1 /* 2 * IP multicast routing support for mrouted 3.6/3.8 3 * 4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 5 * Linux Consultancy and Custom Driver Development 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 * 12 * Fixes: 13 * Michael Chastain : Incorrect size of copying. 14 * Alan Cox : Added the cache manager code 15 * Alan Cox : Fixed the clone/copy bug and device race. 16 * Mike McLagan : Routing by source 17 * Malcolm Beattie : Buffer handling fixes. 18 * Alexey Kuznetsov : Double buffer free and other fixes. 19 * SVR Anand : Fixed several multicast bugs and problems. 20 * Alexey Kuznetsov : Status, optimisations and more. 21 * Brad Parker : Better behaviour on mrouted upcall 22 * overflow. 23 * Carlos Picoto : PIMv1 Support 24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 25 * Relax this requirement to work with older peers. 26 * 27 */ 28 29 #include <asm/uaccess.h> 30 #include <linux/types.h> 31 #include <linux/capability.h> 32 #include <linux/errno.h> 33 #include <linux/timer.h> 34 #include <linux/mm.h> 35 #include <linux/kernel.h> 36 #include <linux/fcntl.h> 37 #include <linux/stat.h> 38 #include <linux/socket.h> 39 #include <linux/in.h> 40 #include <linux/inet.h> 41 #include <linux/netdevice.h> 42 #include <linux/inetdevice.h> 43 #include <linux/igmp.h> 44 #include <linux/proc_fs.h> 45 #include <linux/seq_file.h> 46 #include <linux/mroute.h> 47 #include <linux/init.h> 48 #include <linux/if_ether.h> 49 #include <linux/slab.h> 50 #include <net/net_namespace.h> 51 #include <net/ip.h> 52 #include <net/protocol.h> 53 #include <linux/skbuff.h> 54 #include <net/route.h> 55 #include <net/sock.h> 56 #include <net/icmp.h> 57 #include <net/udp.h> 58 #include <net/raw.h> 59 #include <linux/notifier.h> 60 #include <linux/if_arp.h> 61 #include <linux/netfilter_ipv4.h> 62 #include <linux/compat.h> 63 #include <linux/export.h> 64 #include <net/ipip.h> 65 #include <net/checksum.h> 66 #include <net/netlink.h> 67 #include <net/fib_rules.h> 68 69 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 70 #define CONFIG_IP_PIMSM 1 71 #endif 72 73 struct mr_table { 74 struct list_head list; 75 #ifdef CONFIG_NET_NS 76 struct net *net; 77 #endif 78 u32 id; 79 struct sock __rcu *mroute_sk; 80 struct timer_list ipmr_expire_timer; 81 struct list_head mfc_unres_queue; 82 struct list_head mfc_cache_array[MFC_LINES]; 83 struct vif_device vif_table[MAXVIFS]; 84 int maxvif; 85 atomic_t cache_resolve_queue_len; 86 int mroute_do_assert; 87 int mroute_do_pim; 88 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 89 int mroute_reg_vif_num; 90 #endif 91 }; 92 93 struct ipmr_rule { 94 struct fib_rule common; 95 }; 96 97 struct ipmr_result { 98 struct mr_table *mrt; 99 }; 100 101 /* Big lock, protecting vif table, mrt cache and mroute socket state. 102 * Note that the changes are semaphored via rtnl_lock. 103 */ 104 105 static DEFINE_RWLOCK(mrt_lock); 106 107 /* 108 * Multicast router control variables 109 */ 110 111 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL) 112 113 /* Special spinlock for queue of unresolved entries */ 114 static DEFINE_SPINLOCK(mfc_unres_lock); 115 116 /* We return to original Alan's scheme. Hash table of resolved 117 * entries is changed only in process context and protected 118 * with weak lock mrt_lock. Queue of unresolved entries is protected 119 * with strong spinlock mfc_unres_lock. 120 * 121 * In this case data path is free of exclusive locks at all. 122 */ 123 124 static struct kmem_cache *mrt_cachep __read_mostly; 125 126 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 127 static int ip_mr_forward(struct net *net, struct mr_table *mrt, 128 struct sk_buff *skb, struct mfc_cache *cache, 129 int local); 130 static int ipmr_cache_report(struct mr_table *mrt, 131 struct sk_buff *pkt, vifi_t vifi, int assert); 132 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 133 struct mfc_cache *c, struct rtmsg *rtm); 134 static void ipmr_expire_process(unsigned long arg); 135 136 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 137 #define ipmr_for_each_table(mrt, net) \ 138 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list) 139 140 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 141 { 142 struct mr_table *mrt; 143 144 ipmr_for_each_table(mrt, net) { 145 if (mrt->id == id) 146 return mrt; 147 } 148 return NULL; 149 } 150 151 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 152 struct mr_table **mrt) 153 { 154 struct ipmr_result res; 155 struct fib_lookup_arg arg = { .result = &res, }; 156 int err; 157 158 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 159 flowi4_to_flowi(flp4), 0, &arg); 160 if (err < 0) 161 return err; 162 *mrt = res.mrt; 163 return 0; 164 } 165 166 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 167 int flags, struct fib_lookup_arg *arg) 168 { 169 struct ipmr_result *res = arg->result; 170 struct mr_table *mrt; 171 172 switch (rule->action) { 173 case FR_ACT_TO_TBL: 174 break; 175 case FR_ACT_UNREACHABLE: 176 return -ENETUNREACH; 177 case FR_ACT_PROHIBIT: 178 return -EACCES; 179 case FR_ACT_BLACKHOLE: 180 default: 181 return -EINVAL; 182 } 183 184 mrt = ipmr_get_table(rule->fr_net, rule->table); 185 if (mrt == NULL) 186 return -EAGAIN; 187 res->mrt = mrt; 188 return 0; 189 } 190 191 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 192 { 193 return 1; 194 } 195 196 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = { 197 FRA_GENERIC_POLICY, 198 }; 199 200 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 201 struct fib_rule_hdr *frh, struct nlattr **tb) 202 { 203 return 0; 204 } 205 206 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 207 struct nlattr **tb) 208 { 209 return 1; 210 } 211 212 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 213 struct fib_rule_hdr *frh) 214 { 215 frh->dst_len = 0; 216 frh->src_len = 0; 217 frh->tos = 0; 218 return 0; 219 } 220 221 static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = { 222 .family = RTNL_FAMILY_IPMR, 223 .rule_size = sizeof(struct ipmr_rule), 224 .addr_size = sizeof(u32), 225 .action = ipmr_rule_action, 226 .match = ipmr_rule_match, 227 .configure = ipmr_rule_configure, 228 .compare = ipmr_rule_compare, 229 .default_pref = fib_default_rule_pref, 230 .fill = ipmr_rule_fill, 231 .nlgroup = RTNLGRP_IPV4_RULE, 232 .policy = ipmr_rule_policy, 233 .owner = THIS_MODULE, 234 }; 235 236 static int __net_init ipmr_rules_init(struct net *net) 237 { 238 struct fib_rules_ops *ops; 239 struct mr_table *mrt; 240 int err; 241 242 ops = fib_rules_register(&ipmr_rules_ops_template, net); 243 if (IS_ERR(ops)) 244 return PTR_ERR(ops); 245 246 INIT_LIST_HEAD(&net->ipv4.mr_tables); 247 248 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 249 if (mrt == NULL) { 250 err = -ENOMEM; 251 goto err1; 252 } 253 254 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 255 if (err < 0) 256 goto err2; 257 258 net->ipv4.mr_rules_ops = ops; 259 return 0; 260 261 err2: 262 kfree(mrt); 263 err1: 264 fib_rules_unregister(ops); 265 return err; 266 } 267 268 static void __net_exit ipmr_rules_exit(struct net *net) 269 { 270 struct mr_table *mrt, *next; 271 272 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 273 list_del(&mrt->list); 274 kfree(mrt); 275 } 276 fib_rules_unregister(net->ipv4.mr_rules_ops); 277 } 278 #else 279 #define ipmr_for_each_table(mrt, net) \ 280 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 281 282 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 283 { 284 return net->ipv4.mrt; 285 } 286 287 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 288 struct mr_table **mrt) 289 { 290 *mrt = net->ipv4.mrt; 291 return 0; 292 } 293 294 static int __net_init ipmr_rules_init(struct net *net) 295 { 296 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 297 return net->ipv4.mrt ? 