1 /* 2 * IP multicast routing support for mrouted 3.6/3.8 3 * 4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 5 * Linux Consultancy and Custom Driver Development 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 * 12 * Fixes: 13 * Michael Chastain : Incorrect size of copying. 14 * Alan Cox : Added the cache manager code 15 * Alan Cox : Fixed the clone/copy bug and device race. 16 * Mike McLagan : Routing by source 17 * Malcolm Beattie : Buffer handling fixes. 18 * Alexey Kuznetsov : Double buffer free and other fixes. 19 * SVR Anand : Fixed several multicast bugs and problems. 20 * Alexey Kuznetsov : Status, optimisations and more. 21 * Brad Parker : Better behaviour on mrouted upcall 22 * overflow. 23 * Carlos Picoto : PIMv1 Support 24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 25 * Relax this requirement to work with older peers. 26 * 27 */ 28 29 #include <asm/uaccess.h> 30 #include <linux/types.h> 31 #include <linux/capability.h> 32 #include <linux/errno.h> 33 #include <linux/timer.h> 34 #include <linux/mm.h> 35 #include <linux/kernel.h> 36 #include <linux/fcntl.h> 37 #include <linux/stat.h> 38 #include <linux/socket.h> 39 #include <linux/in.h> 40 #include <linux/inet.h> 41 #include <linux/netdevice.h> 42 #include <linux/inetdevice.h> 43 #include <linux/igmp.h> 44 #include <linux/proc_fs.h> 45 #include <linux/seq_file.h> 46 #include <linux/mroute.h> 47 #include <linux/init.h> 48 #include <linux/if_ether.h> 49 #include <linux/slab.h> 50 #include <net/net_namespace.h> 51 #include <net/ip.h> 52 #include <net/protocol.h> 53 #include <linux/skbuff.h> 54 #include <net/route.h> 55 #include <net/sock.h> 56 #include <net/icmp.h> 57 #include <net/udp.h> 58 #include <net/raw.h> 59 #include <linux/notifier.h> 60 #include <linux/if_arp.h> 61 #include <linux/netfilter_ipv4.h> 62 #include <linux/compat.h> 63 #include <linux/export.h> 64 #include <net/ip_tunnels.h> 65 #include <net/checksum.h> 66 #include <net/netlink.h> 67 #include <net/fib_rules.h> 68 #include <linux/netconf.h> 69 70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 71 #define CONFIG_IP_PIMSM 1 72 #endif 73 74 struct mr_table { 75 struct list_head list; 76 #ifdef CONFIG_NET_NS 77 struct net *net; 78 #endif 79 u32 id; 80 struct sock __rcu *mroute_sk; 81 struct timer_list ipmr_expire_timer; 82 struct list_head mfc_unres_queue; 83 struct list_head mfc_cache_array[MFC_LINES]; 84 struct vif_device vif_table[MAXVIFS]; 85 int maxvif; 86 atomic_t cache_resolve_queue_len; 87 bool mroute_do_assert; 88 bool mroute_do_pim; 89 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 90 int mroute_reg_vif_num; 91 #endif 92 }; 93 94 struct ipmr_rule { 95 struct fib_rule common; 96 }; 97 98 struct ipmr_result { 99 struct mr_table *mrt; 100 }; 101 102 /* Big lock, protecting vif table, mrt cache and mroute socket state. 103 * Note that the changes are semaphored via rtnl_lock. 104 */ 105 106 static DEFINE_RWLOCK(mrt_lock); 107 108 /* 109 * Multicast router control variables 110 */ 111 112 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL) 113 114 /* Special spinlock for queue of unresolved entries */ 115 static DEFINE_SPINLOCK(mfc_unres_lock); 116 117 /* We return to original Alan's scheme. Hash table of resolved 118 * entries is changed only in process context and protected 119 * with weak lock mrt_lock. Queue of unresolved entries is protected 120 * with strong spinlock mfc_unres_lock. 121 * 122 * In this case data path is free of exclusive locks at all. 123 */ 124 125 static struct kmem_cache *mrt_cachep __read_mostly; 126 127 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 128 static void ipmr_free_table(struct mr_table *mrt); 129 130 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 131 struct sk_buff *skb, struct mfc_cache *cache, 132 int local); 133 static int ipmr_cache_report(struct mr_table *mrt, 134 struct sk_buff *pkt, vifi_t vifi, int assert); 135 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 136 struct mfc_cache *c, struct rtmsg *rtm); 137 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 138 int cmd); 139 static void mroute_clean_tables(struct mr_table *mrt); 140 static void ipmr_expire_process(unsigned long arg); 141 142 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 143 #define ipmr_for_each_table(mrt, net) \ 144 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list) 145 146 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 147 { 148 struct mr_table *mrt; 149 150 ipmr_for_each_table(mrt, net) { 151 if (mrt->id == id) 152 return mrt; 153 } 154 return NULL; 155 } 156 157 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 158 struct mr_table **mrt) 159 { 160 int err; 161 struct ipmr_result res; 162 struct fib_lookup_arg arg = { 163 .result = &res, 164 .flags = FIB_LOOKUP_NOREF, 165 }; 166 167 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 168 flowi4_to_flowi(flp4), 0, &arg); 169 if (err < 0) 170 return err; 171 *mrt = res.mrt; 172 return 0; 173 } 174 175 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 176 int flags, struct fib_lookup_arg *arg) 177 { 178 struct ipmr_result *res = arg->result; 179 struct mr_table *mrt; 180 181 switch (rule->action) { 182 case FR_ACT_TO_TBL: 183 break; 184 case FR_ACT_UNREACHABLE: 185 return -ENETUNREACH; 186 case FR_ACT_PROHIBIT: 187 return -EACCES; 188 case FR_ACT_BLACKHOLE: 189 default: 190 return -EINVAL; 191 } 192 193 mrt = ipmr_get_table(rule->fr_net, rule->table); 194 if (mrt == NULL) 195 return -EAGAIN; 196 res->mrt = mrt; 197 return 0; 198 } 199 200 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 201 { 202 return 1; 203 } 204 205 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = { 206 FRA_GENERIC_POLICY, 207 }; 208 209 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 210 struct fib_rule_hdr *frh, struct nlattr **tb) 211 { 212 return 0; 213 } 214 215 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 216 struct nlattr **tb) 217 { 218 return 1; 219 } 220 221 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 222 struct fib_rule_hdr *frh) 223 { 224 frh->dst_len = 0; 225 frh->src_len = 0; 226 frh->tos = 0; 227 return 0; 228 } 229 230 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 231 .family = RTNL_FAMILY_IPMR, 232 .rule_size = sizeof(struct ipmr_rule), 233 .addr_size = sizeof(u32), 234 .action = ipmr_rule_action, 235 .match = ipmr_rule_match, 236 .configure = ipmr_rule_configure, 237 .compare = ipmr_rule_compare, 238 .default_pref = fib_default_rule_pref, 239 .fill = ipmr_rule_fill, 240 .nlgroup = RTNLGRP_IPV4_RULE, 241 .policy = ipmr_rule_policy, 242 .owner = THIS_MODULE, 243 }; 244 245 static int __net_init ipmr_rules_init(struct net *net) 246 { 247 struct fib_rules_ops *ops; 248 struct mr_table *mrt; 249 int err; 250 251 ops = fib_rules_register(&ipmr_rules_ops_template, net); 252 if (IS_ERR(ops)) 253 return PTR_ERR(ops); 254 255 INIT_LIST_HEAD(&net->ipv4.mr_tables); 256 257 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 258 if (mrt == NULL) { 259 err = -ENOMEM; 260 goto err1; 261 } 262 263 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 264 if (err < 0) 265 goto err2; 266 267 net->ipv4.mr_rules_ops = ops; 268 return 0; 269 270 err2: 271 kfree(mrt); 272 err1: 273 fib_rules_unregister(ops); 274 return err; 275 } 276 277 static void __net_exit ipmr_rules_exit(struct net *net) 278 { 279 struct mr_table *mrt, *next; 280 281 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 282 list_del(&mrt->list); 283 ipmr_free_table(mrt); 284 } 285 fib_rules_unregister(net->ipv4.mr_rules_ops); 286 } 287 #else 288 #define ipmr_for_each_table(mrt, net) \ 289 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 290 291 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 292 { 293 return net->ipv4.mrt; 294 } 295 296 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 297 struct mr_table **mrt) 298 { 299 *mrt = net->ipv4.mrt; 300 return 0; 301 } 302 303 static int __net_init ipmr_rules_init(struct net *net) 304 { 305 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 306 return net->ipv4.mrt ? 