1 /* 2 * IP multicast routing support for mrouted 3.6/3.8 3 * 4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 5 * Linux Consultancy and Custom Driver Development 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 * 12 * Fixes: 13 * Michael Chastain : Incorrect size of copying. 14 * Alan Cox : Added the cache manager code 15 * Alan Cox : Fixed the clone/copy bug and device race. 16 * Mike McLagan : Routing by source 17 * Malcolm Beattie : Buffer handling fixes. 18 * Alexey Kuznetsov : Double buffer free and other fixes. 19 * SVR Anand : Fixed several multicast bugs and problems. 20 * Alexey Kuznetsov : Status, optimisations and more. 21 * Brad Parker : Better behaviour on mrouted upcall 22 * overflow. 23 * Carlos Picoto : PIMv1 Support 24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 25 * Relax this requirement to work with older peers. 26 * 27 */ 28 29 #include <linux/uaccess.h> 30 #include <linux/types.h> 31 #include <linux/capability.h> 32 #include <linux/errno.h> 33 #include <linux/timer.h> 34 #include <linux/mm.h> 35 #include <linux/kernel.h> 36 #include <linux/fcntl.h> 37 #include <linux/stat.h> 38 #include <linux/socket.h> 39 #include <linux/in.h> 40 #include <linux/inet.h> 41 #include <linux/netdevice.h> 42 #include <linux/inetdevice.h> 43 #include <linux/igmp.h> 44 #include <linux/proc_fs.h> 45 #include <linux/seq_file.h> 46 #include <linux/mroute.h> 47 #include <linux/init.h> 48 #include <linux/if_ether.h> 49 #include <linux/slab.h> 50 #include <net/net_namespace.h> 51 #include <net/ip.h> 52 #include <net/protocol.h> 53 #include <linux/skbuff.h> 54 #include <net/route.h> 55 #include <net/sock.h> 56 #include <net/icmp.h> 57 #include <net/udp.h> 58 #include <net/raw.h> 59 #include <linux/notifier.h> 60 #include <linux/if_arp.h> 61 #include <linux/netfilter_ipv4.h> 62 #include <linux/compat.h> 63 #include <linux/export.h> 64 #include <net/ip_tunnels.h> 65 #include <net/checksum.h> 66 #include <net/netlink.h> 67 #include <net/fib_rules.h> 68 #include <linux/netconf.h> 69 #include <net/nexthop.h> 70 71 struct ipmr_rule { 72 struct fib_rule common; 73 }; 74 75 struct ipmr_result { 76 struct mr_table *mrt; 77 }; 78 79 /* Big lock, protecting vif table, mrt cache and mroute socket state. 80 * Note that the changes are semaphored via rtnl_lock. 81 */ 82 83 static DEFINE_RWLOCK(mrt_lock); 84 85 /* Multicast router control variables */ 86 87 /* Special spinlock for queue of unresolved entries */ 88 static DEFINE_SPINLOCK(mfc_unres_lock); 89 90 /* We return to original Alan's scheme. Hash table of resolved 91 * entries is changed only in process context and protected 92 * with weak lock mrt_lock. Queue of unresolved entries is protected 93 * with strong spinlock mfc_unres_lock. 94 * 95 * In this case data path is free of exclusive locks at all. 96 */ 97 98 static struct kmem_cache *mrt_cachep __read_mostly; 99 100 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 101 static void ipmr_free_table(struct mr_table *mrt); 102 103 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 104 struct sk_buff *skb, struct mfc_cache *cache, 105 int local); 106 static int ipmr_cache_report(struct mr_table *mrt, 107 struct sk_buff *pkt, vifi_t vifi, int assert); 108 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 109 struct mfc_cache *c, struct rtmsg *rtm); 110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 111 int cmd); 112 static void mroute_clean_tables(struct mr_table *mrt, bool all); 113 static void ipmr_expire_process(unsigned long arg); 114 115 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 116 #define ipmr_for_each_table(mrt, net) \ 117 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list) 118 119 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 120 { 121 struct mr_table *mrt; 122 123 ipmr_for_each_table(mrt, net) { 124 if (mrt->id == id) 125 return mrt; 126 } 127 return NULL; 128 } 129 130 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 131 struct mr_table **mrt) 132 { 133 int err; 134 struct ipmr_result res; 135 struct fib_lookup_arg arg = { 136 .result = &res, 137 .flags = FIB_LOOKUP_NOREF, 138 }; 139 140 /* update flow if oif or iif point to device enslaved to l3mdev */ 141 l3mdev_update_flow(net, flowi4_to_flowi(flp4)); 142 143 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 144 flowi4_to_flowi(flp4), 0, &arg); 145 if (err < 0) 146 return err; 147 *mrt = res.mrt; 148 return 0; 149 } 150 151 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 152 int flags, struct fib_lookup_arg *arg) 153 { 154 struct ipmr_result *res = arg->result; 155 struct mr_table *mrt; 156 157 switch (rule->action) { 158 case FR_ACT_TO_TBL: 159 break; 160 case FR_ACT_UNREACHABLE: 161 return -ENETUNREACH; 162 case FR_ACT_PROHIBIT: 163 return -EACCES; 164 case FR_ACT_BLACKHOLE: 165 default: 166 return -EINVAL; 167 } 168 169 arg->table = fib_rule_get_table(rule, arg); 170 171 mrt = ipmr_get_table(rule->fr_net, arg->table); 172 if (!mrt) 173 return -EAGAIN; 174 res->mrt = mrt; 175 return 0; 176 } 177 178 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 179 { 180 return 1; 181 } 182 183 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = { 184 FRA_GENERIC_POLICY, 185 }; 186 187 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 188 struct fib_rule_hdr *frh, struct nlattr **tb) 189 { 190 return 0; 191 } 192 193 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 194 struct nlattr **tb) 195 { 196 return 1; 197 } 198 199 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 200 struct fib_rule_hdr *frh) 201 { 202 frh->dst_len = 0; 203 frh->src_len = 0; 204 frh->tos = 0; 205 return 0; 206 } 207 208 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 209 .family = RTNL_FAMILY_IPMR, 210 .rule_size = sizeof(struct ipmr_rule), 211 .addr_size = sizeof(u32), 212 .action = ipmr_rule_action, 213 .match = ipmr_rule_match, 214 .configure = ipmr_rule_configure, 215 .compare = ipmr_rule_compare, 216 .fill = ipmr_rule_fill, 217 .nlgroup = RTNLGRP_IPV4_RULE, 218 .policy = ipmr_rule_policy, 219 .owner = THIS_MODULE, 220 }; 221 222 static int __net_init ipmr_rules_init(struct net *net) 223 { 224 struct fib_rules_ops *ops; 225 struct mr_table *mrt; 226 int err; 227 228 ops = fib_rules_register(&ipmr_rules_ops_template, net); 229 if (IS_ERR(ops)) 230 return PTR_ERR(ops); 231 232 INIT_LIST_HEAD(&net->ipv4.mr_tables); 233 234 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 235 if (IS_ERR(mrt)) { 236 err = PTR_ERR(mrt); 237 goto err1; 238 } 239 240 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 241 if (err < 0) 242 goto err2; 243 244 net->ipv4.mr_rules_ops = ops; 245 return 0; 246 247 err2: 248 ipmr_free_table(mrt); 249 err1: 250 fib_rules_unregister(ops); 251 return err; 252 } 253 254 static void __net_exit ipmr_rules_exit(struct net *net) 255 { 256 struct mr_table *mrt, *next; 257 258 rtnl_lock(); 259 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 260 list_del(&mrt->list); 261 ipmr_free_table(mrt); 262 } 263 fib_rules_unregister(net->ipv4.mr_rules_ops); 264 rtnl_unlock(); 265 } 266 #else 267 #define ipmr_for_each_table(mrt, net) \ 268 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 269 270 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 271 { 272 return net->ipv4.mrt; 273 } 274 275 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 276 struct mr_table **mrt) 277 { 278 *mrt = net->ipv4.mrt; 279 return 0; 280 } 281 282 static int __net_init ipmr_rules_init(struct net *net) 283 { 284 struct mr_table *mrt; 285 286 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 287 if (IS_ERR(mrt)) 288 return PTR_ERR(mrt); 289 net->ipv4.mrt = mrt; 290 return 0; 291 } 292 293 static void __net_exit ipmr_rules_exit(struct net *net) 294 { 295 rtnl_lock(); 296 ipmr_free_table(net->ipv4.mrt); 297 net->ipv4.mrt = NULL; 298 rtnl_unlock(); 299 } 300 #endif 301 302 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 303 { 304 struct mr_table *mrt; 305 unsigned int i; 306 307 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 308 if (id != RT_TABLE_DEFAULT && id >= 1000000000) 309 return ERR_PTR(-EINVAL); 310 311 mrt = ipmr_get_table(net, id); 312 if (mrt) 313 return mrt; 314 315 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL); 316 if (!mrt) 317 return ERR_PTR(-ENOMEM); 318 write_pnet(&mrt->net, net); 319 mrt->id = id; 320 321 /* Forwarding cache */ 322 for (i = 0; i < MFC_LINES; i++) 323 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]); 324 325 INIT_LIST_HEAD(&mrt->mfc_unres_queue); 326 327 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process, 328 (unsigned long)mrt); 329 330 mrt->mroute_reg_vif_num = -1; 331 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 332 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 333 #endif 334 return mrt; 335 } 336 337 static void ipmr_free_table(struct mr_table *mrt) 338 { 339 del_timer_sync(&mrt->ipmr_expire_timer); 340 mroute_clean_tables(mrt, true); 341 kfree(mrt); 342 } 343 344 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 345 346 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v) 347 { 348 struct net *net = dev_net(dev); 349 350 dev_close(dev); 351 352 dev = __dev_get_by_name(net, "tunl0"); 353 if (dev) { 354 const struct net_device_ops *ops = dev->netdev_ops; 355 struct ifreq ifr; 356 struct ip_tunnel_parm p; 357 358 memset(&p, 0, sizeof(p)); 359 p.iph.daddr = v->vifc_rmt_addr.s_addr; 360 p.iph.saddr = v->vifc_lcl_addr.s_addr; 361 p.iph.version = 4; 362 p.iph.ihl = 5; 363 p.iph.protocol = IPPROTO_IPIP; 364 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 365 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 366 367 if (ops->ndo_do_ioctl) { 368 mm_segment_t oldfs = get_fs(); 369 370 set_fs(KERNEL_DS); 371 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL); 372 set_fs(oldfs); 373 } 374 } 375 } 376 377 /* Initialize ipmr pimreg/tunnel in_device */ 378 static bool ipmr_init_vif_indev(const struct net_device *dev) 379 { 380 struct in_device *in_dev; 381 382 ASSERT_RTNL(); 383 384 in_dev = __in_dev_get_rtnl(dev); 385 if (!in_dev) 386 return false; 387 ipv4_devconf_setall(in_dev); 388 neigh_parms_data_state_setall(in_dev->arp_parms); 389 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 390 391 return true; 392 } 393 394 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 395 { 396 struct net_device *dev; 397 398 dev = __dev_get_by_name(net, "tunl0"); 399 400 if (dev) { 401 const struct net_device_ops *ops = dev->netdev_ops; 402 int err; 403 struct ifreq ifr; 404 struct ip_tunnel_parm p; 405 406 memset(&p, 0, sizeof(p)); 407 p.iph.daddr = v->vifc_rmt_addr.s_addr; 408 p.iph.saddr = v->vifc_lcl_addr.s_addr; 409 p.iph.version = 4; 410 p.iph.ihl = 5; 411 p.iph.protocol = IPPROTO_IPIP; 412 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 413 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 414 415 if (ops->ndo_do_ioctl) { 416 mm_segment_t oldfs = get_fs(); 417 418 set_fs(KERNEL_DS); 419 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL); 420 set_fs(oldfs); 421 } else { 422 err = -EOPNOTSUPP; 423 } 424 dev = NULL; 425 426 if (err == 0 && 427 (dev = __dev_get_by_name(net, p.name)) != NULL) { 428 dev->flags |= IFF_MULTICAST; 429 if (!ipmr_init_vif_indev(dev)) 430 goto failure; 431 if (dev_open(dev)) 432 goto failure; 433 dev_hold(dev); 434 } 435 } 436 return dev; 437 438 failure: 439 unregister_netdevice(dev); 440 return NULL; 441 } 442 443 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 444 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 445 { 446 struct net *net = dev_net(dev); 447 struct mr_table *mrt; 448 struct flowi4 fl4 = { 449 .flowi4_oif = dev->ifindex, 450 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 451 .flowi4_mark = skb->mark, 452 }; 453 int err; 454 455 err = ipmr_fib_lookup(net, &fl4, &mrt); 456 if (err < 0) { 457 kfree_skb(skb); 458 return err; 459 } 460 461 read_lock(&mrt_lock); 462 dev->stats.tx_bytes += skb->len; 463 dev->stats.tx_packets++; 464 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT); 465 read_unlock(&mrt_lock); 466 kfree_skb(skb); 467 return NETDEV_TX_OK; 468 } 469 470 static int reg_vif_get_iflink(const struct net_device *dev) 471 { 472 return 0; 473 } 474 475 static const struct net_device_ops reg_vif_netdev_ops = { 476 .ndo_start_xmit = reg_vif_xmit, 477 .ndo_get_iflink = reg_vif_get_iflink, 478 }; 479 480 static void reg_vif_setup(struct net_device *dev) 481 { 482 dev->type = ARPHRD_PIMREG; 483 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 484 dev->flags = IFF_NOARP; 485 dev->netdev_ops = ®_vif_netdev_ops; 486 dev->destructor = free_netdev; 487 dev->features |= NETIF_F_NETNS_LOCAL; 488 } 489 490 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 491 { 492 struct net_device *dev; 493 char name[IFNAMSIZ]; 494 495 if (mrt->id == RT_TABLE_DEFAULT) 496 sprintf(name, "pimreg"); 497 else 498 sprintf(name, "pimreg%u", mrt->id); 499 500 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 501 502 if (!dev) 503 return NULL; 504 505 dev_net_set(dev, net); 506 507 if (register_netdevice(dev)) { 508 free_netdev(dev); 509 return NULL; 510 } 511 512 if (!ipmr_init_vif_indev(dev)) 513 goto failure; 514 if (dev_open(dev)) 515 goto failure; 516 517 dev_hold(dev); 518 519 return dev; 520 521 failure: 522 unregister_netdevice(dev); 523 return NULL; 524 } 525 526 /* called with rcu_read_lock() */ 527 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 528 unsigned int pimlen) 529 { 530 struct net_device *reg_dev = NULL; 531 struct iphdr *encap; 532 533 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 534 /* Check that: 535 * a. packet is really sent to a multicast group 536 * b. packet is not a NULL-REGISTER 537 * c. packet is not truncated 538 */ 539 if (!ipv4_is_multicast(encap->daddr) || 540 encap->tot_len == 0 || 541 ntohs(encap->tot_len) + pimlen > skb->len) 542 return 1; 543 544 read_lock(&mrt_lock); 545 if (mrt->mroute_reg_vif_num >= 0) 546 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev; 547 read_unlock(&mrt_lock); 548 549 if (!reg_dev) 550 return 1; 551 552 skb->mac_header = skb->network_header; 553 skb_pull(skb, (u8 *)encap - skb->data); 554 skb_reset_network_header(skb); 555 skb->protocol = htons(ETH_P_IP); 556 skb->ip_summed = CHECKSUM_NONE; 557 558 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 559 560 netif_rx(skb); 561 562 return NET_RX_SUCCESS; 563 } 564 #else 565 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 566 { 567 return NULL; 568 } 569 #endif 570 571 /** 572 * vif_delete - Delete a VIF entry 573 * @notify: Set to 1, if the caller is a notifier_call 574 */ 575 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 576 struct list_head *head) 577 { 578 struct vif_device *v; 579 struct net_device *dev; 580 struct in_device *in_dev; 581 582 if (vifi < 0 || vifi >= mrt->maxvif) 583 return -EADDRNOTAVAIL; 584 585 v = &mrt->vif_table[vifi]; 586 587 write_lock_bh(&mrt_lock); 588 dev = v->dev; 589 v->dev = NULL; 590 591 if (!dev) { 592 write_unlock_bh(&mrt_lock); 593 return -EADDRNOTAVAIL; 594 } 595 596 if (vifi == mrt->mroute_reg_vif_num) 597 mrt->mroute_reg_vif_num = -1; 598 599 if (vifi + 1 == mrt->maxvif) { 600 int tmp; 601 602 for (tmp = vifi - 1; tmp >= 0; tmp--) { 603 if (VIF_EXISTS(mrt, tmp)) 604 break; 605 } 606 mrt->maxvif = tmp+1; 607 } 608 609 write_unlock_bh(&mrt_lock); 610 611 dev_set_allmulti(dev, -1); 612 613 in_dev = __in_dev_get_rtnl(dev); 614 if (in_dev) { 615 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 616 inet_netconf_notify_devconf(dev_net(dev), 617 NETCONFA_MC_FORWARDING, 618 dev->ifindex, &in_dev->cnf); 619 ip_rt_multicast_event(in_dev); 620 } 621 622 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 623 unregister_netdevice_queue(dev, head); 624 625 dev_put(dev); 626 return 0; 627 } 628 629 static void ipmr_cache_free_rcu(struct rcu_head *head) 630 { 631 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu); 632 633 kmem_cache_free(mrt_cachep, c); 634 } 635 636 static inline void ipmr_cache_free(struct mfc_cache *c) 637 { 638 call_rcu(&c->rcu, ipmr_cache_free_rcu); 639 } 640 641 /* Destroy an unresolved cache entry, killing queued skbs 642 * and reporting error to netlink readers. 643 */ 644 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 645 { 646 struct net *net = read_pnet(&mrt->net); 647 struct sk_buff *skb; 648 struct nlmsgerr *e; 649 650 atomic_dec(&mrt->cache_resolve_queue_len); 651 652 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) { 653 if (ip_hdr(skb)->version == 0) { 654 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 655 nlh->nlmsg_type = NLMSG_ERROR; 656 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 657 skb_trim(skb, nlh->nlmsg_len); 658 e = nlmsg_data(nlh); 659 e->error = -ETIMEDOUT; 660 memset(&e->msg, 0, sizeof(e->msg)); 661 662 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 663 } else { 664 kfree_skb(skb); 665 } 666 } 667 668 ipmr_cache_free(c); 669 } 670 671 /* Timer process for the unresolved queue. */ 672 static void ipmr_expire_process(unsigned long arg) 673 { 674 struct mr_table *mrt = (struct mr_table *)arg; 675 unsigned long now; 676 unsigned long expires; 677 struct mfc_cache *c, *next; 678 679 if (!spin_trylock(&mfc_unres_lock)) { 680 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 681 return; 682 } 683 684 if (list_empty(&mrt->mfc_unres_queue)) 685 goto out; 686 687 now = jiffies; 688 expires = 10*HZ; 689 690 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 691 if (time_after(c->mfc_un.unres.expires, now)) { 692 unsigned long interval = c->mfc_un.unres.expires - now; 693 if (interval < expires) 694 expires = interval; 695 continue; 696 } 697 698 list_del(&c->list); 699 mroute_netlink_event(mrt, c, RTM_DELROUTE); 700 ipmr_destroy_unres(mrt, c); 701 } 702 703 if (!list_empty(&mrt->mfc_unres_queue)) 704 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 705 706 out: 707 spin_unlock(&mfc_unres_lock); 708 } 709 710 /* Fill oifs list. It is called under write locked mrt_lock. */ 711 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache, 712 unsigned char *ttls) 713 { 714 int vifi; 715 716 cache->mfc_un.res.minvif = MAXVIFS; 717 cache->mfc_un.res.maxvif = 0; 718 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 719 720 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 721 if (VIF_EXISTS(mrt, vifi) && 722 ttls[vifi] && ttls[vifi] < 255) { 723 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 724 if (cache->mfc_un.res.minvif > vifi) 725 cache->mfc_un.res.minvif = vifi; 726 if (cache->mfc_un.res.maxvif <= vifi) 727 cache->mfc_un.res.maxvif = vifi + 1; 728 } 729 } 730 cache->mfc_un.res.lastuse = jiffies; 731 } 732 733 static int vif_add(struct net *net, struct mr_table *mrt, 734 struct vifctl *vifc, int mrtsock) 735 { 736 int vifi = vifc->vifc_vifi; 737 struct vif_device *v = &mrt->vif_table[vifi]; 738 struct net_device *dev; 739 struct in_device *in_dev; 740 int err; 741 742 /* Is vif busy ? */ 743 if (VIF_EXISTS(mrt, vifi)) 744 return -EADDRINUSE; 745 746 switch (vifc->vifc_flags) { 747 case VIFF_REGISTER: 748 if (!ipmr_pimsm_enabled()) 749 return -EINVAL; 750 /* Special Purpose VIF in PIM 751 * All the packets will be sent to the daemon 752 */ 753 if (mrt->mroute_reg_vif_num >= 0) 754 return -EADDRINUSE; 755 dev = ipmr_reg_vif(net, mrt); 756 if (!dev) 757 return -ENOBUFS; 758 err = dev_set_allmulti(dev, 1); 759 if (err) { 760 unregister_netdevice(dev); 761 dev_put(dev); 762 return err; 763 } 764 break; 765 case VIFF_TUNNEL: 766 dev = ipmr_new_tunnel(net, vifc); 767 if (!dev) 768 return -ENOBUFS; 769 err = dev_set_allmulti(dev, 1); 770 if (err) { 771 ipmr_del_tunnel(dev, vifc); 772 dev_put(dev); 773 return err; 774 } 775 break; 776 case VIFF_USE_IFINDEX: 777 case 0: 778 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 779 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 780 if (dev && !