEL_DS); 366 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL); 367 set_fs(oldfs); 368 } 369 } 370 } 371 372 /* Initialize ipmr pimreg/tunnel in_device */ 373 static bool ipmr_init_vif_indev(const struct net_device *dev) 374 { 375 struct in_device *in_dev; 376 377 ASSERT_RTNL(); 378 379 in_dev = __in_dev_get_rtnl(dev); 380 if (!in_dev) 381 return false; 382 ipv4_devconf_setall(in_dev); 383 neigh_parms_data_state_setall(in_dev->arp_parms); 384 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 385 386 return true; 387 } 388 389 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 390 { 391 struct net_device *dev; 392 393 dev = __dev_get_by_name(net, "tunl0"); 394 395 if (dev) { 396 const struct net_device_ops *ops = dev->netdev_ops; 397 int err; 398 struct ifreq ifr; 399 struct ip_tunnel_parm p; 400 401 memset(&p, 0, sizeof(p)); 402 p.iph.daddr = v->vifc_rmt_addr.s_addr; 403 p.iph.saddr = v->vifc_lcl_addr.s_addr; 404 p.iph.version = 4; 405 p.iph.ihl = 5; 406 p.iph.protocol = IPPROTO_IPIP; 407 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 408 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 409 410 if (ops->ndo_do_ioctl) { 411 mm_segment_t oldfs = get_fs(); 412 413 set_fs(KERNEL_DS); 414 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL); 415 set_fs(oldfs); 416 } else { 417 err = -EOPNOTSUPP; 418 } 419 dev = NULL; 420 421 if (err == 0 && 422 (dev = __dev_get_by_name(net, p.name)) != NULL) { 423 dev->flags |= IFF_MULTICAST; 424 if (!ipmr_init_vif_indev(dev)) 425 goto failure; 426 if (dev_open(dev)) 427 goto failure; 428 dev_hold(dev); 429 } 430 } 431 return dev; 432 433 failure: 434 unregister_netdevice(dev); 435 return NULL; 436 } 437 438 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 439 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 440 { 441 struct net *net = dev_net(dev); 442 struct mr_table *mrt; 443 struct flowi4 fl4 = { 444 .flowi4_oif = dev->ifindex, 445 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 446 .flowi4_mark = skb->mark, 447 }; 448 int err; 449 450 err = ipmr_fib_lookup(net, &fl4, &mrt); 451 if (err < 0) { 452 kfree_skb(skb); 453 return err; 454 } 455 456 read_lock(&mrt_lock); 457 dev->stats.tx_bytes += skb->len; 458 dev->stats.tx_packets++; 459 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT); 460 read_unlock(&mrt_lock); 461 kfree_skb(skb); 462 return NETDEV_TX_OK; 463 } 464 465 static int reg_vif_get_iflink(const struct net_device *dev) 466 { 467 return 0; 468 } 469 470 static const struct net_device_ops reg_vif_netdev_ops = { 471 .ndo_start_xmit = reg_vif_xmit, 472 .ndo_get_iflink = reg_vif_get_iflink, 473 }; 474 475 static void reg_vif_setup(struct net_device *dev) 476 { 477 dev->type = ARPHRD_PIMREG; 478 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 479 dev->flags = IFF_NOARP; 480 dev->netdev_ops = ®_vif_netdev_ops; 481 dev->destructor = free_netdev; 482 dev->features |= NETIF_F_NETNS_LOCAL; 483 } 484 485 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 486 { 487 struct net_device *dev; 488 char name[IFNAMSIZ]; 489 490 if (mrt->id == RT_TABLE_DEFAULT) 491 sprintf(name, "pimreg"); 492 else 493 sprintf(name, "pimreg%u", mrt->id); 494 495 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 496 497 if (!dev) 498 return NULL; 499 500 dev_net_set(dev, net); 501 502 if (register_netdevice(dev)) { 503 free_netdev(dev); 504 return NULL; 505 } 506 507 if (!ipmr_init_vif_indev(dev)) 508 goto failure; 509 if (dev_open(dev)) 510 goto failure; 511 512 dev_hold(dev); 513 514 return dev; 515 516 failure: 517 unregister_netdevice(dev); 518 return NULL; 519 } 520 521 /* called with rcu_read_lock() */ 522 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 523 unsigned int pimlen) 524 { 525 struct net_device *reg_dev = NULL; 526 struct iphdr *encap; 527 528 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 529 /* Check that: 530 * a. packet is really sent to a multicast group 531 * b. packet is not a NULL-REGISTER 532 * c. packet is not truncated 533 */ 534 if (!ipv4_is_multicast(encap->daddr) || 535 encap->tot_len == 0 || 536 ntohs(encap->tot_len) + pimlen > skb->len) 537 return 1; 538 539 read_lock(&mrt_lock); 540 if (mrt->mroute_reg_vif_num >= 0) 541 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev; 542 read_unlock(&mrt_lock); 543 544 if (!reg_dev) 545 return 1; 546 547 skb->mac_header = skb->network_header; 548 skb_pull(skb, (u8 *)encap - skb->data); 549 skb_reset_network_header(skb); 550 skb->protocol = htons(ETH_P_IP); 551 skb->ip_summed = CHECKSUM_NONE; 552 553 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 554 555 netif_rx(skb); 556 557 return NET_RX_SUCCESS; 558 } 559 #else 560 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 561 { 562 return NULL; 563 } 564 #endif 565 566 /** 567 * vif_delete - Delete a VIF entry 568 * @notify: Set to 1, if the caller is a notifier_call 569 */ 570 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 571 struct list_head *head) 572 { 573 struct vif_device *v; 574 struct net_device *dev; 575 struct in_device *in_dev; 576 577 if (vifi < 0 || vifi >= mrt->maxvif) 578 return -EADDRNOTAVAIL; 579 580 v = &mrt->vif_table[vifi]; 581 582 write_lock_bh(&mrt_lock); 583 dev = v->dev; 584 v->dev = NULL; 585 586 if (!dev) { 587 write_unlock_bh(&mrt_lock); 588 return -EADDRNOTAVAIL; 589 } 590 591 if (vifi == mrt->mroute_reg_vif_num) 592 mrt->mroute_reg_vif_num = -1; 593 594 if (vifi + 1 == mrt->maxvif) { 595 int tmp; 596 597 for (tmp = vifi - 1; tmp >= 0; tmp--) { 598 if (VIF_EXISTS(mrt, tmp)) 599 break; 600 } 601 mrt->maxvif = tmp+1; 602 } 603 604 write_unlock_bh(&mrt_lock); 605 606 dev_set_allmulti(dev, -1); 607 608 in_dev = __in_dev_get_rtnl(dev); 609 if (in_dev) { 610 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 611 inet_netconf_notify_devconf(dev_net(dev), 612 NETCONFA_MC_FORWARDING, 613 dev->ifindex, &in_dev->cnf); 614 ip_rt_multicast_event(in_dev); 615 } 616 617 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 618 unregister_netdevice_queue(dev, head); 619 620 dev_put(dev); 621 return 0; 622 } 623 624 static void ipmr_cache_free_rcu(struct rcu_head *head) 625 { 626 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu); 627 628 kmem_cache_free(mrt_cachep, c); 629 } 630 631 static inline void ipmr_cache_free(struct mfc_cache *c) 632 { 633 call_rcu(&c->rcu, ipmr_cache_free_rcu); 634 } 635 636 /* Destroy an unresolved cache entry, killing queued skbs 637 * and reporting error to netlink readers. 638 */ 639 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 640 { 641 struct net *net = read_pnet(&mrt->net); 642 struct sk_buff *skb; 643 struct nlmsgerr *e; 644 645 atomic_dec(&mrt->cache_resolve_queue_len); 646 647 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) { 648 if (ip_hdr(skb)->version == 0) { 649 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 650 nlh->nlmsg_type = NLMSG_ERROR; 651 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 652 skb_trim(skb, nlh->nlmsg_len); 653 e = nlmsg_data(nlh); 654 e->error = -ETIMEDOUT; 655 memset(&e->msg, 0, sizeof(e->msg)); 656 657 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 658 } else { 659 kfree_skb(skb); 660 } 661 } 662 663 ipmr_cache_free(c); 664 } 665 666 /* Timer process for the unresolved queue. */ 667 static void ipmr_expire_process(unsigned long arg) 668 { 669 struct mr_table *mrt = (struct mr_table *)arg; 670 unsigned long now; 671 unsigned long expires; 672 struct mfc_cache *c, *next; 673 674 if (!spin_trylock(&mfc_unres_lock)) { 675 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 676 return; 677 } 678 679 if (list_empty(&mrt->mfc_unres_queue)) 680 goto out; 681 682 now = jiffies; 683 expires = 10*HZ; 684 685 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 686 if (time_after(c->mfc_un.unres.expires, now)) { 687 unsigned long interval = c->mfc_un.unres.expires - now; 688 if (interval < expires) 689 expires = interval; 690 continue; 691 } 692 693 list_del(&c->list); 694 mroute_netlink_event(mrt, c, RTM_DELROUTE); 695 ipmr_destroy_unres(mrt, c); 696 } 697 698 if (!list_empty(&mrt->mfc_unres_queue)) 699 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 700 701 out: 702 spin_unlock(&mfc_unres_lock); 703 } 704 705 /* Fill oifs list. It is