0 : -ENOMEM; 307 } 308 309 static void __net_exit ipmr_rules_exit(struct net *net) 310 { 311 ipmr_free_table(net->ipv4.mrt); 312 } 313 #endif 314 315 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 316 { 317 struct mr_table *mrt; 318 unsigned int i; 319 320 mrt = ipmr_get_table(net, id); 321 if (mrt != NULL) 322 return mrt; 323 324 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL); 325 if (mrt == NULL) 326 return NULL; 327 write_pnet(&mrt->net, net); 328 mrt->id = id; 329 330 /* Forwarding cache */ 331 for (i = 0; i < MFC_LINES; i++) 332 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]); 333 334 INIT_LIST_HEAD(&mrt->mfc_unres_queue); 335 336 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process, 337 (unsigned long)mrt); 338 339 #ifdef CONFIG_IP_PIMSM 340 mrt->mroute_reg_vif_num = -1; 341 #endif 342 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 343 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 344 #endif 345 return mrt; 346 } 347 348 static void ipmr_free_table(struct mr_table *mrt) 349 { 350 del_timer_sync(&mrt->ipmr_expire_timer); 351 mroute_clean_tables(mrt); 352 kfree(mrt); 353 } 354 355 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 356 357 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v) 358 { 359 struct net *net = dev_net(dev); 360 361 dev_close(dev); 362 363 dev = __dev_get_by_name(net, "tunl0"); 364 if (dev) { 365 const struct net_device_ops *ops = dev->netdev_ops; 366 struct ifreq ifr; 367 struct ip_tunnel_parm p; 368 369 memset(&p, 0, sizeof(p)); 370 p.iph.daddr = v->vifc_rmt_addr.s_addr; 371 p.iph.saddr = v->vifc_lcl_addr.s_addr; 372 p.iph.version = 4; 373 p.iph.ihl = 5; 374 p.iph.protocol = IPPROTO_IPIP; 375 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 376 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 377 378 if (ops->ndo_do_ioctl) { 379 mm_segment_t oldfs = get_fs(); 380 381 set_fs(KERNEL_DS); 382 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL); 383 set_fs(oldfs); 384 } 385 } 386 } 387 388 static 389 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 390 { 391 struct net_device *dev; 392 393 dev = __dev_get_by_name(net, "tunl0"); 394 395 if (dev) { 396 const struct net_device_ops *ops = dev->netdev_ops; 397 int err; 398 struct ifreq ifr; 399 struct ip_tunnel_parm p; 400 struct in_device *in_dev; 401 402 memset(&p, 0, sizeof(p)); 403 p.iph.daddr = v->vifc_rmt_addr.s_addr; 404 p.iph.saddr = v->vifc_lcl_addr.s_addr; 405 p.iph.version = 4; 406 p.iph.ihl = 5; 407 p.iph.protocol = IPPROTO_IPIP; 408 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 409 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 410 411 if (ops->ndo_do_ioctl) { 412 mm_segment_t oldfs = get_fs(); 413 414 set_fs(KERNEL_DS); 415 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL); 416 set_fs(oldfs); 417 } else { 418 err = -EOPNOTSUPP; 419 } 420 dev = NULL; 421 422 if (err == 0 && 423 (dev = __dev_get_by_name(net, p.name)) != NULL) { 424 dev->flags |= IFF_MULTICAST; 425 426 in_dev = __in_dev_get_rtnl(dev); 427 if (in_dev == NULL) 428 goto failure; 429 430 ipv4_devconf_setall(in_dev); 431 neigh_parms_data_state_setall(in_dev->arp_parms); 432 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 433 434 if (dev_open(dev)) 435 goto failure; 436 dev_hold(dev); 437 } 438 } 439 return dev; 440 441 failure: 442 /* allow the register to be completed before unregistering. */ 443 rtnl_unlock(); 444 rtnl_lock(); 445 446 unregister_netdevice(dev); 447 return NULL; 448 } 449 450 #ifdef CONFIG_IP_PIMSM 451 452 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 453 { 454 struct net *net = dev_net(dev); 455 struct mr_table *mrt; 456 struct flowi4 fl4 = { 457 .flowi4_oif = dev->ifindex, 458 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 459 .flowi4_mark = skb->mark, 460 }; 461 int err; 462 463 err = ipmr_fib_lookup(net, &fl4, &mrt); 464 if (err < 0) { 465 kfree_skb(skb); 466 return err; 467 } 468 469 read_lock(&mrt_lock); 470 dev->stats.tx_bytes += skb->len; 471 dev->stats.tx_packets++; 472 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT); 473 read_unlock(&mrt_lock); 474 kfree_skb(skb); 475 return NETDEV_TX_OK; 476 } 477 478 static const struct net_device_ops reg_vif_netdev_ops = { 479 .ndo_start_xmit = reg_vif_xmit, 480 }; 481 482 static void reg_vif_setup(struct net_device *dev) 483 { 484 dev->type = ARPHRD_PIMREG; 485 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 486 dev->flags = IFF_NOARP; 487 dev->netdev_ops = ®_vif_netdev_ops; 488 dev->destructor = free_netdev; 489 dev->features |= NETIF_F_NETNS_LOCAL; 490 } 491 492 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 493 { 494 struct net_device *dev; 495 struct in_device *in_dev; 496 char name[IFNAMSIZ]; 497 498 if (mrt->id == RT_TABLE_DEFAULT) 499 sprintf(name, "pimreg"); 500 else 501 sprintf(name, "pimreg%u", mrt->id); 502 503 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 504 505 if (dev == NULL) 506 return NULL; 507 508 dev_net_set(dev, net); 509 510 if (register_netdevice(dev)) { 511 free_netdev(dev); 512 return NULL; 513 } 514 dev->iflink = 0; 515 516 rcu_read_lock(); 517 in_dev = __in_dev_get_rcu(dev); 518 if (!in_dev) { 519 rcu_read_unlock(); 520 goto failure; 521 } 522 523 ipv4_devconf_setall(in_dev); 524 neigh_parms_data_state_setall(in_dev->arp_parms); 525 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 526 rcu_read_unlock(); 527 528 if (dev_open(dev)) 529 goto failure; 530 531 dev_hold(dev); 532 533 return dev; 534 535 failure: 536 /* allow the register to be completed before unregistering. */ 537 rtnl_unlock(); 538 rtnl_lock(); 539 540 unregister_netdevice(dev); 541 return NULL; 542 } 543 #endif 544 545 /** 546 * vif_delete - Delete a VIF entry 547 * @notify: Set to 1, if the caller is a notifier_call 548 */ 549 550 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 551 struct list_head *head) 552 { 553 struct vif_device *v; 554 struct net_device *dev; 555 struct in_device *in_dev; 556 557 if (vifi < 0 || vifi >= mrt->maxvif) 558 return -EADDRNOTAVAIL; 559 560 v = &mrt->vif_table[vifi]; 561 562 write_lock_bh(&mrt_lock); 563 dev = v->dev; 564 v->dev = NULL; 565 566 if (!dev) { 567 write_unlock_bh(&mrt_lock); 568 return -EADDRNOTAVAIL; 569 } 570 571 #ifdef CONFIG_IP_PIMSM 572 if (vifi == mrt->mroute_reg_vif_num) 573 mrt->mroute_reg_vif_num = -1; 574 #endif 575 576 if (vifi + 1 == mrt->maxvif) { 577 int tmp; 578 579 for (tmp = vifi - 1; tmp >= 0; tmp--) { 580 if (VIF_EXISTS(mrt, tmp)) 581 break; 582 } 583 mrt->maxvif = tmp+1; 584 } 585 586 write_unlock_bh(&mrt_lock); 587 588 dev_set_allmulti(dev, -1); 589 590 in_dev = __in_dev_get_rtnl(dev); 591 if (in_dev) { 592 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 593 inet_netconf_notify_devconf(dev_net(dev), 594 NETCONFA_MC_FORWARDING, 595 dev->ifindex, &in_dev->cnf); 596 ip_rt_multicast_event(in_dev); 597 } 598 599 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 600 unregister_netdevice_queue(dev, head); 601 602 dev_put(dev); 603 return 0; 604 } 605 606 static void ipmr_cache_free_rcu(struct rcu_head *head) 607 { 608 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu); 609 610 kmem_cache_free(mrt_cachep, c); 611 } 612 613 static inline void ipmr_cache_free(struct mfc_cache *c) 614 { 615 call_rcu(&c->rcu, ipmr_cache_free_rcu); 616 } 617 618 /* Destroy an unresolved cache entry, killing queued skbs 619 * and reporting error to netlink readers. 620 */ 621 622 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 623 { 624 struct net *net = read_pnet(&mrt->net); 625 struct sk_buff *skb; 626 struct nlmsgerr *e; 627 628 atomic_dec(&mrt->cache_resolve_queue_len); 629 630 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) { 631 if (ip_hdr(skb)->version == 0) { 632 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 633 nlh->nlmsg_type = NLMSG_ERROR; 634 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 635 skb_trim(skb, nlh->nlmsg_len); 636 e = nlmsg_data(nlh); 637 e->error = -ETIMEDOUT; 638 memset(&e->msg, 0, sizeof(e->msg)); 639 640 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 641 } else { 642 kfree_skb(skb); 643 } 644 } 645 646 ipmr_cache_free(c); 647 } 648 649 650 /* Timer process for the unresolved queue. */ 651 652 static void ipmr_expire_process(unsigned long arg) 653 { 654 struct mr_table *mrt = (struct mr_table *)arg; 655 unsigned long now; 656 unsigned long expires; 657 struct mfc_cache *c, *next; 658 659 if (!spin_trylock(&mfc_unres_lock)) { 660 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 661 return; 662 } 663 664 if (list_empty(&mrt->mfc_unres_queue)) 665 goto out; 666 667 now = jiffies; 668 expires = 10*HZ; 669 670 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 671 if (time_after(c->mfc_un.unres.expires, now)) { 672 unsigned long interval = c->mfc_un.unres.expires - now; 673 if (interval < expires) 674 expires = interval; 675 continue; 676 } 677 678 list_del(&c->list); 679 mroute_netlink_event(mrt, c, RTM_DELROUTE); 680 ipmr_destroy_unres(mrt, c); 681 } 682 683 if (!list_empty(&mrt->mfc_unres_queue)) 684 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 685 686 out: 687 spin_unlock(&mfc_unres_lock); 688 } 689 690 /* Fill oifs list. It is called under write locked mrt_lock. */ 691 692 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache, 693 unsigned char *ttls) 694 { 695 int vifi; 696 697 cache->mfc_un.res.minvif = MAXVIFS; 698 cache->mfc_un.res.maxvif = 0; 699 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 700 701 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 702 if (VIF_EXISTS(mrt, vifi) && 703 ttls[vifi] && ttls[vifi] < 255) { 704 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 705 if (cache->mfc_un.res.minvif > vifi) 706 cache->mfc_un.res.minvif = vifi; 707 if (cache->mfc_un.res.maxvif <= vifi) 708 cache->mfc_un.res.maxvif = vifi + 1; 709 } 710 } 711 } 712 713 static int vif_add(struct net *net, struct mr_table *mrt, 714 struct vifctl *vifc, int mrtsock) 715 { 716 int vifi = vifc->vifc_vifi; 717 struct vif_device *v = &mrt->vif_table[vifi]; 718 struct