__in_dev_get_rtnl(dev)) { 781 dev_put(dev); 782 return -EADDRNOTAVAIL; 783 } 784 } else { 785 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 786 } 787 if (!dev) 788 return -EADDRNOTAVAIL; 789 err = dev_set_allmulti(dev, 1); 790 if (err) { 791 dev_put(dev); 792 return err; 793 } 794 break; 795 default: 796 return -EINVAL; 797 } 798 799 in_dev = __in_dev_get_rtnl(dev); 800 if (!in_dev) { 801 dev_put(dev); 802 return -EADDRNOTAVAIL; 803 } 804 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 805 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex, 806 &in_dev->cnf); 807 ip_rt_multicast_event(in_dev); 808 809 /* Fill in the VIF structures */ 810 811 v->rate_limit = vifc->vifc_rate_limit; 812 v->local = vifc->vifc_lcl_addr.s_addr; 813 v->remote = vifc->vifc_rmt_addr.s_addr; 814 v->flags = vifc->vifc_flags; 815 if (!mrtsock) 816 v->flags |= VIFF_STATIC; 817 v->threshold = vifc->vifc_threshold; 818 v->bytes_in = 0; 819 v->bytes_out = 0; 820 v->pkt_in = 0; 821 v->pkt_out = 0; 822 v->link = dev->ifindex; 823 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER)) 824 v->link = dev_get_iflink(dev); 825 826 /* And finish update writing critical data */ 827 write_lock_bh(&mrt_lock); 828 v->dev = dev; 829 if (v->flags & VIFF_REGISTER) 830 mrt->mroute_reg_vif_num = vifi; 831 if (vifi+1 > mrt->maxvif) 832 mrt->maxvif = vifi+1; 833 write_unlock_bh(&mrt_lock); 834 return 0; 835 } 836 837 /* called with rcu_read_lock() */ 838 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 839 __be32 origin, 840 __be32 mcastgrp) 841 { 842 int line = MFC_HASH(mcastgrp, origin); 843 struct mfc_cache *c; 844 845 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) { 846 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp) 847 return c; 848 } 849 return NULL; 850 } 851 852 /* Look for a (*,*,oif) entry */ 853 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt, 854 int vifi) 855 { 856 int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY)); 857 struct mfc_cache *c; 858 859 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) 860 if (c->mfc_origin == htonl(INADDR_ANY) && 861 c->mfc_mcastgrp == htonl(INADDR_ANY) && 862 c->mfc_un.res.ttls[vifi] < 255) 863 return c; 864 865 return NULL; 866 } 867 868 /* Look for a (*,G) entry */ 869 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 870 __be32 mcastgrp, int vifi) 871 { 872 int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY)); 873 struct mfc_cache *c, *proxy; 874 875 if (mcastgrp == htonl(INADDR_ANY)) 876 goto skip; 877 878 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) 879 if (c->mfc_origin == htonl(INADDR_ANY) && 880 c->mfc_mcastgrp == mcastgrp) { 881 if (c->mfc_un.res.ttls[vifi] < 255) 882 return c; 883 884 /* It's ok if the vifi is part of the static tree */ 885 proxy = ipmr_cache_find_any_parent(mrt, 886 c->mfc_parent); 887 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255) 888 return c; 889 } 890 891 skip: 892 return ipmr_cache_find_any_parent(mrt, vifi); 893 } 894 895 /* Allocate a multicast cache entry */ 896 static struct mfc_cache *ipmr_cache_alloc(void) 897 { 898 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 899 900 if (c) { 901 c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; 902 c->mfc_un.res.minvif = MAXVIFS; 903 } 904 return c; 905 } 906 907 static struct mfc_cache *ipmr_cache_alloc_unres(void) 908 { 909 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 910 911 if (c) { 912 skb_queue_head_init(&c->mfc_un.unres.unresolved); 913 c->mfc_un.unres.expires = jiffies + 10*HZ; 914 } 915 return c; 916 } 917 918 /* A cache entry has gone into a resolved state from queued */ 919 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 920 struct mfc_cache *uc, struct mfc_cache *c) 921 { 922 struct sk_buff *skb; 923 struct nlmsgerr *e; 924 925 /* Play the pending entries through our router */ 926 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) { 927 if (ip_hdr(skb)->version == 0) { 928 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 929 930 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) { 931 nlh->nlmsg_len = skb_tail_pointer(skb) - 932 (u8 *)nlh; 933 } else { 934 nlh->nlmsg_type = NLMSG_ERROR; 935 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 936 skb_trim(skb, nlh->nlmsg_len); 937 e = nlmsg_data(nlh); 938 e->error = -EMSGSIZE; 939 memset(&e->msg, 0, sizeof(e->msg)); 940 } 941 942 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 943 } else { 944 ip_mr_forward(net, mrt, skb, c, 0); 945 } 946 } 947 } 948 949 /* Bounce a cache query up to mrouted. We could use netlink for this but mrouted 950 * expects the following bizarre scheme. 951 * 952 * Called under mrt_lock. 953 */ 954 static int ipmr_cache_report(struct mr_table *mrt, 955 struct sk_buff *pkt, vifi_t vifi, int assert) 956 { 957 const int ihl = ip_hdrlen(pkt); 958 struct sock *mroute_sk; 959 struct igmphdr *igmp; 960 struct igmpmsg *msg; 961 struct sk_buff *skb; 962 int ret; 963 964 if (assert == IGMPMSG_WHOLEPKT) 965 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 966 else 967 skb = alloc_skb(128, GFP_ATOMIC); 968 969 if (!skb) 970 return -ENOBUFS; 971 972 if (assert == IGMPMSG_WHOLEPKT) { 973 /* Ugly, but we have no choice with this interface. 974 * Duplicate old header, fix ihl, length etc. 975 * And all this only to mangle msg->im_msgtype and 976 * to set msg->im_mbz to "mbz" :-) 977 */ 978 skb_push(skb, sizeof(struct iphdr)); 979 skb_reset_network_header(skb); 980 skb_reset_transport_header(skb); 981 msg = (struct igmpmsg *)skb_network_header(skb); 982 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 983 msg->im_msgtype = IGMPMSG_WHOLEPKT; 984 msg->im_mbz = 0; 985 msg->im_vif = mrt->mroute_reg_vif_num; 986 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 987 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 988 sizeof(struct iphdr)); 989 } else { 990 /* Copy the IP header */ 991 skb_set_network_header(skb, skb->len); 992 skb_put(skb, ihl); 993 skb_copy_to_linear_data(skb, pkt->data, ihl); 994 /* Flag to the kernel this is a route add */ 995 ip_hdr(skb)->protocol = 0; 996 msg = (struct igmpmsg *)skb_network_header(skb); 997 msg->im_vif = vifi; 998 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 999 /* Add our header */ 1000 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr)); 1001 igmp->type = assert; 1002 msg->im_msgtype = assert; 1003 igmp->code = 0; 1004 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 1005 skb->transport_header = skb->network_header; 1006 } 1007 1008 rcu_read_lock(); 1009 mroute_sk = rcu_dereference(mrt->mroute_sk); 1010 if (!mroute_sk) { 1011 rcu_read_unlock(); 1012 kfree_skb(skb); 1013 return -EINVAL; 1014 } 1015 1016 /* Deliver to mrouted */ 1017 ret = sock_queue_rcv_skb(mroute_sk, skb); 1018 rcu_read_unlock(); 1019 if (ret < 0) { 1020 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1021 kfree_skb(skb); 1022 } 1023 1024 return ret; 1025 } 1026 1027 /* Queue a packet for resolution. It gets locked cache entry! */ 1028 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, 1029 struct sk_buff *skb) 1030 { 1031 bool found = false; 1032 int err; 1033 struct mfc_cache *c; 1034 const struct iphdr *iph = ip_hdr(skb); 1035 1036 spin_lock_bh(&mfc_unres_lock); 1037 list_for_each_entry(c, &mrt->mfc_unres_queue, list) { 1038 if (c->mfc_mcastgrp == iph->daddr && 1039 c->mfc_origin == iph->saddr) { 1040 found = true; 1041 break; 1042 } 1043 } 1044 1045 if (!found) { 1046 /* Create a new entry if allowable */ 1047 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 1048 (c = ipmr_cache_alloc_unres()) == NULL) { 1049 spin_unlock_bh(&mfc_unres_lock); 1050 1051 kfree_skb(skb); 1052 return -ENOBUFS; 1053 } 1054 1055 /* Fill in the new cache entry */ 1056 c->mfc_parent = -1; 1057 c->mfc_origin = iph->saddr; 1058 c->mfc_mcastgrp = iph->daddr; 1059 1060 /* Reflect first query at mrouted. */ 1061 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1062 if (err < 0) { 1063 /* If the report failed throw the cache entry 1064 out - Brad Parker 1065 */ 1066 spin_unlock_bh(&mfc_unres_lock); 1067 1068 ipmr_cache_free(c); 1069 kfree_skb(skb); 1070 return err; 1071 } 1072 1073 atomic_inc(&mrt->cache_resolve_queue_len); 1074 list_add(&c->list, &mrt->mfc_unres_queue); 1075 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1076 1077 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1078 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires); 1079 } 1080 1081 /* See if we can append the packet */ 1082 if (c->mfc_un.unres.unresolved.qlen > 3) { 1083 kfree_skb(skb); 1084 err = -ENOBUFS; 1085 } else { 1086 