xref: /openbmc/linux/net/ipv4/ipmr.c (revision 71a15258f3c92eb1c4ae98bbfca9459f4723d5d3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	IP multicast routing support for mrouted 3.6/3.8
4  *
5  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6  *	  Linux Consultancy and Custom Driver Development
7  *
8  *	Fixes:
9  *	Michael Chastain	:	Incorrect size of copying.
10  *	Alan Cox		:	Added the cache manager code
11  *	Alan Cox		:	Fixed the clone/copy bug and device race.
12  *	Mike McLagan		:	Routing by source
13  *	Malcolm Beattie		:	Buffer handling fixes.
14  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
15  *	SVR Anand		:	Fixed several multicast bugs and problems.
16  *	Alexey Kuznetsov	:	Status, optimisations and more.
17  *	Brad Parker		:	Better behaviour on mrouted upcall
18  *					overflow.
19  *      Carlos Picoto           :       PIMv1 Support
20  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
21  *					Relax this requirement to work with older peers.
22  */
23 
24 #include <linux/uaccess.h>
25 #include <linux/types.h>
26 #include <linux/cache.h>
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/kernel.h>
31 #include <linux/fcntl.h>
32 #include <linux/stat.h>
33 #include <linux/socket.h>
34 #include <linux/in.h>
35 #include <linux/inet.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/igmp.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mroute.h>
42 #include <linux/init.h>
43 #include <linux/if_ether.h>
44 #include <linux/slab.h>
45 #include <net/net_namespace.h>
46 #include <net/ip.h>
47 #include <net/protocol.h>
48 #include <linux/skbuff.h>
49 #include <net/route.h>
50 #include <net/icmp.h>
51 #include <net/udp.h>
52 #include <net/raw.h>
53 #include <linux/notifier.h>
54 #include <linux/if_arp.h>
55 #include <linux/netfilter_ipv4.h>
56 #include <linux/compat.h>
57 #include <linux/export.h>
58 #include <linux/rhashtable.h>
59 #include <net/ip_tunnels.h>
60 #include <net/checksum.h>
61 #include <net/netlink.h>
62 #include <net/fib_rules.h>
63 #include <linux/netconf.h>
64 #include <net/rtnh.h>
65 
66 #include <linux/nospec.h>
67 
68 struct ipmr_rule {
69 	struct fib_rule		common;
70 };
71 
72 struct ipmr_result {
73 	struct mr_table		*mrt;
74 };
75 
76 /* Big lock, protecting vif table, mrt cache and mroute socket state.
77  * Note that the changes are semaphored via rtnl_lock.
78  */
79 
80 static DEFINE_SPINLOCK(mrt_lock);
81 
82 static struct net_device *vif_dev_read(const struct vif_device *vif)
83 {
84 	return rcu_dereference(vif->dev);
85 }
86 
87 /* Multicast router control variables */
88 
89 /* Special spinlock for queue of unresolved entries */
90 static DEFINE_SPINLOCK(mfc_unres_lock);
91 
92 /* We return to original Alan's scheme. Hash table of resolved
93  * entries is changed only in process context and protected
94  * with weak lock mrt_lock. Queue of unresolved entries is protected
95  * with strong spinlock mfc_unres_lock.
96  *
97  * In this case data path is free of exclusive locks at all.
