1 /* 2 * IP multicast routing support for mrouted 3.6/3.8 3 * 4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 5 * Linux Consultancy and Custom Driver Development 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 * 12 * Fixes: 13 * Michael Chastain : Incorrect size of copying. 14 * Alan Cox : Added the cache manager code 15 * Alan Cox : Fixed the clone/copy bug and device race. 16 * Mike McLagan : Routing by source 17 * Malcolm Beattie : Buffer handling fixes. 18 * Alexey Kuznetsov : Double buffer free and other fixes. 19 * SVR Anand : Fixed several multicast bugs and problems. 20 * Alexey Kuznetsov : Status, optimisations and more. 21 * Brad Parker : Better behaviour on mrouted upcall 22 * overflow. 23 * Carlos Picoto : PIMv1 Support 24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 25 * Relax this requirement to work with older peers. 26 * 27 */ 28 29 #include <asm/uaccess.h> 30 #include <linux/types.h> 31 #include <linux/capability.h> 32 #include <linux/errno.h> 33 #include <linux/timer.h> 34 #include <linux/mm.h> 35 #include <linux/kernel.h> 36 #include <linux/fcntl.h> 37 #include <linux/stat.h> 38 #include <linux/socket.h> 39 #include <linux/in.h> 40 #include <linux/inet.h> 41 #include <linux/netdevice.h> 42 #include <linux/inetdevice.h> 43 #include <linux/igmp.h> 44 #include <linux/proc_fs.h> 45 #include <linux/seq_file.h> 46 #include <linux/mroute.h> 47 #include <linux/init.h> 48 #include <linux/if_ether.h> 49 #include <linux/slab.h> 50 #include <net/net_namespace.h> 51 #include <net/ip.h> 52 #include <net/protocol.h> 53 #include <linux/skbuff.h> 54 #include <net/route.h> 55 #include <net/sock.h> 56 #include <net/icmp.h> 57 #include <net/udp.h> 58 #include <net/raw.h> 59 #include <linux/notifier.h> 60 #include <linux/if_arp.h> 61 #include <linux/netfilter_ipv4.h> 62 #include <linux/compat.h> 63 #include <linux/export.h> 64 #include <net/ipip.h> 65 #include <net/checksum.h> 66 #include <net/netlink.h> 67 #include <net/fib_rules.h> 68 69 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 70 #define CONFIG_IP_PIMSM 1 71 #endif 72 73 struct mr_table { 74 struct list_head list; 75 #ifdef CONFIG_NET_NS 76 struct net *net; 77 #endif 78 u32 id; 79 struct sock __rcu *mroute_sk; 80 struct timer_list ipmr_expire_timer; 81 struct list_head mfc_unres_queue; 82 struct list_head mfc_cache_array[MFC_LINES]; 83 struct vif_device vif_table[MAXVIFS]; 84 int maxvif; 85 atomic_t cache_resolve_queue_len; 86 int mroute_do_assert; 87 int mroute_do_pim; 88 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 89 int mroute_reg_vif_num; 90 #endif 91 }; 92 93 struct ipmr_rule { 94 struct fib_rule common; 95 }; 96 97 struct ipmr_result { 98 struct mr_table *mrt; 99 }; 100 101 /* Big lock, protecting vif table, mrt cache and mroute socket state. 102 * Note that the changes are semaphored via rtnl_lock. 103 */ 104 105 static DEFINE_RWLOCK(mrt_lock); 106 107 /* 108 * Multicast router control variables 109 */ 110 111 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL) 112 113 /* Special spinlock for queue of unresolved entries */ 114 static DEFINE_SPINLOCK(mfc_unres_lock); 115 116 /* We return to original Alan's scheme. Hash table of resolved 117 * entries is changed only in process context and protected 118 * with weak lock mrt_lock. Queue of unresolved entries is protected 119 * with strong spinlock mfc_unres_lock. 120 * 121 * In this case data path is free of exclusive locks at all. 122 */ 123 124 static struct kmem_cache *mrt_cachep __read_mostly; 125 126 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 127 static int ip_mr_forward(struct net *net, struct mr_table *mrt, 128 struct sk_buff *skb, struct mfc_cache *cache, 129 int local); 130 static int ipmr_cache_report(struct mr_table *mrt, 131 struct sk_buff *pkt, vifi_t vifi, int assert); 132 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 133 struct mfc_cache *c, struct rtmsg *rtm); 134 static void ipmr_expire_process(unsigned long arg); 135 136 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 137 #define ipmr_for_each_table(mrt, net) \ 138 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list) 139 140 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 141 { 142 struct mr_table *mrt; 143 144 ipmr_for_each_table(mrt, net) { 145 if (mrt->id == id) 146 return mrt; 147 } 148 return NULL; 149 } 150 151 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 152 struct mr_table **mrt) 153 { 154 struct ipmr_result res; 155 struct fib_lookup_arg arg = { .result = &res, }; 156 int err; 157 158 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 159 flowi4_to_flowi(flp4), 0, &arg); 160 if (err < 0) 161 return err; 162 *mrt = res.mrt; 163 return 0; 164 } 165 166 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 167 int flags, struct fib_lookup_arg *arg) 168 { 169 struct ipmr_result *res = arg->result; 170 struct mr_table *mrt; 171 172 switch (rule->action) { 173 case FR_ACT_TO_TBL: 174 break; 175 case FR_ACT_UNREACHABLE: 176 return -ENETUNREACH; 177 case FR_ACT_PROHIBIT: 178 return -EACCES; 179 case FR_ACT_BLACKHOLE: 180 default: 181 return -EINVAL; 182 } 183 184 mrt = ipmr_get_table(rule->fr_net, rule->table); 185 if (mrt == NULL) 186 return -EAGAIN; 187 res->mrt = mrt; 188 return 0; 189 } 190 191 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 192 { 193 return 1; 194 } 195 196 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = { 197 FRA_GENERIC_POLICY, 198 }; 199 200 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 201 struct fib_rule_hdr *frh, struct nlattr **tb) 202 { 203 return 0; 204 } 205 206 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 207 struct nlattr **tb) 208 { 209 return 1; 210 } 211 212 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 213 struct fib_rule_hdr *frh) 214 { 215 frh->dst_len = 0; 216 frh->src_len = 0; 217 frh->tos = 0; 218 return 0; 219 } 220 221 static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = { 222 .family = RTNL_FAMILY_IPMR, 223 .rule_size = sizeof(struct ipmr_rule), 224 .addr_size = sizeof(u32), 225 .action = ipmr_rule_action, 226 .match = ipmr_rule_match, 227 .configure = ipmr_rule_configure, 228 .compare = ipmr_rule_compare, 229 .default_pref = fib_default_rule_pref, 230 .fill = ipmr_rule_fill, 231 .nlgroup = RTNLGRP_IPV4_RULE, 232 .policy = ipmr_rule_policy, 233 .owner = THIS_MODULE, 234 }; 235 236 static int __net_init ipmr_rules_init(struct net *net) 237 { 238 struct fib_rules_ops *ops; 239 struct mr_table *mrt; 240 int err; 241 242 ops = fib_rules_register(&ipmr_rules_ops_template, net); 243 if (IS_ERR(ops)) 244 return PTR_ERR(ops); 245 246 INIT_LIST_HEAD(&net->ipv4.mr_tables); 247 248 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 249 if (mrt == NULL) { 250 err = -ENOMEM; 251 goto err1; 252 } 253 254 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 255 if (err < 0) 256 goto err2; 257 258 net->ipv4.mr_rules_ops = ops; 259 return 0; 260 261 err2: 262 kfree(mrt); 263 err1: 264 fib_rules_unregister(ops); 265 return err; 266 } 267 268 static void __net_exit ipmr_rules_exit(struct net *net) 269 { 270 struct mr_table *mrt, *next; 271 272 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 273 list_del(&mrt->list); 274 kfree(mrt); 275 } 276 fib_rules_unregister(net->ipv4.mr_rules_ops); 277 } 278 #else 279 #define ipmr_for_each_table(mrt, net) \ 280 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 281 282 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 283 { 284 return net->ipv4.mrt; 285 } 286 287 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 288 struct mr_table **mrt) 289 { 290 *mrt = net->ipv4.mrt; 291 return 0; 292 } 293 294 static int __net_init ipmr_rules_init(struct net *net) 295 { 296 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 297 return net->ipv4.mrt ? 