skb_queue_tail(&c->mfc_un.unres.unresolved, skb); 1087 err = 0; 1088 } 1089 1090 spin_unlock_bh(&mfc_unres_lock); 1091 return err; 1092 } 1093 1094 /* MFC cache manipulation by user space mroute daemon */ 1095 1096 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1097 { 1098 int line; 1099 struct mfc_cache *c, *next; 1100 1101 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1102 1103 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) { 1104 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1105 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr && 1106 (parent == -1 || parent == c->mfc_parent)) { 1107 list_del_rcu(&c->list); 1108 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1109 ipmr_cache_free(c); 1110 return 0; 1111 } 1112 } 1113 return -ENOENT; 1114 } 1115 1116 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1117 struct mfcctl *mfc, int mrtsock, int parent) 1118 { 1119 bool found = false; 1120 int line; 1121 struct mfc_cache *uc, *c; 1122 1123 if (mfc->mfcc_parent >= MAXVIFS) 1124 return -ENFILE; 1125 1126 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1127 1128 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) { 1129 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1130 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr && 1131 (parent == -1 || parent == c->mfc_parent)) { 1132 found = true; 1133 break; 1134 } 1135 } 1136 1137 if (found) { 1138 write_lock_bh(&mrt_lock); 1139 c->mfc_parent = mfc->mfcc_parent; 1140 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1141 if (!mrtsock) 1142 c->mfc_flags |= MFC_STATIC; 1143 write_unlock_bh(&mrt_lock); 1144 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1145 return 0; 1146 } 1147 1148 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1149 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1150 return -EINVAL; 1151 1152 c = ipmr_cache_alloc(); 1153 if (!c) 1154 return -ENOMEM; 1155 1156 c->mfc_origin = mfc->mfcc_origin.s_addr; 1157 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1158 c->mfc_parent = mfc->mfcc_parent; 1159 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1160 if (!mrtsock) 1161 c->mfc_flags |= MFC_STATIC; 1162 1163 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]); 1164 1165 /* Check to see if we resolved a queued list. If so we 1166 * need to send on the frames and tidy up. 1167 */ 1168 found = false; 1169 spin_lock_bh(&mfc_unres_lock); 1170 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) { 1171 if (uc->mfc_origin == c->mfc_origin && 1172 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1173 list_del(&uc->list); 1174 atomic_dec(&mrt->cache_resolve_queue_len); 1175 found = true; 1176 break; 1177 } 1178 } 1179 if (list_empty(&mrt->mfc_unres_queue)) 1180 del_timer(&mrt->ipmr_expire_timer); 1181 spin_unlock_bh(&mfc_unres_lock); 1182 1183 if (found) { 1184 ipmr_cache_resolve(net, mrt, uc, c); 1185 ipmr_cache_free(uc); 1186 } 1187 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1188 return 0; 1189 } 1190 1191 /* Close the multicast socket, and clear the vif tables etc */ 1192 static void mroute_clean_tables(struct mr_table *mrt, bool all) 1193 { 1194 int i; 1195 LIST_HEAD(list); 1196 struct mfc_cache *c, *next; 1197 1198 /* Shut down all active vif entries */ 1199 for (i = 0; i < mrt->maxvif; i++) { 1200 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC)) 1201 continue; 1202 vif_delete(mrt, i, 0, &list); 1203 } 1204 unregister_netdevice_many(&list); 1205 1206 /* Wipe the cache */ 1207 for (i = 0; i < MFC_LINES; i++) { 1208 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) { 1209 if (!all && (c->mfc_flags & MFC_STATIC)) 1210 continue; 1211 list_del_rcu(&c->list); 1212 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1213 ipmr_cache_free(c); 1214 } 1215 } 1216 1217 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1218 spin_lock_bh(&mfc_unres_lock); 1219 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 1220 list_del(&c->list); 1221 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1222 ipmr_destroy_unres(mrt, c); 1223 } 1224 spin_unlock_bh(&mfc_unres_lock); 1225 } 1226 } 1227 1228 /* called from ip_ra_control(), before an RCU grace period, 1229 * we dont need to call synchronize_rcu() here 1230 */ 1231 static void mrtsock_destruct(struct sock *sk) 1232 { 1233 struct net *net = sock_net(sk); 1234 struct mr_table *mrt; 1235 1236 rtnl_lock(); 1237 ipmr_for_each_table(mrt, net) { 1238 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1239 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1240 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, 1241 NETCONFA_IFINDEX_ALL, 1242 net->ipv4.devconf_all); 1243 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1244 mroute_clean_tables(mrt, false); 1245 } 1246 } 1247 rtnl_unlock(); 1248 } 1249 1250 /* Socket options and virtual interface manipulation. The whole 1251 * virtual interface system is a complete heap, but unfortunately 1252 * that's how BSD mrouted happens to think. Maybe one day with a proper 1253 * MOSPF/PIM router set up we can clean this up. 1254 */ 1255 1256 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, 1257 unsigned int optlen) 1258 { 1259 struct net *net = sock_net(sk); 1260 int val, ret = 0, parent = 0; 1261 struct mr_table *mrt; 1262 struct vifctl vif; 1263 struct mfcctl mfc; 1264 u32 uval; 1265 1266 /* There's one exception to the lock - MRT_DONE which needs to unlock */ 1267 rtnl_lock(); 1268 if (sk->sk_type != SOCK_RAW || 1269 inet_sk(sk)->inet_num != IPPROTO_IGMP) { 1270 ret = -EOPNOTSUPP; 1271 goto out_unlock; 1272 } 1273 1274 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1275 if (!mrt) { 1276 ret = -ENOENT; 1277 goto out_unlock; 1278 } 1279 if (optname != MRT_INIT) { 1280 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1281 !ns_capable(net->user_ns, CAP_NET_ADMIN)) { 1282 ret = -EACCES; 1283 goto out_unlock; 1284 } 1285 } 1286 1287 switch (optname) { 1288 case MRT_INIT: 1289 if (optlen != sizeof(int)) { 1290 ret = -EINVAL; 1291 break; 1292 } 1293 if (rtnl_dereference(mrt->mroute_sk)) { 1294 ret = -EADDRINUSE; 1295 break; 1296 } 1297 1298 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1299 if (ret == 0) { 1300 rcu_assign_pointer(mrt->mroute_sk, sk); 1301 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1302 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, 1303 NETCONFA_IFINDEX_ALL, 1304 net->ipv4.devconf_all); 1305 } 1306 break; 1307 case MRT_DONE: 1308 if (sk != rcu_access_pointer(mrt->mroute_sk)) { 1309 ret = -EACCES; 1310 } else { 1311 /* We need to unlock here because mrtsock_destruct takes 1312 * care of rtnl itself and we can't change that due to 1313 * the IP_ROUTER_ALERT setsockopt which runs without it. 1314 */ 1315 rtnl_unlock(); 1316 ret = ip_ra_control(sk, 0, NULL); 1317 goto out; 1318 } 1319 break; 1320 case MRT_ADD_VIF: 1321 case MRT_DEL_VIF: 1322 if (optlen != sizeof(vif)) { 1323 ret = -EINVAL; 1324 break; 1325 } 1326 if (copy_from_user(&vif, optval, sizeof(vif))) { 1327 ret = -EFAULT; 1328 break; 1329 } 1330 if (vif.vifc_vifi >= MAXVIFS) { 1331 ret = -ENFILE; 1332 break; 1333 } 1334 if (optname == MRT_ADD_VIF) { 1335 ret = vif_add(net, mrt, &vif, 1336 sk == rtnl_dereference(mrt->mroute_sk)); 1337 } else { 1338 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1339 } 1340 break; 1341 /* Manipulate the forwarding caches. These live 1342 * in a sort of kernel/user symbiosis. 1343 */ 1344 case MRT_ADD_MFC: 1345 case MRT_DEL_MFC: 1346 parent = -1; 1347 case MRT_ADD_MFC_PROXY: 1348 case MRT_DEL_MFC_PROXY: 1349 if (optlen != sizeof(mfc)) { 1350 ret = -EINVAL; 1351 break; 1352 } 1353 if (copy_from_user(&mfc, optval, sizeof(mfc))) { 1354 ret = -EFAULT; 1355 break; 1356 } 1357 if (parent == 0) 1358 parent = mfc.mfcc_parent; 1359 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1360 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1361 else 1362 ret = ipmr_mfc_add(net, mrt, &mfc, 1363 sk == rtnl_dereference(mrt->mroute_sk), 1364 parent); 1365 break; 1366 /* Control PIM assert. */ 1367 case MRT_ASSERT: 1368 if (optlen != sizeof(val)) { 1369 ret = -EINVAL; 1370 break; 1371 } 1372 if (get_user(val, (int __user *)optval)) { 1373 ret = -EFAULT; 1374 break; 1375 } 1376 mrt->mroute_do_assert = val; 1377 break; 1378 case MRT_PIM: 1379 if (!ipmr_pimsm_enabled()) { 1380 ret = -ENOPROTOOPT; 1381 break; 1382 } 1383 if (optlen != sizeof(val)) { 1384 ret = -EINVAL; 1385 break; 1386 } 1387 if (get_user(val, (int __user *)optval)) { 1388 ret = -EFAULT; 1389 break; 1390 } 1391 1392 val = !!val; 1393 if (val != mrt->mroute_do_pim) { 1394 mrt->mroute_do_pim = val; 1395 mrt->mroute_do_assert = val; 1396 } 1397 break; 1398 case MRT_TABLE: 1399 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) { 1400 ret = -ENOPROTOOPT; 1401 break; 1402 } 1403 if (optlen != sizeof(uval)) { 1404 ret = -EINVAL; 1405 break; 1406 } 1407 if (get_user(uval, (u32 __user *)optval)) { 1408 ret = -EFAULT; 1409 break; 1410 } 1411 1412 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1413 ret = -EBUSY; 1414 } else { 1415 mrt = ipmr_new_table(net, uval); 1416 if (IS_ERR(mrt)) 1417 ret = PTR_ERR(mrt); 1418 else 1419 raw_sk(sk)->ipmr_table = uval; 1420 } 1421 break; 1422 /* Spurious command, or MRT_VERSION which you cannot set. */ 1423 default: 1424 ret = -ENOPROTOOPT; 1425 } 1426 out_unlock: 1427 rtnl_unlock(); 1428 out: 1429 return ret; 1430 } 1431 1432 /* Getsock opt support for the multicast routing system. */ 1433 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1434 { 1435 int olr; 1436 int val; 1437 struct net *net = sock_net(sk); 1438 struct mr_table *mrt; 1439 1440 if (sk->sk_type != SOCK_RAW || 1441 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1442 return -EOPNOTSUPP; 1443 1444 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1445 if (!mrt) 1446 return -ENOENT; 1447 1448 switch (optname) { 1449 case MRT_VERSION: 1450 val = 0x0305; 1451 break; 1452 case MRT_PIM: 1453 if (!ipmr_pimsm_enabled()) 1454 return -ENOPROTOOPT; 1455 val = mrt->mroute_do_pim; 1456 break; 1457 case MRT_ASSERT: 1458 val = mrt->mroute_do_assert; 1459 break; 1460 default: 1461 return -ENOPROTOOPT; 1462 } 1463 1464 if (get_user(olr, optlen)) 1465 return -EFAULT; 1466 olr = min_t(unsigned int, olr, sizeof(int)); 1467 if (olr < 0) 1468 return -EINVAL; 1469 if (put_user(olr, optlen)) 1470 return -EFAULT; 1471 if (copy_to_user(optval, &val, olr)) 1472 return -EFAULT; 1473 return 0; 1474 } 1475 1476 /* The IP multicast ioctl support routines. */ 1477 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1478 { 1479 struct sioc_sg_req sr; 1480 struct sioc_vif_req vr; 1481 struct vif_device *vif; 1482 struct mfc_cache *c; 1483 struct net *net = sock_net(sk); 1484 struct mr_table *mrt; 1485 1486 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1487 if (!mrt) 1488 return -ENOENT; 1489 1490 switch (cmd) { 1491 case SIOCGETVIFCNT: 1492 if (copy_from_user(&vr, arg, sizeof(vr))) 1493 return -EFAULT; 1494 if (vr.vifi >= mrt->maxvif) 1495 return -EINVAL; 1496 read_lock(&mrt_lock); 1497 vif = &mrt->vif_table[vr.vifi]; 1498 if (VIF_EXISTS(mrt, vr.vifi)) { 1499 vr.icount = vif->pkt_in; 1500 vr.ocount = vif->pkt_out; 1501 vr.ibytes = vif->bytes_in; 1502 vr.obytes = vif->bytes_out; 1503 read_unlock(&mrt_lock); 1504 1505 if (copy_to_user(arg, &vr, sizeof(vr))) 1506 return -EFAULT; 1507 return 0; 1508 } 1509 read_unlock(&mrt_lock); 1510 return -EADDRNOTAVAIL; 1511 case SIOCGETSGCNT: 1512 if (copy_from_user(&sr, arg, sizeof(sr))) 1513 return -EFAULT; 1514 1515 rcu_read_lock(); 1516 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1517 if (c) { 1518 sr.pktcnt = c->mfc_un.res.pkt; 1519 sr.bytecnt = c->mfc_un.res.bytes; 1520 sr.wrong_if = c->mfc_un.res.wrong_if; 1521 rcu_read_unlock(); 1522 1523 if (copy_to_user(arg, &sr, sizeof(sr))) 1524 return -EFAULT; 1525 return 0; 1526 } 1527 rcu_read_unlock(); 1528 return -EADDRNOTAVAIL; 1529 default: 1530 return -ENOIOCTLCMD; 1531 } 1532 } 1533 1534 #ifdef CONFIG_COMPAT 1535 struct compat_sioc_sg_req { 1536 struct in_addr src; 1537 struct in_addr grp; 1538 compat_ulong_t pktcnt; 1539 compat_ulong_t bytecnt; 1540 compat_ulong_t wrong_if; 1541 }; 1542 1543 struct compat_sioc_vif_req { 1544 vifi_t vifi; /* Which iface */ 1545 compat_ulong_t icount; 1546 compat_ulong_t ocount; 1547 compat_ulong_t ibytes; 1548 compat_ulong_t obytes; 1549 }; 1550 1551 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1552 { 1553 struct compat_sioc_sg_req sr; 1554 struct compat_sioc_vif_req vr; 1555 struct vif_device *vif; 1556 struct mfc_cache *c; 1557 struct net *net = sock_net(sk); 1558 struct mr_table *mrt; 1559 1560 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1561 if (!mrt) 1562 return -ENOENT; 1563 1564 switch (cmd) { 1565 case SIOCGETVIFCNT: 1566 if (copy_from_user(&vr, arg, sizeof(vr))) 1567 return -EFAULT; 1568 if (vr.vifi >= mrt->maxvif) 1569 return -EINVAL; 1570 read_lock(&mrt_lock); 1571 vif = &mrt->vif_table[vr.vifi]; 1572 if (VIF_EXISTS(mrt, vr.vifi)) { 1573 vr.icount = vif->pkt_in; 1574 vr.ocount = vif->pkt_out; 1575 vr.ibytes = vif->bytes_in; 1576 vr.obytes = vif->bytes_out; 1577 read_unlock(&mrt_lock); 1578 1579 if (copy_to_user(arg, &vr, sizeof(vr))) 1580 return -EFAULT; 1581 return 0; 1582 } 1583 read_unlock(&mrt_lock); 1584 return -EADDRNOTAVAIL; 1585 case SIOCGETSGCNT: 1586 if (copy_from_user(&sr, arg, sizeof(sr))) 1587 return -EFAULT; 1588 1589 rcu_read_lock(); 1590 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1591 if (c) { 1592 sr.pktcnt = c->mfc_un.res.pkt; 1593 sr.bytecnt = c->mfc_un.res.bytes; 1594 sr.wrong_if = c->mfc_un.res.wrong_if; 1595 rcu_read_unlock(); 1596 1597 if (copy_to_user(arg, &sr, sizeof(sr))) 1598 return -EFAULT; 1599 return 0; 1600 } 1601 rcu_read_unlock(); 1602 return -EADDRNOTAVAIL; 1603 default: 1604 return -ENOIOCTLCMD; 1605 } 1606 } 1607 #endif 1608 1609 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1610 { 1611 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1612 struct net *net = dev_net(dev); 1613 struct mr_table *mrt; 1614 struct vif_device *v; 1615 int ct; 1616 1617 if (event != NETDEV_UNREGISTER) 1618 return NOTIFY_DONE; 1619 1620 ipmr_for_each_table(mrt, net) { 1621 v = &mrt->vif_table[0]; 1622 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1623 if (v->dev == dev) 1624 vif_delete(mrt, ct, 1, NULL); 1625 } 1626 } 1627 return NOTIFY_DONE; 1628 } 1629 1630 static struct notifier_block ip_mr_notifier = { 1631 .notifier_call = ipmr_device_event, 1632 }; 1633 1634 /* Encapsulate a packet by attaching a valid IPIP header to it. 1635 * This avoids tunnel drivers and other mess and gives us the speed so 1636 * important for multicast video. 1637 */ 1638 static void ip_encap(struct net *net, struct sk_buff *skb, 1639 __be32 saddr, __be32 daddr) 1640 { 1641 struct iphdr *iph; 1642 const struct iphdr *old_iph = ip_hdr(skb); 1643 1644 skb_push(skb, sizeof(struct iphdr)); 1645 skb->transport_header = skb->network_header; 1646 skb_reset_network_header(skb); 1647 iph = ip_hdr(skb); 1648 1649 iph->version = 4; 1650 iph->tos = old_iph->tos; 1651 iph->ttl = old_iph->ttl; 1652 iph->frag_off = 0; 1653 iph->daddr = daddr; 1654 iph->saddr = saddr; 1655 iph->protocol = IPPROTO_IPIP; 1656 iph->ihl = 5; 1657 iph->tot_len = htons(skb->len); 1658 ip_select_ident(net, skb, NULL); 1659 ip_send_check(iph); 1660 1661 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1662 nf_reset(skb); 1663 } 1664 1665 static inline int ipmr_forward_finish(struct net *net, struct sock *sk, 1666 struct sk_buff *skb) 1667 { 1668 struct ip_options *opt = &(IPCB(skb)->opt); 1669 1670 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS); 1671 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len); 1672 1673 if (unlikely(opt->optlen)) 1674 ip_forward_options(skb); 1675 1676 return dst_output(net, sk, skb); 1677 } 1678 1679 /* Processing handlers for ipmr_forward */ 1680 1681 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1682 struct sk_buff *skb, struct mfc_cache *c, int vifi) 1683 { 1684 const struct iphdr *iph = ip_hdr(skb); 1685 struct vif_device *vif = &mrt->vif_table[vifi]; 1686 struct net_device *dev; 1687 struct rtable *rt; 1688 struct flowi4 fl4; 1689 int encap = 0; 1690 1691 if (!vif->dev) 1692 goto out_free; 1693 1694 if (vif->flags & VIFF_REGISTER) { 1695 vif->pkt_out++; 1696 vif->bytes_out += skb->len; 1697 vif->dev->stats.tx_bytes += skb->len; 1698 vif->dev->stats.tx_packets++; 1699 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1700 goto out_free; 1701 } 1702 1703 if (vif->flags & VIFF_TUNNEL) { 1704 rt = ip_route_output_ports(net, &fl4, NULL, 1705 vif->remote, vif->local, 1706 0, 0, 1707 IPPROTO_IPIP, 1708 RT_TOS(iph->tos), vif->link); 1709 if (IS_ERR(rt)) 1710 goto out_free; 1711 encap = sizeof(struct iphdr); 1712 } else { 1713 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1714 0, 0, 1715 IPPROTO_IPIP, 1716 RT_TOS(iph->tos), vif->link); 1717 if (IS_ERR(rt)) 1718 goto out_free; 1719 } 1720 1721 dev = rt->dst.dev; 1722 1723 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1724 /* Do not fragment multicasts. Alas, IPv4 does not 1725 * allow to send ICMP, so that packets will disappear 1726 * to blackhole. 1727 */ 1728 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 1729 ip_rt_put(rt); 1730 goto out_free; 1731 } 1732 1733 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1734 1735 if (skb_cow(skb, encap)) { 1736 ip_rt_put(rt); 1737 goto out_free; 1738 } 1739 1740 vif->pkt_out++; 1741 vif->bytes_out += skb->len; 1742 1743 skb_dst_drop(skb); 1744 skb_dst_set(skb, &rt->dst); 1745 ip_decrease_ttl(ip_hdr(skb)); 1746 1747 /* FIXME: forward and output firewalls used to be called here. 1748 * What do we do with netfilter? -- RR 1749 */ 1750 if (vif->flags & VIFF_TUNNEL) { 1751 ip_encap(net, skb, vif->local, vif->remote); 1752 /* FIXME: extra output firewall step used to be here. --RR */ 1753 vif->dev->stats.tx_packets++; 1754 vif->dev->stats.tx_bytes += skb->len; 1755 } 1756 1757 IPCB(skb)->flags |= IPSKB_FORWARDED; 1758 1759 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1760 * not only before forwarding, but after forwarding on all output 1761 * interfaces. It is clear, if mrouter runs a multicasting 1762 * program, it should receive packets not depending to what interface 1763 * program is joined. 1764 * If we will not make it, the program will have to join on all 1765 * interfaces. On the other hand, multihoming host (or router, but 1766 * not mrouter) cannot join to more than one interface - it will 1767 * result in receiving multiple packets. 