called under write locked mrt_lock. */ 706 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache, 707 unsigned char *ttls) 708 { 709 int vifi; 710 711 cache->mfc_un.res.minvif = MAXVIFS; 712 cache->mfc_un.res.maxvif = 0; 713 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 714 715 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 716 if (VIF_EXISTS(mrt, vifi) && 717 ttls[vifi] && ttls[vifi] < 255) { 718 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 719 if (cache->mfc_un.res.minvif > vifi) 720 cache->mfc_un.res.minvif = vifi; 721 if (cache->mfc_un.res.maxvif <= vifi) 722 cache->mfc_un.res.maxvif = vifi + 1; 723 } 724 } 725 cache->mfc_un.res.lastuse = jiffies; 726 } 727 728 static int vif_add(struct net *net, struct mr_table *mrt, 729 struct vifctl *vifc, int mrtsock) 730 { 731 int vifi = vifc->vifc_vifi; 732 struct vif_device *v = &mrt->vif_table[vifi]; 733 struct net_device *dev; 734 struct in_device *in_dev; 735 int err; 736 737 /* Is vif busy ? */ 738 if (VIF_EXISTS(mrt, vifi)) 739 return -EADDRINUSE; 740 741 switch (vifc->vifc_flags) { 742 case VIFF_REGISTER: 743 if (!ipmr_pimsm_enabled()) 744 return -EINVAL; 745 /* Special Purpose VIF in PIM 746 * All the packets will be sent to the daemon 747 */ 748 if (mrt->mroute_reg_vif_num >= 0) 749 return -EADDRINUSE; 750 dev = ipmr_reg_vif(net, mrt); 751 if (!dev) 752 return -ENOBUFS; 753 err = dev_set_allmulti(dev, 1); 754 if (err) { 755 unregister_netdevice(dev); 756 dev_put(dev); 757 return err; 758 } 759 break; 760 case VIFF_TUNNEL: 761 dev = ipmr_new_tunnel(net, vifc); 762 if (!dev) 763 return -ENOBUFS; 764 err = dev_set_allmulti(dev, 1); 765 if (err) { 766 ipmr_del_tunnel(dev, vifc); 767 dev_put(dev); 768 return err; 769 } 770 break; 771 case VIFF_USE_IFINDEX: 772 case 0: 773 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 774 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 775 if (dev && !__in_dev_get_rtnl(dev)) { 776 dev_put(dev); 777 return -EADDRNOTAVAIL; 778 } 779 } else { 780 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 781 } 782 if (!dev) 783 return -EADDRNOTAVAIL; 784 err = dev_set_allmulti(dev, 1); 785 if (err) { 786 dev_put(dev); 787 return err; 788 } 789 break; 790 default: 791 return -EINVAL; 792 } 793 794 in_dev = __in_dev_get_rtnl(dev); 795 if (!in_dev) { 796 dev_put(dev); 797 return -EADDRNOTAVAIL; 798 } 799 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 800 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex, 801 &in_dev->cnf); 802 ip_rt_multicast_event(in_dev); 803 804 /* Fill in the VIF structures */ 805 806 v->rate_limit = vifc->vifc_rate_limit; 807 v->local = vifc->vifc_lcl_addr.s_addr; 808 v->remote = vifc->vifc_rmt_addr.s_addr; 809 v->flags = vifc->vifc_flags; 810 if (!mrtsock) 811 v->flags |= VIFF_STATIC; 812 v->threshold = vifc->vifc_threshold; 813 v->bytes_in = 0; 814 v->bytes_out = 0; 815 v->pkt_in = 0; 816 v->pkt_out = 0; 817 v->link = dev->ifindex; 818 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER)) 819 v->link = dev_get_iflink(dev); 820 821 /* And finish update writing critical data */ 822 write_lock_bh(&mrt_lock); 823 v->dev = dev; 824 if (v->flags & VIFF_REGISTER) 825 mrt->mroute_reg_vif_num = vifi; 826 if (vifi+1 > mrt->maxvif) 827 mrt->maxvif = vifi+1; 828 write_unlock_bh(&mrt_lock); 829 return 0; 830 } 831 832 /* called with rcu_read_lock() */ 833 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 834 __be32 origin, 835 __be32 mcastgrp) 836 { 837 int line = MFC_HASH(mcastgrp, origin); 838 struct mfc_cache *c; 839 840 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) { 841 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp) 842 return c; 843 } 844 return NULL; 845 } 846 847 /* Look for a (*,*,oif) entry */ 848 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt, 849 int vifi) 850 { 851 int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY)); 852 struct mfc_cache *c; 853 854 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) 855 if (c->mfc_origin == htonl(INADDR_ANY) && 856 c->mfc_mcastgrp == htonl(INADDR_ANY) && 857 c->mfc_un.res.ttls[vifi] < 255) 858 return c; 859 860 return NULL; 861 } 862 863 /* Look for a (*,G) entry */ 864 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 865 __be32 mcastgrp, int vifi) 866 { 867 int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY)); 868 struct mfc_cache *c, *proxy; 869 870 if (mcastgrp == htonl(INADDR_ANY)) 871 goto skip; 872 873 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) 874 if (c->mfc_origin == htonl(INADDR_ANY) && 875 c->mfc_mcastgrp == mcastgrp) { 876 if (c->mfc_un.res.ttls[vifi] < 255) 877 return c; 878 879 /* It's ok if the vifi is part of the static tree */ 880 proxy = ipmr_cache_find_any_parent(mrt, 881 c->mfc_parent); 882 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255) 883 return c; 884 } 885 886 skip: 887 return ipmr_cache_find_any_parent(mrt, vifi); 888 } 889 890 /* Allocate a multicast cache entry */ 891 static struct mfc_cache *ipmr_cache_alloc(void) 892 { 893 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 894 895 if (c) { 896 c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; 897 c->mfc_un.res.minvif = MAXVIFS; 898 } 899 return c; 900 } 901 902 static struct mfc_cache *ipmr_cache_alloc_unres(void) 903 { 904 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 905 906 if (c) { 907 skb_queue_head_init(&c->mfc_un.unres.unresolved); 908 c->mfc_un.unres.expires = jiffies + 10*HZ; 909 } 910 return c; 911 } 912 913 /* A cache entry has gone into a resolved state from queued */ 914 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 915 struct mfc_cache *uc, struct mfc_cache *c) 916 { 917 struct sk_buff *skb; 918 struct nlmsgerr *e; 919 920 /* Play the pending entries through our router */ 921 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) { 922 if (ip_hdr(skb)->version == 0) { 923 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 924 925 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) { 926 nlh->nlmsg_len = skb_tail_pointer(skb) - 927 (u8 *)nlh; 928 } else { 929 nlh->nlmsg_type = NLMSG_ERROR; 930 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 931 skb_trim(skb, nlh->nlmsg_len); 932 e = nlmsg_data(nlh); 933 e->error = -EMSGSIZE; 934 memset(&e->msg, 0, sizeof(e->msg)); 935 } 936 937 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 938 } else { 939 ip_mr_forward(net, mrt, skb, c, 0); 940 } 941 } 942 } 943 944 /* Bounce a cache query up to mrouted. We could use netlink for this but mrouted 945 * expects the following bizarre scheme. 946 * 947 * Called under mrt_lock. 948 */ 949 static int ipmr_cache_report(struct mr_table *mrt, 950 struct sk_buff *pkt, vifi_t vifi, int assert) 951 { 952 const int ihl = ip_hdrlen(pkt); 953 struct sock *mroute_sk; 954 struct igmphdr *igmp; 955 struct igmpmsg *msg; 956 struct sk_buff *skb; 957 int ret; 958 959 if (assert == IGMPMSG_WHOLEPKT) 960 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 961 else 962 skb = alloc_skb(128, GFP_ATOMIC); 963 964 if (!skb) 965 return -ENOBUFS; 966 967 if (assert == IGMPMSG_WHOLEPKT) { 968 /* Ugly, but we have no choice with this interface. 