0 : -ENOMEM; 298 } 299 300 static void __net_exit ipmr_rules_exit(struct net *net) 301 { 302 kfree(net->ipv4.mrt); 303 } 304 #endif 305 306 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 307 { 308 struct mr_table *mrt; 309 unsigned int i; 310 311 mrt = ipmr_get_table(net, id); 312 if (mrt != NULL) 313 return mrt; 314 315 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL); 316 if (mrt == NULL) 317 return NULL; 318 write_pnet(&mrt->net, net); 319 mrt->id = id; 320 321 /* Forwarding cache */ 322 for (i = 0; i < MFC_LINES; i++) 323 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]); 324 325 INIT_LIST_HEAD(&mrt->mfc_unres_queue); 326 327 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process, 328 (unsigned long)mrt); 329 330 #ifdef CONFIG_IP_PIMSM 331 mrt->mroute_reg_vif_num = -1; 332 #endif 333 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 334 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 335 #endif 336 return mrt; 337 } 338 339 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 340 341 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v) 342 { 343 struct net *net = dev_net(dev); 344 345 dev_close(dev); 346 347 dev = __dev_get_by_name(net, "tunl0"); 348 if (dev) { 349 const struct net_device_ops *ops = dev->netdev_ops; 350 struct ifreq ifr; 351 struct ip_tunnel_parm p; 352 353 memset(&p, 0, sizeof(p)); 354 p.iph.daddr = v->vifc_rmt_addr.s_addr; 355 p.iph.saddr = v->vifc_lcl_addr.s_addr; 356 p.iph.version = 4; 357 p.iph.ihl = 5; 358 p.iph.protocol = IPPROTO_IPIP; 359 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 360 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 361 362 if (ops->ndo_do_ioctl) { 363 mm_segment_t oldfs = get_fs(); 364 365 set_fs(KERNEL_DS); 366 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL); 367 set_fs(oldfs); 368 } 369 } 370 } 371 372 static 373 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 374 { 375 struct net_device *dev; 376 377 dev = __dev_get_by_name(net, "tunl0"); 378 379 if (dev) { 380 const struct net_device_ops *ops = dev->netdev_ops; 381 int err; 382 struct ifreq ifr; 383 struct ip_tunnel_parm p; 384 struct in_device *in_dev; 385 386 memset(&p, 0, sizeof(p)); 387 p.iph.daddr = v->vifc_rmt_addr.s_addr; 388 p.iph.saddr = v->vifc_lcl_addr.s_addr; 389 p.iph.version = 4; 390 p.iph.ihl = 5; 391 p.iph.protocol = IPPROTO_IPIP; 392 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 393 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 394 395 if (ops->ndo_do_ioctl) { 396 mm_segment_t oldfs = get_fs(); 397 398 set_fs(KERNEL_DS); 399 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL); 400 set_fs(oldfs); 401 } else { 402 err = -EOPNOTSUPP; 403 } 404 dev = NULL; 405 406 if (err == 0 && 407 (dev = __dev_get_by_name(net, p.name)) != NULL) { 408 dev->flags |= IFF_MULTICAST; 409 410 in_dev = __in_dev_get_rtnl(dev); 411 if (in_dev == NULL) 412 goto failure; 413 414 ipv4_devconf_setall(in_dev); 415 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 416 417 if (dev_open(dev)) 418 goto failure; 419 dev_hold(dev); 420 } 421 } 422 return dev; 423 424 failure: 425 /* allow the register to be completed before unregistering. */ 426 rtnl_unlock(); 427 rtnl_lock(); 428 429 unregister_netdevice(dev); 430 return NULL; 431 } 432 433 #ifdef CONFIG_IP_PIMSM 434 435 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 436 { 437 struct net *net = dev_net(dev); 438 struct mr_table *mrt; 439 struct flowi4 fl4 = { 440 .flowi4_oif = dev->ifindex, 441 .flowi4_iif = skb->skb_iif, 442 .flowi4_mark = skb->mark, 443 }; 444 int err; 445 446 err = ipmr_fib_lookup(net, &fl4, &mrt); 447 if (err < 0) { 448 kfree_skb(skb); 449 return err; 450 } 451 452 read_lock(&mrt_lock); 453 dev->stats.tx_bytes += skb->len; 454 dev->stats.tx_packets++; 455 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT); 456 read_unlock(&mrt_lock); 457 kfree_skb(skb); 458 return NETDEV_TX_OK; 459 } 460 461 static const struct net_device_ops reg_vif_netdev_ops = { 462 .ndo_start_xmit = reg_vif_xmit, 463 }; 464 465 static void reg_vif_setup(struct net_device *dev) 466 { 467 dev->type = ARPHRD_PIMREG; 468 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 469 dev->flags = IFF_NOARP; 470 dev->netdev_ops = ®_vif_netdev_ops, 471 dev->destructor = free_netdev; 472 dev->features |= NETIF_F_NETNS_LOCAL; 473 } 474 475 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 476 { 477 struct net_device *dev; 478 struct in_device *in_dev; 479 char name[IFNAMSIZ]; 480 481 if (mrt->id == RT_TABLE_DEFAULT) 482 sprintf(name, "pimreg"); 483 else 484 sprintf(name, "pimreg%u", mrt->id); 485 486 dev = alloc_netdev(0, name, reg_vif_setup); 487 488 if (dev == NULL) 489 return NULL; 490 491 dev_net_set(dev, net); 492 493 if (register_netdevice(dev)) { 494 free_netdev(dev); 495 return NULL; 496 } 497 dev->iflink = 0; 498 499 rcu_read_lock(); 500 in_dev = __in_dev_get_rcu(dev); 501 if (!in_dev) { 502 rcu_read_unlock(); 503 goto failure; 504 } 505 506 ipv4_devconf_setall(in_dev); 507 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 508 rcu_read_unlock(); 509 510 if (dev_open(dev)) 511 goto failure; 512 513 dev_hold(dev); 514 515 return dev; 516 517 failure: 518 /* allow the register to be completed before unregistering. */ 519 rtnl_unlock(); 520 rtnl_lock(); 521 522 unregister_netdevice(dev); 523 return NULL; 524 } 525 #endif 526 527 /* 528 * Delete a VIF entry 529 * @notify: Set to 1, if the caller is a notifier_call 530 */ 531 532 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 533 struct list_head *head) 534 { 535 struct vif_device *v; 536 struct net_device *dev; 537 struct in_device *in_dev; 538 539 if (vifi < 0 || vifi >= mrt->maxvif) 540 return -EADDRNOTAVAIL; 541 542 v = &mrt->vif_table[vifi]; 543 544 write_lock_bh(&mrt_lock); 545 dev = v->dev; 546 v->dev = NULL; 547 548 if (!dev) { 549 write_unlock_bh(&mrt_lock); 550 return -EADDRNOTAVAIL; 551 } 552 553 #ifdef CONFIG_IP_PIMSM 554 if (vifi == mrt->mroute_reg_vif_num) 555 mrt->mroute_reg_vif_num = -1; 556 #endif 557 558 if (vifi + 1 == mrt->maxvif) { 559 int tmp; 560 561 for (tmp = vifi - 1; tmp >= 0; tmp--) { 562 if (VIF_EXISTS(mrt, tmp)) 563 break; 564 } 565 mrt->maxvif = tmp+1; 566 } 567 568 write_unlock_bh(&mrt_lock); 569 570 dev_set_allmulti(dev, -1); 571 572 in_dev = __in_dev_get_rtnl(dev); 573 if (in_dev) { 574 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 575 ip_rt_multicast_event(in_dev); 576 } 577 578 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 579 unregister_netdevice_queue(dev, head); 580 581 dev_put(dev); 582 return 0; 583 } 584 585 static void ipmr_cache_free_rcu(struct rcu_head *head) 586 { 587 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu); 588 589 kmem_cache_free(mrt_cachep, c); 590 } 591 592 static inline void ipmr_cache_free(struct mfc_cache *c) 593 { 594 call_rcu(&c->rcu, ipmr_cache_free_rcu); 595 } 596 597 /* Destroy an unresolved cache entry, killing queued skbs 598 * and reporting error to netlink readers. 599 */ 600 601 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 602 { 603 struct net *net = read_pnet(&mrt->net); 604 struct sk_buff *skb; 605 struct nlmsgerr *e; 606 607 atomic_dec(&mrt->cache_resolve_queue_len); 608 609 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) { 610 if (ip_hdr(skb)->version == 0) { 611 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 612 nlh->nlmsg_type = NLMSG_ERROR; 613 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr)); 614 skb_trim(skb, nlh->nlmsg_len); 615 e = NLMSG_DATA(nlh); 616 e->error = -ETIMEDOUT; 617 memset(&e->msg, 0, sizeof(e->msg)); 618 619 rtnl_unicast(skb, net, NETLINK_CB(skb).pid); 620 } else { 621 kfree_skb(skb); 622 } 623 } 624 625 ipmr_cache_free(c); 626 } 627 628 629 /* Timer process for the unresolved queue. */ 630 631 static void ipmr_expire_process(unsigned long arg) 632 { 633 struct mr_table *mrt = (struct mr_table *)arg; 634 unsigned long now; 635 unsigned long expires; 636 struct mfc_cache *c, *next; 637 638 if (!spin_trylock(&mfc_unres_lock)) { 639 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 640 return; 641 } 642 643 if (list_empty(&mrt->mfc_unres_queue)) 644 goto out; 645 646 now = jiffies; 647 expires = 10*HZ; 648 649 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 650 if (time_after(c->mfc_un.unres.expires, now)) { 651 unsigned long interval = c->mfc_un.unres.expires - now; 652 if (interval < expires) 653 expires = interval; 654 continue; 655 } 656 657 list_del(&c->list); 658 ipmr_destroy_unres(mrt, c); 659 } 660 661 if (!list_empty(&mrt->mfc_unres_queue)) 662 