net_device *dev; 719 struct in_device *in_dev; 720 int err; 721 722 /* Is vif busy ? */ 723 if (VIF_EXISTS(mrt, vifi)) 724 return -EADDRINUSE; 725 726 switch (vifc->vifc_flags) { 727 #ifdef CONFIG_IP_PIMSM 728 case VIFF_REGISTER: 729 /* 730 * Special Purpose VIF in PIM 731 * All the packets will be sent to the daemon 732 */ 733 if (mrt->mroute_reg_vif_num >= 0) 734 return -EADDRINUSE; 735 dev = ipmr_reg_vif(net, mrt); 736 if (!dev) 737 return -ENOBUFS; 738 err = dev_set_allmulti(dev, 1); 739 if (err) { 740 unregister_netdevice(dev); 741 dev_put(dev); 742 return err; 743 } 744 break; 745 #endif 746 case VIFF_TUNNEL: 747 dev = ipmr_new_tunnel(net, vifc); 748 if (!dev) 749 return -ENOBUFS; 750 err = dev_set_allmulti(dev, 1); 751 if (err) { 752 ipmr_del_tunnel(dev, vifc); 753 dev_put(dev); 754 return err; 755 } 756 break; 757 758 case VIFF_USE_IFINDEX: 759 case 0: 760 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 761 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 762 if (dev && __in_dev_get_rtnl(dev) == NULL) { 763 dev_put(dev); 764 return -EADDRNOTAVAIL; 765 } 766 } else { 767 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 768 } 769 if (!dev) 770 return -EADDRNOTAVAIL; 771 err = dev_set_allmulti(dev, 1); 772 if (err) { 773 dev_put(dev); 774 return err; 775 } 776 break; 777 default: 778 return -EINVAL; 779 } 780 781 in_dev = __in_dev_get_rtnl(dev); 782 if (!in_dev) { 783 dev_put(dev); 784 return -EADDRNOTAVAIL; 785 } 786 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 787 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex, 788 &in_dev->cnf); 789 ip_rt_multicast_event(in_dev); 790 791 /* Fill in the VIF structures */ 792 793 v->rate_limit = vifc->vifc_rate_limit; 794 v->local = vifc->vifc_lcl_addr.s_addr; 795 v->remote = vifc->vifc_rmt_addr.s_addr; 796 v->flags = vifc->vifc_flags; 797 if (!mrtsock) 798 v->flags |= VIFF_STATIC; 799 v->threshold = vifc->vifc_threshold; 800 v->bytes_in = 0; 801 v->bytes_out = 0; 802 v->pkt_in = 0; 803 v->pkt_out = 0; 804 v->link = dev->ifindex; 805 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER)) 806 v->link = dev->iflink; 807 808 /* And finish update writing critical data */ 809 write_lock_bh(&mrt_lock); 810 v->dev = dev; 811 #ifdef CONFIG_IP_PIMSM 812 if (v->flags & VIFF_REGISTER) 813 mrt->mroute_reg_vif_num = vifi; 814 #endif 815 if (vifi+1 > mrt->maxvif) 816 mrt->maxvif = vifi+1; 817 write_unlock_bh(&mrt_lock); 818 return 0; 819 } 820 821 /* called with rcu_read_lock() */ 822 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 823 __be32 origin, 824 __be32 mcastgrp) 825 { 826 int line = MFC_HASH(mcastgrp, origin); 827 struct mfc_cache *c; 828 829 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) { 830 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp) 831 return c; 832 } 833 return NULL; 834 } 835 836 /* Look for a (*,*,oif) entry */ 837 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt, 838 int vifi) 839 { 840 int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY)); 841 struct mfc_cache *c; 842 843 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) 844 if (c->mfc_origin == htonl(INADDR_ANY) && 845 c->mfc_mcastgrp == htonl(INADDR_ANY) && 846 c->mfc_un.res.ttls[vifi] < 255) 847 return c; 848 849 return NULL; 850 } 851 852 /* Look for a (*,G) entry */ 853 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 854 __be32 mcastgrp, int vifi) 855 { 856 int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY)); 857 struct mfc_cache *c, *proxy; 858 859 if (mcastgrp == htonl(INADDR_ANY)) 860 goto skip; 861 862 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) 863 if (c->mfc_origin == htonl(INADDR_ANY) && 864 c->mfc_mcastgrp == mcastgrp) { 865 if (c->mfc_un.res.ttls[vifi] < 255) 866 return c; 867 868 /* It's ok if the vifi is part of the static tree */ 869 proxy = ipmr_cache_find_any_parent(mrt, 870 c->mfc_parent); 871 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255) 872 return c; 873 } 874 875 skip: 876 return ipmr_cache_find_any_parent(mrt, vifi); 877 } 878 879 /* 880 * Allocate a multicast cache entry 881 */ 882 static struct mfc_cache *ipmr_cache_alloc(void) 883 { 884 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 885 886 if (c) 887 c->mfc_un.res.minvif = MAXVIFS; 888 return c; 889 } 890 891 static struct mfc_cache *ipmr_cache_alloc_unres(void) 892 { 893 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 894 895 if (c) { 896 skb_queue_head_init(&c->mfc_un.unres.unresolved); 897 c->mfc_un.unres.expires = jiffies + 10*HZ; 898 } 899 return c; 900 } 901 902 /* 903 * A cache entry has gone into a resolved state from queued 904 */ 905 906 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 907 struct mfc_cache *uc, struct mfc_cache *c) 908 { 909 struct sk_buff *skb; 910 struct nlmsgerr *e; 911 912 /* Play the pending entries through our router */ 913 914 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) { 915 if (ip_hdr(skb)->version == 0) { 916 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 917 918 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) { 919 nlh->nlmsg_len = skb_tail_pointer(skb) - 920 (u8 *)nlh; 921 } else { 922 nlh->nlmsg_type = NLMSG_ERROR; 923 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 924 skb_trim(skb, nlh->nlmsg_len); 925 e = nlmsg_data(nlh); 926 e->error = -EMSGSIZE; 927 memset(&e->msg, 0, sizeof(e->msg)); 928 } 929 930 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 931 } else { 932 ip_mr_forward(net, mrt, skb, c, 0); 933 } 934 } 935 } 936 937 /* 938 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted 939 * expects the following bizarre scheme. 940 * 941 * Called under mrt_lock. 942 */ 943 944 static int ipmr_cache_report(struct mr_table *mrt, 945 struct sk_buff *pkt, vifi_t vifi, int assert) 946 { 947 struct sk_buff *skb; 948 const int ihl = ip_hdrlen(pkt); 949 struct igmphdr *igmp; 950 struct igmpmsg *msg; 951 struct sock *mroute_sk; 952 int ret; 953 954 #ifdef CONFIG_IP_PIMSM 955 if (assert == IGMPMSG_WHOLEPKT) 956 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 957 else 958 #endif 959 skb = alloc_skb(128, GFP_ATOMIC); 960 961 if (!skb) 962 return -ENOBUFS; 963 964 #ifdef CONFIG_IP_PIMSM 965 if (assert == IGMPMSG_WHOLEPKT) { 966 /* Ugly, but we have no choice with this interface. 967 * Duplicate old header, fix ihl, length etc. 968 * And all this only to mangle msg->im_msgtype and 969 * to set msg->im_mbz to "mbz" :-) 970 */ 971 skb_push(skb, sizeof(struct iphdr)); 972 skb_reset_network_header(skb); 973 skb_reset_transport_header(skb); 974 msg = (struct igmpmsg *)skb_network_header(skb); 975 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 976 msg->im_msgtype = IGMPMSG_WHOLEPKT; 977 msg->im_mbz = 0; 978 msg->im_vif = mrt->mroute_reg_vif_num; 979 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 980 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 981 sizeof(struct iphdr)); 982 } else 983 #endif 984 { 985 986 /* Copy the IP header */ 987 988 skb_set_network_header(skb, skb->len); 989 skb_put(skb, ihl); 990 skb_copy_to_linear_data(skb, pkt->data, ihl); 991 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */ 992 msg = (struct igmpmsg *)skb_network_header(skb); 993 msg->im_vif = vifi; 994 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 995 996 /* Add our header */ 997 998 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr)); 999 igmp->type = 1000 msg->im_msgtype = assert; 1001 igmp->code = 0; 1002 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 1003 skb->transport_header = skb->network_header; 1004 } 1005 1006 rcu_read_lock(); 1007 mroute_sk = rcu_dereference(mrt->mroute_sk); 1008 if (mroute_sk == NULL) { 1009 rcu_read_unlock(); 1010 kfree_skb(skb); 1011 return -EINVAL; 1012 } 1013 1014 /* Deliver to mrouted */ 1015 1016 ret = sock_queue_rcv_skb(mroute_sk, skb); 1017 rcu_read_unlock(); 1018 if (ret < 0) { 1019 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1020 kfree_skb(skb); 1021 } 1022 1023 return ret; 1024 } 1025 1026 /* 1027 * Queue a packet for resolution. It gets locked cache entry! 