969 * Duplicate old header, fix ihl, length etc. 970 * And all this only to mangle msg->im_msgtype and 971 * to set msg->im_mbz to "mbz" :-) 972 */ 973 skb_push(skb, sizeof(struct iphdr)); 974 skb_reset_network_header(skb); 975 skb_reset_transport_header(skb); 976 msg = (struct igmpmsg *)skb_network_header(skb); 977 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 978 msg->im_msgtype = IGMPMSG_WHOLEPKT; 979 msg->im_mbz = 0; 980 msg->im_vif = mrt->mroute_reg_vif_num; 981 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 982 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 983 sizeof(struct iphdr)); 984 } else { 985 /* Copy the IP header */ 986 skb_set_network_header(skb, skb->len); 987 skb_put(skb, ihl); 988 skb_copy_to_linear_data(skb, pkt->data, ihl); 989 /* Flag to the kernel this is a route add */ 990 ip_hdr(skb)->protocol = 0; 991 msg = (struct igmpmsg *)skb_network_header(skb); 992 msg->im_vif = vifi; 993 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 994 /* Add our header */ 995 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr)); 996 igmp->type = assert; 997 msg->im_msgtype = assert; 998 igmp->code = 0; 999 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 1000 skb->transport_header = skb->network_header; 1001 } 1002 1003 rcu_read_lock(); 1004 mroute_sk = rcu_dereference(mrt->mroute_sk); 1005 if (!mroute_sk) { 1006 rcu_read_unlock(); 1007 kfree_skb(skb); 1008 return -EINVAL; 1009 } 1010 1011 /* Deliver to mrouted */ 1012 ret = sock_queue_rcv_skb(mroute_sk, skb); 1013 rcu_read_unlock(); 1014 if (ret < 0) { 1015 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1016 kfree_skb(skb); 1017 } 1018 1019 return ret; 1020 } 1021 1022 /* Queue a packet for resolution. It gets locked cache entry! */ 1023 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, 1024 struct sk_buff *skb) 1025 { 1026 bool found = false; 1027 int err; 1028 struct mfc_cache *c; 1029 const struct iphdr *iph = ip_hdr(skb); 1030 1031 spin_lock_bh(&mfc_unres_lock); 1032 list_for_each_entry(c, &mrt->mfc_unres_queue, list) { 1033 if (c->mfc_mcastgrp == iph->daddr && 1034 c->mfc_origin == iph->saddr) { 1035 found = true; 1036 break; 1037 } 1038 } 1039 1040 if (!found) { 1041 /* Create a new entry if allowable */ 1042 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 1043 (c = ipmr_cache_alloc_unres()) == NULL) { 1044 spin_unlock_bh(&mfc_unres_lock); 1045 1046 kfree_skb(skb); 1047 return -ENOBUFS; 1048 } 1049 1050 /* Fill in the new cache entry */ 1051 c->mfc_parent = -1; 1052 c->mfc_origin = iph->saddr; 1053 c->mfc_mcastgrp = iph->daddr; 1054 1055 /* Reflect first query at mrouted. */ 1056 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1057 if (err < 0) { 1058 /* If the report failed throw the cache entry 1059 out - Brad Parker 1060 */ 1061 spin_unlock_bh(&mfc_unres_lock); 1062 1063 ipmr_cache_free(c); 1064 kfree_skb(skb); 1065 return err; 1066 } 1067 1068 atomic_inc(&mrt->cache_resolve_queue_len); 1069 list_add(&c->list, &mrt->mfc_unres_queue); 1070 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1071 1072 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1073 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires); 1074 } 1075 1076 /* See if we can append the packet */ 1077 if (c->mfc_un.unres.unresolved.qlen > 3) { 1078 kfree_skb(skb); 1079 err = -ENOBUFS; 1080 } else { 1081 skb_queue_tail(&c->mfc_un.unres.unresolved, skb); 1082 err = 0; 1083 } 1084 1085 spin_unlock_bh(&mfc_unres_lock); 1086 return err; 1087 } 1088 1089 /* MFC cache manipulation by user space mroute daemon */ 1090 1091 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1092 { 1093 int line; 1094 struct mfc_cache *c, *next; 1095 1096 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1097 1098 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) { 1099 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1100 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr && 1101 (parent == -1 || parent == c->mfc_parent)) { 1102 list_del_rcu(&c->list); 1103 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1104 ipmr_cache_free(c); 1105 return 0; 1106 } 1107 } 1108 return -ENOENT; 1109 } 1110 1111 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1112 struct mfcctl *mfc, int mrtsock, int parent) 1113 { 1114 bool found = false; 1115 int line; 1116 struct mfc_cache *uc, *c; 1117 1118 if (mfc->mfcc_parent >= MAXVIFS) 1119 return -ENFILE; 1120 1121 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1122 1123 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) { 1124 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1125 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr && 1126 (parent == -1 || parent == c->mfc_parent)) { 1127 found = true; 1128 break; 1129 } 1130 } 1131 1132 if (found) { 1133 write_lock_bh(&mrt_lock); 1134 c->mfc_parent = mfc->mfcc_parent; 1135 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1136 if (!mrtsock) 1137 c->mfc_flags |= MFC_STATIC; 1138 write_unlock_bh(&mrt_lock); 1139 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1140 return 0; 1141 } 1142 1143 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1144 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1145 return -EINVAL; 1146 1147 c = ipmr_cache_alloc(); 1148 if (!c) 1149 return -ENOMEM; 1150 1151 c->mfc_origin = mfc->mfcc_origin.s_addr; 1152 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1153 c->mfc_parent = mfc->mfcc_parent; 1154 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1155 if (!mrtsock) 1156 c->mfc_flags |= MFC_STATIC; 1157 1158 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]); 1159 1160 /* Check to see if we resolved a queued list. If so we 1161 * need to send on the frames and tidy up. 1162 */ 1163 found = false; 1164 spin_lock_bh(&mfc_unres_lock); 1165 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) { 1166 if (uc->mfc_origin == c->mfc_origin && 1167 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1168 list_del(&uc->list); 1169 atomic_dec(&mrt->cache_resolve_queue_len); 1170 found = true; 1171 break; 1172 } 1173 } 1174 if (list_empty(&mrt->mfc_unres_queue)) 1175 del_timer(&mrt->ipmr_expire_timer); 1176 spin_unlock_bh(&mfc_unres_lock); 1177 1178 if (found) { 1179 ipmr_cache_resolve(net, mrt, uc, c); 1180 ipmr_cache_free(uc); 1181 } 1182 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1183 return 0; 1184 } 1185 1186 /* Close the multicast socket, and clear the vif tables etc */ 1187 static void mroute_clean_tables(struct mr_table *mrt, bool all) 1188 { 1189 int i; 1190 LIST_HEAD(list); 1191 struct mfc_cache *c, *next; 1192 1193 /* Shut down all active vif entries */ 1194 for (i = 0; i < mrt->maxvif; i++) { 1195 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC)) 1196 continue; 1197 vif_delete(mrt, i, 0, &list); 1198 } 1199 unregister_netdevice_many(&list); 1200 1201 /* Wipe the cache */ 1202 for (i = 0; i < MFC_LINES; i++) { 1203 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) { 1204 if (!all && (c->mfc_flags & MFC_STATIC)) 1205 continue; 1206 list_del_rcu(&c->list); 1207 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1208 ipmr_cache_free(c); 1209 } 1210 } 1211 1212 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1213 spin_lock_bh(&mfc_unres_lock); 1214 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 1215 list_del(&c->list); 1216 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1217 ipmr_destroy_unres(mrt, c); 1218 } 1219 spin_unlock_bh(&mfc_unres_lock); 1220 } 1221 } 1222 1223 /* called from ip_ra_control(), before an RCU grace period, 1224 * we dont need to call synchronize_rcu() here 1225 */ 1226 static void mrtsock_destruct(struct sock *sk) 1227 { 1228 struct net *net = sock_net(sk); 1229 struct mr_table *mrt; 1230 1231 rtnl_lock(); 1232 ipmr_for_each_table(mrt, net) { 1233 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1234 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1235 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, 1236 NETCONFA_IFINDEX_ALL, 1237 net->ipv4.devconf_all); 1238 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1239 mroute_clean_tables(mrt, false); 1240 } 1241 } 1242 rtnl_unlock(); 1243 } 1244 1245 /* Socket options and virtual interface manipulation. The whole 1246 * virtual interface system is a complete heap, but unfortunately 1247 * that's how BSD mrouted happens to think. Maybe one day with a proper 1248 * MOSPF/PIM router set up we can clean this up. 1249 */ 1250 1251 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, 1252 unsigned int optlen) 1253 { 1254 struct net *net = sock_net(sk); 1255 int val, ret = 0, parent = 0; 1256 struct mr_table *mrt; 1257 struct vifctl vif; 1258 struct mfcctl mfc; 1259 u32 uval; 1260 1261 /* There's one exception to the lock - MRT_DONE which needs to unlock */ 1262 rtnl_lock(); 1263 if (sk->sk_type != SOCK_RAW || 1264 inet_sk(sk)->inet_num != IPPROTO_IGMP) { 1265 ret = -EOPNOTSUPP; 1266 goto out_unlock; 1267 } 1268 1269 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1270 if (!mrt) { 1271 ret = -ENOENT; 1272 goto out_unlock; 1273 } 1274 if (optname != MRT_INIT) { 1275 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1276 !ns_capable(net->user_ns, CAP_NET_ADMIN)) { 1277 ret = -EACCES; 1278 goto out_unlock; 1279 } 1280 } 1281 1282 switch (optname) { 1283 case MRT_INIT: 1284 if (optlen != sizeof(int)) { 1285 ret = -EINVAL; 1286 break; 1287 } 1288 if (rtnl_dereference(mrt->mroute_sk)) { 1289 ret = -EADDRINUSE; 1290 break; 1291 } 1292 1293 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1294 if (ret == 0) { 1295 rcu_assign_pointer(mrt->mroute_sk, sk); 1296 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1297 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, 1298 NETCONFA_IFINDEX_ALL, 1299 net->ipv4.devconf_all); 1300 } 1301 break; 1302 case MRT_DONE: 1303 if (sk != rcu_access_pointer(mrt->mroute_sk)) { 1304 ret = -EACCES; 1305 } else { 1306 /* We need to unlock here because mrtsock_destruct takes 1307 * care of rtnl itself and we can't change that due to 1308 * the IP_ROUTER_ALERT setsockopt which runs without it. 1309 */ 1310 rtnl_unlock(); 1311 ret = ip_ra_control(sk, 0, NULL); 1312 goto out; 1313 } 1314 break; 1315 case MRT_ADD_VIF: 1316 case MRT_DEL_VIF: 1317 if (optlen != sizeof(vif)) { 1318 ret = -EINVAL; 1319 break; 1320 } 1321 if (copy_from_user(&vif, optval, sizeof(vif))) { 1322 ret = -EFAULT; 1323 break; 1324 } 1325 if (vif.vifc_vifi >= MAXVIFS) { 1326 ret = -ENFILE; 1327 break; 1328 } 1329 if (optname == MRT_ADD_VIF) { 1330 ret = vif_add(net, mrt, &vif, 1331 sk == rtnl_dereference(mrt->mroute_sk)); 1332 } else { 1333 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1334 } 1335 break; 1336 /* Manipulate the forwarding caches. These live 1337 * in a sort of kernel/user symbiosis. 1338 */ 1339 case MRT_ADD_MFC: 1340 case MRT_DEL_MFC: 1341 parent = -1; 1342 case MRT_ADD_MFC_PROXY: 1343 case MRT_DEL_MFC_PROXY: 1344 if (optlen != sizeof(mfc)) { 1345 ret = -EINVAL; 1346 break; 1347 } 1348 if (copy_from_user(&mfc, optval, sizeof(mfc))) { 1349 ret = -EFAULT; 1350 break; 1351 } 1352 if (parent == 0) 1353 parent = mfc.mfcc_parent; 1354 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1355 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1356 else 1357 ret = ipmr_mfc_add(net, mrt, &mfc, 1358 sk == rtnl_dereference(mrt->mroute_sk), 1359 parent); 1360 break; 1361 /* Control PIM assert. */ 1362 case MRT_ASSERT: 1363 if (optlen != sizeof(val)) { 1364 ret = -EINVAL; 1365 break; 1366 } 1367 if (get_user(val, (int __user *)optval)) { 1368 ret = -EFAULT; 1369 break; 1370 } 1371 mrt->mroute_do_assert = val; 1372 break; 1373 case MRT_PIM: 1374 if (!ipmr_pimsm_enabled()) { 1375 ret = -ENOPROTOOPT; 1376 break; 1377 } 1378 if (optlen != sizeof(val)) { 1379 ret = -EINVAL; 1380 break; 1381 } 1382 if (get_user(val, (int __user *)optval)) { 1383 ret = -EFAULT; 1384 break; 1385 } 1386 1387 val = !!val; 1388 if (val != mrt->mroute_do_pim) { 1389 mrt->mroute_do_pim = val; 1390 mrt->mroute_do_assert = val; 1391 } 1392 break; 1393 case MRT_TABLE: 1394 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) { 1395 ret = -ENOPROTOOPT; 1396 break; 1397 } 1398 if (optlen != sizeof(uval)) { 1399 ret = -EINVAL; 1400 break; 1401 } 1402 if (get_user(uval, (u32 __user *)optval)) { 1403 ret = -EFAULT; 1404 break; 1405 } 1406 1407 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1408 ret = -EBUSY; 1409 } else { 1410 mrt = ipmr_new_table(net, uval); 1411 if (IS_ERR(mrt)) 1412 ret = PTR_ERR(mrt); 1413 else 1414 raw_sk(sk)->ipmr_table = uval; 1415 } 1416 break; 1417 /* Spurious command, or MRT_VERSION which you cannot set. */ 1418 default: 1419 ret = -ENOPROTOOPT; 1420 } 1421 out_unlock: 1422 rtnl_unlock(); 1423 out: 1424 return ret; 1425 } 1426 1427 /* Getsock opt support for the multicast routing system. */ 1428 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1429 { 1430 int olr; 1431 int val; 1432 struct net *net = sock_net(sk); 1433 struct mr_table *mrt; 1434 1435 if (sk->sk_type != SOCK_RAW || 1436 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1437 return -EOPNOTSUPP; 1438 1439 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1440 if (!mrt) 1441 return -ENOENT; 1442 1443 switch (optname) { 1444 case MRT_VERSION: 1445 val = 0x0305; 1446 break; 1447 case MRT_PIM: 1448 if (!ipmr_pimsm_enabled()) 1449 return -ENOPROTOOPT; 1450 val = mrt->mroute_do_pim; 1451 break; 1452 case MRT_ASSERT: 1453 val = mrt->mroute_do_assert; 1454 break; 1455 default: 1456 return -ENOPROTOOPT; 1457 } 1458 1459 if (get_user(olr, optlen)) 1460 return -EFAULT; 1461 olr = min_t(unsigned int, olr, sizeof(int)); 1462 if (olr < 0) 1463 return -EINVAL; 1464 if (put_user(olr, optlen)) 1465 return -EFAULT; 1466 if (copy_to_user(optval, &val, olr)) 1467 return -EFAULT; 1468 return 0; 1469 } 1470 1471 /* The IP multicast ioctl support routines. */ 1472 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1473 { 1474 struct sioc_sg_req sr; 1475 struct sioc_vif_req vr; 1476 struct vif_device *vif; 1477 struct mfc_cache *c; 1478 struct net *net = sock_net(sk); 1479 struct mr_table *mrt; 1480 1481 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1482 if (!mrt) 1483 return -ENOENT; 1484 1485 switch (cmd) { 1486 case SIOCGETVIFCNT: 1487 if (copy_from_user(&vr, arg, sizeof(vr))) 1488 return -EFAULT; 1489 if (vr.vifi >= mrt->maxvif) 1490 return -EINVAL; 1491 read_lock(&mrt_lock); 1492 vif = &mrt->vif_table[vr.vifi]; 1493 if (VIF_EXISTS(mrt, vr.vifi)) { 1494 vr.icount = vif->pkt_in; 1495 vr.ocount = vif->pkt_out; 1496 vr.ibytes = vif->bytes_in; 1497 vr.obytes = vif->bytes_out; 1498 read_unlock(&mrt_lock); 1499 1500 if (copy_to_user(arg, &vr, sizeof(vr))) 1501 return -EFAULT; 1502 return 0; 1503 } 1504 read_unlock(&mrt_lock); 1505 return -EADDRNOTAVAIL; 1506 case SIOCGETSGCNT: 1507 if (copy_from_user(&sr, arg, sizeof(sr))) 1508 return -EFAULT; 1509 1510 rcu_read_lock(); 1511 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1512 if (c) { 1513 sr.pktcnt = c->mfc_un.res.pkt; 1514 sr.bytecnt = c->mfc_un.res.bytes; 1515 sr.wrong_if = c->mfc_un.res.wrong_if; 1516 rcu_read_unlock(); 1517 1518 if (copy_to_user(arg, &sr, sizeof(sr))) 1519 return -EFAULT; 1520 return 0; 1521 } 1522 rcu_read_unlock(); 1523 return -EADDRNOTAVAIL; 1524 default: 1525 return -ENOIOCTLCMD; 1526 } 1527 } 1528 1529 #ifdef CONFIG_COMPAT 1530 struct compat_sioc_sg_req { 1531 struct in_addr src; 1532 struct in_addr grp; 1533 compat_ulong_t pktcnt; 1534 compat_ulong_t bytecnt; 1535 compat_ulong_t wrong_if; 1536 }; 1537 1538 struct compat_sioc_vif_req { 1539 vifi_t vifi; /* Which iface */ 1540 compat_ulong_t icount; 1541 compat_ulong_t ocount; 1542 compat_ulong_t ibytes; 1543 compat_ulong_t obytes; 1544 }; 1545 1546 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1547 { 1548 struct compat_sioc_sg_req sr; 1549 struct compat_sioc_vif_req vr; 1550 struct vif_device *vif; 1551 struct mfc_cache *c; 1552 struct net *net = sock_net(sk); 1553 struct mr_table *mrt; 1554 1555 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1556 if (!mrt) 1557 return -ENOENT; 1558 1559 switch (cmd) { 1560 case SIOCGETVIFCNT: 1561 if (copy_from_user(&vr, arg, sizeof(vr))) 1562 return -EFAULT; 1563 if (vr.vifi >= mrt->maxvif) 1564 return -EINVAL; 1565 read_lock(&mrt_lock); 1566 vif = &mrt->vif_table[vr.vifi]; 1567 if (VIF_EXISTS(mrt, vr.vifi)) { 1568 vr.icount = vif->pkt_in; 1569 vr.ocount = vif->pkt_out; 1570 vr.ibytes = vif->bytes_in; 1571 vr.obytes = vif->bytes_out; 1572 read_unlock(&mrt_lock); 1573 1574 if (copy_to_user(arg, &vr, sizeof(vr))) 1575 return -EFAULT; 1576 return 0; 1577 } 1578 read_unlock(&mrt_lock); 1579 return -EADDRNOTAVAIL; 1580 case SIOCGETSGCNT: 1581 if (copy_from_user(&sr, arg, sizeof(sr))) 1582 return -EFAULT; 1583 1584 rcu_read_lock(); 1585 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1586 if (c) { 1587 sr.pktcnt = c->mfc_un.res.pkt; 1588 sr.bytecnt = c->mfc_un.res.bytes; 1589 sr.wrong_if = c->mfc_un.res.wrong_if; 1590 rcu_read_unlock(); 1591 1592 if (copy_to_user(arg, &sr, sizeof(sr))) 1593 return -EFAULT; 1594 return 0; 1595 } 1596 rcu_read_unlock(); 1597 return -EADDRNOTAVAIL; 1598 default: 1599 return -ENOIOCTLCMD; 1600 } 1601 } 1602 #endif 1603 1604 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1605 { 1606 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1607 struct net *net = dev_net(dev); 1608 struct mr_table *mrt; 1609 struct vif_device *v; 1610 int ct; 1611 1612 if (event != NETDEV_UNREGISTER) 1613 return NOTIFY_DONE; 1614 1615 ipmr_for_each_table(mrt, net) { 1616 v = &mrt->vif_table[0]; 1617 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1618 if (v->dev == dev) 1619 vif_delete(mrt, ct, 1, NULL); 1620 } 1621 } 1622 return NOTIFY_DONE; 1623 } 1624 1625 static struct notifier_block ip_mr_notifier = { 1626 .notifier_call = ipmr_device_event, 1627 }; 1628 1629 /* Encapsulate a packet by attaching a valid IPIP header to it. 1630 * This avoids tunnel drivers and other mess and gives us the speed so 1631 * important for multicast video. 