1768 */ 1769 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, 1770 net, NULL, skb, skb->dev, dev, 1771 ipmr_forward_finish); 1772 return; 1773 1774 out_free: 1775 kfree_skb(skb); 1776 } 1777 1778 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev) 1779 { 1780 int ct; 1781 1782 for (ct = mrt->maxvif-1; ct >= 0; ct--) { 1783 if (mrt->vif_table[ct].dev == dev) 1784 break; 1785 } 1786 return ct; 1787 } 1788 1789 /* "local" means that we should preserve one skb (for local delivery) */ 1790 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1791 struct sk_buff *skb, struct mfc_cache *cache, 1792 int local) 1793 { 1794 int psend = -1; 1795 int vif, ct; 1796 int true_vifi = ipmr_find_vif(mrt, skb->dev); 1797 1798 vif = cache->mfc_parent; 1799 cache->mfc_un.res.pkt++; 1800 cache->mfc_un.res.bytes += skb->len; 1801 cache->mfc_un.res.lastuse = jiffies; 1802 1803 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1804 struct mfc_cache *cache_proxy; 1805 1806 /* For an (*,G) entry, we only check that the incomming 1807 * interface is part of the static tree. 1808 */ 1809 cache_proxy = ipmr_cache_find_any_parent(mrt, vif); 1810 if (cache_proxy && 1811 cache_proxy->mfc_un.res.ttls[true_vifi] < 255) 1812 goto forward; 1813 } 1814 1815 /* Wrong interface: drop packet and (maybe) send PIM assert. */ 1816 if (mrt->vif_table[vif].dev != skb->dev) { 1817 struct net_device *mdev; 1818 1819 mdev = l3mdev_master_dev_rcu(mrt->vif_table[vif].dev); 1820 if (mdev == skb->dev) 1821 goto forward; 1822 1823 if (rt_is_output_route(skb_rtable(skb))) { 1824 /* It is our own packet, looped back. 1825 * Very complicated situation... 1826 * 1827 * The best workaround until routing daemons will be 1828 * fixed is not to redistribute packet, if it was 1829 * send through wrong interface. It means, that 1830 * multicast applications WILL NOT work for 1831 * (S,G), which have default multicast route pointing 1832 * to wrong oif. In any case, it is not a good 1833 * idea to use multicasting applications on router. 1834 */ 1835 goto dont_forward; 1836 } 1837 1838 cache->mfc_un.res.wrong_if++; 1839 1840 if (true_vifi >= 0 && mrt->mroute_do_assert && 1841 /* pimsm uses asserts, when switching from RPT to SPT, 1842 * so that we cannot check that packet arrived on an oif. 1843 * It is bad, but otherwise we would need to move pretty 1844 * large chunk of pimd to kernel. Ough... --ANK 1845 */ 1846 (mrt->mroute_do_pim || 1847 cache->mfc_un.res.ttls[true_vifi] < 255) && 1848 time_after(jiffies, 1849 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { 1850 cache->mfc_un.res.last_assert = jiffies; 1851 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 1852 } 1853 goto dont_forward; 1854 } 1855 1856 forward: 1857 mrt->vif_table[vif].pkt_in++; 1858 mrt->vif_table[vif].bytes_in += skb->len; 1859 1860 /* Forward the frame */ 1861 if (cache->mfc_origin == htonl(INADDR_ANY) && 1862 cache->mfc_mcastgrp == htonl(INADDR_ANY)) { 1863 if (true_vifi >= 0 && 1864 true_vifi != cache->mfc_parent && 1865 ip_hdr(skb)->ttl > 1866 cache->mfc_un.res.ttls[cache->mfc_parent]) { 1867 /* It's an (*,*) entry and the packet is not coming from 1868 * the upstream: forward the packet to the upstream 1869 * only. 1870 */ 1871 psend = cache->mfc_parent; 1872 goto last_forward; 1873 } 1874 goto dont_forward; 1875 } 1876 for (ct = cache->mfc_un.res.maxvif - 1; 1877 ct >= cache->mfc_un.res.minvif; ct--) { 1878 /* For (*,G) entry, don't forward to the incoming interface */ 1879 if ((cache->mfc_origin != htonl(INADDR_ANY) || 1880 ct != true_vifi) && 1881 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) { 1882 if (psend != -1) { 1883 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1884 1885 if (skb2) 1886 ipmr_queue_xmit(net, mrt, skb2, cache, 1887 psend); 1888 } 1889 psend = ct; 1890 } 1891 } 1892 last_forward: 1893 if (psend != -1) { 1894 if (local) { 1895 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1896 1897 if (skb2) 1898 ipmr_queue_xmit(net, mrt, skb2, cache, psend); 1899 } else { 1900 ipmr_queue_xmit(net, mrt, skb, cache, psend); 1901 return; 1902 } 1903 } 1904 1905 dont_forward: 1906 if (!local) 1907 kfree_skb(skb); 1908 } 1909 1910 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 1911 { 1912 struct rtable *rt = skb_rtable(skb); 1913 struct iphdr *iph = ip_hdr(skb); 1914 struct flowi4 fl4 = { 1915 .daddr = iph->daddr, 1916 .saddr = iph->saddr, 1917 .flowi4_tos = RT_TOS(iph->tos), 1918 .flowi4_oif = (rt_is_output_route(rt) ? 1919 skb->dev->ifindex : 0), 1920 .flowi4_iif = (rt_is_output_route(rt) ? 1921 LOOPBACK_IFINDEX : 1922 skb->dev->ifindex), 1923 .flowi4_mark = skb->mark, 1924 }; 1925 struct mr_table *mrt; 1926 int err; 1927 1928 err = ipmr_fib_lookup(net, &fl4, &mrt); 1929 if (err) 1930 return ERR_PTR(err); 1931 return mrt; 1932 } 1933 1934 /* Multicast packets for forwarding arrive here 1935 * Called with rcu_read_lock(); 1936 */ 1937 int ip_mr_input(struct sk_buff *skb) 1938 { 1939 struct mfc_cache *cache; 1940 struct net *net = dev_net(skb->dev); 1941 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 1942 struct mr_table *mrt; 1943 1944 /* Packet is looped back after forward, it should not be 1945 * forwarded second time, but still can be delivered locally. 1946 */ 1947 if (IPCB(skb)->flags & IPSKB_FORWARDED) 1948 goto dont_forward; 1949 1950 mrt = ipmr_rt_fib_lookup(net, skb); 1951 if (IS_ERR(mrt)) { 1952 kfree_skb(skb); 1953 return PTR_ERR(mrt); 1954 } 1955 if (!local) { 1956 if (IPCB(skb)->opt.router_alert) { 1957 if (ip_call_ra_chain(skb)) 1958 return 0; 1959 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 1960 /* IGMPv1 (and broken IGMPv2 implementations sort of 1961 * Cisco IOS <= 11.2(8)) do not put router alert 1962 * option to IGMP packets destined to routable 1963 * groups. It is very bad, because it means 1964 * that we can forward NO IGMP messages. 1965 */ 1966 struct sock *mroute_sk; 1967 1968 mroute_sk = rcu_dereference(mrt->mroute_sk); 1969 if (mroute_sk) { 1970 nf_reset(skb); 1971 raw_rcv(mroute_sk, skb); 1972 return 0; 1973 } 1974 } 1975 } 1976 1977 /* already under rcu_read_lock() */ 1978 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 1979 if (!cache) { 1980 int vif = ipmr_find_vif(mrt, skb->dev); 1981 1982 if (vif >= 0) 1983 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 1984 vif); 1985 } 1986 1987 /* No usable cache entry */ 1988 if (!cache) { 1989 int vif; 1990 1991 if (local) { 1992 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1993 ip_local_deliver(skb); 1994 if (!skb2) 1995 return -ENOBUFS; 1996 skb = skb2; 1997 } 1998 1999 read_lock(&mrt_lock); 2000 vif = ipmr_find_vif(mrt, skb->dev); 2001 if (vif >= 0) { 2002 int err2 = ipmr_cache_unresolved(mrt, vif, skb); 2003 read_unlock(&mrt_lock); 2004 2005 return err2; 2006 } 2007 read_unlock(&mrt_lock); 2008 kfree_skb(skb); 2009 return -ENODEV; 2010 } 2011 2012 read_lock(&mrt_lock); 2013 ip_mr_forward(net, mrt, skb, cache, local); 2014 read_unlock(&mrt_lock); 2015 2016 if (local) 2017 return ip_local_deliver(skb); 2018 2019 return 0; 2020 2021 dont_forward: 2022 if (local) 2023 return ip_local_deliver(skb); 2024 kfree_skb(skb); 2025 return 0; 2026 } 2027 2028 #ifdef CONFIG_IP_PIMSM_V1 2029 /* Handle IGMP messages of PIMv1 */ 2030 int pim_rcv_v1(struct sk_buff *skb) 2031 { 2032 struct igmphdr *pim; 2033 struct net *net = dev_net(skb->dev); 2034 struct mr_table *mrt; 2035 2036 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2037 goto drop; 2038 2039 pim = igmp_hdr(skb); 2040 2041 mrt = ipmr_rt_fib_lookup(net, skb); 2042 if (IS_ERR(mrt)) 2043 goto drop; 2044 if (!mrt->mroute_do_pim || 2045 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2046 goto drop; 2047 2048 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2049 drop: 2050 kfree_skb(skb); 2051 } 2052 return 0; 2053 } 2054 #endif 2055 2056 #ifdef CONFIG_IP_PIMSM_V2 2057 static int pim_rcv(struct sk_buff *skb) 2058 { 2059 struct pimreghdr *pim; 2060 struct net *net = dev_net(skb->dev); 2061 struct mr_table *mrt; 2062 2063 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2064 goto drop; 2065 2066 pim = (struct pimreghdr *)skb_transport_header(skb); 2067 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) || 2068 (pim->flags & PIM_NULL_REGISTER) || 2069 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2070 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2071 goto drop; 2072 2073 mrt = ipmr_rt_fib_lookup(net, skb); 2074 if (IS_ERR(mrt)) 2075 goto drop; 2076 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2077 drop: 2078 kfree_skb(skb); 2079 } 2080 return 0; 2081 } 2082 #endif 2083 2084 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2085 struct mfc_cache *c, struct rtmsg *rtm) 2086 { 2087 struct rta_mfc_stats mfcs; 2088 struct nlattr *mp_attr; 2089 struct rtnexthop *nhp; 2090 unsigned long lastuse; 2091 int ct; 2092 2093 /* If cache is unresolved, don't try to parse IIF and OIF */ 2094 if (c->mfc_parent >= MAXVIFS) 2095 return -ENOENT; 2096 2097 if (VIF_EXISTS(mrt, c->mfc_parent) && 2098 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0) 2099 return -EMSGSIZE; 2100 2101 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH))) 2102 return -EMSGSIZE; 2103 2104 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { 2105 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) { 2106 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) { 2107 nla_nest_cancel(skb, mp_attr); 2108 return -EMSGSIZE; 2109 } 2110 2111 nhp->rtnh_flags = 0; 2112 nhp->rtnh_hops = c->mfc_un.res.ttls[ct]; 2113 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex; 2114 nhp->rtnh_len = sizeof(*nhp); 2115 } 2116 } 2117 2118 nla_nest_end(skb, mp_attr); 2119 2120 lastuse = READ_ONCE(c->mfc_un.res.lastuse); 2121 lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0; 2122 2123 mfcs.mfcs_packets = c->mfc_un.res.pkt; 2124 mfcs.mfcs_bytes = c->mfc_un.res.bytes; 2125 