1028 */ 1029 1030 static int 1031 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb) 1032 { 1033 bool found = false; 1034 int err; 1035 struct mfc_cache *c; 1036 const struct iphdr *iph = ip_hdr(skb); 1037 1038 spin_lock_bh(&mfc_unres_lock); 1039 list_for_each_entry(c, &mrt->mfc_unres_queue, list) { 1040 if (c->mfc_mcastgrp == iph->daddr && 1041 c->mfc_origin == iph->saddr) { 1042 found = true; 1043 break; 1044 } 1045 } 1046 1047 if (!found) { 1048 /* Create a new entry if allowable */ 1049 1050 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 1051 (c = ipmr_cache_alloc_unres()) == NULL) { 1052 spin_unlock_bh(&mfc_unres_lock); 1053 1054 kfree_skb(skb); 1055 return -ENOBUFS; 1056 } 1057 1058 /* Fill in the new cache entry */ 1059 1060 c->mfc_parent = -1; 1061 c->mfc_origin = iph->saddr; 1062 c->mfc_mcastgrp = iph->daddr; 1063 1064 /* Reflect first query at mrouted. */ 1065 1066 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1067 if (err < 0) { 1068 /* If the report failed throw the cache entry 1069 out - Brad Parker 1070 */ 1071 spin_unlock_bh(&mfc_unres_lock); 1072 1073 ipmr_cache_free(c); 1074 kfree_skb(skb); 1075 return err; 1076 } 1077 1078 atomic_inc(&mrt->cache_resolve_queue_len); 1079 list_add(&c->list, &mrt->mfc_unres_queue); 1080 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1081 1082 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1083 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires); 1084 } 1085 1086 /* See if we can append the packet */ 1087 1088 if (c->mfc_un.unres.unresolved.qlen > 3) { 1089 kfree_skb(skb); 1090 err = -ENOBUFS; 1091 } else { 1092 skb_queue_tail(&c->mfc_un.unres.unresolved, skb); 1093 err = 0; 1094 } 1095 1096 spin_unlock_bh(&mfc_unres_lock); 1097 return err; 1098 } 1099 1100 /* 1101 * MFC cache manipulation by user space mroute daemon 1102 */ 1103 1104 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1105 { 1106 int line; 1107 struct mfc_cache *c, *next; 1108 1109 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1110 1111 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) { 1112 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1113 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr && 1114 (parent == -1 || parent == c->mfc_parent)) { 1115 list_del_rcu(&c->list); 1116 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1117 ipmr_cache_free(c); 1118 return 0; 1119 } 1120 } 1121 return -ENOENT; 1122 } 1123 1124 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1125 struct mfcctl *mfc, int mrtsock, int parent) 1126 { 1127 bool found = false; 1128 int line; 1129 struct mfc_cache *uc, *c; 1130 1131 if (mfc->mfcc_parent >= MAXVIFS) 1132 return -ENFILE; 1133 1134 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1135 1136 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) { 1137 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1138 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr && 1139 (parent == -1 || parent == c->mfc_parent)) { 1140 found = true; 1141 break; 1142 } 1143 } 1144 1145 if (found) { 1146 write_lock_bh(&mrt_lock); 1147 c->mfc_parent = mfc->mfcc_parent; 1148 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1149 if (!mrtsock) 1150 c->mfc_flags |= MFC_STATIC; 1151 write_unlock_bh(&mrt_lock); 1152 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1153 return 0; 1154 } 1155 1156 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1157 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1158 return -EINVAL; 1159 1160 c = ipmr_cache_alloc(); 1161 if (c == NULL) 1162 return -ENOMEM; 1163 1164 c->mfc_origin = mfc->mfcc_origin.s_addr; 1165 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1166 c->mfc_parent = mfc->mfcc_parent; 1167 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1168 if (!mrtsock) 1169 c->mfc_flags |= MFC_STATIC; 1170 1171 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]); 1172 1173 /* 1174 * Check to see if we resolved a queued list. If so we 1175 * need to send on the frames and tidy up. 1176 */ 1177 found = false; 1178 spin_lock_bh(&mfc_unres_lock); 1179 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) { 1180 if (uc->mfc_origin == c->mfc_origin && 1181 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1182 list_del(&uc->list); 1183 atomic_dec(&mrt->cache_resolve_queue_len); 1184 found = true; 1185 break; 1186 } 1187 } 1188 if (list_empty(&mrt->mfc_unres_queue)) 1189 del_timer(&mrt->ipmr_expire_timer); 1190 spin_unlock_bh(&mfc_unres_lock); 1191 1192 if (found) { 1193 ipmr_cache_resolve(net, mrt, uc, c); 1194 ipmr_cache_free(uc); 1195 } 1196 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1197 return 0; 1198 } 1199 1200 /* 1201 * Close the multicast socket, and clear the vif tables etc 1202 */ 1203 1204 static void mroute_clean_tables(struct mr_table *mrt) 1205 { 1206 int i; 1207 LIST_HEAD(list); 1208 struct mfc_cache *c, *next; 1209 1210 /* Shut down all active vif entries */ 1211 1212 for (i = 0; i < mrt->maxvif; i++) { 1213 if (!(mrt->vif_table[i].flags & VIFF_STATIC)) 1214 vif_delete(mrt, i, 0, &list); 1215 } 1216 unregister_netdevice_many(&list); 1217 1218 /* Wipe the cache */ 1219 1220 for (i = 0; i < MFC_LINES; i++) { 1221 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) { 1222 if (c->mfc_flags & MFC_STATIC) 1223 continue; 1224 list_del_rcu(&c->list); 1225 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1226 ipmr_cache_free(c); 1227 } 1228 } 1229 1230 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1231 spin_lock_bh(&mfc_unres_lock); 1232 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 1233 list_del(&c->list); 1234 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1235 ipmr_destroy_unres(mrt, c); 1236 } 1237 spin_unlock_bh(&mfc_unres_lock); 1238 } 1239 } 1240 1241 /* called from ip_ra_control(), before an RCU grace period, 1242 * we dont need to call synchronize_rcu() here 1243 */ 1244 static void mrtsock_destruct(struct sock *sk) 1245 { 1246 struct net *net = sock_net(sk); 1247 struct mr_table *mrt; 1248 1249 rtnl_lock(); 1250 ipmr_for_each_table(mrt, net) { 1251 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1252 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1253 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, 1254 NETCONFA_IFINDEX_ALL, 1255 net->ipv4.devconf_all); 1256 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1257 mroute_clean_tables(mrt); 1258 } 1259 } 1260 rtnl_unlock(); 1261 } 1262 1263 /* 1264 * Socket options and virtual interface manipulation. The whole 1265 * virtual interface system is a complete heap, but unfortunately 1266 * that's how BSD mrouted happens to think. Maybe one day with a proper 1267 * MOSPF/PIM router set up we can clean this up. 1268 */ 1269 1270 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen) 1271 { 1272 int ret, parent = 0; 1273 struct vifctl vif; 1274 struct mfcctl mfc; 1275 struct net *net = sock_net(sk); 1276 struct mr_table *mrt; 1277 1278 if (sk->sk_type != SOCK_RAW || 1279 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1280 return -EOPNOTSUPP; 1281 1282 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1283 if (mrt == NULL) 1284 return -ENOENT; 1285 1286 if (optname != MRT_INIT) { 1287 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1288 !ns_capable(net->user_ns, CAP_NET_ADMIN)) 1289 return -EACCES; 1290 } 1291 1292 switch (optname) { 1293 case MRT_INIT: 1294 if (optlen != sizeof(int)) 1295 return -EINVAL; 1296 1297 rtnl_lock(); 1298 if (rtnl_dereference(mrt->mroute_sk)) { 1299 rtnl_unlock(); 1300 return -EADDRINUSE; 1301 } 1302 1303 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1304 if (ret == 0) { 1305 rcu_assign_pointer(mrt->mroute_sk, sk); 1306 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1307 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, 1308 NETCONFA_IFINDEX_ALL, 1309 net->ipv4.devconf_all); 1310 } 1311 rtnl_unlock(); 1312 return ret; 1313 case MRT_DONE: 1314 if (sk != rcu_access_pointer(mrt->mroute_sk)) 1315 return -EACCES; 1316 return ip_ra_control(sk, 0, NULL); 1317 case MRT_ADD_VIF: 1318 case MRT_DEL_VIF: 1319 if (optlen != sizeof(vif)) 1320 return -EINVAL; 1321 if (copy_from_user(&vif, optval, sizeof(vif))) 1322 return -EFAULT; 1323 if (vif.vifc_vifi >= MAXVIFS) 1324 return -ENFILE; 1325 rtnl_lock(); 1326 if (optname == MRT_ADD_VIF) { 1327 ret = vif_add(net, mrt, &vif, 1328 sk == rtnl_dereference(mrt->mroute_sk)); 1329 } else { 1330 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1331 } 1332 rtnl_unlock(); 1333 return ret; 1334 1335 /* 1336 * Manipulate the forwarding caches. These live 1337 * in a sort of kernel/user symbiosis. 1338 */ 1339 case MRT_ADD_MFC: 1340 case MRT_DEL_MFC: 1341 parent = -1; 1342 case MRT_ADD_MFC_PROXY: 1343 case MRT_DEL_MFC_PROXY: 1344 if (optlen != sizeof(mfc)) 1345 return -EINVAL; 1346 if (copy_from_user(&mfc, optval, sizeof(mfc))) 1347 return -EFAULT; 1348 if (parent == 0) 1349 parent = mfc.mfcc_parent; 1350 rtnl_lock(); 1351 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1352 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1353 else 1354 ret = ipmr_mfc_add(net, mrt, &mfc, 1355 sk == rtnl_dereference(mrt->mroute_sk), 1356 parent); 1357 rtnl_unlock(); 1358 return ret; 1359 /* 1360 * Control PIM assert. 1361 */ 1362 case MRT_ASSERT: 1363 { 1364 int v; 1365 if (optlen != sizeof(v)) 1366 return -EINVAL; 1367 if (get_user(v, (int __user *)optval)) 1368 return -EFAULT; 1369 mrt->mroute_do_assert = v; 1370 return 0; 1371 } 1372 #ifdef CONFIG_IP_PIMSM 1373 case MRT_PIM: 1374 { 1375 int v; 1376 1377 if (optlen != sizeof(v)) 1378 return -EINVAL; 1379 if (get_user(v, (int __user *)optval)) 1380 return -EFAULT; 1381 v = !!v; 1382 1383 rtnl_lock(); 1384 ret = 0; 1385 if (v != mrt->mroute_do_pim) { 1386 mrt->mroute_do_pim = v; 1387 mrt->mroute_do_assert = v; 1388 } 1389 rtnl_unlock(); 1390 return ret; 1391 } 1392 #endif 1393 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 1394 case MRT_TABLE: 1395 { 1396 u32 v; 1397 1398 if (optlen != sizeof(u32)) 1399 return -EINVAL; 1400 if (get_user(v, (u32 __user *)optval)) 1401 return -EFAULT; 1402 1403 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 1404 if (v != RT_TABLE_DEFAULT && v >= 1000000000) 1405 return -EINVAL; 1406 1407 rtnl_lock(); 1408 ret = 0; 1409 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1410 ret = -EBUSY; 1411 } else { 1412 if (!ipmr_new_table(net, v)) 1413 ret = -ENOMEM; 1414 else 1415 raw_sk(sk)->ipmr_table = v; 1416 } 1417 rtnl_unlock(); 1418 return ret; 1419 } 1420 #endif 1421 /* 1422 * Spurious command, or MRT_VERSION which you cannot 1423 * set. 1424 */ 1425 default: 1426 return -ENOPROTOOPT; 1427 } 1428 } 1429 1430 /* 1431 * Getsock opt support for the multicast routing system. 