0 : -ENOMEM; 298 } 299 300 static void __net_exit ipmr_rules_exit(struct net *net) 301 { 302 kfree(net->ipv4.mrt); 303 } 304 #endif 305 306 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 307 { 308 struct mr_table *mrt; 309 unsigned int i; 310 311 mrt = ipmr_get_table(net, id); 312 if (mrt != NULL) 313 return mrt; 314 315 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL); 316 if (mrt == NULL) 317 return NULL; 318 write_pnet(&mrt->net, net); 319 mrt->id = id; 320 321 /* Forwarding cache */ 322 for (i = 0; i < MFC_LINES; i++) 323 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]); 324 325 INIT_LIST_HEAD(&mrt->mfc_unres_queue); 326 327 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process, 328 (unsigned long)mrt); 329 330 #ifdef CONFIG_IP_PIMSM 331 mrt->mroute_reg_vif_num = -1; 332 #endif 333 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 334 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 335 #endif 336 return mrt; 337 } 338 339 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 340 341 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v) 342 { 343 struct net *net = dev_net(dev); 344 345 dev_close(dev); 346 347 dev = __dev_get_by_name(net, "tunl0"); 348 if (dev) { 349 const struct net_device_ops *ops = dev->netdev_ops; 350 struct ifreq ifr; 351 struct ip_tunnel_parm p; 352 353 memset(&p, 0, sizeof(p)); 354 p.iph.daddr = v->vifc_rmt_addr.s_addr; 355 p.iph.saddr = v->vifc_lcl_addr.s_addr; 356 p.iph.version = 4; 357 p.iph.ihl = 5; 358 p.iph.protocol = IPPROTO_IPIP; 359 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 360 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 361 362 if (ops->ndo_do_ioctl) { 363 mm_segment_t oldfs = get_fs(); 364 365 set_fs(KERNEL_DS); 366 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL); 367 set_fs(oldfs); 368 } 369 } 370 } 371 372 static 373 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 374 { 375 struct net_device *dev; 376 377 dev = __dev_get_by_name(net, "tunl0"); 378 379 if (dev) { 380 const struct net_device_ops *ops = dev->netdev_ops; 381 int err; 382 struct ifreq ifr; 383 struct ip_tunnel_parm p; 384 struct in_device *in_dev; 385 386 memset(&p, 0, sizeof(p)); 387 p.iph.daddr = v->vifc_rmt_addr.s_addr; 388 p.iph.saddr = v->vifc_lcl_addr.s_addr; 389 p.iph.version = 4; 390 p.iph.ihl = 5; 391 p.iph.protocol = IPPROTO_IPIP; 392 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 393 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 394 395 if (ops->ndo_do_ioctl) { 396 mm_segment_t oldfs = get_fs(); 397 398 set_fs(KERNEL_DS); 399 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL); 400 set_fs(oldfs); 401 } else { 402 err = -EOPNOTSUPP; 403 } 404 dev = NULL; 405 406 if (err == 0 && 407 (dev = __dev_get_by_name(net, p.name)) != NULL) { 408 dev->flags |= IFF_MULTICAST; 409 410 in_dev = __in_dev_get_rtnl(dev); 411 if (in_dev == NULL) 412 goto failure; 413 414 ipv4_devconf_setall(in_dev); 415 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 416 417 if (dev_open(dev)) 418 goto failure; 419 dev_hold(dev); 420 } 421 } 422 return dev; 423 424 failure: 425 /* allow the register to be completed before unregistering. */ 426 rtnl_unlock(); 427 rtnl_lock(); 428 429 unregister_netdevice(dev); 430 return NULL; 431 } 432 433 #ifdef CONFIG_IP_PIMSM 434 435 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 436 { 437 struct net *net = dev_net(dev); 438 struct mr_table *mrt; 439 struct flowi4 fl4 = { 440 .flowi4_oif = dev->ifindex, 441 .flowi4_iif = skb->skb_iif, 442 .flowi4_mark = skb->mark, 443 }; 444 int err; 445 446 err = ipmr_fib_lookup(net, &fl4, &mrt); 447 if (err < 0) { 448 kfree_skb(skb); 449 return err; 450 } 451 452 read_lock(&mrt_lock); 453 dev->stats.tx_bytes += skb->len; 454 dev->stats.tx_packets++; 455 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT); 456 read_unlock(&mrt_lock); 457 kfree_skb(skb); 458 return NETDEV_TX_OK; 459 } 460 461 static const struct net_device_ops reg_vif_netdev_ops = { 462 .ndo_start_xmit = reg_vif_xmit, 463 }; 464 465 static void reg_vif_setup(struct net_device *dev) 466 { 467 dev->type = ARPHRD_PIMREG; 468 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 469 dev->flags = IFF_NOARP; 470 dev->netdev_ops = ®_vif_netdev_ops, 471 dev->destructor = free_netdev; 472 dev->features |= NETIF_F_NETNS_LOCAL; 473 } 474 475 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 476 { 477 struct net_device *dev; 478 struct in_device *in_dev; 479 char name[IFNAMSIZ]; 480 481 if (mrt->id == RT_TABLE_DEFAULT) 482 sprintf(name, "pimreg"); 483 else 484 sprintf(name, "pimreg%u", mrt->id); 485 486 dev = alloc_netdev(0, name, reg_vif_setup); 487 488 if (dev == NULL) 489 return NULL; 490 491 dev_net_set(dev, net); 492 493 if (register_netdevice(dev)) { 494 free_netdev(dev); 495 return NULL; 496 } 497 dev->iflink = 0; 498 499 rcu_read_lock(); 500 in_dev = __in_dev_get_rcu(dev); 501 if (!in_dev) { 502 rcu_read_unlock(); 503 goto failure; 504 } 505 506 ipv4_devconf_setall(in_dev); 507 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 508 rcu_read_unlock(); 509 510 if (dev_open(dev)) 511 goto failure; 512 513 dev_hold(dev); 514 515 return dev; 516 517 failure: 518 /* allow the register to be completed before unregistering. */ 519 rtnl_unlock(); 520 rtnl_lock(); 521 522 unregister_netdevice(dev); 523 return NULL; 524 } 525 #endif 526 527 /** 528 * vif_delete - Delete a VIF entry 529 * @notify: Set to 1, if the caller is a notifier_call 530 */ 531 532 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 533 struct list_head *head) 534 { 535 struct vif_device *v; 536 struct net_device *dev; 537 struct in_device *in_dev; 538 539 if (vifi < 0 || vifi >= mrt->maxvif) 540 return -EADDRNOTAVAIL; 541 542 v = &mrt->vif_table[vifi]; 543 544 write_lock_bh(&mrt_lock); 545 dev = v->dev; 546 v->dev = NULL; 547 548 if (!dev) { 549 write_unlock_bh(&mrt_lock); 550 return -EADDRNOTAVAIL; 551 } 552 553 #ifdef CONFIG_IP_PIMSM 554 if (vifi == mrt->mroute_reg_vif_num) 555 mrt->mroute_reg_vif_num = -1; 556 #endif 557 558 if (vifi + 1 == mrt->maxvif) { 559 int tmp; 560 561 for (tmp = vifi - 1; tmp >= 0; tmp--) { 562 if (VIF_EXISTS(mrt, tmp)) 563 break; 564 } 565 mrt->maxvif = tmp+1; 566 } 567 568 write_unlock_bh(&mrt_lock); 569 570 dev_set_allmulti(dev, -1); 571 572 in_dev = __in_dev_get_rtnl(dev); 573 if (in_dev) { 574 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 575 ip_rt_multicast_event(in_dev); 576 } 577 578 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 579 unregister_netdevice_queue(dev, head); 580 581 dev_put(dev); 582 return 0; 583 } 584 585 static void ipmr_cache_free_rcu(struct rcu_head *head) 586 { 587 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu); 588 589 kmem_cache_free(mrt_cachep, c); 590 } 591 592 static inline void ipmr_cache_free(struct mfc_cache *c) 593 { 594 call_rcu(&c->rcu, ipmr_cache_free_rcu); 595 } 596 597 /* Destroy an unresolved cache entry, killing queued skbs 598 * and reporting error to netlink readers. 599 */ 600 601 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 602 { 603 struct net *net = read_pnet(&mrt->net); 604 struct sk_buff *skb; 605 struct nlmsgerr *e; 606 607 atomic_dec(&mrt->cache_resolve_queue_len); 608 609 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) { 610 if (ip_hdr(skb)->version == 0) { 611 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 612 nlh->nlmsg_type = NLMSG_ERROR; 613 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr)); 614 skb_trim(skb, nlh->nlmsg_len); 615 e = NLMSG_DATA(nlh); 616 e->error = -ETIMEDOUT; 617 memset(&e->msg, 0, sizeof(e->msg)); 618 619 rtnl_unicast(skb, net, NETLINK_CB(skb).pid); 620 } else { 621 kfree_skb(skb); 622 } 623 } 624 625 ipmr_cache_free(c); 626 } 627 628 629 /* Timer process for the unresolved queue. */ 630 631 static void ipmr_expire_process(unsigned long arg) 632 { 633 struct mr_table *mrt = (struct mr_table *)arg; 634 unsigned long now; 635 unsigned long expires; 636 struct mfc_cache *c, *next; 637 638 if (!spin_trylock(&mfc_unres_lock)) { 639 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 640 return; 641 } 642 643 if (list_empty(&mrt->mfc_unres_queue)) 644 goto out; 645 646 now = jiffies; 647 expires = 10*HZ; 648 649 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 650 if (time_after(c->mfc_un.unres.expires, now)) { 651 unsigned long interval = c->mfc_un.unres.expires - now; 652 if (interval < expires) 653 expires = interval; 654 continue; 655 } 656 657 list_del(&c->list); 658 ipmr_destroy_unres(mrt, c); 659 } 660 661 if (!list_empty(&mrt->mfc_unres_queue)) 662 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 