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 663 664 out: 665 spin_unlock(&mfc_unres_lock); 666 } 667 668 /* Fill oifs list. It is called under write locked mrt_lock. */ 669 670 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache, 671 unsigned char *ttls) 672 { 673 int vifi; 674 675 cache->mfc_un.res.minvif = MAXVIFS; 676 cache->mfc_un.res.maxvif = 0; 677 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 678 679 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 680 if (VIF_EXISTS(mrt, vifi) && 681 ttls[vifi] && ttls[vifi] < 255) { 682 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 683 if (cache->mfc_un.res.minvif > vifi) 684 cache->mfc_un.res.minvif = vifi; 685 if (cache->mfc_un.res.maxvif <= vifi) 686 cache->mfc_un.res.maxvif = vifi + 1; 687 } 688 } 689 } 690 691 static int vif_add(struct net *net, struct mr_table *mrt, 692 struct vifctl *vifc, int mrtsock) 693 { 694 int vifi = vifc->vifc_vifi; 695 struct vif_device *v = &mrt->vif_table[vifi]; 696 struct net_device *dev; 697 struct in_device *in_dev; 698 int err; 699 700 /* Is vif busy ? */ 701 if (VIF_EXISTS(mrt, vifi)) 702 return -EADDRINUSE; 703 704 switch (vifc->vifc_flags) { 705 #ifdef CONFIG_IP_PIMSM 706 case VIFF_REGISTER: 707 /* 708 * Special Purpose VIF in PIM 709 * All the packets will be sent to the daemon 710 */ 711 if (mrt->mroute_reg_vif_num >= 0) 712 return -EADDRINUSE; 713 dev = ipmr_reg_vif(net, mrt); 714 if (!dev) 715 return -ENOBUFS; 716 err = dev_set_allmulti(dev, 1); 717 if (err) { 718 unregister_netdevice(dev); 719 dev_put(dev); 720 return err; 721 } 722 break; 723 #endif 724 case VIFF_TUNNEL: 725 dev = ipmr_new_tunnel(net, vifc); 726 if (!dev) 727 return -ENOBUFS; 728 err = dev_set_allmulti(dev, 1); 729 if (err) { 730 ipmr_del_tunnel(dev, vifc); 731 dev_put(dev); 732 return err; 733 } 734 break; 735 736 case VIFF_USE_IFINDEX: 737 case 0: 738 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 739 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 740 if (dev && __in_dev_get_rtnl(dev) == NULL) { 741 dev_put(dev); 742 return -EADDRNOTAVAIL; 743 } 744 } else { 745 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 746 } 747 if (!dev) 748 return -EADDRNOTAVAIL; 749 err = dev_set_allmulti(dev, 1); 750 if (err) { 751 dev_put(dev); 752 return err; 753 } 754 break; 755 default: 756 return -EINVAL; 757 } 758 759 in_dev = __in_dev_get_rtnl(dev); 760 if (!in_dev) { 761 dev_put(dev); 762 return -EADDRNOTAVAIL; 763 } 764 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 765 ip_rt_multicast_event(in_dev); 766 767 /* Fill in the VIF structures */ 768 769 v->rate_limit = vifc->vifc_rate_limit; 770 v->local = vifc->vifc_lcl_addr.s_addr; 771 v->remote = vifc->vifc_rmt_addr.s_addr; 772 v->flags = vifc->vifc_flags; 773 if (!mrtsock) 774 v->flags |= VIFF_STATIC; 775 v->threshold = vifc->vifc_threshold; 776 v->bytes_in = 0; 777 v->bytes_out = 0; 778 v->pkt_in = 0; 779 v->pkt_out = 0; 780 v->link = dev->ifindex; 781 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER)) 782 v->link = dev->iflink; 783 784 /* And finish update writing critical data */ 785 write_lock_bh(&mrt_lock); 786 v->dev = dev; 787 #ifdef CONFIG_IP_PIMSM 788 if (v->flags & VIFF_REGISTER) 789 mrt->mroute_reg_vif_num = vifi; 790 #endif 791 if (vifi+1 > mrt->maxvif) 792 mrt->maxvif = vifi+1; 793 write_unlock_bh(&mrt_lock); 794 return 0; 795 } 796 797 /* called with rcu_read_lock() */ 798 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 799 __be32 origin, 800 __be32 mcastgrp) 801 { 802 int line = MFC_HASH(mcastgrp, origin); 803 struct mfc_cache *c; 804 805 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) { 806 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp) 807 return c; 808 } 809 return NULL; 810 } 811 812 /* 813 * Allocate a multicast cache entry 814 */ 815 static struct mfc_cache *ipmr_cache_alloc(void) 816 { 817 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 818 819 if (c) 820 c->mfc_un.res.minvif = MAXVIFS; 821 return c; 822 } 823 824 static struct mfc_cache *ipmr_cache_alloc_unres(void) 825 { 826 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 827 828 if (c) { 829 skb_queue_head_init(&c->mfc_un.unres.unresolved); 830 c->mfc_un.unres.expires = jiffies + 10*HZ; 831 } 832 return c; 833 } 834 835 /* 836 * A cache entry has gone into a resolved state from queued 837 */ 838 839 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 840 struct mfc_cache *uc, struct mfc_cache *c) 841 { 842 struct sk_buff *skb; 843 struct nlmsgerr *e; 844 845 /* Play the pending entries through our router */ 846 847 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) { 848 if (ip_hdr(skb)->version == 0) { 849 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 850 851 if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) { 852 nlh->nlmsg_len = skb_tail_pointer(skb) - 853 (u8 *)nlh; 854 } else { 855 nlh->nlmsg_type = NLMSG_ERROR; 856 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr)); 857 skb_trim(skb, nlh->nlmsg_len); 858 e = NLMSG_DATA(nlh); 859 e->error = -EMSGSIZE; 860 memset(&e->msg, 0, sizeof(e->msg)); 861 } 862 863 rtnl_unicast(skb, net, NETLINK_CB(skb).pid); 864 } else { 865 ip_mr_forward(net, mrt, skb, c, 0); 866 } 867 } 868 } 869 870 /* 871 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted 872 * expects the following bizarre scheme. 873 * 874 * Called under mrt_lock. 875 */ 876 877 static int ipmr_cache_report(struct mr_table *mrt, 878 struct sk_buff *pkt, vifi_t vifi, int assert) 879 { 880 struct sk_buff *skb; 881 const int ihl = ip_hdrlen(pkt); 882 struct igmphdr *igmp; 883 struct igmpmsg *msg; 884 struct sock *mroute_sk; 885 int ret; 886 887 #ifdef CONFIG_IP_PIMSM 888 if (assert == IGMPMSG_WHOLEPKT) 889 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 890 else 891 #endif 892 skb = alloc_skb(128, GFP_ATOMIC); 893 894 if (!skb) 895 return -ENOBUFS; 896 897 #ifdef CONFIG_IP_PIMSM 898 if (assert == IGMPMSG_WHOLEPKT) { 899 /* Ugly, but we have no choice with this interface. 900 * Duplicate old header, fix ihl, length etc. 901 * And all this only to mangle msg->im_msgtype and 902 * to set msg->im_mbz to "mbz" :-) 903 */ 904 skb_push(skb, sizeof(struct iphdr)); 905 skb_reset_network_header(skb); 906 skb_reset_transport_header(skb); 907 msg = (struct igmpmsg *)skb_network_header(skb); 908 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 909 msg->im_msgtype = IGMPMSG_WHOLEPKT; 910 msg->im_mbz = 0; 911 msg->im_vif = mrt->mroute_reg_vif_num; 912 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 913 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 914 sizeof(struct iphdr)); 915 } else 916 #endif 917 { 918 919 /* Copy the IP header */ 920 921 skb->network_header = skb->tail; 922 skb_put(skb, ihl); 923 skb_copy_to_linear_data(skb, pkt->data, ihl); 924 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */ 925 msg = (struct igmpmsg *)skb_network_header(skb); 926 msg->im_vif = vifi; 927 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 928 929 /* Add our header */ 930 931 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr)); 932 igmp->type = 933 msg->im_msgtype = assert; 934 igmp->code = 0; 935 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 936 skb->transport_header = skb->network_header; 937 } 938 939 rcu_read_lock(); 940 mroute_sk = rcu_dereference(mrt->mroute_sk); 941 if (mroute_sk == NULL) { 942 rcu_read_unlock(); 943 kfree_skb(skb); 944 return -EINVAL; 945 } 946 947 /* Deliver to mrouted */ 948 949 ret = sock_queue_rcv_skb(mroute_sk, skb); 950 rcu_read_unlock(); 951 if (ret < 0) { 952 if (net_ratelimit()) 953 pr_warn("mroute: pending queue full, dropping entries\n"); 954 kfree_skb(skb); 955 } 956 957 return ret; 958 } 959 960 /* 961 * Queue a packet for resolution. It gets locked cache entry! 