1432 */ 1433 1434 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1435 { 1436 int olr; 1437 int val; 1438 struct net *net = sock_net(sk); 1439 struct mr_table *mrt; 1440 1441 if (sk->sk_type != SOCK_RAW || 1442 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1443 return -EOPNOTSUPP; 1444 1445 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1446 if (mrt == NULL) 1447 return -ENOENT; 1448 1449 if (optname != MRT_VERSION && 1450 #ifdef CONFIG_IP_PIMSM 1451 optname != MRT_PIM && 1452 #endif 1453 optname != MRT_ASSERT) 1454 return -ENOPROTOOPT; 1455 1456 if (get_user(olr, optlen)) 1457 return -EFAULT; 1458 1459 olr = min_t(unsigned int, olr, sizeof(int)); 1460 if (olr < 0) 1461 return -EINVAL; 1462 1463 if (put_user(olr, optlen)) 1464 return -EFAULT; 1465 if (optname == MRT_VERSION) 1466 val = 0x0305; 1467 #ifdef CONFIG_IP_PIMSM 1468 else if (optname == MRT_PIM) 1469 val = mrt->mroute_do_pim; 1470 #endif 1471 else 1472 val = mrt->mroute_do_assert; 1473 if (copy_to_user(optval, &val, olr)) 1474 return -EFAULT; 1475 return 0; 1476 } 1477 1478 /* 1479 * The IP multicast ioctl support routines. 1480 */ 1481 1482 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1483 { 1484 struct sioc_sg_req sr; 1485 struct sioc_vif_req vr; 1486 struct vif_device *vif; 1487 struct mfc_cache *c; 1488 struct net *net = sock_net(sk); 1489 struct mr_table *mrt; 1490 1491 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1492 if (mrt == NULL) 1493 return -ENOENT; 1494 1495 switch (cmd) { 1496 case SIOCGETVIFCNT: 1497 if (copy_from_user(&vr, arg, sizeof(vr))) 1498 return -EFAULT; 1499 if (vr.vifi >= mrt->maxvif) 1500 return -EINVAL; 1501 read_lock(&mrt_lock); 1502 vif = &mrt->vif_table[vr.vifi]; 1503 if (VIF_EXISTS(mrt, vr.vifi)) { 1504 vr.icount = vif->pkt_in; 1505 vr.ocount = vif->pkt_out; 1506 vr.ibytes = vif->bytes_in; 1507 vr.obytes = vif->bytes_out; 1508 read_unlock(&mrt_lock); 1509 1510 if (copy_to_user(arg, &vr, sizeof(vr))) 1511 return -EFAULT; 1512 return 0; 1513 } 1514 read_unlock(&mrt_lock); 1515 return -EADDRNOTAVAIL; 1516 case SIOCGETSGCNT: 1517 if (copy_from_user(&sr, arg, sizeof(sr))) 1518 return -EFAULT; 1519 1520 rcu_read_lock(); 1521 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1522 if (c) { 1523 sr.pktcnt = c->mfc_un.res.pkt; 1524 sr.bytecnt = c->mfc_un.res.bytes; 1525 sr.wrong_if = c->mfc_un.res.wrong_if; 1526 rcu_read_unlock(); 1527 1528 if (copy_to_user(arg, &sr, sizeof(sr))) 1529 return -EFAULT; 1530 return 0; 1531 } 1532 rcu_read_unlock(); 1533 return -EADDRNOTAVAIL; 1534 default: 1535 return -ENOIOCTLCMD; 1536 } 1537 } 1538 1539 #ifdef CONFIG_COMPAT 1540 struct compat_sioc_sg_req { 1541 struct in_addr src; 1542 struct in_addr grp; 1543 compat_ulong_t pktcnt; 1544 compat_ulong_t bytecnt; 1545 compat_ulong_t wrong_if; 1546 }; 1547 1548 struct compat_sioc_vif_req { 1549 vifi_t vifi; /* Which iface */ 1550 compat_ulong_t icount; 1551 compat_ulong_t ocount; 1552 compat_ulong_t ibytes; 1553 compat_ulong_t obytes; 1554 }; 1555 1556 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1557 { 1558 struct compat_sioc_sg_req sr; 1559 struct compat_sioc_vif_req vr; 1560 struct vif_device *vif; 1561 struct mfc_cache *c; 1562 struct net *net = sock_net(sk); 1563 struct mr_table *mrt; 1564 1565 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1566 if (mrt == NULL) 1567 return -ENOENT; 1568 1569 switch (cmd) { 1570 case SIOCGETVIFCNT: 1571 if (copy_from_user(&vr, arg, sizeof(vr))) 1572 return -EFAULT; 1573 if (vr.vifi >= mrt->maxvif) 1574 return -EINVAL; 1575 read_lock(&mrt_lock); 1576 vif = &mrt->vif_table[vr.vifi]; 1577 if (VIF_EXISTS(mrt, vr.vifi)) { 1578 vr.icount = vif->pkt_in; 1579 vr.ocount = vif->pkt_out; 1580 vr.ibytes = vif->bytes_in; 1581 vr.obytes = vif->bytes_out; 1582 read_unlock(&mrt_lock); 1583 1584 if (copy_to_user(arg, &vr, sizeof(vr))) 1585 return -EFAULT; 1586 return 0; 1587 } 1588 read_unlock(&mrt_lock); 1589 return -EADDRNOTAVAIL; 1590 case SIOCGETSGCNT: 1591 if (copy_from_user(&sr, arg, sizeof(sr))) 1592 return -EFAULT; 1593 1594 rcu_read_lock(); 1595 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1596 if (c) { 1597 sr.pktcnt = c->mfc_un.res.pkt; 1598 sr.bytecnt = c->mfc_un.res.bytes; 1599 sr.wrong_if = c->mfc_un.res.wrong_if; 1600 rcu_read_unlock(); 1601 1602 if (copy_to_user(arg, &sr, sizeof(sr))) 1603 return -EFAULT; 1604 return 0; 1605 } 1606 rcu_read_unlock(); 1607 return -EADDRNOTAVAIL; 1608 default: 1609 return -ENOIOCTLCMD; 1610 } 1611 } 1612 #endif 1613 1614 1615 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1616 { 1617 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1618 struct net *net = dev_net(dev); 1619 struct mr_table *mrt; 1620 struct vif_device *v; 1621 int ct; 1622 1623 if (event != NETDEV_UNREGISTER) 1624 return NOTIFY_DONE; 1625 1626 ipmr_for_each_table(mrt, net) { 1627 v = &mrt->vif_table[0]; 1628 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1629 if (v->dev == dev) 1630 vif_delete(mrt, ct, 1, NULL); 1631 } 1632 } 1633 return NOTIFY_DONE; 1634 } 1635 1636 1637 static struct notifier_block ip_mr_notifier = { 1638 .notifier_call = ipmr_device_event, 1639 }; 1640 1641 /* 1642 * Encapsulate a packet by attaching a valid IPIP header to it. 1643 * This avoids tunnel drivers and other mess and gives us the speed so 1644 * important for multicast video. 1645 */ 1646 1647 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr) 1648 { 1649 struct iphdr *iph; 1650 const struct iphdr *old_iph = ip_hdr(skb); 1651 1652 skb_push(skb, sizeof(struct iphdr)); 1653 skb->transport_header = skb->network_header; 1654 skb_reset_network_header(skb); 1655 iph = ip_hdr(skb); 1656 1657 iph->version = 4; 1658 iph->tos = old_iph->tos; 1659 iph->ttl = old_iph->ttl; 1660 iph->frag_off = 0; 1661 iph->daddr = daddr; 1662 iph->saddr = saddr; 1663 iph->protocol = IPPROTO_IPIP; 1664 iph->ihl = 5; 1665 iph->tot_len = htons(skb->len); 1666 ip_select_ident(skb, NULL); 1667 ip_send_check(iph); 1668 1669 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1670 nf_reset(skb); 1671 } 1672 1673 static inline int ipmr_forward_finish(struct sk_buff *skb) 1674 { 1675 struct ip_options *opt = &(IPCB(skb)->opt); 1676 1677 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS); 1678 IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len); 1679 1680 if (unlikely(opt->optlen)) 1681 ip_forward_options(skb); 1682 1683 return dst_output(skb); 1684 } 1685 1686 /* 1687 * Processing handlers for ipmr_forward 1688 */ 1689 1690 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1691 struct sk_buff *skb, struct mfc_cache *c, int vifi) 1692 { 1693 const struct iphdr *iph = ip_hdr(skb); 1694 struct vif_device *vif = &mrt->vif_table[vifi]; 1695 struct net_device *dev; 1696 struct rtable *rt; 1697 struct flowi4 fl4; 1698 int encap = 0; 1699 1700 if (vif->dev == NULL) 1701 goto out_free; 1702 1703 #ifdef CONFIG_IP_PIMSM 1704 if (vif->flags & VIFF_REGISTER) { 1705 vif->pkt_out++; 1706 vif->bytes_out += skb->len; 1707 vif->dev->stats.tx_bytes += skb->len; 1708 vif->dev->stats.tx_packets++; 1709 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1710 goto out_free; 1711 } 1712 #endif 1713 1714 if (vif->flags & VIFF_TUNNEL) { 1715 rt = ip_route_output_ports(net, &fl4, NULL, 1716 vif->remote, vif->local, 1717 0, 0, 1718 IPPROTO_IPIP, 1719 RT_TOS(iph->tos), vif->link); 1720 if (IS_ERR(rt)) 1721 goto out_free; 1722 encap = sizeof(struct iphdr); 1723 } else { 1724 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1725 0, 0, 1726 IPPROTO_IPIP, 1727 RT_TOS(iph->tos), vif->link); 1728 if (IS_ERR(rt)) 1729 goto out_free; 1730 } 1731 1732 dev = rt->dst.dev; 1733 1734 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1735 /* Do not fragment multicasts. Alas, IPv4 does not 1736 * allow to send ICMP, so that packets will disappear 1737 * to blackhole. 