1632 */ 1633 static void ip_encap(struct net *net, struct sk_buff *skb, 1634 __be32 saddr, __be32 daddr) 1635 { 1636 struct iphdr *iph; 1637 const struct iphdr *old_iph = ip_hdr(skb); 1638 1639 skb_push(skb, sizeof(struct iphdr)); 1640 skb->transport_header = skb->network_header; 1641 skb_reset_network_header(skb); 1642 iph = ip_hdr(skb); 1643 1644 iph->version = 4; 1645 iph->tos = old_iph->tos; 1646 iph->ttl = old_iph->ttl; 1647 iph->frag_off = 0; 1648 iph->daddr = daddr; 1649 iph->saddr = saddr; 1650 iph->protocol = IPPROTO_IPIP; 1651 iph->ihl = 5; 1652 iph->tot_len = htons(skb->len); 1653 ip_select_ident(net, skb, NULL); 1654 ip_send_check(iph); 1655 1656 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1657 nf_reset(skb); 1658 } 1659 1660 static inline int ipmr_forward_finish(struct net *net, struct sock *sk, 1661 struct sk_buff *skb) 1662 { 1663 struct ip_options *opt = &(IPCB(skb)->opt); 1664 1665 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS); 1666 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len); 1667 1668 if (unlikely(opt->optlen)) 1669 ip_forward_options(skb); 1670 1671 return dst_output(net, sk, skb); 1672 } 1673 1674 /* Processing handlers for ipmr_forward */ 1675 1676 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1677 struct sk_buff *skb, struct mfc_cache *c, int vifi) 1678 { 1679 const struct iphdr *iph = ip_hdr(skb); 1680 struct vif_device *vif = &mrt->vif_table[vifi]; 1681 struct net_device *dev; 1682 struct rtable *rt; 1683 struct flowi4 fl4; 1684 int encap = 0; 1685 1686 if (!vif->dev) 1687 goto out_free; 1688 1689 if (vif->flags & VIFF_REGISTER) { 1690 vif->pkt_out++; 1691 vif->bytes_out += skb->len; 1692 vif->dev->stats.tx_bytes += skb->len; 1693 vif->dev->stats.tx_packets++; 1694 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1695 goto out_free; 1696 } 1697 1698 if (vif->flags & VIFF_TUNNEL) { 1699 rt = ip_route_output_ports(net, &fl4, NULL, 1700 vif->remote, vif->local, 1701 0, 0, 1702 IPPROTO_IPIP, 1703 RT_TOS(iph->tos), vif->link); 1704 if (IS_ERR(rt)) 1705 goto out_free; 1706 encap = sizeof(struct iphdr); 1707 } else { 1708 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1709 0, 0, 1710 IPPROTO_IPIP, 1711 RT_TOS(iph->tos), vif->link); 1712 if (IS_ERR(rt)) 1713 goto out_free; 1714 } 1715 1716 dev = rt->dst.dev; 1717 1718 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1719 /* Do not fragment multicasts. Alas, IPv4 does not 1720 * allow to send ICMP, so that packets will disappear 1721 * to blackhole. 1722 */ 1723 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 1724 ip_rt_put(rt); 1725 goto out_free; 1726 } 1727 1728 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1729 1730 if (skb_cow(skb, encap)) { 1731 ip_rt_put(rt); 1732 goto out_free; 1733 } 1734 1735 vif->pkt_out++; 1736 vif->bytes_out += skb->len; 1737 1738 skb_dst_drop(skb); 1739 skb_dst_set(skb, &rt->dst); 1740 ip_decrease_ttl(ip_hdr(skb)); 1741 1742 /* FIXME: forward and output firewalls used to be called here. 1743 * What do we do with netfilter? -- RR 1744 */ 1745 if (vif->flags & VIFF_TUNNEL) { 1746 ip_encap(net, skb, vif->local, vif->remote); 1747 /* FIXME: extra output firewall step used to be here. --RR */ 1748 vif->dev->stats.tx_packets++; 1749 vif->dev->stats.tx_bytes += skb->len; 1750 } 1751 1752 IPCB(skb)->flags |= IPSKB_FORWARDED | IPSKB_FRAG_SEGS; 1753 1754 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1755 * not only before forwarding, but after forwarding on all output 1756 * interfaces. It is clear, if mrouter runs a multicasting 1757 * program, it should receive packets not depending to what interface 1758 * program is joined. 1759 * If we will not make it, the program will have to join on all 1760 * interfaces. On the other hand, multihoming host (or router, but 1761 * not mrouter) cannot join to more than one interface - it will 1762 * result in receiving multiple packets. 1763 */ 1764 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, 1765 net, NULL, skb, skb->dev, dev, 1766 ipmr_forward_finish); 1767 return; 1768 1769 out_free: 1770 kfree_skb(skb); 1771 } 1772 1773 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev) 1774 { 1775 int ct; 1776 1777 for (ct = mrt->maxvif-1; ct >= 0; ct--) { 1778 if (mrt->vif_table[ct].dev == dev) 1779 break; 1780 } 1781 return ct; 1782 } 1783 1784 /* "local" means that we should preserve one skb (for local delivery) */ 1785 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1786 struct sk_buff *skb, struct mfc_cache *cache, 1787 int local) 1788 { 1789 int psend = -1; 1790 int vif, ct; 1791 int true_vifi = ipmr_find_vif(mrt, skb->dev); 1792 1793 vif = cache->mfc_parent; 1794 cache->mfc_un.res.pkt++; 1795 cache->mfc_un.res.bytes += skb->len; 1796 cache->mfc_un.res.lastuse = jiffies; 1797 1798 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1799 struct mfc_cache *cache_proxy; 1800 1801 /* For an (*,G) entry, we only check that the incomming 1802 * interface is part of the static tree. 1803 */ 1804 cache_proxy = ipmr_cache_find_any_parent(mrt, vif); 1805 if (cache_proxy && 1806 cache_proxy->mfc_un.res.ttls[true_vifi] < 255) 1807 goto forward; 1808 } 1809 1810 /* Wrong interface: drop packet and (maybe) send PIM assert. */ 1811 if (mrt->vif_table[vif].dev != skb->dev) { 1812 if (rt_is_output_route(skb_rtable(skb))) { 1813 /* It is our own packet, looped back. 1814 * Very complicated situation... 1815 * 1816 * The best workaround until routing daemons will be 1817 * fixed is not to redistribute packet, if it was 1818 * send through wrong interface. It means, that 1819 * multicast applications WILL NOT work for 1820 * (S,G), which have default multicast route pointing 1821 * to wrong oif. In any case, it is not a good 1822 * idea to use multicasting applications on router. 1823 */ 1824 goto dont_forward; 1825 } 1826 1827 cache->mfc_un.res.wrong_if++; 1828 1829 if (true_vifi >= 0 && mrt->mroute_do_assert && 1830 /* pimsm uses asserts, when switching from RPT to SPT, 1831 * so that we cannot check that packet arrived on an oif. 1832 * It is bad, but otherwise we would need to move pretty 1833 * large chunk of pimd to kernel. Ough... --ANK 1834 */ 1835 (mrt->mroute_do_pim || 1836 cache->mfc_un.res.ttls[true_vifi] < 255) && 1837 time_after(jiffies, 1838 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { 1839 cache->mfc_un.res.last_assert = jiffies; 1840 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 1841 } 1842 goto dont_forward; 1843 } 1844 1845 forward: 1846 mrt->vif_table[vif].pkt_in++; 1847 mrt->vif_table[vif].bytes_in += skb->len; 1848 1849 /* Forward the frame */ 1850 if (cache->mfc_origin == htonl(INADDR_ANY) && 1851 cache->mfc_mcastgrp == htonl(INADDR_ANY)) { 1852 if (true_vifi >= 0 && 1853 true_vifi != cache->mfc_parent && 1854 ip_hdr(skb)->ttl > 1855 cache->mfc_un.res.ttls[cache->mfc_parent]) { 1856 /* It's an (*,*) entry and the packet is not coming from 1857 * the upstream: forward the packet to the upstream 1858 * only. 1859 */ 1860 psend = cache->mfc_parent; 1861 goto last_forward; 1862 } 1863 goto dont_forward; 1864 } 1865 for (ct = cache->mfc_un.res.maxvif - 1; 1866 ct >= cache->mfc_un.res.minvif; ct--) { 1867 /* For (*,G) entry, don't forward to the incoming interface */ 1868 if ((cache->mfc_origin != htonl(INADDR_ANY) || 1869 ct != true_vifi) && 1870 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) { 1871 if (psend != -1) { 1872 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1873 1874 if (skb2) 1875 ipmr_queue_xmit(net, mrt, skb2, cache, 1876 psend); 1877 } 1878 psend = ct; 1879 } 1880 } 1881 last_forward: 1882 if (psend != -1) { 1883 if (local) { 1884 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1885 1886 if (skb2) 1887 ipmr_queue_xmit(net, mrt, skb2, cache, psend); 1888 } else { 1889 ipmr_queue_xmit(net, mrt, skb, cache, psend); 1890 return; 1891 } 1892 } 1893 1894 dont_forward: 1895 if (!local) 1896 kfree_skb(skb); 1897 } 1898 1899 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 1900 { 1901 struct rtable *rt = skb_rtable(skb); 1902 struct iphdr *iph = ip_hdr(skb); 1903 struct flowi4 fl4 = { 1904 .daddr = iph->daddr, 1905 .saddr = iph->saddr, 1906 .flowi4_tos = RT_TOS(iph->tos), 1907 .flowi4_oif = (rt_is_output_route(rt) ? 