962 */ 963 964 static int 965 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb) 966 { 967 bool found = false; 968 int err; 969 struct mfc_cache *c; 970 const struct iphdr *iph = ip_hdr(skb); 971 972 spin_lock_bh(&mfc_unres_lock); 973 list_for_each_entry(c, &mrt->mfc_unres_queue, list) { 974 if (c->mfc_mcastgrp == iph->daddr && 975 c->mfc_origin == iph->saddr) { 976 found = true; 977 break; 978 } 979 } 980 981 if (!found) { 982 /* Create a new entry if allowable */ 983 984 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 985 (c = ipmr_cache_alloc_unres()) == NULL) { 986 spin_unlock_bh(&mfc_unres_lock); 987 988 kfree_skb(skb); 989 return -ENOBUFS; 990 } 991 992 /* Fill in the new cache entry */ 993 994 c->mfc_parent = -1; 995 c->mfc_origin = iph->saddr; 996 c->mfc_mcastgrp = iph->daddr; 997 998 /* Reflect first query at mrouted. */ 999 1000 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1001 if (err < 0) { 1002 /* If the report failed throw the cache entry 1003 out - Brad Parker 1004 */ 1005 spin_unlock_bh(&mfc_unres_lock); 1006 1007 ipmr_cache_free(c); 1008 kfree_skb(skb); 1009 return err; 1010 } 1011 1012 atomic_inc(&mrt->cache_resolve_queue_len); 1013 list_add(&c->list, &mrt->mfc_unres_queue); 1014 1015 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1016 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires); 1017 } 1018 1019 /* See if we can append the packet */ 1020 1021 if (c->mfc_un.unres.unresolved.qlen > 3) { 1022 kfree_skb(skb); 1023 err = -ENOBUFS; 1024 } else { 1025 skb_queue_tail(&c->mfc_un.unres.unresolved, skb); 1026 err = 0; 1027 } 1028 1029 spin_unlock_bh(&mfc_unres_lock); 1030 return err; 1031 } 1032 1033 /* 1034 * MFC cache manipulation by user space mroute daemon 1035 */ 1036 1037 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc) 1038 { 1039 int line; 1040 struct mfc_cache *c, *next; 1041 1042 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1043 1044 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) { 1045 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1046 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) { 1047 list_del_rcu(&c->list); 1048 1049 ipmr_cache_free(c); 1050 return 0; 1051 } 1052 } 1053 return -ENOENT; 1054 } 1055 1056 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1057 struct mfcctl *mfc, int mrtsock) 1058 { 1059 bool found = false; 1060 int line; 1061 struct mfc_cache *uc, *c; 1062 1063 if (mfc->mfcc_parent >= MAXVIFS) 1064 return -ENFILE; 1065 1066 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1067 1068 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) { 1069 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1070 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) { 1071 found = true; 1072 break; 1073 } 1074 } 1075 1076 if (found) { 1077 write_lock_bh(&mrt_lock); 1078 c->mfc_parent = mfc->mfcc_parent; 1079 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1080 if (!mrtsock) 1081 c->mfc_flags |= MFC_STATIC; 1082 write_unlock_bh(&mrt_lock); 1083 return 0; 1084 } 1085 1086 if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1087 return -EINVAL; 1088 1089 c = ipmr_cache_alloc(); 1090 if (c == NULL) 1091 return -ENOMEM; 1092 1093 c->mfc_origin = mfc->mfcc_origin.s_addr; 1094 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1095 c->mfc_parent = mfc->mfcc_parent; 1096 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1097 if (!mrtsock) 1098 c->mfc_flags |= MFC_STATIC; 1099 1100 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]); 1101 1102 /* 1103 * Check to see if we resolved a queued list. If so we 1104 * need to send on the frames and tidy up. 1105 */ 1106 found = false; 1107 spin_lock_bh(&mfc_unres_lock); 1108 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) { 1109 if (uc->mfc_origin == c->mfc_origin && 1110 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1111 list_del(&uc->list); 1112 atomic_dec(&mrt->cache_resolve_queue_len); 1113 found = true; 1114 break; 1115 } 1116 } 1117 if (list_empty(&mrt->mfc_unres_queue)) 1118 del_timer(&mrt->ipmr_expire_timer); 1119 spin_unlock_bh(&mfc_unres_lock); 1120 1121 if (found) { 1122 ipmr_cache_resolve(net, mrt, uc, c); 1123 ipmr_cache_free(uc); 1124 } 1125 return 0; 1126 } 1127 1128 /* 1129 * Close the multicast socket, and clear the vif tables etc 1130 */ 1131 1132 static void mroute_clean_tables(struct mr_table *mrt) 1133 { 1134 int i; 1135 LIST_HEAD(list); 1136 struct mfc_cache *c, *next; 1137 1138 /* Shut down all active vif entries */ 1139 1140 for (i = 0; i < mrt->maxvif; i++) { 1141 if (!(mrt->vif_table[i].flags & VIFF_STATIC)) 1142 vif_delete(mrt, i, 0, &list); 1143 } 1144 unregister_netdevice_many(&list); 1145 1146 /* Wipe the cache */ 1147 1148 for (i = 0; i < MFC_LINES; i++) { 1149 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) { 1150 if (c->mfc_flags & MFC_STATIC) 1151 continue; 1152 list_del_rcu(&c->list); 1153 ipmr_cache_free(c); 1154 } 1155 } 1156 1157 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1158 spin_lock_bh(&mfc_unres_lock); 1159 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 1160 list_del(&c->list); 1161 ipmr_destroy_unres(mrt, c); 1162 } 1163 spin_unlock_bh(&mfc_unres_lock); 1164 } 1165 } 1166 1167 /* called from ip_ra_control(), before an RCU grace period, 1168 * we dont need to call synchronize_rcu() here 1169 */ 1170 static void mrtsock_destruct(struct sock *sk) 1171 { 1172 struct net *net = sock_net(sk); 1173 struct mr_table *mrt; 1174 1175 rtnl_lock(); 1176 ipmr_for_each_table(mrt, net) { 1177 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1178 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1179 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1180 mroute_clean_tables(mrt); 1181 } 1182 } 1183 rtnl_unlock(); 1184 } 1185 1186 /* 1187 * Socket options and virtual interface manipulation. The whole 1188 * virtual interface system is a complete heap, but unfortunately 1189 * that's how BSD mrouted happens to think. Maybe one day with a proper 1190 * MOSPF/PIM router set up we can clean this up. 1191 */ 1192 1193 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen) 1194 { 1195 int ret; 1196 struct vifctl vif; 1197 struct mfcctl mfc; 1198 struct net *net = sock_net(sk); 1199 struct mr_table *mrt; 1200 1201 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1202 if (mrt == NULL) 1203 return -ENOENT; 1204 1205 if (optname != MRT_INIT) { 1206 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1207 !capable(CAP_NET_ADMIN)) 1208 return -EACCES; 1209 } 1210 1211 switch (optname) { 1212 case MRT_INIT: 1213 if (sk->sk_type != SOCK_RAW || 1214 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1215 return -EOPNOTSUPP; 1216 if (optlen != sizeof(int)) 1217 return -ENOPROTOOPT; 1218 1219 rtnl_lock(); 1220 if (rtnl_dereference(mrt->mroute_sk)) { 1221 rtnl_unlock(); 1222 return -EADDRINUSE; 1223 } 1224 1225 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1226 if (ret == 0) { 1227 rcu_assign_pointer(mrt->mroute_sk, sk); 1228 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1229 } 1230 rtnl_unlock(); 1231 return ret; 1232 case MRT_DONE: 1233 if (sk != rcu_access_pointer(mrt->mroute_sk)) 1234 return -EACCES; 1235 return ip_ra_control(sk, 0, NULL); 1236 case MRT_ADD_VIF: 1237 case MRT_DEL_VIF: 1238 if (optlen != sizeof(vif)) 1239 return -EINVAL; 1240 if (copy_from_user(&vif, optval, sizeof(vif))) 1241 return -EFAULT; 1242 if (vif.vifc_vifi >= MAXVIFS) 1243 return -ENFILE; 1244 rtnl_lock(); 1245 if (optname == MRT_ADD_VIF) { 1246 ret = vif_add(net, mrt, &vif, 1247 sk == rtnl_dereference(mrt->mroute_sk)); 1248 } else { 1249 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1250 } 1251 rtnl_unlock(); 1252 return ret; 1253 1254 /* 1255 * Manipulate the forwarding caches. These live 1256 * in a sort of kernel/user symbiosis. 1257 */ 1258 case MRT_ADD_MFC: 1259 case MRT_DEL_MFC: 1260 if (optlen != sizeof(mfc)) 1261 return -EINVAL; 1262 if (copy_from_user(&mfc, optval, sizeof(mfc))) 1263 return -EFAULT; 1264 rtnl_lock(); 1265 if (optname == MRT_DEL_MFC) 1266 ret = ipmr_mfc_delete(mrt, &mfc); 1267 else 1268 ret = ipmr_mfc_add(net, mrt, &mfc, 1269 sk == rtnl_dereference(mrt->mroute_sk)); 1270 rtnl_unlock(); 1271 return ret; 1272 /* 1273 * Control PIM assert. 1274 */ 1275 case MRT_ASSERT: 1276 { 1277 int v; 1278 if (get_user(v, (int __user *)optval)) 1279 return -EFAULT; 1280 mrt->mroute_do_assert = (v) ? 1 : 0; 1281 return 0; 1282 } 1283 #ifdef CONFIG_IP_PIMSM 1284 case MRT_PIM: 1285 { 1286 int v; 1287 1288 if (get_user(v, (int __user *)optval)) 1289 return -EFAULT; 1290 v = (v) ? 