663 664 out: 665 spin_unlock(&mfc_unres_lock); 666 } 667 668 /* Fill oifs list. It is called under write locked mrt_lock. */ 669 670 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache, 671 unsigned char *ttls) 672 { 673 int vifi; 674 675 cache->mfc_un.res.minvif = MAXVIFS; 676 cache->mfc_un.res.maxvif = 0; 677 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 678 679 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 680 if (VIF_EXISTS(mrt, vifi) && 681 ttls[vifi] && ttls[vifi] < 255) { 682 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 683 if (cache->mfc_un.res.minvif > vifi) 684 cache->mfc_un.res.minvif = vifi; 685 if (cache->mfc_un.res.maxvif <= vifi) 686 cache->mfc_un.res.maxvif = vifi + 1; 687 } 688 } 689 } 690 691 static int vif_add(struct net *net, struct mr_table *mrt, 692 struct vifctl *vifc, int mrtsock) 693 { 694 int vifi = vifc->vifc_vifi; 695 struct vif_device *v = &mrt->vif_table[vifi]; 696 struct net_device *dev; 697 struct in_device *in_dev; 698 int err; 699 700 /* Is vif busy ? */ 701 if (VIF_EXISTS(mrt, vifi)) 702 return -EADDRINUSE; 703 704 switch (vifc->vifc_flags) { 705 #ifdef CONFIG_IP_PIMSM 706 case VIFF_REGISTER: 707 /* 708 * Special Purpose VIF in PIM 709 * All the packets will be sent to the daemon 710 */ 711 if (mrt->mroute_reg_vif_num >= 0) 712 return -EADDRINUSE; 713 dev = ipmr_reg_vif(net, mrt); 714 if (!dev) 715 return -ENOBUFS; 716 err = dev_set_allmulti(dev, 1); 717 if (err) { 718 unregister_netdevice(dev); 719 dev_put(dev); 720 return err; 721 } 722 break; 723 #endif 724 case VIFF_TUNNEL: 725 dev = ipmr_new_tunnel(net, vifc); 726 if (!dev) 727 return -ENOBUFS; 728 err = dev_set_allmulti(dev, 1); 729 if (err) { 730 ipmr_del_tunnel(dev, vifc); 731 dev_put(dev); 732 return err; 733 } 734 break; 735 736 case VIFF_USE_IFINDEX: 737 case 0: 738 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 739 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 740 if (dev && __in_dev_get_rtnl(dev) == NULL) { 741 dev_put(dev); 742 return -EADDRNOTAVAIL; 743 } 744 } else { 745 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 746 } 747 if (!dev) 748 return -EADDRNOTAVAIL; 749 err = dev_set_allmulti(dev, 1); 750 if (err) { 751 dev_put(dev); 752 return err; 753 } 754 break; 755 default: 756 return -EINVAL; 757 } 758 759 in_dev = __in_dev_get_rtnl(dev); 760 if (!in_dev) { 761 dev_put(dev); 762 return -EADDRNOTAVAIL; 763 } 764 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 765 ip_rt_multicast_event(in_dev); 766 767 /* Fill in the VIF structures */ 768 769 v->rate_limit = vifc->vifc_rate_limit; 770 v->local = vifc->vifc_lcl_addr.s_addr; 771 v->remote = vifc->vifc_rmt_addr.s_addr; 772 v->flags = vifc->vifc_flags; 773 if (!mrtsock) 774 v->flags |= VIFF_STATIC; 775 v->threshold = vifc->vifc_threshold; 776 v->bytes_in = 0; 777 v->bytes_out = 0; 778 v->pkt_in = 0; 779 v->pkt_out = 0; 780 v->link = dev->ifindex; 781 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER)) 782 v->link = dev->iflink; 783 784 /* And finish update writing critical data */ 785 write_lock_bh(&mrt_lock); 786 v->dev = dev; 787 #ifdef CONFIG_IP_PIMSM 788 if (v->flags & VIFF_REGISTER) 789 mrt->mroute_reg_vif_num = vifi; 790 #endif 791 if (vifi+1 > mrt->maxvif) 792 mrt->maxvif = vifi+1; 793 write_unlock_bh(&mrt_lock); 794 return 0; 795 } 796 797 /* called with rcu_read_lock() */ 798 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 799 __be32 origin, 800 __be32 mcastgrp) 801 { 802 int line = MFC_HASH(mcastgrp, origin); 803 struct mfc_cache *c; 804 805 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) { 806 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp) 807 return c; 808 } 809 return NULL; 810 } 811 812 /* 813 * Allocate a multicast cache entry 814 */ 815 static struct mfc_cache *ipmr_cache_alloc(void) 816 { 817 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 818 819 if (c) 820 c->mfc_un.res.minvif = MAXVIFS; 821 return c; 822 } 823 824 static struct mfc_cache *ipmr_cache_alloc_unres(void) 825 { 826 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 827 828 if (c) { 829 skb_queue_head_init(&c->mfc_un.unres.unresolved); 830 c->mfc_un.unres.expires = jiffies + 10*HZ; 831 } 832 return c; 833 } 834 835 /* 836 * A cache entry has gone into a resolved state from queued 837 */ 838 839 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 840 struct mfc_cache *uc, struct mfc_cache *c) 841 { 842 struct sk_buff *skb; 843 struct nlmsgerr *e; 844 845 /* Play the pending entries through our router */ 846 847 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) { 848 if (ip_hdr(skb)->version == 0) { 849 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 850 851 if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) { 852 nlh->nlmsg_len = skb_tail_pointer(skb) - 853 (u8 *)nlh; 854 } else { 855 nlh->nlmsg_type = NLMSG_ERROR; 856 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr)); 857 skb_trim(skb, nlh->nlmsg_len); 858 e = NLMSG_DATA(nlh); 859 e->error = -EMSGSIZE; 860 memset(&e->msg, 0, sizeof(e->msg)); 861 } 862 863 rtnl_unicast(skb, net, NETLINK_CB(skb).pid); 864 } else { 865 ip_mr_forward(net, mrt, skb, c, 0); 866 } 867 } 868 } 869 870 /* 871 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted 872 * expects the following bizarre scheme. 873 * 874 * Called under mrt_lock. 875 */ 876 877 static int ipmr_cache_report(struct mr_table *mrt, 878 struct sk_buff *pkt, vifi_t vifi, int assert) 879 { 880 struct sk_buff *skb; 881 const int ihl = ip_hdrlen(pkt); 882 struct igmphdr *igmp; 883 struct igmpmsg *msg; 884 struct sock *mroute_sk; 885 int ret; 886 887 #ifdef CONFIG_IP_PIMSM 888 if (assert == IGMPMSG_WHOLEPKT) 889 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 890 else 891 #endif 892 skb = alloc_skb(128, GFP_ATOMIC); 893 894 if (!skb) 895 return -ENOBUFS; 896 897 #ifdef CONFIG_IP_PIMSM 898 if (assert == IGMPMSG_WHOLEPKT) { 899 /* Ugly, but we have no choice with this interface. 900 * Duplicate old header, fix ihl, length etc. 901 * And all this only to mangle msg->im_msgtype and 902 * to set msg->im_mbz to "mbz" :-) 903 */ 904 skb_push(skb, sizeof(struct iphdr)); 905 skb_reset_network_header(skb); 906 skb_reset_transport_header(skb); 907 msg = (struct igmpmsg *)skb_network_header(skb); 908 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 909 msg->im_msgtype = IGMPMSG_WHOLEPKT; 910 msg->im_mbz = 0; 911 msg->im_vif = mrt->mroute_reg_vif_num; 912 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 913 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 914 sizeof(struct iphdr)); 915 } else 916 #endif 917 { 918 919 /* Copy the IP header */ 920 921 skb->network_header = skb->tail; 922 skb_put(skb, ihl); 923 skb_copy_to_linear_data(skb, pkt->data, ihl); 924 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */ 925 msg = (struct igmpmsg *)skb_network_header(skb); 926 msg->im_vif = vifi; 927 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 928 929 /* Add our header */ 930 931 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr)); 932 igmp->type = 933 msg->im_msgtype = assert; 934 igmp->code = 0; 935 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 936 skb->transport_header = skb->network_header; 937 } 938 939 rcu_read_lock(); 940 mroute_sk = rcu_dereference(mrt->mroute_sk); 941 if (mroute_sk == NULL) { 942 rcu_read_unlock(); 943 kfree_skb(skb); 944 return -EINVAL; 945 } 946 947 /* Deliver to mrouted */ 948 949 ret = sock_queue_rcv_skb(mroute_sk, skb); 950 rcu_read_unlock(); 951 if (ret < 0) { 952 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 953 kfree_skb(skb); 954 } 955 956 return ret; 957 } 958 959 /* 960 * Queue a packet for resolution. It gets locked cache entry! 