1738 */ 1739 1740 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS); 1741 ip_rt_put(rt); 1742 goto out_free; 1743 } 1744 1745 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1746 1747 if (skb_cow(skb, encap)) { 1748 ip_rt_put(rt); 1749 goto out_free; 1750 } 1751 1752 vif->pkt_out++; 1753 vif->bytes_out += skb->len; 1754 1755 skb_dst_drop(skb); 1756 skb_dst_set(skb, &rt->dst); 1757 ip_decrease_ttl(ip_hdr(skb)); 1758 1759 /* FIXME: forward and output firewalls used to be called here. 1760 * What do we do with netfilter? -- RR 1761 */ 1762 if (vif->flags & VIFF_TUNNEL) { 1763 ip_encap(skb, vif->local, vif->remote); 1764 /* FIXME: extra output firewall step used to be here. --RR */ 1765 vif->dev->stats.tx_packets++; 1766 vif->dev->stats.tx_bytes += skb->len; 1767 } 1768 1769 IPCB(skb)->flags |= IPSKB_FORWARDED; 1770 1771 /* 1772 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1773 * not only before forwarding, but after forwarding on all output 1774 * interfaces. It is clear, if mrouter runs a multicasting 1775 * program, it should receive packets not depending to what interface 1776 * program is joined. 1777 * If we will not make it, the program will have to join on all 1778 * interfaces. On the other hand, multihoming host (or router, but 1779 * not mrouter) cannot join to more than one interface - it will 1780 * result in receiving multiple packets. 1781 */ 1782 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev, 1783 ipmr_forward_finish); 1784 return; 1785 1786 out_free: 1787 kfree_skb(skb); 1788 } 1789 1790 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev) 1791 { 1792 int ct; 1793 1794 for (ct = mrt->maxvif-1; ct >= 0; ct--) { 1795 if (mrt->vif_table[ct].dev == dev) 1796 break; 1797 } 1798 return ct; 1799 } 1800 1801 /* "local" means that we should preserve one skb (for local delivery) */ 1802 1803 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1804 struct sk_buff *skb, struct mfc_cache *cache, 1805 int local) 1806 { 1807 int psend = -1; 1808 int vif, ct; 1809 int true_vifi = ipmr_find_vif(mrt, skb->dev); 1810 1811 vif = cache->mfc_parent; 1812 cache->mfc_un.res.pkt++; 1813 cache->mfc_un.res.bytes += skb->len; 1814 1815 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1816 struct mfc_cache *cache_proxy; 1817 1818 /* For an (*,G) entry, we only check that the incomming 1819 * interface is part of the static tree. 1820 */ 1821 cache_proxy = ipmr_cache_find_any_parent(mrt, vif); 1822 if (cache_proxy && 1823 cache_proxy->mfc_un.res.ttls[true_vifi] < 255) 1824 goto forward; 1825 } 1826 1827 /* 1828 * Wrong interface: drop packet and (maybe) send PIM assert. 1829 */ 1830 if (mrt->vif_table[vif].dev != skb->dev) { 1831 if (rt_is_output_route(skb_rtable(skb))) { 1832 /* It is our own packet, looped back. 1833 * Very complicated situation... 1834 * 1835 * The best workaround until routing daemons will be 1836 * fixed is not to redistribute packet, if it was 1837 * send through wrong interface. It means, that 1838 * multicast applications WILL NOT work for 1839 * (S,G), which have default multicast route pointing 1840 * to wrong oif. In any case, it is not a good 1841 * idea to use multicasting applications on router. 1842 */ 1843 goto dont_forward; 1844 } 1845 1846 cache->mfc_un.res.wrong_if++; 1847 1848 if (true_vifi >= 0 && mrt->mroute_do_assert && 1849 /* pimsm uses asserts, when switching from RPT to SPT, 1850 * so that we cannot check that packet arrived on an oif. 1851 * It is bad, but otherwise we would need to move pretty 1852 * large chunk of pimd to kernel. Ough... --ANK 1853 */ 1854 (mrt->mroute_do_pim || 1855 cache->mfc_un.res.ttls[true_vifi] < 255) && 1856 time_after(jiffies, 1857 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { 1858 cache->mfc_un.res.last_assert = jiffies; 1859 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 1860 } 1861 goto dont_forward; 1862 } 1863 1864 forward: 1865 mrt->vif_table[vif].pkt_in++; 1866 mrt->vif_table[vif].bytes_in += skb->len; 1867 1868 /* 1869 * Forward the frame 1870 */ 1871 if (cache->mfc_origin == htonl(INADDR_ANY) && 1872 cache->mfc_mcastgrp == htonl(INADDR_ANY)) { 1873 if (true_vifi >= 0 && 1874 true_vifi != cache->mfc_parent && 1875 ip_hdr(skb)->ttl > 1876 cache->mfc_un.res.ttls[cache->mfc_parent]) { 1877 /* It's an (*,*) entry and the packet is not coming from 1878 * the upstream: forward the packet to the upstream 1879 * only. 1880 */ 1881 psend = cache->mfc_parent; 1882 goto last_forward; 1883 } 1884 goto dont_forward; 1885 } 1886 for (ct = cache->mfc_un.res.maxvif - 1; 1887 ct >= cache->mfc_un.res.minvif; ct--) { 1888 /* For (*,G) entry, don't forward to the incoming interface */ 1889 if ((cache->mfc_origin != htonl(INADDR_ANY) || 1890 ct != true_vifi) && 1891 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) { 1892 if (psend != -1) { 1893 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1894 1895 if (skb2) 1896 ipmr_queue_xmit(net, mrt, skb2, cache, 1897 psend); 1898 } 1899 psend = ct; 1900 } 1901 } 1902 last_forward: 1903 if (psend != -1) { 1904 if (local) { 1905 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1906 1907 if (skb2) 1908 ipmr_queue_xmit(net, mrt, skb2, cache, psend); 1909 } else { 1910 ipmr_queue_xmit(net, mrt, skb, cache, psend); 1911 return; 1912 } 1913 } 1914 1915 dont_forward: 1916 if (!local) 1917 kfree_skb(skb); 1918 } 1919 1920 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 1921 { 1922 struct rtable *rt = skb_rtable(skb); 1923 struct iphdr *iph = ip_hdr(skb); 1924 struct flowi4 fl4 = { 1925 .daddr = iph->daddr, 1926 .saddr = iph->saddr, 1927 .flowi4_tos = RT_TOS(iph->tos), 1928 .flowi4_oif = (rt_is_output_route(rt) ? 1929 skb->dev->ifindex : 0), 1930 .flowi4_iif = (rt_is_output_route(rt) ? 1931 LOOPBACK_IFINDEX : 1932 skb->dev->ifindex), 1933 .flowi4_mark = skb->mark, 1934 }; 1935 struct mr_table *mrt; 1936 int err; 1937 1938 err = ipmr_fib_lookup(net, &fl4, &mrt); 1939 if (err) 1940 return ERR_PTR(err); 1941 return mrt; 1942 } 1943 1944 /* 1945 * Multicast packets for forwarding arrive here 1946 * Called with rcu_read_lock(); 1947 */ 1948 1949 int ip_mr_input(struct sk_buff *skb) 1950 { 1951 struct mfc_cache *cache; 1952 struct net *net = dev_net(skb->dev); 1953 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 1954 struct mr_table *mrt; 1955 1956 /* Packet is looped back after forward, it should not be 1957 * forwarded second time, but still can be delivered locally. 1958 */ 1959 if (IPCB(skb)->flags & IPSKB_FORWARDED) 1960 goto dont_forward; 1961 1962 mrt = ipmr_rt_fib_lookup(net, skb); 1963 if (IS_ERR(mrt)) { 1964 kfree_skb(skb); 1965 return PTR_ERR(mrt); 1966 } 1967 if (!local) { 1968 if (IPCB(skb)->opt.router_alert) { 1969 if (ip_call_ra_chain(skb)) 1970 return 0; 1971 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 1972 /* IGMPv1 (and broken IGMPv2 implementations sort of 1973 * Cisco IOS <= 11.2(8)) do not put router alert 1974 * option to IGMP packets destined to routable 1975 * groups. It is very bad, because it means 1976 * that we can forward NO IGMP messages. 1977 */ 1978 struct sock *mroute_sk; 1979 1980 mroute_sk = rcu_dereference(mrt->mroute_sk); 1981 if (mroute_sk) { 1982 nf_reset(skb); 1983 raw_rcv(mroute_sk, skb); 1984 return 0; 1985 } 1986 } 1987 } 1988 1989 /* already under rcu_read_lock() */ 1990 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 1991 if (cache == NULL) { 1992 int vif = ipmr_find_vif(mrt, skb->dev); 1993 1994 if (vif >= 0) 1995 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 1996 vif); 1997 } 1998 1999 /* 2000 * No usable cache entry 2001 */ 2002 if (cache == NULL) { 2003 int vif; 2004 2005 if (local) { 2006 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2007 ip_local_deliver(skb); 2008 if (skb2 == NULL) 2009 return -ENOBUFS; 2010 skb = skb2; 2011 } 2012 2013 read_lock(&mrt_lock); 2014 vif = ipmr_find_vif(mrt, skb->dev); 2015 if (vif >= 0) { 2016 int err2 = ipmr_cache_unresolved(mrt, vif, skb); 2017 read_unlock(&mrt_lock); 2018 2019 return err2; 2020 } 2021 read_unlock(&mrt_lock); 2022 kfree_skb(skb); 2023 return -ENODEV; 2024 } 2025 2026 read_lock(&mrt_lock); 2027 ip_mr_forward(net, mrt, skb, cache, local); 2028 read_unlock(&mrt_lock); 2029 2030 if (local) 2031 return ip_local_deliver(skb); 2032 2033 return 0; 2034 2035 dont_forward: 2036 if (local) 2037 return ip_local_deliver(skb); 2038 kfree_skb(skb); 2039 return 0; 2040 } 2041 2042 #ifdef CONFIG_IP_PIMSM 2043 /* called with rcu_read_lock() */ 2044 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 2045 unsigned int pimlen) 2046 { 2047 struct net_device *reg_dev = NULL; 2048 struct iphdr *encap; 2049 2050 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 2051 /* 2052 * Check that: 2053 * a. packet is really sent to a multicast group 2054 * b. packet is not a NULL-REGISTER 2055 * c. packet is not truncated 2056 */ 2057 if (!ipv4_is_multicast(encap->daddr) || 2058 encap->tot_len == 0 || 2059 ntohs(encap->tot_len) + pimlen > skb->len) 2060 return 1; 2061 2062 read_lock(&mrt_lock); 2063 if (mrt->mroute_reg_vif_num >= 0) 2064 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev; 2065 read_unlock(&mrt_lock); 2066 2067 if (reg_dev == NULL) 2068 return 1; 2069 2070 skb->mac_header = skb->network_header; 2071 skb_pull(skb, (u8 *)encap - skb->data); 2072 skb_reset_network_header(skb); 2073 skb->protocol = htons(ETH_P_IP); 2074 skb->ip_summed = CHECKSUM_NONE; 2075 2076 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 2077 2078 netif_rx(skb); 2079 2080 return NET_RX_SUCCESS; 2081 } 2082 #endif 2083 2084 #ifdef CONFIG_IP_PIMSM_V1 2085 /* 2086 * Handle IGMP