1 : 0; 1291 1292 rtnl_lock(); 1293 ret = 0; 1294 if (v != mrt->mroute_do_pim) { 1295 mrt->mroute_do_pim = v; 1296 mrt->mroute_do_assert = v; 1297 } 1298 rtnl_unlock(); 1299 return ret; 1300 } 1301 #endif 1302 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 1303 case MRT_TABLE: 1304 { 1305 u32 v; 1306 1307 if (optlen != sizeof(u32)) 1308 return -EINVAL; 1309 if (get_user(v, (u32 __user *)optval)) 1310 return -EFAULT; 1311 1312 rtnl_lock(); 1313 ret = 0; 1314 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1315 ret = -EBUSY; 1316 } else { 1317 if (!ipmr_new_table(net, v)) 1318 ret = -ENOMEM; 1319 raw_sk(sk)->ipmr_table = v; 1320 } 1321 rtnl_unlock(); 1322 return ret; 1323 } 1324 #endif 1325 /* 1326 * Spurious command, or MRT_VERSION which you cannot 1327 * set. 1328 */ 1329 default: 1330 return -ENOPROTOOPT; 1331 } 1332 } 1333 1334 /* 1335 * Getsock opt support for the multicast routing system. 1336 */ 1337 1338 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1339 { 1340 int olr; 1341 int val; 1342 struct net *net = sock_net(sk); 1343 struct mr_table *mrt; 1344 1345 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1346 if (mrt == NULL) 1347 return -ENOENT; 1348 1349 if (optname != MRT_VERSION && 1350 #ifdef CONFIG_IP_PIMSM 1351 optname != MRT_PIM && 1352 #endif 1353 optname != MRT_ASSERT) 1354 return -ENOPROTOOPT; 1355 1356 if (get_user(olr, optlen)) 1357 return -EFAULT; 1358 1359 olr = min_t(unsigned int, olr, sizeof(int)); 1360 if (olr < 0) 1361 return -EINVAL; 1362 1363 if (put_user(olr, optlen)) 1364 return -EFAULT; 1365 if (optname == MRT_VERSION) 1366 val = 0x0305; 1367 #ifdef CONFIG_IP_PIMSM 1368 else if (optname == MRT_PIM) 1369 val = mrt->mroute_do_pim; 1370 #endif 1371 else 1372 val = mrt->mroute_do_assert; 1373 if (copy_to_user(optval, &val, olr)) 1374 return -EFAULT; 1375 return 0; 1376 } 1377 1378 /* 1379 * The IP multicast ioctl support routines. 1380 */ 1381 1382 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1383 { 1384 struct sioc_sg_req sr; 1385 struct sioc_vif_req vr; 1386 struct vif_device *vif; 1387 struct mfc_cache *c; 1388 struct net *net = sock_net(sk); 1389 struct mr_table *mrt; 1390 1391 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1392 if (mrt == NULL) 1393 return -ENOENT; 1394 1395 switch (cmd) { 1396 case SIOCGETVIFCNT: 1397 if (copy_from_user(&vr, arg, sizeof(vr))) 1398 return -EFAULT; 1399 if (vr.vifi >= mrt->maxvif) 1400 return -EINVAL; 1401 read_lock(&mrt_lock); 1402 vif = &mrt->vif_table[vr.vifi]; 1403 if (VIF_EXISTS(mrt, vr.vifi)) { 1404 vr.icount = vif->pkt_in; 1405 vr.ocount = vif->pkt_out; 1406 vr.ibytes = vif->bytes_in; 1407 vr.obytes = vif->bytes_out; 1408 read_unlock(&mrt_lock); 1409 1410 if (copy_to_user(arg, &vr, sizeof(vr))) 1411 return -EFAULT; 1412 return 0; 1413 } 1414 read_unlock(&mrt_lock); 1415 return -EADDRNOTAVAIL; 1416 case SIOCGETSGCNT: 1417 if (copy_from_user(&sr, arg, sizeof(sr))) 1418 return -EFAULT; 1419 1420 rcu_read_lock(); 1421 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1422 if (c) { 1423 sr.pktcnt = c->mfc_un.res.pkt; 1424 sr.bytecnt = c->mfc_un.res.bytes; 1425 sr.wrong_if = c->mfc_un.res.wrong_if; 1426 rcu_read_unlock(); 1427 1428 if (copy_to_user(arg, &sr, sizeof(sr))) 1429 return -EFAULT; 1430 return 0; 1431 } 1432 rcu_read_unlock(); 1433 return -EADDRNOTAVAIL; 1434 default: 1435 return -ENOIOCTLCMD; 1436 } 1437 } 1438 1439 #ifdef CONFIG_COMPAT 1440 struct compat_sioc_sg_req { 1441 struct in_addr src; 1442 struct in_addr grp; 1443 compat_ulong_t pktcnt; 1444 compat_ulong_t bytecnt; 1445 compat_ulong_t wrong_if; 1446 }; 1447 1448 struct compat_sioc_vif_req { 1449 vifi_t vifi; /* Which iface */ 1450 compat_ulong_t icount; 1451 compat_ulong_t ocount; 1452 compat_ulong_t ibytes; 1453 compat_ulong_t obytes; 1454 }; 1455 1456 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1457 { 1458 struct compat_sioc_sg_req sr; 1459 struct compat_sioc_vif_req vr; 1460 struct vif_device *vif; 1461 struct mfc_cache *c; 1462 struct net *net = sock_net(sk); 1463 struct mr_table *mrt; 1464 1465 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1466 if (mrt == NULL) 1467 return -ENOENT; 1468 1469 switch (cmd) { 1470 case SIOCGETVIFCNT: 1471 if (copy_from_user(&vr, arg, sizeof(vr))) 1472 return -EFAULT; 1473 if (vr.vifi >= mrt->maxvif) 1474 return -EINVAL; 1475 read_lock(&mrt_lock); 1476 vif = &mrt->vif_table[vr.vifi]; 1477 if (VIF_EXISTS(mrt, vr.vifi)) { 1478 vr.icount = vif->pkt_in; 1479 vr.ocount = vif->pkt_out; 1480 vr.ibytes = vif->bytes_in; 1481 vr.obytes = vif->bytes_out; 1482 read_unlock(&mrt_lock); 1483 1484 if (copy_to_user(arg, &vr, sizeof(vr))) 1485 return -EFAULT; 1486 return 0; 1487 } 1488 read_unlock(&mrt_lock); 1489 return -EADDRNOTAVAIL; 1490 case SIOCGETSGCNT: 1491 if (copy_from_user(&sr, arg, sizeof(sr))) 1492 return -EFAULT; 1493 1494 rcu_read_lock(); 1495 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1496 if (c) { 1497 sr.pktcnt = c->mfc_un.res.pkt; 1498 sr.bytecnt = c->mfc_un.res.bytes; 1499 sr.wrong_if = c->mfc_un.res.wrong_if; 1500 rcu_read_unlock(); 1501 1502 if (copy_to_user(arg, &sr, sizeof(sr))) 1503 return -EFAULT; 1504 return 0; 1505 } 1506 rcu_read_unlock(); 1507 return -EADDRNOTAVAIL; 1508 default: 1509 return -ENOIOCTLCMD; 1510 } 1511 } 1512 #endif 1513 1514 1515 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1516 { 1517 struct net_device *dev = ptr; 1518 struct net *net = dev_net(dev); 1519 struct mr_table *mrt; 1520 struct vif_device *v; 1521 int ct; 1522 1523 if (event != NETDEV_UNREGISTER) 1524 return NOTIFY_DONE; 1525 1526 ipmr_for_each_table(mrt, net) { 1527 v = &mrt->vif_table[0]; 1528 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1529 if (v->dev == dev) 1530 vif_delete(mrt, ct, 1, NULL); 1531 } 1532 } 1533 return NOTIFY_DONE; 1534 } 1535 1536 1537 static struct notifier_block ip_mr_notifier = { 1538 .notifier_call = ipmr_device_event, 1539 }; 1540 1541 /* 1542 * Encapsulate a packet by attaching a valid IPIP header to it. 1543 * This avoids tunnel drivers and other mess and gives us the speed so 1544 * important for multicast video. 1545 */ 1546 1547 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr) 1548 { 1549 struct iphdr *iph; 1550 const struct iphdr *old_iph = ip_hdr(skb); 1551 1552 skb_push(skb, sizeof(struct iphdr)); 1553 skb->transport_header = skb->network_header; 1554 skb_reset_network_header(skb); 1555 iph = ip_hdr(skb); 1556 1557 iph->version = 4; 1558 iph->tos = old_iph->tos; 1559 iph->ttl = old_iph->ttl; 1560 iph->frag_off = 0; 1561 iph->daddr = daddr; 1562 iph->saddr = saddr; 1563 iph->protocol = IPPROTO_IPIP; 1564 iph->ihl = 5; 1565 iph->tot_len = htons(skb->len); 1566 ip_select_ident(iph, skb_dst(skb), NULL); 1567 ip_send_check(iph); 1568 1569 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1570 nf_reset(skb); 1571 } 1572 1573 static inline int ipmr_forward_finish(struct sk_buff *skb) 1574 { 1575 struct ip_options *opt = &(IPCB(skb)->opt); 1576 1577 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS); 1578 1579 if (unlikely(opt->optlen)) 1580 ip_forward_options(skb); 1581 1582 return dst_output(skb); 1583 } 1584 1585 /* 1586 * Processing handlers for ipmr_forward 1587 */ 1588 1589 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1590 struct sk_buff *skb, struct mfc_cache *c, int vifi) 1591 { 1592 const struct iphdr *iph = ip_hdr(skb); 1593 struct vif_device *vif = &mrt->vif_table[vifi]; 1594 struct net_device *dev; 1595 struct rtable *rt; 1596 struct flowi4 fl4; 1597 int encap = 0; 1598 1599 if (vif->dev == NULL) 1600 goto out_free; 1601 1602 #ifdef CONFIG_IP_PIMSM 1603 if (vif->flags & VIFF_REGISTER) { 1604 vif->pkt_out++; 1605 vif->bytes_out += skb->len; 1606 vif->dev->stats.tx_bytes += skb->len; 1607 vif->dev->stats.tx_packets++; 1608 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1609 goto out_free; 1610 } 1611 #endif 1612 1613 if (vif->flags & VIFF_TUNNEL) { 1614 rt = ip_route_output_ports(net, &fl4, NULL, 1615 vif->remote, vif->local, 1616 0, 0, 1617 IPPROTO_IPIP, 1618 RT_TOS(iph->tos), vif->link); 1619 if (IS_ERR(rt)) 1620 goto out_free; 1621 encap = sizeof(struct iphdr); 1622 } else { 1623 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1624 0, 0, 1625 IPPROTO_IPIP, 1626 RT_TOS(iph->tos), vif->link); 1627 if (IS_ERR(rt)) 1628 goto out_free; 1629 } 1630 1631 dev = rt->dst.dev; 1632 1633 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1634 /* Do not fragment multicasts. Alas, IPv4 does not 1635 * allow to send ICMP, so that packets will disappear 1636 * to blackhole. 