961 */ 962 963 static int 964 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb) 965 { 966 bool found = false; 967 int err; 968 struct mfc_cache *c; 969 const struct iphdr *iph = ip_hdr(skb); 970 971 spin_lock_bh(&mfc_unres_lock); 972 list_for_each_entry(c, &mrt->mfc_unres_queue, list) { 973 if (c->mfc_mcastgrp == iph->daddr && 974 c->mfc_origin == iph->saddr) { 975 found = true; 976 break; 977 } 978 } 979 980 if (!found) { 981 /* Create a new entry if allowable */ 982 983 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 984 (c = ipmr_cache_alloc_unres()) == NULL) { 985 spin_unlock_bh(&mfc_unres_lock); 986 987 kfree_skb(skb); 988 return -ENOBUFS; 989 } 990 991 /* Fill in the new cache entry */ 992 993 c->mfc_parent = -1; 994 c->mfc_origin = iph->saddr; 995 c->mfc_mcastgrp = iph->daddr; 996 997 /* Reflect first query at mrouted. */ 998 999 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1000 if (err < 0) { 1001 /* If the report failed throw the cache entry 1002 out - Brad Parker 1003 */ 1004 spin_unlock_bh(&mfc_unres_lock); 1005 1006 ipmr_cache_free(c); 1007 kfree_skb(skb); 1008 return err; 1009 } 1010 1011 atomic_inc(&mrt->cache_resolve_queue_len); 1012 list_add(&c->list, &mrt->mfc_unres_queue); 1013 1014 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1015 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires); 1016 } 1017 1018 /* See if we can append the packet */ 1019 1020 if (c->mfc_un.unres.unresolved.qlen > 3) { 1021 kfree_skb(skb); 1022 err = -ENOBUFS; 1023 } else { 1024 skb_queue_tail(&c->mfc_un.unres.unresolved, skb); 1025 err = 0; 1026 } 1027 1028 spin_unlock_bh(&mfc_unres_lock); 1029 return err; 1030 } 1031 1032 /* 1033 * MFC cache manipulation by user space mroute daemon 1034 */ 1035 1036 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc) 1037 { 1038 int line; 1039 struct mfc_cache *c, *next; 1040 1041 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1042 1043 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) { 1044 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1045 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) { 1046 list_del_rcu(&c->list); 1047 1048 ipmr_cache_free(c); 1049 return 0; 1050 } 1051 } 1052 return -ENOENT; 1053 } 1054 1055 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1056 struct mfcctl *mfc, int mrtsock) 1057 { 1058 bool found = false; 1059 int line; 1060 struct mfc_cache *uc, *c; 1061 1062 if (mfc->mfcc_parent >= MAXVIFS) 1063 return -ENFILE; 1064 1065 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1066 1067 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) { 1068 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1069 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) { 1070 found = true; 1071 break; 1072 } 1073 } 1074 1075 if (found) { 1076 write_lock_bh(&mrt_lock); 1077 c->mfc_parent = mfc->mfcc_parent; 1078 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1079 if (!mrtsock) 1080 c->mfc_flags |= MFC_STATIC; 1081 write_unlock_bh(&mrt_lock); 1082 return 0; 1083 } 1084 1085 if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1086 return -EINVAL; 1087 1088 c = ipmr_cache_alloc(); 1089 if (c == NULL) 1090 return -ENOMEM; 1091 1092 c->mfc_origin = mfc->mfcc_origin.s_addr; 1093 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1094 c->mfc_parent = mfc->mfcc_parent; 1095 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1096 if (!mrtsock) 1097 c->mfc_flags |= MFC_STATIC; 1098 1099 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]); 1100 1101 /* 1102 * Check to see if we resolved a queued list. If so we 1103 * need to send on the frames and tidy up. 1104 */ 1105 found = false; 1106 spin_lock_bh(&mfc_unres_lock); 1107 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) { 1108 if (uc->mfc_origin == c->mfc_origin && 1109 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1110 list_del(&uc->list); 1111 atomic_dec(&mrt->cache_resolve_queue_len); 1112 found = true; 1113 break; 1114 } 1115 } 1116 if (list_empty(&mrt->mfc_unres_queue)) 1117 del_timer(&mrt->ipmr_expire_timer); 1118 spin_unlock_bh(&mfc_unres_lock); 1119 1120 if (found) { 1121 ipmr_cache_resolve(net, mrt, uc, c); 1122 ipmr_cache_free(uc); 1123 } 1124 return 0; 1125 } 1126 1127 /* 1128 * Close the multicast socket, and clear the vif tables etc 1129 */ 1130 1131 static void mroute_clean_tables(struct mr_table *mrt) 1132 { 1133 int i; 1134 LIST_HEAD(list); 1135 struct mfc_cache *c, *next; 1136 1137 /* Shut down all active vif entries */ 1138 1139 for (i = 0; i < mrt->maxvif; i++) { 1140 if (!(mrt->vif_table[i].flags & VIFF_STATIC)) 1141 vif_delete(mrt, i, 0, &list); 1142 } 1143 unregister_netdevice_many(&list); 1144 1145 /* Wipe the cache */ 1146 1147 for (i = 0; i < MFC_LINES; i++) { 1148 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) { 1149 if (c->mfc_flags & MFC_STATIC) 1150 continue; 1151 list_del_rcu(&c->list); 1152 ipmr_cache_free(c); 1153 } 1154 } 1155 1156 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1157 spin_lock_bh(&mfc_unres_lock); 1158 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 1159 list_del(&c->list); 1160 ipmr_destroy_unres(mrt, c); 1161 } 1162 spin_unlock_bh(&mfc_unres_lock); 1163 } 1164 } 1165 1166 /* called from ip_ra_control(), before an RCU grace period, 1167 * we dont need to call synchronize_rcu() here 1168 */ 1169 static void mrtsock_destruct(struct sock *sk) 1170 { 1171 struct net *net = sock_net(sk); 1172 struct mr_table *mrt; 1173 1174 rtnl_lock(); 1175 ipmr_for_each_table(mrt, net) { 1176 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1177 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1178 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1179 mroute_clean_tables(mrt); 1180 } 1181 } 1182 rtnl_unlock(); 1183 } 1184 1185 /* 1186 * Socket options and virtual interface manipulation. The whole 1187 * virtual interface system is a complete heap, but unfortunately 1188 * that's how BSD mrouted happens to think. Maybe one day with a proper 1189 * MOSPF/PIM router set up we can clean this up. 1190 */ 1191 1192 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen) 1193 { 1194 int ret; 1195 struct vifctl vif; 1196 struct mfcctl mfc; 1197 struct net *net = sock_net(sk); 1198 struct mr_table *mrt; 1199 1200 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1201 if (mrt == NULL) 1202 return -ENOENT; 1203 1204 if (optname != MRT_INIT) { 1205 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1206 !capable(CAP_NET_ADMIN)) 1207 return -EACCES; 1208 } 1209 1210 switch (optname) { 1211 case MRT_INIT: 1212 if (sk->sk_type != SOCK_RAW || 1213 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1214 return -EOPNOTSUPP; 1215 if (optlen != sizeof(int)) 1216 return -ENOPROTOOPT; 1217 1218 rtnl_lock(); 1219 if (rtnl_dereference(mrt->mroute_sk)) { 1220 rtnl_unlock(); 1221 return -EADDRINUSE; 1222 } 1223 1224 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1225 if (ret == 0) { 1226 rcu_assign_pointer(mrt->mroute_sk, sk); 1227 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1228 } 1229 rtnl_unlock(); 1230 return ret; 1231 case MRT_DONE: 1232 if (sk != rcu_access_pointer(mrt->mroute_sk)) 1233 return -EACCES; 1234 return ip_ra_control(sk, 0, NULL); 1235 case MRT_ADD_VIF: 1236 case MRT_DEL_VIF: 1237 if (optlen != sizeof(vif)) 1238 return -EINVAL; 1239 if (copy_from_user(&vif, optval, sizeof(vif))) 1240 return -EFAULT; 1241 if (vif.vifc_vifi >= MAXVIFS) 1242 return -ENFILE; 1243 rtnl_lock(); 1244 if (optname == MRT_ADD_VIF) { 1245 ret = vif_add(net, mrt, &vif, 1246 sk == rtnl_dereference(mrt->mroute_sk)); 1247 } else { 1248 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1249 } 1250 rtnl_unlock(); 1251 return ret; 1252 1253 /* 1254 * Manipulate the forwarding caches. These live 1255 * in a sort of kernel/user symbiosis. 1256 */ 1257 case MRT_ADD_MFC: 1258 case MRT_DEL_MFC: 1259 if (optlen != sizeof(mfc)) 1260 return -EINVAL; 1261 if (copy_from_user(&mfc, optval, sizeof(mfc))) 1262 return -EFAULT; 1263 rtnl_lock(); 1264 if (optname == MRT_DEL_MFC) 1265 ret = ipmr_mfc_delete(mrt, &mfc); 1266 else 1267 ret = ipmr_mfc_add(net, mrt, &mfc, 1268 sk == rtnl_dereference(mrt->mroute_sk)); 1269 rtnl_unlock(); 1270 return ret; 1271 /* 1272 * Control PIM assert. 1273 */ 1274 case MRT_ASSERT: 1275 { 1276 int v; 1277 if (get_user(v, (int __user *)optval)) 1278 return -EFAULT; 1279 mrt->mroute_do_assert = (v) ? 1 : 0; 1280 return 0; 1281 } 1282 #ifdef CONFIG_IP_PIMSM 1283 case MRT_PIM: 1284 { 1285 int v; 1286 1287 if (get_user(v, (int __user *)optval)) 1288 return -EFAULT; 1289 v = (v) ? 