messages of PIMv1 2087 */ 2088 2089 int pim_rcv_v1(struct sk_buff *skb) 2090 { 2091 struct igmphdr *pim; 2092 struct net *net = dev_net(skb->dev); 2093 struct mr_table *mrt; 2094 2095 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2096 goto drop; 2097 2098 pim = igmp_hdr(skb); 2099 2100 mrt = ipmr_rt_fib_lookup(net, skb); 2101 if (IS_ERR(mrt)) 2102 goto drop; 2103 if (!mrt->mroute_do_pim || 2104 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2105 goto drop; 2106 2107 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2108 drop: 2109 kfree_skb(skb); 2110 } 2111 return 0; 2112 } 2113 #endif 2114 2115 #ifdef CONFIG_IP_PIMSM_V2 2116 static int pim_rcv(struct sk_buff *skb) 2117 { 2118 struct pimreghdr *pim; 2119 struct net *net = dev_net(skb->dev); 2120 struct mr_table *mrt; 2121 2122 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2123 goto drop; 2124 2125 pim = (struct pimreghdr *)skb_transport_header(skb); 2126 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) || 2127 (pim->flags & PIM_NULL_REGISTER) || 2128 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2129 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2130 goto drop; 2131 2132 mrt = ipmr_rt_fib_lookup(net, skb); 2133 if (IS_ERR(mrt)) 2134 goto drop; 2135 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2136 drop: 2137 kfree_skb(skb); 2138 } 2139 return 0; 2140 } 2141 #endif 2142 2143 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2144 struct mfc_cache *c, struct rtmsg *rtm) 2145 { 2146 int ct; 2147 struct rtnexthop *nhp; 2148 struct nlattr *mp_attr; 2149 struct rta_mfc_stats mfcs; 2150 2151 /* If cache is unresolved, don't try to parse IIF and OIF */ 2152 if (c->mfc_parent >= MAXVIFS) 2153 return -ENOENT; 2154 2155 if (VIF_EXISTS(mrt, c->mfc_parent) && 2156 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0) 2157 return -EMSGSIZE; 2158 2159 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH))) 2160 return -EMSGSIZE; 2161 2162 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { 2163 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) { 2164 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) { 2165 nla_nest_cancel(skb, mp_attr); 2166 return -EMSGSIZE; 2167 } 2168 2169 nhp->rtnh_flags = 0; 2170 nhp->rtnh_hops = c->mfc_un.res.ttls[ct]; 2171 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex; 2172 nhp->rtnh_len = sizeof(*nhp); 2173 } 2174 } 2175 2176 nla_nest_end(skb, mp_attr); 2177 2178 mfcs.mfcs_packets = c->mfc_un.res.pkt; 2179 mfcs.mfcs_bytes = c->mfc_un.res.bytes; 2180 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if; 2181 if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0) 2182 return -EMSGSIZE; 2183 2184 rtm->rtm_type = RTN_MULTICAST; 2185 return 1; 2186 } 2187 2188 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2189 __be32 saddr, __be32 daddr, 2190 struct rtmsg *rtm, int nowait) 2191 { 2192 struct mfc_cache *cache; 2193 struct mr_table *mrt; 2194 int err; 2195 2196 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2197 if (mrt == NULL) 2198 return -ENOENT; 2199 2200 rcu_read_lock(); 2201 cache = ipmr_cache_find(mrt, saddr, daddr); 2202 if (cache == NULL && skb->dev) { 2203 int vif = ipmr_find_vif(mrt, skb->dev); 2204 2205 if (vif >= 0) 2206 cache = ipmr_cache_find_any(mrt, daddr, vif); 2207 } 2208 if (cache == NULL) { 2209 struct sk_buff *skb2; 2210 struct iphdr *iph; 2211 struct net_device *dev; 2212 int vif = -1; 2213 2214 if (nowait) { 2215 rcu_read_unlock(); 2216 return -EAGAIN; 2217 } 2218 2219 dev = skb->dev; 2220 read_lock(&mrt_lock); 2221 if (dev) 2222 vif = ipmr_find_vif(mrt, dev); 2223 if (vif < 0) { 2224 read_unlock(&mrt_lock); 2225 rcu_read_unlock(); 2226 return -ENODEV; 2227 } 2228 skb2 = skb_clone(skb, GFP_ATOMIC); 2229 if (!skb2) { 2230 read_unlock(&mrt_lock); 2231 rcu_read_unlock(); 2232 return -ENOMEM; 2233 } 2234 2235 skb_push(skb2, sizeof(struct iphdr)); 2236 skb_reset_network_header(skb2); 2237 iph = ip_hdr(skb2); 2238 iph->ihl = sizeof(struct iphdr) >> 2; 2239 iph->saddr = saddr; 2240 iph->daddr = daddr; 2241 iph->version = 0; 2242 err = ipmr_cache_unresolved(mrt, vif, skb2); 2243 read_unlock(&mrt_lock); 2244 rcu_read_unlock(); 2245 return err; 2246 } 2247 2248 read_lock(&mrt_lock); 2249 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY)) 2250 cache->mfc_flags |= MFC_NOTIFY; 2251 err = __ipmr_fill_mroute(mrt, skb, cache, rtm); 2252 read_unlock(&mrt_lock); 2253 rcu_read_unlock(); 2254 return err; 2255 } 2256 2257 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2258 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2259 int flags) 2260 { 2261 struct nlmsghdr *nlh; 2262 struct rtmsg *rtm; 2263 int err; 2264 2265 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2266 if (nlh == NULL) 2267 return -EMSGSIZE; 2268 2269 rtm = nlmsg_data(nlh); 2270 rtm->rtm_family = RTNL_FAMILY_IPMR; 2271 rtm->rtm_dst_len = 32; 2272 rtm->rtm_src_len = 32; 2273 rtm->rtm_tos = 0; 2274 rtm->rtm_table = mrt->id; 2275 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2276 goto nla_put_failure; 2277 rtm->rtm_type = RTN_MULTICAST; 2278 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2279 if (c->mfc_flags & MFC_STATIC) 2280 rtm->rtm_protocol = RTPROT_STATIC; 2281 else 2282 rtm->rtm_protocol = RTPROT_MROUTED; 2283 rtm->rtm_flags = 0; 2284 2285 if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) || 2286 nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp)) 2287 goto nla_put_failure; 2288 err = __ipmr_fill_mroute(mrt, skb, c, rtm); 2289 /* do not break the dump if cache is unresolved */ 2290 if (err < 0 && err != -ENOENT) 2291 goto nla_put_failure; 2292 2293 return nlmsg_end(skb, nlh); 2294 2295 nla_put_failure: 2296 nlmsg_cancel(skb, nlh); 2297 return -EMSGSIZE; 2298 } 2299 2300 static size_t mroute_msgsize(bool unresolved, int maxvif) 2301 { 2302 size_t len = 2303 NLMSG_ALIGN(sizeof(struct rtmsg)) 2304 + nla_total_size(4) /* RTA_TABLE */ 2305 + nla_total_size(4) /* RTA_SRC */ 2306 + nla_total_size(4) /* RTA_DST */ 2307 ; 2308 2309 if (!unresolved) 2310 len = len 2311 + nla_total_size(4) /* RTA_IIF */ 2312 + nla_total_size(0) /* RTA_MULTIPATH */ 2313 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2314 /* RTA_MFC_STATS */ 2315 + nla_total_size(sizeof(struct rta_mfc_stats)) 2316 ; 2317 2318 return len; 2319 } 2320 2321 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2322 int cmd) 2323 { 2324 struct net *net = read_pnet(&mrt->net); 2325 struct sk_buff *skb; 2326 int err = -ENOBUFS; 2327 2328 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif), 2329 GFP_ATOMIC); 2330 if (skb == NULL) 2331 goto errout; 2332 2333 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2334 if (err < 0) 2335 goto errout; 2336 2337 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2338 return; 2339 2340 errout: 2341 kfree_skb(skb); 2342 if (err < 0) 2343 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2344 } 2345 2346 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2347 { 2348 struct net *net = sock_net(skb->sk); 2349 struct mr_table *mrt; 2350 struct mfc_cache *mfc; 2351 unsigned int t = 0, s_t; 2352 unsigned int h = 0, s_h; 2353 unsigned int e = 0, s_e; 2354 2355 s_t = cb->args[0]; 2356 s_h = cb->args[1]; 2357 s_e = cb->args[2]; 2358 2359 rcu_read_lock(); 2360 ipmr_for_each_table(mrt, net) { 2361 if (t < s_t) 2362 goto next_table; 2363 if (t > s_t) 2364 s_h = 0; 2365 for (h = s_h; h < MFC_LINES; h++) { 2366 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) { 2367 if (e < s_e) 2368 goto next_entry; 2369 if (ipmr_fill_mroute(mrt, skb, 2370 NETLINK_CB(cb->skb).portid, 2371 cb->nlh->nlmsg_seq, 2372 mfc, RTM_NEWROUTE, 2373 NLM_F_MULTI) < 0) 2374 goto done; 2375 next_entry: 2376 e++; 2377 } 2378 e = s_e = 0; 2379 } 2380 spin_lock_bh(&mfc_unres_lock); 2381 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) { 2382 if (e < s_e) 2383 goto next_entry2; 2384 if (ipmr_fill_mroute(mrt, skb, 2385 NETLINK_CB(cb->skb).portid, 2386 cb->nlh->nlmsg_seq, 2387 mfc, RTM_NEWROUTE, 2388 NLM_F_MULTI) < 0) { 2389 spin_unlock_bh(&mfc_unres_lock); 2390 goto done; 2391 } 2392 next_entry2: 2393 e++; 2394 } 2395 spin_unlock_bh(&mfc_unres_lock); 2396 e = s_e = 0; 2397 s_h = 0; 2398 next_table: 2399 t++; 2400 } 2401 done: 2402 rcu_read_unlock(); 2403 2404 cb->args[2] = e; 2405 cb->args[1] = h; 2406 cb->args[0] = t; 2407 2408 return skb->len; 2409 } 2410 2411 #ifdef CONFIG_PROC_FS 2412 /* 2413 * The /proc interfaces to multicast routing : 2414 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2415 */ 2416 struct ipmr_vif_iter { 2417 struct seq_net_private p; 2418 struct mr_table *mrt; 2419 int ct; 2420 }; 2421 2422 static struct vif_device *ipmr_vif_seq_idx(struct net *net, 2423 struct ipmr_vif_iter *iter, 2424 loff_t pos) 2425 { 2426 struct mr_table *mrt = iter->mrt; 2427 2428 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) { 2429 if (!VIF_EXISTS(mrt, iter->ct)) 2430 continue; 2431 if (pos-- == 0) 2432 return &mrt->vif_table[iter->ct]; 2433 } 2434 return NULL; 2435 } 2436 2437 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2438 __acquires(mrt_lock) 2439 { 2440 struct ipmr_vif_iter *iter = seq->private; 2441 struct net *net = seq_file_net(seq); 2442 struct mr_table *mrt; 2443 2444 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2445 if (mrt == NULL) 2446 return ERR_PTR(-ENOENT); 2447 2448 iter->mrt = mrt; 2449 2450 read_lock(&mrt_lock); 2451 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1) 2452 : SEQ_START_TOKEN; 2453 } 2454 2455 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2456 { 2457 struct ipmr_vif_iter *iter = seq->private; 2458 struct net *net = seq_file_net(seq); 2459 struct mr_table *mrt = iter->mrt; 2460 2461 ++*pos; 2462 if (v == SEQ_START_TOKEN) 2463 return ipmr_vif_seq_idx(net, iter, 0); 2464 2465 while (++iter->ct < mrt->maxvif) { 2466 if (!VIF_EXISTS(mrt, iter->ct)) 2467 continue; 2468 return &mrt->vif_table[iter->ct]; 2469 } 2470 return NULL; 2471 } 2472 2473 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2474 __releases(mrt_lock) 2475 { 2476 read_unlock(&mrt_lock); 2477 } 2478 2479 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2480 { 2481 struct ipmr_vif_iter *iter = seq->private; 2482 struct mr_table *mrt = iter->mrt; 2483 2484 if (v == SEQ_START_TOKEN) { 2485 seq_puts(seq, 2486 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2487 } else { 2488 const struct vif_device *vif = v; 2489 const char *name = vif->dev ? vif->dev->name : "none"; 2490 2491 seq_printf(seq, 2492 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2493 vif - mrt->vif_table, 2494 name, vif->bytes_in, vif->pkt_in, 2495 vif->bytes_out, vif->pkt_out, 2496 vif->flags, vif->local, vif->remote); 2497 } 2498 return 0; 2499 } 2500 2501 static const struct seq_operations ipmr_vif_seq_ops = { 2502 .start = ipmr_vif_seq_start, 2503 .next = ipmr_vif_seq_next, 2504 .stop = ipmr_vif_seq_stop, 2505 .show = ipmr_vif_seq_show, 2506 }; 2507 2508 static int ipmr_vif_open(struct inode *inode, struct file *file) 2509 { 2510 return seq_open_net(inode, file, &ipmr_vif_seq_ops, 2511 sizeof(struct ipmr_vif_iter)); 2512 } 2513 2514 static const struct file_operations ipmr_vif_fops = { 2515 .owner = THIS_MODULE, 2516 .open = ipmr_vif_open, 2517 .read = seq_read, 2518 .llseek = seq_lseek, 2519 .release = seq_release_net, 2520 }; 2521 2522 struct ipmr_mfc_iter { 2523 struct seq_net_private p; 2524 struct mr_table *mrt; 2525 struct list_head *cache; 2526 int ct; 2527 }; 2528 2529 2530 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net, 2531 struct ipmr_mfc_iter *it, loff_t pos) 2532 { 2533 struct mr_table *mrt = it->mrt; 2534 struct mfc_cache *mfc; 2535 2536 rcu_read_lock(); 2537 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) { 2538 it->cache = &mrt->mfc_cache_array[it->ct]; 2539 list_for_each_entry_rcu(mfc, it->cache, list) 2540 if (pos-- == 0) 2541 return mfc; 2542 } 2543 rcu_read_unlock(); 2544 2545 spin_lock_bh(&mfc_unres_lock); 2546 it->cache = &mrt->mfc_unres_queue; 2547 list_for_each_entry(mfc, it->cache, list) 2548 if (pos-- == 0) 2549 return mfc; 2550 spin_unlock_bh(&mfc_unres_lock); 2551 2552 it->cache = NULL; 2553 return NULL; 2554 } 2555 2556 2557 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2558 { 2559 struct ipmr_mfc_iter *it = seq->private; 2560 struct net *net = seq_file_net(seq); 2561 struct mr_table *mrt; 2562 2563 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2564 if (mrt == NULL) 2565 return ERR_PTR(-ENOENT); 2566 2567 it->mrt = mrt; 2568 it->cache = NULL; 2569 it->ct = 0; 2570 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1) 2571 : SEQ_START_TOKEN; 2572 } 2573 2574 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2575 { 2576 struct mfc_cache *mfc = v; 2577 struct ipmr_mfc_iter *it = seq->private; 2578 struct net *net = seq_file_net(seq); 2579 struct mr_table *mrt = it->mrt; 2580 2581 ++*pos; 2582 2583 if (v == SEQ_START_TOKEN) 2584 return ipmr_mfc_seq_idx(net, seq->private, 0); 2585 2586 if (mfc->list.next != it->cache) 2587 return list_entry(mfc->list.next, struct mfc_cache, list); 2588 2589 if (it->cache == &mrt->mfc_unres_queue) 2590 goto end_of_list; 2591 2592 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]); 2593 2594 while (++it->ct < MFC_LINES) { 2595 it->cache = &mrt->mfc_cache_array[it->ct]; 2596 if (list_empty(it->cache)) 2597 continue; 2598 return list_first_entry(it->cache, struct mfc_cache, list); 2599 } 2600 2601 /* exhausted cache_array, show unresolved */ 2602 rcu_read_unlock(); 2603 it->cache = &mrt->mfc_unres_queue; 2604 it->ct = 0; 2605 2606 spin_lock_bh(&mfc_unres_lock); 2607 if (!list_empty(it->cache)) 2608 return list_first_entry(it->cache, struct mfc_cache, list); 2609 2610 end_of_list: 2611 spin_unlock_bh(&mfc_unres_lock); 2612 it->cache = NULL; 2613 2614 return NULL; 2615 } 2616 2617 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v) 2618 { 2619 struct ipmr_mfc_iter *it = seq->private; 2620 struct mr_table *mrt = it->mrt; 2621 2622 if (it->cache == &mrt->mfc_unres_queue) 2623 spin_unlock_bh(&mfc_unres_lock); 2624 else if (it->cache == &mrt->mfc_cache_array[it->ct]) 2625 rcu_read_unlock(); 2626 } 2627 2628 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2629 { 2630 int n; 2631 2632 if (v == SEQ_START_TOKEN) { 2633 seq_puts(seq, 2634 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2635 } else { 2636 const struct mfc_cache *mfc = v; 2637 const struct ipmr_mfc_iter *it = seq->private; 2638 const struct mr_table *mrt = it->mrt; 2639 2640 seq_printf(seq, "%08X %08X %-3hd", 2641 (__force u32) mfc->mfc_mcastgrp, 2642 (__force u32) mfc->mfc_origin, 2643 mfc->mfc_parent); 2644 2645 if (it->cache != &mrt->mfc_unres_queue) { 2646 seq_printf(seq, " %8lu %8lu %8lu", 2647 mfc->mfc_un.res.pkt, 2648 mfc->mfc_un.res.bytes, 2649 mfc->mfc_un.res.wrong_if); 2650 for (n = mfc->mfc_un.res.minvif; 2651 n < mfc->mfc_un.res.maxvif; n++) { 2652 if (VIF_EXISTS(mrt, n) && 2653 mfc->mfc_un.res.ttls[n] < 255) 2654 seq_printf(seq, 2655 " %2d:%-3d", 2656 n, mfc->mfc_un.res.ttls[n]); 2657 } 2658 } else { 2659 /* unresolved mfc_caches don't contain 2660 * pkt, bytes and wrong_if values 2661 */ 2662 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 2663 } 2664 seq_putc(seq, '\n'); 2665 } 2666 return 0; 2667 } 2668 2669 static const struct seq_operations ipmr_mfc_seq_ops = { 2670 .start = ipmr_mfc_seq_start, 2671 .next = ipmr_mfc_seq_next, 2672 .stop = ipmr_mfc_seq_stop, 2673 .show = ipmr_mfc_seq_show, 2674 }; 2675 2676 static int ipmr_mfc_open(struct inode *inode, struct file *file) 2677 { 2678 return seq_open_net(inode, file, &ipmr_mfc_seq_ops, 2679 sizeof(struct ipmr_mfc_iter)); 2680 } 2681 2682 static const struct file_operations ipmr_mfc_fops = { 2683 .owner = THIS_MODULE, 2684 .open = ipmr_mfc_open, 2685 .read = seq_read, 2686 .llseek = seq_lseek, 2687 .release = seq_release_net, 2688 }; 2689 #endif 2690 2691 #ifdef CONFIG_IP_PIMSM_V2 2692 static const struct net_protocol pim_protocol = { 2693 .handler = pim_rcv, 2694 .netns_ok = 1, 2695 }; 2696 #endif 2697 2698 2699 /* 2700 * Setup for IP multicast routing 2701 */ 2702 static int __net_init ipmr_net_init(struct net *net) 2703 { 2704 int err; 2705 2706 err = ipmr_rules_init(net); 2707 if (err < 0) 2708 goto fail; 2709 2710 #ifdef CONFIG_PROC_FS 2711 err = -ENOMEM; 2712 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops)) 2713 goto proc_vif_fail; 2714 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops)) 2715 goto proc_cache_fail; 2716 #endif 2717 return 0; 2718 2719 #ifdef CONFIG_PROC_FS 2720 proc_cache_fail: 2721 remove_proc_entry("ip_mr_vif", net->proc_net); 2722 proc_vif_fail: 2723 ipmr_rules_exit(net); 2724 #endif 2725 fail: 2726 return err; 2727 } 2728 2729 static void __net_exit ipmr_net_exit(struct net *net) 2730 { 2731 #ifdef CONFIG_PROC_FS 2732 remove_proc_entry("ip_mr_cache", net->proc_net); 2733 remove_proc_entry("ip_mr_vif", net->proc_net); 2734 #endif 2735 ipmr_rules_exit(net); 2736 } 2737 2738 static struct pernet_operations ipmr_net_ops = { 2739 .init = ipmr_net_init, 2740 .exit = ipmr_net_exit, 2741 }; 2742 2743 int __init ip_mr_init(void) 2744 { 2745 int err; 2746 2747 mrt_cachep = kmem_cache_create("ip_mrt_cache", 2748 sizeof(struct mfc_cache), 2749 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 2750 NULL); 2751 if (!mrt_cachep) 2752 return -ENOMEM; 2753 2754 err = register_pernet_subsys(&ipmr_net_ops); 2755 if (err) 2756 goto reg_pernet_fail; 2757 2758 err = register_netdevice_notifier(&ip_mr_notifier); 2759 if (err) 2760 goto reg_notif_fail; 2761 #ifdef CONFIG_IP_PIMSM_V2 2762 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 2763 pr_err("%s: can't add PIM protocol\n", __func__); 2764 err = -EAGAIN; 2765 goto add_proto_fail; 2766 } 2767 #endif 2768 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 2769 NULL, ipmr_rtm_dumproute, NULL); 2770 return 0; 2771 2772 #ifdef CONFIG_IP_PIMSM_V2 2773 add_proto_fail: 2774 unregister_netdevice_notifier(&ip_mr_notifier); 2775 #endif 2776 reg_notif_fail: 2777 unregister_pernet_subsys(&ipmr_net_ops); 2778 reg_pernet_fail: 2779 kmem_cache_destroy(mrt_cachep); 2780 return err; 2781 } 2782