1637 */ 1638 1639 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS); 1640 ip_rt_put(rt); 1641 goto out_free; 1642 } 1643 1644 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1645 1646 if (skb_cow(skb, encap)) { 1647 ip_rt_put(rt); 1648 goto out_free; 1649 } 1650 1651 vif->pkt_out++; 1652 vif->bytes_out += skb->len; 1653 1654 skb_dst_drop(skb); 1655 skb_dst_set(skb, &rt->dst); 1656 ip_decrease_ttl(ip_hdr(skb)); 1657 1658 /* FIXME: forward and output firewalls used to be called here. 1659 * What do we do with netfilter? -- RR 1660 */ 1661 if (vif->flags & VIFF_TUNNEL) { 1662 ip_encap(skb, vif->local, vif->remote); 1663 /* FIXME: extra output firewall step used to be here. --RR */ 1664 vif->dev->stats.tx_packets++; 1665 vif->dev->stats.tx_bytes += skb->len; 1666 } 1667 1668 IPCB(skb)->flags |= IPSKB_FORWARDED; 1669 1670 /* 1671 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1672 * not only before forwarding, but after forwarding on all output 1673 * interfaces. It is clear, if mrouter runs a multicasting 1674 * program, it should receive packets not depending to what interface 1675 * program is joined. 1676 * If we will not make it, the program will have to join on all 1677 * interfaces. On the other hand, multihoming host (or router, but 1678 * not mrouter) cannot join to more than one interface - it will 1679 * result in receiving multiple packets. 1680 */ 1681 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev, 1682 ipmr_forward_finish); 1683 return; 1684 1685 out_free: 1686 kfree_skb(skb); 1687 } 1688 1689 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev) 1690 { 1691 int ct; 1692 1693 for (ct = mrt->maxvif-1; ct >= 0; ct--) { 1694 if (mrt->vif_table[ct].dev == dev) 1695 break; 1696 } 1697 return ct; 1698 } 1699 1700 /* "local" means that we should preserve one skb (for local delivery) */ 1701 1702 static int ip_mr_forward(struct net *net, struct mr_table *mrt, 1703 struct sk_buff *skb, struct mfc_cache *cache, 1704 int local) 1705 { 1706 int psend = -1; 1707 int vif, ct; 1708 1709 vif = cache->mfc_parent; 1710 cache->mfc_un.res.pkt++; 1711 cache->mfc_un.res.bytes += skb->len; 1712 1713 /* 1714 * Wrong interface: drop packet and (maybe) send PIM assert. 1715 */ 1716 if (mrt->vif_table[vif].dev != skb->dev) { 1717 int true_vifi; 1718 1719 if (rt_is_output_route(skb_rtable(skb))) { 1720 /* It is our own packet, looped back. 1721 * Very complicated situation... 1722 * 1723 * The best workaround until routing daemons will be 1724 * fixed is not to redistribute packet, if it was 1725 * send through wrong interface. It means, that 1726 * multicast applications WILL NOT work for 1727 * (S,G), which have default multicast route pointing 1728 * to wrong oif. In any case, it is not a good 1729 * idea to use multicasting applications on router. 1730 */ 1731 goto dont_forward; 1732 } 1733 1734 cache->mfc_un.res.wrong_if++; 1735 true_vifi = ipmr_find_vif(mrt, skb->dev); 1736 1737 if (true_vifi >= 0 && mrt->mroute_do_assert && 1738 /* pimsm uses asserts, when switching from RPT to SPT, 1739 * so that we cannot check that packet arrived on an oif. 1740 * It is bad, but otherwise we would need to move pretty 1741 * large chunk of pimd to kernel. Ough... --ANK 1742 */ 1743 (mrt->mroute_do_pim || 1744 cache->mfc_un.res.ttls[true_vifi] < 255) && 1745 time_after(jiffies, 1746 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { 1747 cache->mfc_un.res.last_assert = jiffies; 1748 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 1749 } 1750 goto dont_forward; 1751 } 1752 1753 mrt->vif_table[vif].pkt_in++; 1754 mrt->vif_table[vif].bytes_in += skb->len; 1755 1756 /* 1757 * Forward the frame 1758 */ 1759 for (ct = cache->mfc_un.res.maxvif - 1; 1760 ct >= cache->mfc_un.res.minvif; ct--) { 1761 if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) { 1762 if (psend != -1) { 1763 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1764 1765 if (skb2) 1766 ipmr_queue_xmit(net, mrt, skb2, cache, 1767 psend); 1768 } 1769 psend = ct; 1770 } 1771 } 1772 if (psend != -1) { 1773 if (local) { 1774 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1775 1776 if (skb2) 1777 ipmr_queue_xmit(net, mrt, skb2, cache, psend); 1778 } else { 1779 ipmr_queue_xmit(net, mrt, skb, cache, psend); 1780 return 0; 1781 } 1782 } 1783 1784 dont_forward: 1785 if (!local) 1786 kfree_skb(skb); 1787 return 0; 1788 } 1789 1790 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 1791 { 1792 struct rtable *rt = skb_rtable(skb); 1793 struct iphdr *iph = ip_hdr(skb); 1794 struct flowi4 fl4 = { 1795 .daddr = iph->daddr, 1796 .saddr = iph->saddr, 1797 .flowi4_tos = RT_TOS(iph->tos), 1798 .flowi4_oif = rt->rt_oif, 1799 .flowi4_iif = rt->rt_iif, 1800 .flowi4_mark = rt->rt_mark, 1801 }; 1802 struct mr_table *mrt; 1803 int err; 1804 1805 err = ipmr_fib_lookup(net, &fl4, &mrt); 1806 if (err) 1807 return ERR_PTR(err); 1808 return mrt; 1809 } 1810 1811 /* 1812 * Multicast packets for forwarding arrive here 1813 * Called with rcu_read_lock(); 1814 */ 1815 1816 int ip_mr_input(struct sk_buff *skb) 1817 { 1818 struct mfc_cache *cache; 1819 struct net *net = dev_net(skb->dev); 1820 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 1821 struct mr_table *mrt; 1822 1823 /* Packet is looped back after forward, it should not be 1824 * forwarded second time, but still can be delivered locally. 1825 */ 1826 if (IPCB(skb)->flags & IPSKB_FORWARDED) 1827 goto dont_forward; 1828 1829 mrt = ipmr_rt_fib_lookup(net, skb); 1830 if (IS_ERR(mrt)) { 1831 kfree_skb(skb); 1832 return PTR_ERR(mrt); 1833 } 1834 if (!local) { 1835 if (IPCB(skb)->opt.router_alert) { 1836 if (ip_call_ra_chain(skb)) 1837 return 0; 1838 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 1839 /* IGMPv1 (and broken IGMPv2 implementations sort of 1840 * Cisco IOS <= 11.2(8)) do not put router alert 1841 * option to IGMP packets destined to routable 1842 * groups. It is very bad, because it means 1843 * that we can forward NO IGMP messages. 1844 */ 1845 struct sock *mroute_sk; 1846 1847 mroute_sk = rcu_dereference(mrt->mroute_sk); 1848 if (mroute_sk) { 1849 nf_reset(skb); 1850 raw_rcv(mroute_sk, skb); 1851 return 0; 1852 } 1853 } 1854 } 1855 1856 /* already under rcu_read_lock() */ 1857 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 1858 1859 /* 1860 * No usable cache entry 1861 */ 1862 if (cache == NULL) { 1863 int vif; 1864 1865 if (local) { 1866 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1867 ip_local_deliver(skb); 1868 if (skb2 == NULL) 1869 return -ENOBUFS; 1870 skb = skb2; 1871 } 1872 1873 read_lock(&mrt_lock); 1874 vif = ipmr_find_vif(mrt, skb->dev); 1875 if (vif >= 0) { 1876 int err2 = ipmr_cache_unresolved(mrt, vif, skb); 1877 read_unlock(&mrt_lock); 1878 1879 return err2; 1880 } 1881 read_unlock(&mrt_lock); 1882 kfree_skb(skb); 1883 return -ENODEV; 1884 } 1885 1886 read_lock(&mrt_lock); 1887 ip_mr_forward(net, mrt, skb, cache, local); 1888 read_unlock(&mrt_lock); 1889 1890 if (local) 1891 return ip_local_deliver(skb); 1892 1893 return 0; 1894 1895 dont_forward: 1896 if (local) 1897 return ip_local_deliver(skb); 1898 kfree_skb(skb); 1899 return 0; 1900 } 1901 1902 #ifdef CONFIG_IP_PIMSM 1903 /* called with rcu_read_lock() */ 1904 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 1905 unsigned int pimlen) 1906 { 1907 struct net_device *reg_dev = NULL; 1908 struct iphdr *encap; 1909 1910 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 1911 /* 1912 * Check that: 1913 * a. packet is really sent to a multicast group 1914 * b. packet is not a NULL-REGISTER 1915 * c. packet is not truncated 1916 */ 1917 if (!ipv4_is_multicast(encap->daddr) || 1918 encap->tot_len == 0 || 1919 ntohs(encap->tot_len) + pimlen > skb->len) 1920 return 1; 1921 1922 read_lock(&mrt_lock); 1923 if (mrt->mroute_reg_vif_num >= 0) 1924 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev; 