1 : 0; 1290 1291 rtnl_lock(); 1292 ret = 0; 1293 if (v != mrt->mroute_do_pim) { 1294 mrt->mroute_do_pim = v; 1295 mrt->mroute_do_assert = v; 1296 } 1297 rtnl_unlock(); 1298 return ret; 1299 } 1300 #endif 1301 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 1302 case MRT_TABLE: 1303 { 1304 u32 v; 1305 1306 if (optlen != sizeof(u32)) 1307 return -EINVAL; 1308 if (get_user(v, (u32 __user *)optval)) 1309 return -EFAULT; 1310 1311 rtnl_lock(); 1312 ret = 0; 1313 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1314 ret = -EBUSY; 1315 } else { 1316 if (!ipmr_new_table(net, v)) 1317 ret = -ENOMEM; 1318 raw_sk(sk)->ipmr_table = v; 1319 } 1320 rtnl_unlock(); 1321 return ret; 1322 } 1323 #endif 1324 /* 1325 * Spurious command, or MRT_VERSION which you cannot 1326 * set. 1327 */ 1328 default: 1329 return -ENOPROTOOPT; 1330 } 1331 } 1332 1333 /* 1334 * Getsock opt support for the multicast routing system. 1335 */ 1336 1337 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1338 { 1339 int olr; 1340 int val; 1341 struct net *net = sock_net(sk); 1342 struct mr_table *mrt; 1343 1344 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1345 if (mrt == NULL) 1346 return -ENOENT; 1347 1348 if (optname != MRT_VERSION && 1349 #ifdef CONFIG_IP_PIMSM 1350 optname != MRT_PIM && 1351 #endif 1352 optname != MRT_ASSERT) 1353 return -ENOPROTOOPT; 1354 1355 if (get_user(olr, optlen)) 1356 return -EFAULT; 1357 1358 olr = min_t(unsigned int, olr, sizeof(int)); 1359 if (olr < 0) 1360 return -EINVAL; 1361 1362 if (put_user(olr, optlen)) 1363 return -EFAULT; 1364 if (optname == MRT_VERSION) 1365 val = 0x0305; 1366 #ifdef CONFIG_IP_PIMSM 1367 else if (optname == MRT_PIM) 1368 val = mrt->mroute_do_pim; 1369 #endif 1370 else 1371 val = mrt->mroute_do_assert; 1372 if (copy_to_user(optval, &val, olr)) 1373 return -EFAULT; 1374 return 0; 1375 } 1376 1377 /* 1378 * The IP multicast ioctl support routines. 1379 */ 1380 1381 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1382 { 1383 struct sioc_sg_req sr; 1384 struct sioc_vif_req vr; 1385 struct vif_device *vif; 1386 struct mfc_cache *c; 1387 struct net *net = sock_net(sk); 1388 struct mr_table *mrt; 1389 1390 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1391 if (mrt == NULL) 1392 return -ENOENT; 1393 1394 switch (cmd) { 1395 case SIOCGETVIFCNT: 1396 if (copy_from_user(&vr, arg, sizeof(vr))) 1397 return -EFAULT; 1398 if (vr.vifi >= mrt->maxvif) 1399 return -EINVAL; 1400 read_lock(&mrt_lock); 1401 vif = &mrt->vif_table[vr.vifi]; 1402 if (VIF_EXISTS(mrt, vr.vifi)) { 1403 vr.icount = vif->pkt_in; 1404 vr.ocount = vif->pkt_out; 1405 vr.ibytes = vif->bytes_in; 1406 vr.obytes = vif->bytes_out; 1407 read_unlock(&mrt_lock); 1408 1409 if (copy_to_user(arg, &vr, sizeof(vr))) 1410 return -EFAULT; 1411 return 0; 1412 } 1413 read_unlock(&mrt_lock); 1414 return -EADDRNOTAVAIL; 1415 case SIOCGETSGCNT: 1416 if (copy_from_user(&sr, arg, sizeof(sr))) 1417 return -EFAULT; 1418 1419 rcu_read_lock(); 1420 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1421 if (c) { 1422 sr.pktcnt = c->mfc_un.res.pkt; 1423 sr.bytecnt = c->mfc_un.res.bytes; 1424 sr.wrong_if = c->mfc_un.res.wrong_if; 1425 rcu_read_unlock(); 1426 1427 if (copy_to_user(arg, &sr, sizeof(sr))) 1428 return -EFAULT; 1429 return 0; 1430 } 1431 rcu_read_unlock(); 1432 return -EADDRNOTAVAIL; 1433 default: 1434 return -ENOIOCTLCMD; 1435 } 1436 } 1437 1438 #ifdef CONFIG_COMPAT 1439 struct compat_sioc_sg_req { 1440 struct in_addr src; 1441 struct in_addr grp; 1442 compat_ulong_t pktcnt; 1443 compat_ulong_t bytecnt; 1444 compat_ulong_t wrong_if; 1445 }; 1446 1447 struct compat_sioc_vif_req { 1448 vifi_t vifi; /* Which iface */ 1449 compat_ulong_t icount; 1450 compat_ulong_t ocount; 1451 compat_ulong_t ibytes; 1452 compat_ulong_t obytes; 1453 }; 1454 1455 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1456 { 1457 struct compat_sioc_sg_req sr; 1458 struct compat_sioc_vif_req vr; 1459 struct vif_device *vif; 1460 struct mfc_cache *c; 1461 struct net *net = sock_net(sk); 1462 struct mr_table *mrt; 1463 1464 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1465 if (mrt == NULL) 1466 return -ENOENT; 1467 1468 switch (cmd) { 1469 case SIOCGETVIFCNT: 1470 if (copy_from_user(&vr, arg, sizeof(vr))) 1471 return -EFAULT; 1472 if (vr.vifi >= mrt->maxvif) 1473 return -EINVAL; 1474 read_lock(&mrt_lock); 1475 vif = &mrt->vif_table[vr.vifi]; 1476 if (VIF_EXISTS(mrt, vr.vifi)) { 1477 vr.icount = vif->pkt_in; 1478 vr.ocount = vif->pkt_out; 1479 vr.ibytes = vif->bytes_in; 1480 vr.obytes = vif->bytes_out; 1481 read_unlock(&mrt_lock); 1482 1483 if (copy_to_user(arg, &vr, sizeof(vr))) 1484 return -EFAULT; 1485 return 0; 1486 } 1487 read_unlock(&mrt_lock); 1488 return -EADDRNOTAVAIL; 1489 case SIOCGETSGCNT: 1490 if (copy_from_user(&sr, arg, sizeof(sr))) 1491 return -EFAULT; 1492 1493 rcu_read_lock(); 1494 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1495 if (c) { 1496 sr.pktcnt = c->mfc_un.res.pkt; 1497 sr.bytecnt = c->mfc_un.res.bytes; 1498 sr.wrong_if = c->mfc_un.res.wrong_if; 1499 rcu_read_unlock(); 1500 1501 if (copy_to_user(arg, &sr, sizeof(sr))) 1502 return -EFAULT; 1503 return 0; 1504 } 1505 rcu_read_unlock(); 1506 return -EADDRNOTAVAIL; 1507 default: 1508 return -ENOIOCTLCMD; 1509 } 1510 } 1511 #endif 1512 1513 1514 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1515 { 1516 struct net_device *dev = ptr; 1517 struct net *net = dev_net(dev); 1518 struct mr_table *mrt; 1519 struct vif_device *v; 1520 int ct; 1521 1522 if (event != NETDEV_UNREGISTER) 1523 return NOTIFY_DONE; 1524 1525 ipmr_for_each_table(mrt, net) { 1526 v = &mrt->vif_table[0]; 1527 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1528 if (v->dev == dev) 1529 vif_delete(mrt, ct, 1, NULL); 1530 } 1531 } 1532 return NOTIFY_DONE; 1533 } 1534 1535 1536 static struct notifier_block ip_mr_notifier = { 1537 .notifier_call = ipmr_device_event, 1538 }; 1539 1540 /* 1541 * Encapsulate a packet by attaching a valid IPIP header to it. 1542 * This avoids tunnel drivers and other mess and gives us the speed so 1543 * important for multicast video. 1544 */ 1545 1546 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr) 1547 { 1548 struct iphdr *iph; 1549 const struct iphdr *old_iph = ip_hdr(skb); 1550 1551 skb_push(skb, sizeof(struct iphdr)); 1552 skb->transport_header = skb->network_header; 1553 skb_reset_network_header(skb); 1554 iph = ip_hdr(skb); 1555 1556 iph->version = 4; 1557 iph->tos = old_iph->tos; 1558 iph->ttl = old_iph->ttl; 1559 iph->frag_off = 0; 1560 iph->daddr = daddr; 1561 iph->saddr = saddr; 1562 iph->protocol = IPPROTO_IPIP; 1563 iph->ihl = 5; 1564 iph->tot_len = htons(skb->len); 1565 ip_select_ident(iph, skb_dst(skb), NULL); 1566 ip_send_check(iph); 1567 1568 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1569 nf_reset(skb); 1570 } 1571 1572 static inline int ipmr_forward_finish(struct sk_buff *skb) 1573 { 1574 struct ip_options *opt = &(IPCB(skb)->opt); 1575 1576 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS); 1577 IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len); 1578 1579 if (unlikely(opt->optlen)) 1580 ip_forward_options(skb); 1581 1582 return dst_output(skb); 1583 } 1584 1585 /* 1586 * Processing handlers for ipmr_forward 1587 */ 1588 1589 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1590 struct sk_buff *skb, struct mfc_cache *c, int vifi) 1591 { 1592 const struct iphdr *iph = ip_hdr(skb); 1593 struct vif_device *vif = &mrt->vif_table[vifi]; 1594 struct net_device *dev; 1595 struct rtable *rt; 1596 struct flowi4 fl4; 1597 int encap = 0; 1598 1599 if (vif->dev == NULL) 1600 goto out_free; 1601 1602 #ifdef CONFIG_IP_PIMSM 1603 if (vif->flags & VIFF_REGISTER) { 1604 vif->pkt_out++; 1605 vif->bytes_out += skb->len; 1606 vif->dev->stats.tx_bytes += skb->len; 1607 vif->dev->stats.tx_packets++; 1608 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1609 goto out_free; 1610 } 1611 #endif 1612 1613 if (vif->flags & VIFF_TUNNEL) { 1614 rt = ip_route_output_ports(net, &fl4, NULL, 1615 vif->remote, vif->local, 1616 0, 0, 1617 IPPROTO_IPIP, 1618 RT_TOS(iph->tos), vif->link); 1619 if (IS_ERR(rt)) 1620 goto out_free; 1621 encap = sizeof(struct iphdr); 1622 } else { 1623 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1624 0, 0, 1625 IPPROTO_IPIP, 1626 RT_TOS(iph->tos), vif->link); 1627 if (IS_ERR(rt)) 1628 goto out_free; 1629 } 1630 1631 dev = rt->dst.dev; 1632 1633 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1634 /* Do not fragment multicasts. Alas, IPv4 does not 1635 * allow to send ICMP, so that packets will disappear 1636 * to blackhole. 