1908 skb->dev->ifindex : 0), 1909 .flowi4_iif = (rt_is_output_route(rt) ? 1910 LOOPBACK_IFINDEX : 1911 skb->dev->ifindex), 1912 .flowi4_mark = skb->mark, 1913 }; 1914 struct mr_table *mrt; 1915 int err; 1916 1917 err = ipmr_fib_lookup(net, &fl4, &mrt); 1918 if (err) 1919 return ERR_PTR(err); 1920 return mrt; 1921 } 1922 1923 /* Multicast packets for forwarding arrive here 1924 * Called with rcu_read_lock(); 1925 */ 1926 int ip_mr_input(struct sk_buff *skb) 1927 { 1928 struct mfc_cache *cache; 1929 struct net *net = dev_net(skb->dev); 1930 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 1931 struct mr_table *mrt; 1932 1933 /* Packet is looped back after forward, it should not be 1934 * forwarded second time, but still can be delivered locally. 1935 */ 1936 if (IPCB(skb)->flags & IPSKB_FORWARDED) 1937 goto dont_forward; 1938 1939 mrt = ipmr_rt_fib_lookup(net, skb); 1940 if (IS_ERR(mrt)) { 1941 kfree_skb(skb); 1942 return PTR_ERR(mrt); 1943 } 1944 if (!local) { 1945 if (IPCB(skb)->opt.router_alert) { 1946 if (ip_call_ra_chain(skb)) 1947 return 0; 1948 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 1949 /* IGMPv1 (and broken IGMPv2 implementations sort of 1950 * Cisco IOS <= 11.2(8)) do not put router alert 1951 * option to IGMP packets destined to routable 1952 * groups. It is very bad, because it means 1953 * that we can forward NO IGMP messages. 1954 */ 1955 struct sock *mroute_sk; 1956 1957 mroute_sk = rcu_dereference(mrt->mroute_sk); 1958 if (mroute_sk) { 1959 nf_reset(skb); 1960 raw_rcv(mroute_sk, skb); 1961 return 0; 1962 } 1963 } 1964 } 1965 1966 /* already under rcu_read_lock() */ 1967 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 1968 if (!cache) { 1969 int vif = ipmr_find_vif(mrt, skb->dev); 1970 1971 if (vif >= 0) 1972 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 1973 vif); 1974 } 1975 1976 /* No usable cache entry */ 1977 if (!cache) { 1978 int vif; 1979 1980 if (local) { 1981 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1982 ip_local_deliver(skb); 1983 if (!skb2) 1984 return -ENOBUFS; 1985 skb = skb2; 1986 } 1987 1988 read_lock(&mrt_lock); 1989 vif = ipmr_find_vif(mrt, skb->dev); 1990 if (vif >= 0) { 1991 int err2 = ipmr_cache_unresolved(mrt, vif, skb); 1992 read_unlock(&mrt_lock); 1993 1994 return err2; 1995 } 1996 read_unlock(&mrt_lock); 1997 kfree_skb(skb); 1998 return -ENODEV; 1999 } 2000 2001 read_lock(&mrt_lock); 2002 ip_mr_forward(net, mrt, skb, cache, local); 2003 read_unlock(&mrt_lock); 2004 2005 if (local) 2006 return ip_local_deliver(skb); 2007 2008 return 0; 2009 2010 dont_forward: 2011 if (local) 2012 return ip_local_deliver(skb); 2013 kfree_skb(skb); 2014 return 0; 2015 } 2016 2017 #ifdef CONFIG_IP_PIMSM_V1 2018 /* Handle IGMP messages of PIMv1 */ 2019 int pim_rcv_v1(struct sk_buff *skb) 2020 { 2021 struct igmphdr *pim; 2022 struct net *net = dev_net(skb->dev); 2023 struct mr_table *mrt; 2024 2025 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2026 goto drop; 2027 2028 pim = igmp_hdr(skb); 2029 2030 mrt = ipmr_rt_fib_lookup(net, skb); 2031 if (IS_ERR(mrt)) 2032 goto drop; 2033 if (!mrt->mroute_do_pim || 2034 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2035 goto drop; 2036 2037 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2038 drop: 2039 kfree_skb(skb); 2040 } 2041 return 0; 2042 } 2043 #endif 2044 2045 #ifdef CONFIG_IP_PIMSM_V2 2046 static int pim_rcv(struct sk_buff *skb) 2047 { 2048 struct pimreghdr *pim; 2049 struct net *net = dev_net(skb->dev); 2050 struct mr_table *mrt; 2051 2052 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2053 goto drop; 2054 2055 pim = (struct pimreghdr *)skb_transport_header(skb); 2056 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) || 2057 (pim->flags & PIM_NULL_REGISTER) || 2058 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2059 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2060 goto drop; 2061 2062 mrt = ipmr_rt_fib_lookup(net, skb); 2063 if (IS_ERR(mrt)) 2064 goto drop; 2065 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2066 drop: 2067 kfree_skb(skb); 2068 } 2069 return 0; 2070 } 2071 #endif 2072 2073 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2074 struct mfc_cache *c, struct rtmsg *rtm) 2075 { 2076 struct rta_mfc_stats mfcs; 2077 struct nlattr *mp_attr; 2078 struct rtnexthop *nhp; 2079 int ct; 2080 2081 /* If cache is unresolved, don't try to parse IIF and OIF */ 2082 if (c->mfc_parent >= MAXVIFS) 2083 return -ENOENT; 2084 2085 if (VIF_EXISTS(mrt, c->mfc_parent) && 2086 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0) 2087 return -EMSGSIZE; 2088 2089 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH))) 2090 return -EMSGSIZE; 2091 2092 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { 2093 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) { 2094 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) { 2095 nla_nest_cancel(skb, mp_attr); 2096 return -EMSGSIZE; 2097 } 2098 2099 nhp->rtnh_flags = 0; 2100 nhp->rtnh_hops = c->mfc_un.res.ttls[ct]; 2101 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex; 2102 nhp->rtnh_len = sizeof(*nhp); 2103 } 2104 } 2105 2106 nla_nest_end(skb, mp_attr); 2107 2108 mfcs.mfcs_packets = c->mfc_un.res.pkt; 2109 mfcs.mfcs_bytes = c->mfc_un.res.bytes; 2110 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if; 2111 if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) || 2112 nla_put_u64_64bit(skb, RTA_EXPIRES, 2113 jiffies_to_clock_t(c->mfc_un.res.lastuse), 2114 RTA_PAD)) 2115 return -EMSGSIZE; 2116 2117 rtm->rtm_type = RTN_MULTICAST; 2118 return 1; 2119 } 2120 2121 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2122 __be32 saddr, __be32 daddr, 2123 struct rtmsg *rtm, int nowait) 2124 { 2125 struct mfc_cache *cache; 2126 struct mr_table *mrt; 2127 int err; 2128 2129 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2130 if (!mrt) 2131 return -ENOENT; 2132 2133 rcu_read_lock(); 2134 cache = ipmr_cache_find(mrt, saddr, daddr); 2135 if (!cache && skb->dev) { 2136 int vif = ipmr_find_vif(mrt, skb->dev); 2137 2138 if (vif >= 0) 2139 cache = ipmr_cache_find_any(mrt, daddr, vif); 2140 } 2141 if (!cache) { 2142 struct sk_buff *skb2; 2143 struct iphdr *iph; 2144 struct net_device *dev; 2145 int vif = -1; 2146 2147 if (nowait) { 2148 rcu_read_unlock(); 2149 return -EAGAIN; 2150 } 2151 2152 dev = skb->dev; 2153 read_lock(&mrt_lock); 2154 if (dev) 2155 vif = ipmr_find_vif(mrt, dev); 2156 if (vif < 0) { 2157 read_unlock(&mrt_lock); 2158 rcu_read_unlock(); 2159 return -ENODEV; 2160 } 2161 skb2 = skb_clone(skb, GFP_ATOMIC); 2162 if (!skb2) { 2163 read_unlock(&mrt_lock); 2164 rcu_read_unlock(); 2165 return -ENOMEM; 2166 } 2167 2168 skb_push(skb2, sizeof(struct iphdr)); 2169 skb_reset_network_header(skb2); 2170 iph = ip_hdr(skb2); 2171 iph->ihl = sizeof(struct iphdr) >> 2; 2172 iph->saddr = saddr; 2173 iph->daddr = daddr; 2174 iph->version = 0; 2175 err = ipmr_cache_unresolved(mrt, vif, skb2); 2176 read_unlock(&mrt_lock); 2177 rcu_read_unlock(); 2178 return err; 2179 } 2180 2181 read_lock(&mrt_lock); 2182 err = __ipmr_fill_mroute(mrt, skb, cache, rtm); 2183 read_unlock(&mrt_lock); 2184 rcu_read_unlock(); 2185 return err; 2186 } 2187 2188 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2189 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2190 int flags) 2191 { 2192 struct nlmsghdr *nlh; 2193 struct rtmsg *rtm; 2194 int err; 2195 2196 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2197 if (!nlh) 2198 return -EMSGSIZE; 2199 2200 rtm = nlmsg_data(nlh); 2201 rtm->rtm_family = RTNL_FAMILY_IPMR; 2202 rtm->rtm_dst_len = 32; 2203 rtm->rtm_src_len = 32; 2204 rtm->rtm_tos = 0; 2205 rtm->rtm_table = mrt->id; 2206 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2207 goto nla_put_failure; 2208 