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if; 2126 if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) || 2127 nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse), 2128 RTA_PAD)) 2129 return -EMSGSIZE; 2130 2131 rtm->rtm_type = RTN_MULTICAST; 2132 return 1; 2133 } 2134 2135 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2136 __be32 saddr, __be32 daddr, 2137 struct rtmsg *rtm, int nowait, u32 portid) 2138 { 2139 struct mfc_cache *cache; 2140 struct mr_table *mrt; 2141 int err; 2142 2143 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2144 if (!mrt) 2145 return -ENOENT; 2146 2147 rcu_read_lock(); 2148 cache = ipmr_cache_find(mrt, saddr, daddr); 2149 if (!cache && skb->dev) { 2150 int vif = ipmr_find_vif(mrt, skb->dev); 2151 2152 if (vif >= 0) 2153 cache = ipmr_cache_find_any(mrt, daddr, vif); 2154 } 2155 if (!cache) { 2156 struct sk_buff *skb2; 2157 struct iphdr *iph; 2158 struct net_device *dev; 2159 int vif = -1; 2160 2161 if (nowait) { 2162 rcu_read_unlock(); 2163 return -EAGAIN; 2164 } 2165 2166 dev = skb->dev; 2167 read_lock(&mrt_lock); 2168 if (dev) 2169 vif = ipmr_find_vif(mrt, dev); 2170 if (vif < 0) { 2171 read_unlock(&mrt_lock); 2172 rcu_read_unlock(); 2173 return -ENODEV; 2174 } 2175 skb2 = skb_clone(skb, GFP_ATOMIC); 2176 if (!skb2) { 2177 read_unlock(&mrt_lock); 2178 rcu_read_unlock(); 2179 return -ENOMEM; 2180 } 2181 2182 NETLINK_CB(skb2).portid = portid; 2183 skb_push(skb2, sizeof(struct iphdr)); 2184 skb_reset_network_header(skb2); 2185 iph = ip_hdr(skb2); 2186 iph->ihl = sizeof(struct iphdr) >> 2; 2187 iph->saddr = saddr; 2188 iph->daddr = daddr; 2189 iph->version = 0; 2190 err = ipmr_cache_unresolved(mrt, vif, skb2); 2191 read_unlock(&mrt_lock); 2192 rcu_read_unlock(); 2193 return err; 2194 } 2195 2196 read_lock(&mrt_lock); 2197 err = __ipmr_fill_mroute(mrt, skb, cache, rtm); 2198 read_unlock(&mrt_lock); 2199 rcu_read_unlock(); 2200 return err; 2201 } 2202 2203 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2204 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2205 int flags) 2206 { 2207 struct nlmsghdr *nlh; 2208 struct rtmsg *rtm; 2209 int err; 2210 2211 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2212 if (!nlh) 2213 return -EMSGSIZE; 2214 2215 rtm = nlmsg_data(nlh); 2216 rtm->rtm_family = RTNL_FAMILY_IPMR; 2217 rtm->rtm_dst_len = 32; 2218 rtm->rtm_src_len = 32; 2219 rtm->rtm_tos = 0; 2220 rtm->rtm_table = mrt->id; 2221 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2222 goto nla_put_failure; 2223 rtm->rtm_type = RTN_MULTICAST; 2224 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2225 if (c->mfc_flags & MFC_STATIC) 2226 rtm->rtm_protocol = RTPROT_STATIC; 2227 else 2228 rtm->rtm_protocol = RTPROT_MROUTED; 2229 rtm->rtm_flags = 0; 2230 2231 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || 2232 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) 2233 goto nla_put_failure; 2234 err = __ipmr_fill_mroute(mrt, skb, c, rtm); 2235 /* do not break the dump if cache is unresolved */ 2236 if (err < 0 && err != -ENOENT) 2237 goto nla_put_failure; 2238 2239 nlmsg_end(skb, nlh); 2240 return 0; 2241 2242 nla_put_failure: 2243 nlmsg_cancel(skb, nlh); 2244 return -EMSGSIZE; 2245 } 2246 2247 static size_t mroute_msgsize(bool unresolved, int maxvif) 2248 { 2249 size_t len = 2250 NLMSG_ALIGN(sizeof(struct rtmsg)) 2251 + nla_total_size(4) /* RTA_TABLE */ 2252 + nla_total_size(4) /* RTA_SRC */ 2253 + nla_total_size(4) /* RTA_DST */ 2254 ; 2255 2256 if (!unresolved) 2257 len = len 2258 + nla_total_size(4) /* RTA_IIF */ 2259 + nla_total_size(0) /* RTA_MULTIPATH */ 2260 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2261 /* RTA_MFC_STATS */ 2262 + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) 2263 ; 2264 2265 return len; 2266 } 2267 2268 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2269 int cmd) 2270 { 2271 struct net *net = read_pnet(&mrt->net); 2272 struct sk_buff *skb; 2273 int err = -ENOBUFS; 2274 2275 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif), 2276 GFP_ATOMIC); 2277 if (!skb) 2278 goto errout; 2279 2280 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2281 if (err < 0) 2282 goto errout; 2283 2284 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2285 return; 2286 2287 errout: 2288 kfree_skb(skb); 2289 if (err < 0) 2290 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2291 } 2292 2293 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2294 { 2295 struct net *net = sock_net(skb->sk); 2296 struct mr_table *mrt; 2297 struct mfc_cache *mfc; 2298 unsigned int t = 0, s_t; 2299 unsigned int h = 0, s_h; 2300 unsigned int e = 0, s_e; 2301 2302 s_t = cb->args[0]; 2303 s_h = cb->args[1]; 2304 s_e = cb->args[2]; 2305 2306 rcu_read_lock(); 2307 ipmr_for_each_table(mrt, net) { 2308 if (t < s_t) 2309 goto next_table; 2310 if (t > s_t) 2311 s_h = 0; 2312 for (h = s_h; h < MFC_LINES; h++) { 2313 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) { 2314 if (e < s_e) 2315 goto next_entry; 2316 if (ipmr_fill_mroute(mrt, skb, 2317 NETLINK_CB(cb->skb).portid, 2318 cb->nlh->nlmsg_seq, 2319 mfc, RTM_NEWROUTE, 2320 NLM_F_MULTI) < 0) 2321 goto done; 2322 next_entry: 2323 e++; 2324 } 2325 e = s_e = 0; 2326 } 2327 spin_lock_bh(&mfc_unres_lock); 2328 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) { 2329 if (e < s_e) 2330 goto next_entry2; 2331 if (ipmr_fill_mroute(mrt, skb, 2332 NETLINK_CB(cb->skb).portid, 2333 cb->nlh->nlmsg_seq, 2334 mfc, RTM_NEWROUTE, 2335 NLM_F_MULTI) < 0) { 2336 spin_unlock_bh(&mfc_unres_lock); 2337 goto done; 2338 } 2339 next_entry2: 2340 e++; 2341 } 2342 spin_unlock_bh(&mfc_unres_lock); 2343 e = s_e = 0; 2344 s_h = 0; 2345 next_table: 2346 t++; 2347 } 2348 done: 2349 rcu_read_unlock(); 2350 2351 cb->args[2] = e; 2352 cb->args[1] = h; 2353 cb->args[0] = t; 2354 2355 return skb->len; 2356 } 2357 2358 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = { 2359 [RTA_SRC] = { .type = NLA_U32 }, 2360 [RTA_DST] = { .type = NLA_U32 }, 2361 [RTA_IIF] = { .type = NLA_U32 }, 2362 [RTA_TABLE] = { .type = NLA_U32 }, 2363 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 2364 }; 2365 2366 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol) 2367 { 2368 switch (rtm_protocol) { 2369 case RTPROT_STATIC: 2370 case RTPROT_MROUTED: 2371 return true; 2372 } 2373 return false; 2374 } 2375 2376 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc) 2377 { 2378 struct rtnexthop *rtnh = nla_data(nla); 2379 int remaining = nla_len(nla), vifi = 0; 2380 2381 while (rtnh_ok(rtnh, remaining)) { 2382 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops; 2383 if (++vifi == MAXVIFS) 2384 break; 2385 rtnh = rtnh_next(rtnh, &remaining); 2386 } 2387 2388 return remaining > 0 ? -EINVAL : vifi; 2389 } 2390 2391 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */ 2392 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh, 2393 struct mfcctl *mfcc, int *mrtsock, 2394 struct mr_table **mrtret) 2395 { 2396 struct net_device *dev = NULL; 2397 u32 tblid = RT_TABLE_DEFAULT; 2398 struct mr_table *mrt; 2399 struct nlattr *attr; 2400 struct rtmsg *rtm; 2401 int ret, rem; 2402 2403 ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy); 2404 if (ret < 0) 2405 goto out; 2406 rtm = nlmsg_data(nlh); 2407 2408 ret = -EINVAL; 2409 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 || 2410 rtm->rtm_type != RTN_MULTICAST || 2411 rtm->rtm_scope != RT_SCOPE_UNIVERSE || 2412 !ipmr_rtm_validate_proto(rtm->rtm_protocol)) 2413 goto out; 2414 2415 memset(mfcc, 0, sizeof(*mfcc)); 2416 mfcc->mfcc_parent = -1; 2417 ret = 0; 2418 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) { 2419 switch (nla_type(attr)) { 2420 case RTA_SRC: 2421 mfcc->mfcc_origin.s_addr = nla_get_be32(attr); 2422 break; 2423 case RTA_DST: 2424 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr); 2425 break; 2426 case RTA_IIF: 2427 dev = __dev_get_by_index(net, nla_get_u32(attr)); 2428 if (!dev) { 2429 ret = -ENODEV; 2430 goto out; 2431 } 2432 break; 2433 case RTA_MULTIPATH: 2434 if (ipmr_nla_get_ttls(attr, mfcc) < 0) { 2435 ret = -EINVAL; 2436 goto out; 2437 } 2438 break; 2439 case RTA_PREFSRC: 2440 ret = 1; 2441 break; 2442 case RTA_TABLE: 2443 tblid = nla_get_u32(attr); 2444 break; 2445 } 2446 } 2447 mrt = ipmr_get_table(net, tblid); 2448 if (!mrt) { 2449 ret = -ENOENT; 2450 goto out; 2451 } 2452 *mrtret = mrt; 2453 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0; 2454 if (dev) 2455 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev); 2456 2457 out: 2458 return ret; 2459 } 2460 2461 /* takes care of both newroute and delroute */ 2462 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh) 2463 { 2464 struct net *net = sock_net(skb->sk); 2465 int ret, mrtsock, parent; 2466 struct mr_table *tbl; 2467 struct mfcctl mfcc; 2468 2469 mrtsock = 0; 2470 tbl = NULL; 2471 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl); 2472 if (ret < 0) 2473 return ret; 2474 2475 parent = ret ? mfcc.mfcc_parent : -1; 2476 if (nlh->nlmsg_type == RTM_NEWROUTE) 2477 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent); 2478 else 2479 return ipmr_mfc_delete(tbl, &mfcc, parent); 2480 } 2481 2482 #ifdef CONFIG_PROC_FS 2483 /* The /proc interfaces to multicast routing : 2484 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2485 */ 2486 struct ipmr_vif_iter { 2487 struct seq_net_private p; 2488 struct mr_table *mrt; 2489 int ct; 2490 }; 2491 2492 static struct vif_device *ipmr_vif_seq_idx(struct net *net, 2493 struct ipmr_vif_iter *iter, 2494 loff_t pos) 