1925 read_unlock(&mrt_lock); 1926 1927 if (reg_dev == NULL) 1928 return 1; 1929 1930 skb->mac_header = skb->network_header; 1931 skb_pull(skb, (u8 *)encap - skb->data); 1932 skb_reset_network_header(skb); 1933 skb->protocol = htons(ETH_P_IP); 1934 skb->ip_summed = CHECKSUM_NONE; 1935 skb->pkt_type = PACKET_HOST; 1936 1937 skb_tunnel_rx(skb, reg_dev); 1938 1939 netif_rx(skb); 1940 1941 return NET_RX_SUCCESS; 1942 } 1943 #endif 1944 1945 #ifdef CONFIG_IP_PIMSM_V1 1946 /* 1947 * Handle IGMP messages of PIMv1 1948 */ 1949 1950 int pim_rcv_v1(struct sk_buff *skb) 1951 { 1952 struct igmphdr *pim; 1953 struct net *net = dev_net(skb->dev); 1954 struct mr_table *mrt; 1955 1956 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 1957 goto drop; 1958 1959 pim = igmp_hdr(skb); 1960 1961 mrt = ipmr_rt_fib_lookup(net, skb); 1962 if (IS_ERR(mrt)) 1963 goto drop; 1964 if (!mrt->mroute_do_pim || 1965 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 1966 goto drop; 1967 1968 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 1969 drop: 1970 kfree_skb(skb); 1971 } 1972 return 0; 1973 } 1974 #endif 1975 1976 #ifdef CONFIG_IP_PIMSM_V2 1977 static int pim_rcv(struct sk_buff *skb) 1978 { 1979 struct pimreghdr *pim; 1980 struct net *net = dev_net(skb->dev); 1981 struct mr_table *mrt; 1982 1983 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 1984 goto drop; 1985 1986 pim = (struct pimreghdr *)skb_transport_header(skb); 1987 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) || 1988 (pim->flags & PIM_NULL_REGISTER) || 1989 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 1990 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 1991 goto drop; 1992 1993 mrt = ipmr_rt_fib_lookup(net, skb); 1994 if (IS_ERR(mrt)) 1995 goto drop; 1996 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 1997 drop: 1998 kfree_skb(skb); 1999 } 2000 return 0; 2001 } 2002 #endif 2003 2004 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2005 struct mfc_cache *c, struct rtmsg *rtm) 2006 { 2007 int ct; 2008 struct rtnexthop *nhp; 2009 u8 *b = skb_tail_pointer(skb); 2010 struct rtattr *mp_head; 2011 2012 /* If cache is unresolved, don't try to parse IIF and OIF */ 2013 if (c->mfc_parent >= MAXVIFS) 2014 return -ENOENT; 2015 2016 if (VIF_EXISTS(mrt, c->mfc_parent)) 2017 RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex); 2018 2019 mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0)); 2020 2021 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { 2022 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) { 2023 if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4)) 2024 goto rtattr_failure; 2025 nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp))); 2026 nhp->rtnh_flags = 0; 2027 nhp->rtnh_hops = c->mfc_un.res.ttls[ct]; 2028 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex; 2029 nhp->rtnh_len = sizeof(*nhp); 2030 } 2031 } 2032 mp_head->rta_type = RTA_MULTIPATH; 2033 mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head; 2034 rtm->rtm_type = RTN_MULTICAST; 2035 return 1; 2036 2037 rtattr_failure: 2038 nlmsg_trim(skb, b); 2039 return -EMSGSIZE; 2040 } 2041 2042 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2043 __be32 saddr, __be32 daddr, 2044 struct rtmsg *rtm, int nowait) 2045 { 2046 struct mfc_cache *cache; 2047 struct mr_table *mrt; 2048 int err; 2049 2050 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2051 if (mrt == NULL) 2052 return -ENOENT; 2053 2054 rcu_read_lock(); 2055 cache = ipmr_cache_find(mrt, saddr, daddr); 2056 2057 if (cache == NULL) { 2058 struct sk_buff *skb2; 2059 struct iphdr *iph; 2060 struct net_device *dev; 2061 int vif = -1; 2062 2063 if (nowait) { 2064 rcu_read_unlock(); 2065 return -EAGAIN; 2066 } 2067 2068 dev = skb->dev; 2069 read_lock(&mrt_lock); 2070 if (dev) 2071 vif = ipmr_find_vif(mrt, dev); 2072 if (vif < 0) { 2073 read_unlock(&mrt_lock); 2074 rcu_read_unlock(); 2075 return -ENODEV; 2076 } 2077 skb2 = skb_clone(skb, GFP_ATOMIC); 2078 if (!skb2) { 2079 read_unlock(&mrt_lock); 2080 rcu_read_unlock(); 2081 return -ENOMEM; 2082 } 2083 2084 skb_push(skb2, sizeof(struct iphdr)); 2085 skb_reset_network_header(skb2); 2086 iph = ip_hdr(skb2); 2087 iph->ihl = sizeof(struct iphdr) >> 2; 2088 iph->saddr = saddr; 2089 iph->daddr = daddr; 2090 iph->version = 0; 2091 err = ipmr_cache_unresolved(mrt, vif, skb2); 2092 read_unlock(&mrt_lock); 2093 rcu_read_unlock(); 2094 return err; 2095 } 2096 2097 read_lock(&mrt_lock); 2098 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY)) 2099 cache->mfc_flags |= MFC_NOTIFY; 2100 err = __ipmr_fill_mroute(mrt, skb, cache, rtm); 2101 read_unlock(&mrt_lock); 2102 rcu_read_unlock(); 2103 return err; 2104 } 2105 2106 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2107 u32 pid, u32 seq, struct mfc_cache *c) 2108 { 2109 struct nlmsghdr *nlh; 2110 struct rtmsg *rtm; 2111 2112 nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI); 2113 if (nlh == NULL) 2114 return -EMSGSIZE; 2115 2116 rtm = nlmsg_data(nlh); 2117 rtm->rtm_family = RTNL_FAMILY_IPMR; 2118 rtm->rtm_dst_len = 32; 2119 rtm->rtm_src_len = 32; 2120 rtm->rtm_tos = 0; 2121 rtm->rtm_table = mrt->id; 2122 NLA_PUT_U32(skb, RTA_TABLE, mrt->id); 2123 rtm->rtm_type = RTN_MULTICAST; 2124 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2125 rtm->rtm_protocol = RTPROT_UNSPEC; 2126 rtm->rtm_flags = 0; 2127 2128 NLA_PUT_BE32(skb, RTA_SRC, c->mfc_origin); 2129 NLA_PUT_BE32(skb, RTA_DST, c->mfc_mcastgrp); 2130 2131 if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0) 2132 goto nla_put_failure; 2133 2134 return nlmsg_end(skb, nlh); 2135 2136 nla_put_failure: 2137 nlmsg_cancel(skb, nlh); 2138 return -EMSGSIZE; 2139 } 2140 2141 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2142 { 2143 struct net *net = sock_net(skb->sk); 2144 struct mr_table *mrt; 2145 struct mfc_cache *mfc; 2146 unsigned int t = 0, s_t; 2147 unsigned int h = 0, s_h; 2148 unsigned int e = 0, s_e; 2149 2150 s_t = cb->args[0]; 2151 s_h = cb->args[1]; 2152 s_e = cb->args[2]; 2153 2154 rcu_read_lock(); 2155 ipmr_for_each_table(mrt, net) { 2156 if (t < s_t) 2157 goto next_table; 2158 if (t > s_t) 2159 s_h = 0; 2160 for (h = s_h; h < MFC_LINES; h++) { 2161 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) { 2162 if (e < s_e) 2163 goto next_entry; 2164 if (ipmr_fill_mroute(mrt, skb, 2165 NETLINK_CB(cb->skb).pid, 2166 cb->nlh->nlmsg_seq, 2167 mfc) < 0) 2168 goto done; 2169 next_entry: 2170 e++; 2171 } 2172 e = s_e = 0; 2173 } 2174 s_h = 0; 2175 next_table: 2176 t++; 2177 } 2178 done: 2179 rcu_read_unlock(); 2180 2181 cb->args[2] = e; 2182 cb->args[1] = h; 2183 cb->args[0] = t; 2184 2185 return skb->len; 2186 } 2187 2188 #ifdef CONFIG_PROC_FS 2189 /* 2190 * The /proc interfaces to multicast routing : 2191 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2192 */ 2193 struct ipmr_vif_iter { 2194 struct seq_net_private p; 2195 struct mr_table *mrt; 2196 int ct; 2197 }; 2198 2199 static struct vif_device *ipmr_vif_seq_idx(struct net *net, 2200 struct ipmr_vif_iter *iter, 2201 loff_t pos) 2202 { 2203 struct mr_table *mrt = iter->mrt; 2204 2205 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) { 2206 if (!VIF_EXISTS(mrt, iter->ct)) 2207 continue; 2208 if (pos-- == 0) 2209 return &mrt->vif_table[iter->ct]; 2210 } 2211 return NULL; 2212 } 2213 2214 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2215 __acquires(mrt_lock) 2216 { 2217 struct ipmr_vif_iter *iter = seq->private; 2218 struct net *net = seq_file_net(seq); 2219 struct mr_table *mrt; 2220 2221 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2222 if (mrt == NULL) 2223 return ERR_PTR(-ENOENT); 2224 2225 iter->mrt = mrt; 2226 2227 read_lock(&mrt_lock); 2228 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1) 2229 : SEQ_START_TOKEN; 2230 } 2231 2232 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2233 { 2234 struct ipmr_vif_iter *iter = seq->private; 2235 struct net *net = seq_file_net(seq); 2236 struct mr_table *mrt = iter->mrt; 2237 2238 ++*pos; 2239 if (v == SEQ_START_TOKEN) 2240 return ipmr_vif_seq_idx(net, iter, 0); 2241 2242 while (++iter->ct < mrt->maxvif) { 2243 if (!VIF_EXISTS(mrt, iter->ct)) 2244 continue; 2245 return &mrt->vif_table[iter->ct]; 