1637 */ 1638 1639 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS); 1640 ip_rt_put(rt); 1641 goto out_free; 1642 } 1643 1644 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1645 1646 if (skb_cow(skb, encap)) { 1647 ip_rt_put(rt); 1648 goto out_free; 1649 } 1650 1651 vif->pkt_out++; 1652 vif->bytes_out += skb->len; 1653 1654 skb_dst_drop(skb); 1655 skb_dst_set(skb, &rt->dst); 1656 ip_decrease_ttl(ip_hdr(skb)); 1657 1658 /* FIXME: forward and output firewalls used to be called here. 1659 * What do we do with netfilter? -- RR 1660 */ 1661 if (vif->flags & VIFF_TUNNEL) { 1662 ip_encap(skb, vif->local, vif->remote); 1663 /* FIXME: extra output firewall step used to be here. --RR */ 1664 vif->dev->stats.tx_packets++; 1665 vif->dev->stats.tx_bytes += skb->len; 1666 } 1667 1668 IPCB(skb)->flags |= IPSKB_FORWARDED; 1669 1670 /* 1671 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1672 * not only before forwarding, but after forwarding on all output 1673 * interfaces. It is clear, if mrouter runs a multicasting 1674 * program, it should receive packets not depending to what interface 1675 * program is joined. 1676 * If we will not make it, the program will have to join on all 1677 * interfaces. On the other hand, multihoming host (or router, but 1678 * not mrouter) cannot join to more than one interface - it will 1679 * result in receiving multiple packets. 1680 */ 1681 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev, 1682 ipmr_forward_finish); 1683 return; 1684 1685 out_free: 1686 kfree_skb(skb); 1687 } 1688 1689 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev) 1690 { 1691 int ct; 1692 1693 for (ct = mrt->maxvif-1; ct >= 0; ct--) { 1694 if (mrt->vif_table[ct].dev == dev) 1695 break; 1696 } 1697 return ct; 1698 } 1699 1700 /* "local" means that we should preserve one skb (for local delivery) */ 1701 1702 static int ip_mr_forward(struct net *net, struct mr_table *mrt, 1703 struct sk_buff *skb, struct mfc_cache *cache, 1704 int local) 1705 { 1706 int psend = -1; 1707 int vif, ct; 1708 1709 vif = cache->mfc_parent; 1710 cache->mfc_un.res.pkt++; 1711 cache->mfc_un.res.bytes += skb->len; 1712 1713 /* 1714 * Wrong interface: drop packet and (maybe) send PIM assert. 1715 */ 1716 if (mrt->vif_table[vif].dev != skb->dev) { 1717 int true_vifi; 1718 1719 if (rt_is_output_route(skb_rtable(skb))) { 1720 /* It is our own packet, looped back. 1721 * Very complicated situation... 1722 * 1723 * The best workaround until routing daemons will be 1724 * fixed is not to redistribute packet, if it was 1725 * send through wrong interface. It means, that 1726 * multicast applications WILL NOT work for 1727 * (S,G), which have default multicast route pointing 1728 * to wrong oif. In any case, it is not a good 1729 * idea to use multicasting applications on router. 1730 */ 1731 goto dont_forward; 1732 } 1733 1734 cache->mfc_un.res.wrong_if++; 1735 true_vifi = ipmr_find_vif(mrt, skb->dev); 1736 1737 if (true_vifi >= 0 && mrt->mroute_do_assert && 1738 /* pimsm uses asserts, when switching from RPT to SPT, 1739 * so that we cannot check that packet arrived on an oif. 1740 * It is bad, but otherwise we would need to move pretty 1741 * large chunk of pimd to kernel. Ough... --ANK 1742 */ 1743 (mrt->mroute_do_pim || 1744 cache->mfc_un.res.ttls[true_vifi] < 255) && 1745 time_after(jiffies, 1746 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { 1747 cache->mfc_un.res.last_assert = jiffies; 1748 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 1749 } 1750 goto dont_forward; 1751 } 1752 1753 mrt->vif_table[vif].pkt_in++; 1754 mrt->vif_table[vif].bytes_in += skb->len; 1755 1756 /* 1757 * Forward the frame 1758 */ 1759 for (ct = cache->mfc_un.res.maxvif - 1; 1760 ct >= cache->mfc_un.res.minvif; ct--) { 1761 if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) { 1762 if (psend != -1) { 1763 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1764 1765 if (skb2) 1766 ipmr_queue_xmit(net, mrt, skb2, cache, 1767 psend); 1768 } 1769 psend = ct; 1770 } 1771 } 1772 if (psend != -1) { 1773 if (local) { 1774 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1775 1776 if (skb2) 1777 ipmr_queue_xmit(net, mrt, skb2, cache, psend); 1778 } else { 1779 ipmr_queue_xmit(net, mrt, skb, cache, psend); 1780 return 0; 1781 } 1782 } 1783 1784 dont_forward: 1785 if (!local) 1786 kfree_skb(skb); 1787 return 0; 1788 } 1789 1790 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 1791 { 1792 struct rtable *rt = skb_rtable(skb); 1793 struct iphdr *iph = ip_hdr(skb); 1794 struct flowi4 fl4 = { 1795 .daddr = iph->daddr, 1796 .saddr = iph->saddr, 1797 .flowi4_tos = RT_TOS(iph->tos), 1798 .flowi4_oif = (rt_is_output_route(rt) ? 1799 skb->dev->ifindex : 0), 1800 .flowi4_iif = (rt_is_output_route(rt) ? 1801 net->loopback_dev->ifindex : 1802 skb->dev->ifindex), 1803 .flowi4_mark = skb->mark, 1804 }; 1805 struct mr_table *mrt; 1806 int err; 1807 1808 err = ipmr_fib_lookup(net, &fl4, &mrt); 1809 if (err) 1810 return ERR_PTR(err); 1811 return mrt; 1812 } 1813 1814 /* 1815 * Multicast packets for forwarding arrive here 1816 * Called with rcu_read_lock(); 1817 */ 1818 1819 int ip_mr_input(struct sk_buff *skb) 1820 { 1821 struct mfc_cache *cache; 1822 struct net *net = dev_net(skb->dev); 1823 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 1824 struct mr_table *mrt; 1825 1826 /* Packet is looped back after forward, it should not be 1827 * forwarded second time, but still can be delivered locally. 1828 */ 1829 if (IPCB(skb)->flags & IPSKB_FORWARDED) 1830 goto dont_forward; 1831 1832 mrt = ipmr_rt_fib_lookup(net, skb); 1833 if (IS_ERR(mrt)) { 1834 kfree_skb(skb); 1835 return PTR_ERR(mrt); 1836 } 1837 if (!local) { 1838 if (IPCB(skb)->opt.router_alert) { 1839 if (ip_call_ra_chain(skb)) 1840 return 0; 1841 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 1842 /* IGMPv1 (and broken IGMPv2 implementations sort of 1843 * Cisco IOS <= 11.2(8)) do not put router alert 1844 * option to IGMP packets destined to routable 1845 * groups. It is very bad, because it means 1846 * that we can forward NO IGMP messages. 1847 */ 1848 struct sock *mroute_sk; 1849 1850 mroute_sk = rcu_dereference(mrt->mroute_sk); 1851 if (mroute_sk) { 1852 nf_reset(skb); 1853 raw_rcv(mroute_sk, skb); 1854 return 0; 1855 } 1856 } 1857 } 1858 1859 /* already under rcu_read_lock() */ 1860 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 1861 1862 /* 1863 * No usable cache entry 1864 */ 1865 if (cache == NULL) { 1866 int vif; 1867 1868 if (local) { 1869 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1870 ip_local_deliver(skb); 1871 if (skb2 == NULL) 1872 return -ENOBUFS; 1873 skb = skb2; 1874 } 1875 1876 read_lock(&mrt_lock); 1877 vif = ipmr_find_vif(mrt, skb->dev); 1878 if (vif >= 0) { 1879 int err2 = ipmr_cache_unresolved(mrt, vif, skb); 1880 read_unlock(&mrt_lock); 1881 1882 return err2; 1883 } 1884 read_unlock(&mrt_lock); 1885 kfree_skb(skb); 1886 return -ENODEV; 1887 } 1888 1889 read_lock(&mrt_lock); 1890 ip_mr_forward(net, mrt, skb, cache, local); 1891 read_unlock(&mrt_lock); 1892 1893 if (local) 1894 return ip_local_deliver(skb); 1895 1896 return 0; 1897 1898 dont_forward: 1899 if (local) 1900 return ip_local_deliver(skb); 1901 kfree_skb(skb); 1902 return 0; 1903 } 1904 1905 #ifdef CONFIG_IP_PIMSM 1906 /* called with rcu_read_lock() */ 1907 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 1908 unsigned int pimlen) 1909 { 1910 struct net_device *reg_dev = NULL; 1911 struct iphdr *encap; 1912 1913 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 1914 /* 1915 * Check that: 1916 * a. packet is really sent to a multicast group 1917 * b. packet is not a NULL-REGISTER 1918 * c. packet is not truncated 1919 */ 1920 if (!ipv4_is_multicast(encap->daddr) || 1921 encap->tot_len == 0 || 1922 ntohs(encap->tot_len) + pimlen > skb->len) 1923 return 1; 1924 1925 read_lock(&mrt_lock); 1926 if (mrt->mroute_reg_vif_num >= 0) 1927 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev; 1928 read_unlock(&mrt_lock); 1929 1930 if (reg_dev == NULL) 1931 return 1; 1932 1933 skb->mac_header = skb->network_header; 1934 skb_pull(skb, (u8 *)encap - skb->data); 1935 skb_reset_network_header(skb); 1936 skb->protocol = htons(ETH_P_IP); 1937 skb->ip_summed = CHECKSUM_NONE; 1938 skb->pkt_type = PACKET_HOST; 1939 1940 skb_tunnel_rx(skb, reg_dev); 1941 1942 netif_rx(skb); 1943 1944 return NET_RX_SUCCESS; 1945 } 1946 #endif 1947 1948 #ifdef CONFIG_IP_PIMSM_V1 1949 /* 1950 * Handle IGMP messages of PIMv1 1951 */ 1952 1953 int pim_rcv_v1(struct sk_buff *skb) 1954 { 1955 struct igmphdr *pim; 1956 struct net *net = dev_net(skb->dev); 1957 struct mr_table *mrt; 1958 1959 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 1960 goto drop; 1961 1962 pim = igmp_hdr(skb); 1963 1964 mrt = ipmr_rt_fib_lookup(net, skb); 1965 if (IS_ERR(mrt)) 1966 goto drop; 1967 if (!mrt->mroute_do_pim || 1968 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 1969 goto drop; 1970 1971 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 1972 drop: 1973 kfree_skb(skb); 1974 } 1975 return 0; 1976 } 1977 #endif 1978 1979 #ifdef CONFIG_IP_PIMSM_V2 1980 static int pim_rcv(struct sk_buff *skb) 1981 { 1982 struct pimreghdr *pim; 1983 struct net *net = dev_net(skb->dev); 1984 struct mr_table *mrt; 1985 1986 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 1987 goto drop; 1988 1989 pim = (struct pimreghdr *)skb_transport_header(skb); 1990 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) || 1991 (pim->flags & PIM_NULL_REGISTER) || 1992 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 1993 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 1994 goto drop; 1995 1996 mrt = ipmr_rt_fib_lookup(net, skb); 1997 if (IS_ERR(mrt)) 1998 goto drop; 1999 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2000 drop: 2001 kfree_skb(skb); 2002 } 2003 return 0; 2004 } 2005 #endif 2006 2007 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2008 struct mfc_cache *c, struct rtmsg *rtm) 2009 { 2010 int ct; 2011 struct rtnexthop *nhp; 2012 struct nlattr *mp_attr; 2013 2014 /* If cache is unresolved, don't try to parse IIF and OIF */ 2015 if (c->mfc_parent >= MAXVIFS) 2016 return -ENOENT; 2017 2018 if (VIF_EXISTS(mrt, c->mfc_parent) && 2019 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0) 2020 return -EMSGSIZE; 2021 2022 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH))) 2023 return -EMSGSIZE; 2024 2025 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { 2026 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) { 2027 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) { 2028 nla_nest_cancel(skb, mp_attr); 2029 return -EMSGSIZE; 2030 } 2031 2032 nhp->rtnh_flags = 0; 2033 nhp->rtnh_hops = c->mfc_un.res.ttls[ct]; 2034 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex; 2035 nhp->rtnh_len = sizeof(*nhp); 2036 } 2037 } 2038 2039 nla_nest_end(skb, mp_attr); 2040 2041 rtm->rtm_type = RTN_MULTICAST; 2042 return 1; 2043 } 2044 2045 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2046 __be32 saddr, __be32 daddr, 2047 struct rtmsg *rtm, int nowait) 2048 { 2049 struct mfc_cache *cache; 2050 struct mr_table *mrt; 2051 int err; 2052 2053 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2054 if (mrt == NULL) 2055 return -ENOENT; 2056 2057 rcu_read_lock(); 2058 cache = ipmr_cache_find(mrt, saddr, daddr); 2059 2060 if (cache == NULL) { 2061 struct sk_buff *skb2; 2062 struct iphdr *iph; 2063 struct net_device *dev; 2064 int vif = -1; 2065 2066 if (nowait) { 2067 rcu_read_unlock(); 2068 return -EAGAIN; 2069 } 2070 2071 dev = skb->dev; 2072 read_lock(&mrt_lock); 2073 if (dev) 2074 vif = ipmr_find_vif(mrt, dev); 2075 if (vif < 0) { 2076 read_unlock(&mrt_lock); 2077 rcu_read_unlock(); 2078 return -ENODEV; 2079 } 2080 skb2 = skb_clone(skb, GFP_ATOMIC); 2081 if (!skb2) { 2082 read_unlock(&mrt_lock); 2083 rcu_read_unlock(); 2084 return -ENOMEM; 2085 } 2086 2087 skb_push(skb2, sizeof(struct iphdr)); 2088 skb_reset_network_header(skb2); 2089 iph = ip_hdr(skb2); 2090 iph->ihl = sizeof(struct iphdr) >> 2; 2091 iph->saddr = saddr; 2092 iph->daddr = daddr; 2093 iph->version = 0; 2094 err = ipmr_cache_unresolved(mrt, vif, skb2); 2095 read_unlock(&mrt_lock); 2096 rcu_read_unlock(); 2097 return err; 2098 } 2099 2100 read_lock(&mrt_lock); 2101 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY)) 2102 cache->mfc_flags |= MFC_NOTIFY; 2103 err = __ipmr_fill_mroute(mrt, skb, cache, rtm); 2104 read_unlock(&mrt_lock); 2105 rcu_read_unlock(); 2106 return err; 2107 } 2108 2109 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2110 u32 pid, u32 seq, struct mfc_cache *c) 2111 { 2112 struct nlmsghdr *nlh; 2113 struct rtmsg *rtm; 2114 2115 nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI); 2116 if (nlh == NULL) 2117 return -EMSGSIZE; 2118 2119 rtm = nlmsg_data(nlh); 2120 rtm->rtm_family = RTNL_FAMILY_IPMR; 2121 rtm->rtm_dst_len = 32; 2122 rtm->rtm_src_len = 32; 2123 rtm->rtm_tos = 0; 2124 rtm->rtm_table = mrt->id; 2125 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2126 goto nla_put_failure; 2127 rtm->rtm_type = RTN_MULTICAST; 2128 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2129 rtm->rtm_protocol = RTPROT_UNSPEC; 2130 rtm->rtm_flags = 0; 2131 2132 if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) || 2133 nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp)) 2134 goto nla_put_failure; 2135 if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0) 2136 goto nla_put_failure; 2137 2138 return nlmsg_end(skb, nlh); 2139 2140 nla_put_failure: 2141 nlmsg_cancel(skb, nlh); 2142 return -EMSGSIZE; 2143 } 2144 2145 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2146 { 2147 struct net *net = sock_net(skb->sk); 2148 struct mr_table *mrt; 2149 struct mfc_cache *mfc; 2150 unsigned int t = 0, s_t; 2151 unsigned int h = 0, s_h; 2152 unsigned int e = 0, s_e; 2153 2154 s_t = cb->args[0]; 2155 s_h = cb->args[1]; 2156 s_e = cb->args[2]; 2157 2158 rcu_read_lock(); 2159 ipmr_for_each_table(mrt, net) { 2160 if (t < s_t) 2161 goto next_table; 2162 if (t > s_t) 2163 s_h = 0; 2164 for (h = s_h; h < MFC_LINES; h++) { 2165 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) { 2166 if (e < s_e) 2167 goto next_entry; 2168 if (ipmr_fill_mroute(mrt, skb, 2169 NETLINK_CB(cb->skb).pid, 2170 cb->nlh->nlmsg_seq, 2171 mfc) < 0) 2172 goto done; 2173 next_entry: 2174 e++; 2175 } 2176 e = s_e = 0; 2177 } 2178 s_h = 0; 2179 next_table: 2180 t++; 2181 } 2182 done: 2183 rcu_read_unlock(); 2184 2185 cb->args[2] = e; 2186 cb->args[1] = h; 2187 cb->args[0] = t; 2188 2189 return skb->len; 2190 } 2191 2192 #ifdef CONFIG_PROC_FS 2193 /* 2194 * The /proc interfaces to multicast routing : 2195 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2196 */ 2197 struct ipmr_vif_iter { 2198 struct seq_net_private p; 2199 struct mr_table *mrt; 2200 int ct; 2201 }; 2202 2203 static struct vif_device *ipmr_vif_seq_idx(struct net *net, 2204 struct ipmr_vif_iter *iter, 2205 loff_t pos) 2206 { 2207 struct mr_table *mrt = iter->mrt; 2208 2209 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) { 2210 if (!VIF_EXISTS(mrt, iter->ct)) 2211 continue; 2212 if (pos-- == 0) 2213 return &mrt->vif_table[iter->ct]; 2214 } 2215 return NULL; 2216 } 2217 2218 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2219 __acquires(mrt_lock) 2220 { 2221 struct ipmr_vif_iter *iter = seq->private; 2222 struct net *net = seq_file_net(seq); 2223 struct mr_table *mrt; 2224 2225 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2226 if (mrt == NULL) 2227 return ERR_PTR(-ENOENT); 2228 2229 iter->mrt = mrt; 2230 2231 read_lock(&mrt_lock); 2232 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1) 2233 : SEQ_START_TOKEN; 2234 } 2235 2236 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2237 { 2238 struct ipmr_vif_iter *iter = seq->private; 2239 struct net *net = seq_file_net(seq); 2240 struct mr_table *mrt = iter->mrt; 2241 2242 ++*pos; 2243 if (v == SEQ_START_TOKEN) 2244 return ipmr_vif_seq_idx(net, iter, 0); 2245 2246 while (++iter->ct < mrt->maxvif) { 2247 if (!VIF_EXISTS(mrt, iter->ct)) 2248 continue; 2249 return &mrt->vif_table[iter->ct]; 2250 } 2251 return NULL; 2252 } 2253 2254 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2255 __releases(mrt_lock) 2256 { 2257 read_unlock(&mrt_lock); 2258 } 2259 2260 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2261 { 2262 struct ipmr_vif_iter *iter = seq->private; 2263 struct mr_table *mrt = iter->mrt; 2264 2265 if (v == SEQ_START_TOKEN) { 2266 seq_puts(seq, 2267 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2268 } else { 2269 const struct vif_device *vif = v; 2270 const char *name = vif->dev ? vif->dev->name : "none"; 2271 2272 seq_printf(seq, 2273 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2274 vif - mrt->vif_table, 2275 name, vif->bytes_in, vif->pkt_in, 2276 vif->bytes_out, vif->pkt_out, 2277 vif->flags, vif->local, vif->remote); 2278 } 2279 return 0; 2280 } 2281 2282 static const struct seq_operations ipmr_vif_seq_ops = { 2283 .start = ipmr_vif_seq_start, 2284 .next = ipmr_vif_seq_next, 2285 .stop = ipmr_vif_seq_stop, 2286 .show = ipmr_vif_seq_show, 2287 }; 2288 2289 static int ipmr_vif_open(struct inode *inode, struct file *file) 2290 { 2291 return seq_open_net(inode, file, &ipmr_vif_seq_ops, 2292 sizeof(struct ipmr_vif_iter)); 2293 } 2294 2295 static const struct file_operations ipmr_vif_fops = { 2296 .owner = THIS_MODULE, 2297 .open = ipmr_vif_open, 2298 .read = seq_read, 2299 .llseek = seq_lseek, 2300 .release = seq_release_net, 2301 }; 2302 2303 struct ipmr_mfc_iter { 2304 struct seq_net_private p; 2305 struct mr_table *mrt; 2306 struct list_head *cache; 2307 int ct; 2308 }; 2309 2310 2311 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net, 2312 struct ipmr_mfc_iter *it, loff_t pos) 2313 { 2314 struct mr_table *mrt = it->mrt; 2315 struct mfc_cache *mfc; 2316 2317 rcu_read_lock(); 2318 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) { 2319 it->cache = &mrt->mfc_cache_array[it->ct]; 2320 list_for_each_entry_rcu(mfc, it->cache, list) 2321 if (pos-- == 0) 2322 return mfc; 2323 } 2324 rcu_read_unlock(); 2325 2326 spin_lock_bh(&mfc_unres_lock); 2327 it->cache = &mrt->mfc_unres_queue; 2328 list_for_each_entry(mfc, it->cache, list) 2329 if (pos-- == 0) 2330 return mfc; 2331 spin_unlock_bh(&mfc_unres_lock); 2332 2333 it->cache = NULL; 2334 return NULL; 2335 } 2336 2337 2338 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2339 { 2340 struct ipmr_mfc_iter *it = seq->private; 2341 struct net *net = seq_file_net(seq); 2342 struct mr_table *mrt; 2343 2344 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2345 if (mrt == NULL) 2346 return ERR_PTR(-ENOENT); 2347 2348 it->mrt = mrt; 2349 it->cache = NULL; 2350 it->ct = 0; 2351 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1) 2352 : SEQ_START_TOKEN; 2353 } 2354 2355 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2356 { 2357 struct mfc_cache *mfc = v; 2358 struct ipmr_mfc_iter *it = seq->private; 2359 struct net *net = seq_file_net(seq); 2360 struct mr_table *mrt = it->mrt; 2361 2362 ++*pos; 2363 2364 if (v == SEQ_START_TOKEN) 2365 return ipmr_mfc_seq_idx(net, seq->private, 0); 2366 2367 if (mfc->list.next != it->cache) 2368 return list_entry(mfc->list.next, struct mfc_cache, list); 2369 2370 if (it->cache == &mrt->mfc_unres_queue) 2371 goto end_of_list; 2372 2373 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]); 2374 2375 while (++it->ct < MFC_LINES) { 2376 it->cache = &mrt->mfc_cache_array[it->ct]; 2377 if (list_empty(it->cache)) 2378 continue; 2379 return list_first_entry(it->cache, struct mfc_cache, list); 2380 } 2381 2382 /* exhausted cache_array, show unresolved */ 2383 rcu_read_unlock(); 2384 it->cache = &mrt->mfc_unres_queue; 2385 it->ct = 0; 2386 2387 spin_lock_bh(&mfc_unres_lock); 2388 if (!list_empty(it->cache)) 2389 return list_first_entry(it->cache, struct mfc_cache, list); 2390 2391 end_of_list: 2392 spin_unlock_bh(&mfc_unres_lock); 2393 it->cache = NULL; 2394 2395 return NULL; 2396 } 2397 2398 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v) 2399 { 2400 struct ipmr_mfc_iter *it = seq->private; 2401 struct mr_table *mrt = it->mrt; 2402 2403 if (it->cache == &mrt->mfc_unres_queue) 2404 spin_unlock_bh(&mfc_unres_lock); 2405 else if (it->cache == &mrt->mfc_cache_array[it->ct]) 2406 rcu_read_unlock(); 2407 } 2408 2409 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2410 { 2411 int n; 2412 2413 if (v == SEQ_START_TOKEN) { 2414 seq_puts(seq, 2415 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2416 } else { 2417 const struct mfc_cache *mfc = v; 2418 const struct ipmr_mfc_iter *it = seq->private; 2419 const struct mr_table *mrt = it->mrt; 2420 2421 seq_printf(seq, "%08X %08X %-3hd", 2422 (__force u32) mfc->mfc_mcastgrp, 2423 (__force u32) mfc->mfc_origin, 2424 mfc->mfc_parent); 2425 2426 if (it->cache != &mrt->mfc_unres_queue) { 2427 seq_printf(seq, " %8lu %8lu %8lu", 2428 mfc->mfc_un.res.pkt, 2429 mfc->mfc_un.res.bytes, 2430 mfc->mfc_un.res.wrong_if); 2431 for (n = mfc->mfc_un.res.minvif; 2432 n < mfc->mfc_un.res.maxvif; n++) { 2433 if (VIF_EXISTS(mrt, n) && 2434 mfc->mfc_un.res.ttls[n] < 255) 2435 seq_printf(seq, 2436 " %2d:%-3d", 2437 n, mfc->mfc_un.res.ttls[n]); 2438 } 2439 } else { 2440 /* unresolved mfc_caches don't contain 2441 * pkt, bytes and wrong_if values 2442 */ 2443 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 2444 } 2445 seq_putc(seq, '\n'); 2446 } 2447 return 0; 2448 } 2449 2450 static const struct seq_operations ipmr_mfc_seq_ops = { 2451 .start = ipmr_mfc_seq_start, 2452 .next = ipmr_mfc_seq_next, 2453 .stop = ipmr_mfc_seq_stop, 2454 .show = ipmr_mfc_seq_show, 2455 }; 2456 2457 static int ipmr_mfc_open(struct inode *inode, struct file *file) 2458 { 2459 return seq_open_net(inode, file, &ipmr_mfc_seq_ops, 2460 sizeof(struct ipmr_mfc_iter)); 2461 } 2462 2463 static const struct file_operations ipmr_mfc_fops = { 2464 .owner = THIS_MODULE, 2465 .open = ipmr_mfc_open, 2466 .read = seq_read, 2467 .llseek = seq_lseek, 2468 .release = seq_release_net, 2469 }; 2470 #endif 2471 2472 #ifdef CONFIG_IP_PIMSM_V2 2473 static const struct net_protocol pim_protocol = { 2474 .handler = pim_rcv, 2475 .netns_ok = 1, 2476 }; 2477 #endif 2478 2479 2480 /* 2481 * Setup for IP multicast routing 2482 */ 2483 static int __net_init ipmr_net_init(struct net *net) 2484 { 2485 int err; 2486 2487 err = ipmr_rules_init(net); 2488 if (err < 0) 2489 goto fail; 2490 2491 #ifdef CONFIG_PROC_FS 2492 err = -ENOMEM; 2493 if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops)) 2494 goto proc_vif_fail; 2495 if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops)) 2496 goto proc_cache_fail; 2497 #endif 2498 return 0; 2499 2500 #ifdef CONFIG_PROC_FS 2501 proc_cache_fail: 2502 proc_net_remove(net, "ip_mr_vif"); 2503 proc_vif_fail: 2504 ipmr_rules_exit(net); 2505 #endif 2506 fail: 2507 return err; 2508 } 2509 2510 static void __net_exit ipmr_net_exit(struct net *net) 2511 { 2512 #ifdef CONFIG_PROC_FS 2513 proc_net_remove(net, "ip_mr_cache"); 2514 proc_net_remove(net, "ip_mr_vif"); 2515 #endif 2516 ipmr_rules_exit(net); 2517 } 2518 2519 static struct pernet_operations ipmr_net_ops = { 2520 .init = ipmr_net_init, 2521 .exit = ipmr_net_exit, 2522 }; 2523 2524 int __init ip_mr_init(void) 2525 { 2526 int err; 2527 2528 mrt_cachep = kmem_cache_create("ip_mrt_cache", 2529 sizeof(struct mfc_cache), 2530 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 2531 NULL); 2532 if (!mrt_cachep) 2533 return -ENOMEM; 2534 2535 err = register_pernet_subsys(&ipmr_net_ops); 2536 if (err) 2537 goto reg_pernet_fail; 2538 2539 err = register_netdevice_notifier(&ip_mr_notifier); 2540 if (err) 2541 goto reg_notif_fail; 2542 #ifdef CONFIG_IP_PIMSM_V2 2543 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 2544 pr_err("%s: can't add PIM protocol\n", __func__); 2545 err = -EAGAIN; 2546 goto add_proto_fail; 2547 } 2548 #endif 2549 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 2550 NULL, ipmr_rtm_dumproute, NULL); 2551 return 0; 2552 2553 #ifdef CONFIG_IP_PIMSM_V2 2554 add_proto_fail: 2555 unregister_netdevice_notifier(&ip_mr_notifier); 2556 #endif 2557 reg_notif_fail: 2558 unregister_pernet_subsys(&ipmr_net_ops); 2559 reg_pernet_fail: 2560 kmem_cache_destroy(mrt_cachep); 2561 return err; 2562 } 2563