rtm->rtm_type = RTN_MULTICAST; 2209 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2210 if (c->mfc_flags & MFC_STATIC) 2211 rtm->rtm_protocol = RTPROT_STATIC; 2212 else 2213 rtm->rtm_protocol = RTPROT_MROUTED; 2214 rtm->rtm_flags = 0; 2215 2216 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || 2217 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) 2218 goto nla_put_failure; 2219 err = __ipmr_fill_mroute(mrt, skb, c, rtm); 2220 /* do not break the dump if cache is unresolved */ 2221 if (err < 0 && err != -ENOENT) 2222 goto nla_put_failure; 2223 2224 nlmsg_end(skb, nlh); 2225 return 0; 2226 2227 nla_put_failure: 2228 nlmsg_cancel(skb, nlh); 2229 return -EMSGSIZE; 2230 } 2231 2232 static size_t mroute_msgsize(bool unresolved, int maxvif) 2233 { 2234 size_t len = 2235 NLMSG_ALIGN(sizeof(struct rtmsg)) 2236 + nla_total_size(4) /* RTA_TABLE */ 2237 + nla_total_size(4) /* RTA_SRC */ 2238 + nla_total_size(4) /* RTA_DST */ 2239 ; 2240 2241 if (!unresolved) 2242 len = len 2243 + nla_total_size(4) /* RTA_IIF */ 2244 + nla_total_size(0) /* RTA_MULTIPATH */ 2245 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2246 /* RTA_MFC_STATS */ 2247 + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) 2248 ; 2249 2250 return len; 2251 } 2252 2253 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2254 int cmd) 2255 { 2256 struct net *net = read_pnet(&mrt->net); 2257 struct sk_buff *skb; 2258 int err = -ENOBUFS; 2259 2260 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif), 2261 GFP_ATOMIC); 2262 if (!skb) 2263 goto errout; 2264 2265 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2266 if (err < 0) 2267 goto errout; 2268 2269 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2270 return; 2271 2272 errout: 2273 kfree_skb(skb); 2274 if (err < 0) 2275 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2276 } 2277 2278 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2279 { 2280 struct net *net = sock_net(skb->sk); 2281 struct mr_table *mrt; 2282 struct mfc_cache *mfc; 2283 unsigned int t = 0, s_t; 2284 unsigned int h = 0, s_h; 2285 unsigned int e = 0, s_e; 2286 2287 s_t = cb->args[0]; 2288 s_h = cb->args[1]; 2289 s_e = cb->args[2]; 2290 2291 rcu_read_lock(); 2292 ipmr_for_each_table(mrt, net) { 2293 if (t < s_t) 2294 goto next_table; 2295 if (t > s_t) 2296 s_h = 0; 2297 for (h = s_h; h < MFC_LINES; h++) { 2298 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) { 2299 if (e < s_e) 2300 goto next_entry; 2301 if (ipmr_fill_mroute(mrt, skb, 2302 NETLINK_CB(cb->skb).portid, 2303 cb->nlh->nlmsg_seq, 2304 mfc, RTM_NEWROUTE, 2305 NLM_F_MULTI) < 0) 2306 goto done; 2307 next_entry: 2308 e++; 2309 } 2310 e = s_e = 0; 2311 } 2312 spin_lock_bh(&mfc_unres_lock); 2313 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) { 2314 if (e < s_e) 2315 goto next_entry2; 2316 if (ipmr_fill_mroute(mrt, skb, 2317 NETLINK_CB(cb->skb).portid, 2318 cb->nlh->nlmsg_seq, 2319 mfc, RTM_NEWROUTE, 2320 NLM_F_MULTI) < 0) { 2321 spin_unlock_bh(&mfc_unres_lock); 2322 goto done; 2323 } 2324 next_entry2: 2325 e++; 2326 } 2327 spin_unlock_bh(&mfc_unres_lock); 2328 e = s_e = 0; 2329 s_h = 0; 2330 next_table: 2331 t++; 2332 } 2333 done: 2334 rcu_read_unlock(); 2335 2336 cb->args[2] = e; 2337 cb->args[1] = h; 2338 cb->args[0] = t; 2339 2340 return skb->len; 2341 } 2342 2343 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = { 2344 [RTA_SRC] = { .type = NLA_U32 }, 2345 [RTA_DST] = { .type = NLA_U32 }, 2346 [RTA_IIF] = { .type = NLA_U32 }, 2347 [RTA_TABLE] = { .type = NLA_U32 }, 2348 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 2349 }; 2350 2351 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol) 2352 { 2353 switch (rtm_protocol) { 2354 case RTPROT_STATIC: 2355 case RTPROT_MROUTED: 2356 return true; 2357 } 2358 return false; 2359 } 2360 2361 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc) 2362 { 2363 struct rtnexthop *rtnh = nla_data(nla); 2364 int remaining = nla_len(nla), vifi = 0; 2365 2366 while (rtnh_ok(rtnh, remaining)) { 2367 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops; 2368 if (++vifi == MAXVIFS) 2369 break; 2370 rtnh = rtnh_next(rtnh, &remaining); 2371 } 2372 2373 return remaining > 0 ? -EINVAL : vifi; 2374 } 2375 2376 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */ 2377 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh, 2378 struct mfcctl *mfcc, int *mrtsock, 2379 struct mr_table **mrtret) 2380 { 2381 struct net_device *dev = NULL; 2382 u32 tblid = RT_TABLE_DEFAULT; 2383 struct mr_table *mrt; 2384 struct nlattr *attr; 2385 struct rtmsg *rtm; 2386 int ret, rem; 2387 2388 ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy); 2389 if (ret < 0) 2390 goto out; 2391 rtm = nlmsg_data(nlh); 2392 2393 ret = -EINVAL; 2394 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 || 2395 rtm->rtm_type != RTN_MULTICAST || 2396 rtm->rtm_scope != RT_SCOPE_UNIVERSE || 2397 !ipmr_rtm_validate_proto(rtm->rtm_protocol)) 2398 goto out; 2399 2400 memset(mfcc, 0, sizeof(*mfcc)); 2401 mfcc->mfcc_parent = -1; 2402 ret = 0; 2403 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) { 2404 switch (nla_type(attr)) { 2405 case RTA_SRC: 2406 mfcc->mfcc_origin.s_addr = nla_get_be32(attr); 2407 break; 2408 case RTA_DST: 2409 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr); 2410 break; 2411 case RTA_IIF: 2412 dev = __dev_get_by_index(net, nla_get_u32(attr)); 2413 if (!dev) { 2414 ret = -ENODEV; 2415 goto out; 2416 } 2417 break; 2418 case RTA_MULTIPATH: 2419 if (ipmr_nla_get_ttls(attr, mfcc) < 0) { 2420 ret = -EINVAL; 2421 goto out; 2422 } 2423 break; 2424 case RTA_PREFSRC: 2425 ret = 1; 2426 break; 2427 case RTA_TABLE: 2428 tblid = nla_get_u32(attr); 2429 break; 2430 } 2431 } 2432 mrt = ipmr_get_table(net, tblid); 2433 if (!mrt) { 2434 ret = -ENOENT; 2435 goto out; 2436 } 2437 *mrtret = mrt; 2438 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0; 2439 if (dev) 2440 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev); 2441 2442 out: 2443 return ret; 2444 } 2445 2446 /* takes care of both newroute and delroute */ 2447 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh) 2448 { 2449 struct net *net = sock_net(skb->sk); 2450 int ret, mrtsock, parent; 2451 struct mr_table *tbl; 2452 struct mfcctl mfcc; 2453 2454 mrtsock = 0; 2455 tbl = NULL; 2456 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl); 2457 if (ret < 0) 2458 return ret; 2459 2460 parent = ret ? mfcc.mfcc_parent : -1; 2461 if (nlh->nlmsg_type == RTM_NEWROUTE) 2462 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent); 2463 else 2464 return ipmr_mfc_delete(tbl, &mfcc, parent); 2465 } 2466 2467 #ifdef CONFIG_PROC_FS 2468 /* The /proc interfaces to multicast routing : 2469 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2470 */ 2471 struct ipmr_vif_iter { 2472 struct seq_net_private p; 2473 struct mr_table *mrt; 2474 int ct; 2475 }; 2476 2477 static struct vif_device *ipmr_vif_seq_idx(struct net *net, 2478 struct ipmr_vif_iter *iter, 2479 loff_t pos) 2480 { 2481 struct mr_table *mrt = iter->mrt; 2482 2483 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) { 2484 if (!VIF_EXISTS(mrt, iter->ct)) 2485 continue; 2486 if (pos-- == 0) 2487 return &mrt->vif_table[iter->ct]; 2488 } 2489 return NULL; 2490 } 2491 2492 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2493 __acquires(mrt_lock) 2494 { 2495 struct ipmr_vif_iter *iter = seq->private; 2496 struct net *net = seq_file_net(seq); 2497 struct mr_table *mrt; 2498 2499 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2500 if (!mrt) 2501 return ERR_PTR(-ENOENT); 2502 2503 iter->mrt = mrt; 2504 2505 read_lock(&mrt_lock); 2506 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1) 2507 : SEQ_START_TOKEN; 2508 } 2509 2510 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2511 { 2512 struct ipmr_vif_iter *iter = seq->private; 2513 struct net *net = seq_file_net(seq); 2514 struct mr_table *mrt = iter->mrt; 2515 2516 ++*pos; 2517 if (v == SEQ_START_TOKEN) 2518 return ipmr_vif_seq_idx(net, iter, 0); 2519 2520 while (++iter->ct < mrt->maxvif) { 2521 if (!VIF_EXISTS(mrt, iter->ct)) 2522 continue; 2523 return &mrt->vif_table[iter->ct]; 2524 } 2525 return NULL; 2526 } 2527 2528 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2529 __releases(mrt_lock) 2530 { 2531 read_unlock(&mrt_lock); 2532 } 2533 2534 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2535 { 2536 struct ipmr_vif_iter *iter = seq->private; 2537 struct mr_table *mrt = iter->mrt; 2538 2539 if (v == SEQ_START_TOKEN) { 2540 seq_puts(seq, 2541 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2542 } else { 2543 const struct vif_device *vif = v; 2544 const char *name = vif->dev ? vif->dev->name : "none"; 2545 2546 seq_printf(seq, 2547 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2548 vif - mrt->vif_table, 2549 name, vif->bytes_in, vif->pkt_in, 2550 vif->bytes_out, vif->pkt_out, 2551 vif->flags, vif->local, vif->remote); 2552 } 2553 return 0; 2554 } 2555 2556 static const struct seq_operations ipmr_vif_seq_ops = { 2557 .start = ipmr_vif_seq_start, 2558 .next = ipmr_vif_seq_next, 2559 .stop = ipmr_vif_seq_stop, 2560 .show = ipmr_vif_seq_show, 2561 }; 2562 2563 static int ipmr_vif_open(struct inode *inode, struct file *file) 2564 { 2565 return seq_open_net(inode, file, &ipmr_vif_seq_ops, 2566 sizeof(struct ipmr_vif_iter)); 2567 } 2568 2569 static const struct file_operations ipmr_vif_fops = { 2570 .owner = THIS_MODULE, 2571 .open = ipmr_vif_open, 2572 .read = seq_read, 2573 .llseek = seq_lseek, 2574 .release = seq_release_net, 2575 }; 2576 2577 struct ipmr_mfc_iter { 2578 struct seq_net_private p; 2579 struct mr_table *mrt; 2580 struct list_head *cache; 2581 int ct; 2582 }; 2583 2584 2585 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net, 2586 struct ipmr_mfc_iter *it, loff_t pos) 2587 { 2588 struct mr_table *mrt = it->mrt; 2589 struct mfc_cache *mfc; 2590 2591 rcu_read_lock(); 2592 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) { 2593 it->cache = &mrt->mfc_cache_array[it->ct]; 2594 list_for_each_entry_rcu(mfc, it->cache, list) 2595 if (pos-- == 0) 2596 return mfc; 2597 } 2598 rcu_read_unlock(); 2599 2600 spin_lock_bh(&mfc_unres_lock); 2601 it->cache = &mrt->mfc_unres_queue; 2602 list_for_each_entry(mfc, it->cache, list) 2603 if (pos-- == 0) 2604 return mfc; 2605 spin_unlock_bh(&mfc_unres_lock); 2606 2607 it->cache = NULL; 2608 return NULL; 2609 } 2610 2611 2612 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2613 { 2614 struct ipmr_mfc_iter *it = seq->private; 2615 struct net *net = seq_file_net(seq); 2616 struct mr_table *mrt; 2617 2618 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2619 if (!mrt) 2620 return ERR_PTR(-ENOENT); 2621 2622 it->mrt = mrt; 2623 it->cache = NULL; 2624 it->ct = 0; 2625 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1) 2626 : SEQ_START_TOKEN; 2627 } 2628 2629 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2630 { 2631 struct mfc_cache *mfc = v; 2632 struct ipmr_mfc_iter *it = seq->private; 2633 struct net *net = seq_file_net(seq); 2634 struct mr_table *mrt = it->mrt; 2635 2636 ++*pos; 2637 2638 if (v == SEQ_START_TOKEN) 2639 return ipmr_mfc_seq_idx(net, seq->private, 0); 2640 2641 if (mfc->list.next != it->cache) 2642 return list_entry(mfc->list.next, struct mfc_cache, list); 2643 2644 if (it->cache == &mrt->mfc_unres_queue) 2645 goto end_of_list; 2646 2647 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]); 2648 2649 while (++it->ct < MFC_LINES) { 2650 it->cache = &mrt->mfc_cache_array[it->ct]; 2651 if (list_empty(it->cache)) 2652 continue; 2653 return list_first_entry(it->cache, struct mfc_cache, list); 2654 } 2655 2656 /* exhausted cache_array, show unresolved */ 2657 rcu_read_unlock(); 2658 it->cache = &mrt->mfc_unres_queue; 2659 it->ct = 0; 2660 2661 spin_lock_bh(&mfc_unres_lock); 2662 if (!list_empty(it->cache)) 2663 return list_first_entry(it->cache, struct mfc_cache, list); 2664 2665 end_of_list: 2666 spin_unlock_bh(&mfc_unres_lock); 2667 it->cache = NULL; 2668 2669 return NULL; 2670 } 2671 2672 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v) 2673 { 2674 struct ipmr_mfc_iter *it = seq->private; 2675 struct mr_table *mrt = it->mrt; 2676 2677 if (it->cache == &mrt->mfc_unres_queue) 2678 spin_unlock_bh(&mfc_unres_lock); 2679 else if (it->cache == &mrt->mfc_cache_array[it->ct]) 2680 rcu_read_unlock(); 2681 } 2682 2683 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2684 { 2685 int n; 2686 2687 if (v == SEQ_START_TOKEN) { 2688 seq_puts(seq, 2689 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2690 } else { 2691 const struct mfc_cache *mfc = v; 2692 const struct ipmr_mfc_iter *it = seq->private; 2693 const struct mr_table *mrt = it->mrt; 2694 2695 seq_printf(seq, "%08X %08X %-3hd", 2696 (__force u32) mfc->mfc_mcastgrp, 2697 (__force u32) mfc->mfc_origin, 2698 mfc->mfc_parent); 2699 2700 if (it->cache != &mrt->mfc_unres_queue) { 2701 seq_printf(seq, " %8lu %8lu %8lu", 2702 mfc->mfc_un.res.pkt, 2703 mfc->mfc_un.res.bytes, 2704 mfc->mfc_un.res.wrong_if); 2705 for (n = mfc->mfc_un.res.minvif; 2706 n < mfc->mfc_un.res.maxvif; n++) { 2707 if (VIF_EXISTS(mrt, n) && 2708 mfc->mfc_un.res.ttls[n] < 255) 2709 seq_printf(seq, 2710 " %2d:%-3d", 2711 n, mfc->mfc_un.res.ttls[n]); 2712 } 2713 } else { 2714 /* unresolved mfc_caches don't contain 2715 * pkt, bytes and wrong_if values 2716 */ 2717 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 2718 } 2719 seq_putc(seq, '\n'); 2720 } 2721 return 0; 2722 } 2723 2724 static const struct seq_operations ipmr_mfc_seq_ops = { 2725 .start = ipmr_mfc_seq_start, 2726 .next = ipmr_mfc_seq_next, 2727 .stop = ipmr_mfc_seq_stop, 2728 .show = ipmr_mfc_seq_show, 2729 }; 2730 2731 static int ipmr_mfc_open(struct inode *inode, struct file *file) 2732 { 2733 return seq_open_net(inode, file, &ipmr_mfc_seq_ops, 2734 sizeof(struct ipmr_mfc_iter)); 2735 } 2736 2737 static const struct file_operations ipmr_mfc_fops = { 2738 .owner = THIS_MODULE, 2739 .open = ipmr_mfc_open, 2740 .read = seq_read, 2741 .llseek = seq_lseek, 2742 .release = seq_release_net, 2743 }; 2744 #endif 2745 2746 #ifdef CONFIG_IP_PIMSM_V2 2747 static const struct net_protocol pim_protocol = { 2748 .handler = pim_rcv, 2749 .netns_ok = 1, 2750 }; 2751 #endif 2752 2753 /* Setup for IP multicast routing */ 2754 static int __net_init ipmr_net_init(struct net *net) 2755 { 2756 int err; 2757 2758 err = ipmr_rules_init(net); 2759 if (err < 0) 2760 goto fail; 2761 2762 #ifdef CONFIG_PROC_FS 2763 err = -ENOMEM; 2764 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops)) 2765 goto proc_vif_fail; 2766 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops)) 2767 goto proc_cache_fail; 2768 #endif 2769 return 0; 2770 2771 #ifdef CONFIG_PROC_FS 2772 proc_cache_fail: 2773 remove_proc_entry("ip_mr_vif", net->proc_net); 2774 proc_vif_fail: 2775 ipmr_rules_exit(net); 2776 #endif 2777 fail: 2778 return err; 2779 } 2780 2781 static void __net_exit ipmr_net_exit(struct net *net) 2782 { 2783 #ifdef CONFIG_PROC_FS 2784 remove_proc_entry("ip_mr_cache", net->proc_net); 2785 remove_proc_entry("ip_mr_vif", net->proc_net); 2786 #endif 2787 ipmr_rules_exit(net); 2788 } 2789 2790 static struct pernet_operations ipmr_net_ops = { 2791 .init = ipmr_net_init, 2792 .exit = ipmr_net_exit, 2793 }; 2794 2795 int __init ip_mr_init(void) 2796 { 2797 int err; 2798 2799 mrt_cachep = kmem_cache_create("ip_mrt_cache", 2800 sizeof(struct mfc_cache), 2801 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 2802 NULL); 2803 2804 err = register_pernet_subsys(&ipmr_net_ops); 2805 if (err) 2806 goto reg_pernet_fail; 2807 2808 err = register_netdevice_notifier(&ip_mr_notifier); 2809 if (err) 2810 goto reg_notif_fail; 2811 #ifdef CONFIG_IP_PIMSM_V2 2812 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 2813 pr_err("%s: can't add PIM protocol\n", __func__); 2814 err = -EAGAIN; 2815 goto add_proto_fail; 2816 } 2817 #endif 2818 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 2819 NULL, ipmr_rtm_dumproute, NULL); 2820 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE, 2821 ipmr_rtm_route, NULL, NULL); 2822 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE, 2823 ipmr_rtm_route, NULL, NULL); 2824 return 0; 2825 2826 #ifdef CONFIG_IP_PIMSM_V2 2827 add_proto_fail: 2828 unregister_netdevice_notifier(&ip_mr_notifier); 2829 #endif 2830 reg_notif_fail: 2831 unregister_pernet_subsys(&ipmr_net_ops); 2832 reg_pernet_fail: 2833 kmem_cache_destroy(mrt_cachep); 2834 return err; 2835 } 2836