2246 } 2247 return NULL; 2248 } 2249 2250 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2251 __releases(mrt_lock) 2252 { 2253 read_unlock(&mrt_lock); 2254 } 2255 2256 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2257 { 2258 struct ipmr_vif_iter *iter = seq->private; 2259 struct mr_table *mrt = iter->mrt; 2260 2261 if (v == SEQ_START_TOKEN) { 2262 seq_puts(seq, 2263 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2264 } else { 2265 const struct vif_device *vif = v; 2266 const char *name = vif->dev ? vif->dev->name : "none"; 2267 2268 seq_printf(seq, 2269 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2270 vif - mrt->vif_table, 2271 name, vif->bytes_in, vif->pkt_in, 2272 vif->bytes_out, vif->pkt_out, 2273 vif->flags, vif->local, vif->remote); 2274 } 2275 return 0; 2276 } 2277 2278 static const struct seq_operations ipmr_vif_seq_ops = { 2279 .start = ipmr_vif_seq_start, 2280 .next = ipmr_vif_seq_next, 2281 .stop = ipmr_vif_seq_stop, 2282 .show = ipmr_vif_seq_show, 2283 }; 2284 2285 static int ipmr_vif_open(struct inode *inode, struct file *file) 2286 { 2287 return seq_open_net(inode, file, &ipmr_vif_seq_ops, 2288 sizeof(struct ipmr_vif_iter)); 2289 } 2290 2291 static const struct file_operations ipmr_vif_fops = { 2292 .owner = THIS_MODULE, 2293 .open = ipmr_vif_open, 2294 .read = seq_read, 2295 .llseek = seq_lseek, 2296 .release = seq_release_net, 2297 }; 2298 2299 struct ipmr_mfc_iter { 2300 struct seq_net_private p; 2301 struct mr_table *mrt; 2302 struct list_head *cache; 2303 int ct; 2304 }; 2305 2306 2307 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net, 2308 struct ipmr_mfc_iter *it, loff_t pos) 2309 { 2310 struct mr_table *mrt = it->mrt; 2311 struct mfc_cache *mfc; 2312 2313 rcu_read_lock(); 2314 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) { 2315 it->cache = &mrt->mfc_cache_array[it->ct]; 2316 list_for_each_entry_rcu(mfc, it->cache, list) 2317 if (pos-- == 0) 2318 return mfc; 2319 } 2320 rcu_read_unlock(); 2321 2322 spin_lock_bh(&mfc_unres_lock); 2323 it->cache = &mrt->mfc_unres_queue; 2324 list_for_each_entry(mfc, it->cache, list) 2325 if (pos-- == 0) 2326 return mfc; 2327 spin_unlock_bh(&mfc_unres_lock); 2328 2329 it->cache = NULL; 2330 return NULL; 2331 } 2332 2333 2334 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2335 { 2336 struct ipmr_mfc_iter *it = seq->private; 2337 struct net *net = seq_file_net(seq); 2338 struct mr_table *mrt; 2339 2340 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2341 if (mrt == NULL) 2342 return ERR_PTR(-ENOENT); 2343 2344 it->mrt = mrt; 2345 it->cache = NULL; 2346 it->ct = 0; 2347 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1) 2348 : SEQ_START_TOKEN; 2349 } 2350 2351 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2352 { 2353 struct mfc_cache *mfc = v; 2354 struct ipmr_mfc_iter *it = seq->private; 2355 struct net *net = seq_file_net(seq); 2356 struct mr_table *mrt = it->mrt; 2357 2358 ++*pos; 2359 2360 if (v == SEQ_START_TOKEN) 2361 return ipmr_mfc_seq_idx(net, seq->private, 0); 2362 2363 if (mfc->list.next != it->cache) 2364 return list_entry(mfc->list.next, struct mfc_cache, list); 2365 2366 if (it->cache == &mrt->mfc_unres_queue) 2367 goto end_of_list; 2368 2369 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]); 2370 2371 while (++it->ct < MFC_LINES) { 2372 it->cache = &mrt->mfc_cache_array[it->ct]; 2373 if (list_empty(it->cache)) 2374 continue; 2375 return list_first_entry(it->cache, struct mfc_cache, list); 2376 } 2377 2378 /* exhausted cache_array, show unresolved */ 2379 rcu_read_unlock(); 2380 it->cache = &mrt->mfc_unres_queue; 2381 it->ct = 0; 2382 2383 spin_lock_bh(&mfc_unres_lock); 2384 if (!list_empty(it->cache)) 2385 return list_first_entry(it->cache, struct mfc_cache, list); 2386 2387 end_of_list: 2388 spin_unlock_bh(&mfc_unres_lock); 2389 it->cache = NULL; 2390 2391 return NULL; 2392 } 2393 2394 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v) 2395 { 2396 struct ipmr_mfc_iter *it = seq->private; 2397 struct mr_table *mrt = it->mrt; 2398 2399 if (it->cache == &mrt->mfc_unres_queue) 2400 spin_unlock_bh(&mfc_unres_lock); 2401 else if (it->cache == &mrt->mfc_cache_array[it->ct]) 2402 rcu_read_unlock(); 2403 } 2404 2405 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2406 { 2407 int n; 2408 2409 if (v == SEQ_START_TOKEN) { 2410 seq_puts(seq, 2411 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2412 } else { 2413 const struct mfc_cache *mfc = v; 2414 const struct ipmr_mfc_iter *it = seq->private; 2415 const struct mr_table *mrt = it->mrt; 2416 2417 seq_printf(seq, "%08X %08X %-3hd", 2418 (__force u32) mfc->mfc_mcastgrp, 2419 (__force u32) mfc->mfc_origin, 2420 mfc->mfc_parent); 2421 2422 if (it->cache != &mrt->mfc_unres_queue) { 2423 seq_printf(seq, " %8lu %8lu %8lu", 2424 mfc->mfc_un.res.pkt, 2425 mfc->mfc_un.res.bytes, 2426 mfc->mfc_un.res.wrong_if); 2427 for (n = mfc->mfc_un.res.minvif; 2428 n < mfc->mfc_un.res.maxvif; n++) { 2429 if (VIF_EXISTS(mrt, n) && 2430 mfc->mfc_un.res.ttls[n] < 255) 2431 seq_printf(seq, 2432 " %2d:%-3d", 2433 n, mfc->mfc_un.res.ttls[n]); 2434 } 2435 } else { 2436 /* unresolved mfc_caches don't contain 2437 * pkt, bytes and wrong_if values 2438 */ 2439 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 2440 } 2441 seq_putc(seq, '\n'); 2442 } 2443 return 0; 2444 } 2445 2446 static const struct seq_operations ipmr_mfc_seq_ops = { 2447 .start = ipmr_mfc_seq_start, 2448 .next = ipmr_mfc_seq_next, 2449 .stop = ipmr_mfc_seq_stop, 2450 .show = ipmr_mfc_seq_show, 2451 }; 2452 2453 static int ipmr_mfc_open(struct inode *inode, struct file *file) 2454 { 2455 return seq_open_net(inode, file, &ipmr_mfc_seq_ops, 2456 sizeof(struct ipmr_mfc_iter)); 2457 } 2458 2459 static const struct file_operations ipmr_mfc_fops = { 2460 .owner = THIS_MODULE, 2461 .open = ipmr_mfc_open, 2462 .read = seq_read, 2463 .llseek = seq_lseek, 2464 .release = seq_release_net, 2465 }; 2466 #endif 2467 2468 #ifdef CONFIG_IP_PIMSM_V2 2469 static const struct net_protocol pim_protocol = { 2470 .handler = pim_rcv, 2471 .netns_ok = 1, 2472 }; 2473 #endif 2474 2475 2476 /* 2477 * Setup for IP multicast routing 2478 */ 2479 static int __net_init ipmr_net_init(struct net *net) 2480 { 2481 int err; 2482 2483 err = ipmr_rules_init(net); 2484 if (err < 0) 2485 goto fail; 2486 2487 #ifdef CONFIG_PROC_FS 2488 err = -ENOMEM; 2489 if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops)) 2490 goto proc_vif_fail; 2491 if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops)) 2492 goto proc_cache_fail; 2493 #endif 2494 return 0; 2495 2496 #ifdef CONFIG_PROC_FS 2497 proc_cache_fail: 2498 proc_net_remove(net, "ip_mr_vif"); 2499 proc_vif_fail: 2500 ipmr_rules_exit(net); 2501 #endif 2502 fail: 2503 return err; 2504 } 2505 2506 static void __net_exit ipmr_net_exit(struct net *net) 2507 { 2508 #ifdef CONFIG_PROC_FS 2509 proc_net_remove(net, "ip_mr_cache"); 2510 proc_net_remove(net, "ip_mr_vif"); 2511 #endif 2512 ipmr_rules_exit(net); 2513 } 2514 2515 static struct pernet_operations ipmr_net_ops = { 2516 .init = ipmr_net_init, 2517 .exit = ipmr_net_exit, 2518 }; 2519 2520 int __init ip_mr_init(void) 2521 { 2522 int err; 2523 2524 mrt_cachep = kmem_cache_create("ip_mrt_cache", 2525 sizeof(struct mfc_cache), 2526 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 2527 NULL); 2528 if (!mrt_cachep) 2529 return -ENOMEM; 2530 2531 err = register_pernet_subsys(&ipmr_net_ops); 2532 if (err) 2533 goto reg_pernet_fail; 2534 2535 err = register_netdevice_notifier(&ip_mr_notifier); 2536 if (err) 2537 goto reg_notif_fail; 2538 #ifdef CONFIG_IP_PIMSM_V2 2539 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 2540 pr_err("%s: can't add PIM protocol\n", __func__); 2541 err = -EAGAIN; 2542 goto add_proto_fail; 2543 } 2544 #endif 2545 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 2546 NULL, ipmr_rtm_dumproute, NULL); 2547 return 0; 2548 2549 #ifdef CONFIG_IP_PIMSM_V2 2550 add_proto_fail: 2551 unregister_netdevice_notifier(&ip_mr_notifier); 2552 #endif 2553 reg_notif_fail: 2554 unregister_pernet_subsys(&ipmr_net_ops); 2555 reg_pernet_fail: 2556 kmem_cache_destroy(mrt_cachep); 2557 return err; 2558 } 2559