2495 { 2496 struct mr_table *mrt = iter->mrt; 2497 2498 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) { 2499 if (!VIF_EXISTS(mrt, iter->ct)) 2500 continue; 2501 if (pos-- == 0) 2502 return &mrt->vif_table[iter->ct]; 2503 } 2504 return NULL; 2505 } 2506 2507 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2508 __acquires(mrt_lock) 2509 { 2510 struct ipmr_vif_iter *iter = seq->private; 2511 struct net *net = seq_file_net(seq); 2512 struct mr_table *mrt; 2513 2514 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2515 if (!mrt) 2516 return ERR_PTR(-ENOENT); 2517 2518 iter->mrt = mrt; 2519 2520 read_lock(&mrt_lock); 2521 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1) 2522 : SEQ_START_TOKEN; 2523 } 2524 2525 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2526 { 2527 struct ipmr_vif_iter *iter = seq->private; 2528 struct net *net = seq_file_net(seq); 2529 struct mr_table *mrt = iter->mrt; 2530 2531 ++*pos; 2532 if (v == SEQ_START_TOKEN) 2533 return ipmr_vif_seq_idx(net, iter, 0); 2534 2535 while (++iter->ct < mrt->maxvif) { 2536 if (!VIF_EXISTS(mrt, iter->ct)) 2537 continue; 2538 return &mrt->vif_table[iter->ct]; 2539 } 2540 return NULL; 2541 } 2542 2543 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2544 __releases(mrt_lock) 2545 { 2546 read_unlock(&mrt_lock); 2547 } 2548 2549 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2550 { 2551 struct ipmr_vif_iter *iter = seq->private; 2552 struct mr_table *mrt = iter->mrt; 2553 2554 if (v == SEQ_START_TOKEN) { 2555 seq_puts(seq, 2556 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2557 } else { 2558 const struct vif_device *vif = v; 2559 const char *name = vif->dev ? vif->dev->name : "none"; 2560 2561 seq_printf(seq, 2562 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2563 vif - mrt->vif_table, 2564 name, vif->bytes_in, vif->pkt_in, 2565 vif->bytes_out, vif->pkt_out, 2566 vif->flags, vif->local, vif->remote); 2567 } 2568 return 0; 2569 } 2570 2571 static const struct seq_operations ipmr_vif_seq_ops = { 2572 .start = ipmr_vif_seq_start, 2573 .next = ipmr_vif_seq_next, 2574 .stop = ipmr_vif_seq_stop, 2575 .show = ipmr_vif_seq_show, 2576 }; 2577 2578 static int ipmr_vif_open(struct inode *inode, struct file *file) 2579 { 2580 return seq_open_net(inode, file, &ipmr_vif_seq_ops, 2581 sizeof(struct ipmr_vif_iter)); 2582 } 2583 2584 static const struct file_operations ipmr_vif_fops = { 2585 .owner = THIS_MODULE, 2586 .open = ipmr_vif_open, 2587 .read = seq_read, 2588 .llseek = seq_lseek, 2589 .release = seq_release_net, 2590 }; 2591 2592 struct ipmr_mfc_iter { 2593 struct seq_net_private p; 2594 struct mr_table *mrt; 2595 struct list_head *cache; 2596 int ct; 2597 }; 2598 2599 2600 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net, 2601 struct ipmr_mfc_iter *it, loff_t pos) 2602 { 2603 struct mr_table *mrt = it->mrt; 2604 struct mfc_cache *mfc; 2605 2606 rcu_read_lock(); 2607 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) { 2608 it->cache = &mrt->mfc_cache_array[it->ct]; 2609 list_for_each_entry_rcu(mfc, it->cache, list) 2610 if (pos-- == 0) 2611 return mfc; 2612 } 2613 rcu_read_unlock(); 2614 2615 spin_lock_bh(&mfc_unres_lock); 2616 it->cache = &mrt->mfc_unres_queue; 2617 list_for_each_entry(mfc, it->cache, list) 2618 if (pos-- == 0) 2619 return mfc; 2620 spin_unlock_bh(&mfc_unres_lock); 2621 2622 it->cache = NULL; 2623 return NULL; 2624 } 2625 2626 2627 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2628 { 2629 struct ipmr_mfc_iter *it = seq->private; 2630 struct net *net = seq_file_net(seq); 2631 struct mr_table *mrt; 2632 2633 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2634 if (!mrt) 2635 return ERR_PTR(-ENOENT); 2636 2637 it->mrt = mrt; 2638 it->cache = NULL; 2639 it->ct = 0; 2640 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1) 2641 : SEQ_START_TOKEN; 2642 } 2643 2644 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2645 { 2646 struct mfc_cache *mfc = v; 2647 struct ipmr_mfc_iter *it = seq->private; 2648 struct net *net = seq_file_net(seq); 2649 struct mr_table *mrt = it->mrt; 2650 2651 ++*pos; 2652 2653 if (v == SEQ_START_TOKEN) 2654 return ipmr_mfc_seq_idx(net, seq->private, 0); 2655 2656 if (mfc->list.next != it->cache) 2657 return list_entry(mfc->list.next, struct mfc_cache, list); 2658 2659 if (it->cache == &mrt->mfc_unres_queue) 2660 goto end_of_list; 2661 2662 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]); 2663 2664 while (++it->ct < MFC_LINES) { 2665 it->cache = &mrt->mfc_cache_array[it->ct]; 2666 if (list_empty(it->cache)) 2667 continue; 2668 return list_first_entry(it->cache, struct mfc_cache, list); 2669 } 2670 2671 /* exhausted cache_array, show unresolved */ 2672 rcu_read_unlock(); 2673 it->cache = &mrt->mfc_unres_queue; 2674 it->ct = 0; 2675 2676 spin_lock_bh(&mfc_unres_lock); 2677 if (!list_empty(it->cache)) 2678 return list_first_entry(it->cache, struct mfc_cache, list); 2679 2680 end_of_list: 2681 spin_unlock_bh(&mfc_unres_lock); 2682 it->cache = NULL; 2683 2684 return NULL; 2685 } 2686 2687 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v) 2688 { 2689 struct ipmr_mfc_iter *it = seq->private; 2690 struct mr_table *mrt = it->mrt; 2691 2692 if (it->cache == &mrt->mfc_unres_queue) 2693 spin_unlock_bh(&mfc_unres_lock); 2694 else if (it->cache == &mrt->mfc_cache_array[it->ct]) 2695 rcu_read_unlock(); 2696 } 2697 2698 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2699 { 2700 int n; 2701 2702 if (v == SEQ_START_TOKEN) { 2703 seq_puts(seq, 2704 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2705 } else { 2706 const struct mfc_cache *mfc = v; 2707 const struct ipmr_mfc_iter *it = seq->private; 2708 const struct mr_table *mrt = it->mrt; 2709 2710 seq_printf(seq, "%08X %08X %-3hd", 2711 (__force u32) mfc->mfc_mcastgrp, 2712 (__force u32) mfc->mfc_origin, 2713 mfc->mfc_parent); 2714 2715 if (it->cache != &mrt->mfc_unres_queue) { 2716 seq_printf(seq, " %8lu %8lu %8lu", 2717 mfc->mfc_un.res.pkt, 2718 mfc->mfc_un.res.bytes, 2719 mfc->mfc_un.res.wrong_if); 2720 for (n = mfc->mfc_un.res.minvif; 2721 n < mfc->mfc_un.res.maxvif; n++) { 2722 if (VIF_EXISTS(mrt, n) && 2723 mfc->mfc_un.res.ttls[n] < 255) 2724 seq_printf(seq, 2725 " %2d:%-3d", 2726 n, mfc->mfc_un.res.ttls[n]); 2727 } 2728 } else { 2729 /* unresolved mfc_caches don't contain 2730 * pkt, bytes and wrong_if values 2731 */ 2732 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 2733 } 2734 seq_putc(seq, '\n'); 2735 } 2736 return 0; 2737 } 2738 2739 static const struct seq_operations ipmr_mfc_seq_ops = { 2740 .start = ipmr_mfc_seq_start, 2741 .next = ipmr_mfc_seq_next, 2742 .stop = ipmr_mfc_seq_stop, 2743 .show = ipmr_mfc_seq_show, 2744 }; 2745 2746 static int ipmr_mfc_open(struct inode *inode, struct file *file) 2747 { 2748 return seq_open_net(inode, file, &ipmr_mfc_seq_ops, 2749 sizeof(struct ipmr_mfc_iter)); 2750 } 2751 2752 static const struct file_operations ipmr_mfc_fops = { 2753 .owner = THIS_MODULE, 2754 .open = ipmr_mfc_open, 2755 .read = seq_read, 2756 .llseek = seq_lseek, 2757 .release = seq_release_net, 2758 }; 2759 #endif 2760 2761 #ifdef CONFIG_IP_PIMSM_V2 2762 static const struct net_protocol pim_protocol = { 2763 .handler = pim_rcv, 2764 .netns_ok = 1, 2765 }; 2766 #endif 2767 2768 /* Setup for IP multicast routing */ 2769 static int __net_init ipmr_net_init(struct net *net) 2770 { 2771 int err; 2772 2773 err = ipmr_rules_init(net); 2774 if (err < 0) 2775 goto fail; 2776 2777 #ifdef CONFIG_PROC_FS 2778 err = -ENOMEM; 2779 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops)) 2780 goto proc_vif_fail; 2781 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops)) 2782 goto proc_cache_fail; 2783 #endif 2784 return 0; 2785 2786 #ifdef CONFIG_PROC_FS 2787 proc_cache_fail: 2788 remove_proc_entry("ip_mr_vif", net->proc_net); 2789 proc_vif_fail: 2790 ipmr_rules_exit(net); 2791 #endif 2792 fail: 2793 return err; 2794 } 2795 2796 static void __net_exit ipmr_net_exit(struct net *net) 2797 { 2798 #ifdef CONFIG_PROC_FS 2799 remove_proc_entry("ip_mr_cache", net->proc_net); 2800 remove_proc_entry("ip_mr_vif", net->proc_net); 2801 #endif 2802 ipmr_rules_exit(net); 2803 } 2804 2805 static struct pernet_operations ipmr_net_ops = { 2806 .init = ipmr_net_init, 2807 .exit = ipmr_net_exit, 2808 }; 2809 2810 int __init ip_mr_init(void) 2811 { 2812 int err; 2813 2814 mrt_cachep = kmem_cache_create("ip_mrt_cache", 2815 sizeof(struct mfc_cache), 2816 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 2817 NULL); 2818 2819 err = register_pernet_subsys(&ipmr_net_ops); 2820 if (err) 2821 goto reg_pernet_fail; 2822 2823 err = register_netdevice_notifier(&ip_mr_notifier); 2824 if (err) 2825 goto reg_notif_fail; 2826 #ifdef CONFIG_IP_PIMSM_V2 2827 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 2828 pr_err("%s: can't add PIM protocol\n", __func__); 2829 err = -EAGAIN; 2830 goto add_proto_fail; 2831 } 2832 #endif 2833 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 2834 NULL, ipmr_rtm_dumproute, NULL); 2835 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE, 2836 ipmr_rtm_route, NULL, NULL); 2837 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE, 2838 ipmr_rtm_route, NULL, NULL); 2839 return 0; 2840 2841 #ifdef CONFIG_IP_PIMSM_V2 2842 add_proto_fail: 2843 unregister_netdevice_notifier(&ip_mr_notifier); 2844 #endif 2845 reg_notif_fail: 2846 unregister_pernet_subsys(&ipmr_net_ops); 2847 reg_pernet_fail: 2848 kmem_cache_destroy(mrt_cachep); 2849 return err; 2850 } 2851