98  */
99 
100 static struct kmem_cache *mrt_cachep __ro_after_init;
101 
102 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
103 static void ipmr_free_table(struct mr_table *mrt);
104 
105 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
106 			  struct net_device *dev, struct sk_buff *skb,
107 			  struct mfc_cache *cache, int local);
108 static int ipmr_cache_report(const struct mr_table *mrt,
109 			     struct sk_buff *pkt, vifi_t vifi, int assert);
110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
111 				 int cmd);
112 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
113 static void mroute_clean_tables(struct mr_table *mrt, int flags);
114 static void ipmr_expire_process(struct timer_list *t);
115 
116 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
117 #define ipmr_for_each_table(mrt, net)					\
118 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list,	\
119 				lockdep_rtnl_is_held() ||		\
120 				list_empty(&net->ipv4.mr_tables))
121 
122 static struct mr_table *ipmr_mr_table_iter(struct net *net,
123 					   struct mr_table *mrt)
124 {
125 	struct mr_table *ret;
126 
127 	if (!mrt)
128 		ret = list_entry_rcu(net->ipv4.mr_tables.next,
129 				     struct mr_table, list);
130 	else
131 		ret = list_entry_rcu(mrt->list.next,
132 				     struct mr_table, list);
133 
134 	if (&ret->list == &net->ipv4.mr_tables)
135 		return NULL;
136 	return ret;
137 }
138 
139 static struct mr_table *__ipmr_get_table(struct net *net, u32 id)
140 {
141 	struct mr_table *mrt;
142 
143 	ipmr_for_each_table(mrt, net) {
144 		if (mrt->id == id)
145 			return mrt;
146 	}
147 	return NULL;
148 }
149 
150 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
151 {
152 	struct mr_table *mrt;
153 
154 	rcu_read_lock();
155 	mrt = __ipmr_get_table(net, id);
156 	rcu_read_unlock();
157 	return mrt;
158 }
159 
160 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
161 			   struct mr_table **mrt)
162 {
163 	int err;
164 	struct ipmr_result res;
165 	struct fib_lookup_arg arg = {
166 		.result = &res,
167 		.flags = FIB_LOOKUP_NOREF,
168 	};
169 
170 	/* update flow if oif or iif point to device enslaved to l3mdev */
171 	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
172 
173 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
174 			       flowi4_to_flowi(flp4), 0, &arg);
175 	if (err < 0)
176 		return err;
177 	*mrt = res.mrt;
178 	return 0;
179 }
180 
181 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
182 			    int flags, struct fib_lookup_arg *arg)
183 {
184 	struct ipmr_result *res = arg->result;
185 	struct mr_table *mrt;
186 
187 	switch (rule->action) {
188 	case FR_ACT_TO_TBL:
189 		break;
190 	case FR_ACT_UNREACHABLE:
191 		return -ENETUNREACH;
192 	case FR_ACT_PROHIBIT:
193 		return -EACCES;
194 	case FR_ACT_BLACKHOLE:
195 	default:
196 		return -EINVAL;
197 	}
198 
199 	arg->table = fib_rule_get_table(rule, arg);
200 
201 	mrt = __ipmr_get_table(rule->fr_net, arg->table);
202 	if (!mrt)
203 		return -EAGAIN;
204 	res->mrt = mrt;
205 	return 0;
206 }
207 
208 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
209 {
210 	return 1;
211 }
212 
213 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
214 			       struct fib_rule_hdr *frh, struct nlattr **tb,
215 			       struct netlink_ext_ack *extack)
216 {
217 	return 0;
218 }
219 
220 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
221 			     struct nlattr **tb)
222 {
223 	return 1;
224 }
225 
226 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
227 			  struct fib_rule_hdr *frh)
228 {
229 	frh->dst_len = 0;
230 	frh->src_len = 0;
231 	frh->tos     = 0;
232 	return 0;
233 }
234 
235 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
236 	.family		= RTNL_FAMILY_IPMR,
237 	.rule_size	= sizeof(struct ipmr_rule),
238 	.addr_size	= sizeof(u32),
239 	.action		= ipmr_rule_action,
240 	.match		= ipmr_rule_match,
241 	.configure	= ipmr_rule_configure,
242 	.compare	= ipmr_rule_compare,
243 	.fill		= ipmr_rule_fill,
244 	.nlgroup	= RTNLGRP_IPV4_RULE,
245 	.owner		= THIS_MODULE,
246 };
247 
248 static int __net_init ipmr_rules_init(struct net *net)
249 {
250 	struct fib_rules_ops *ops;
251 	struct mr_table *mrt;
252 	int err;
253 
254 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
255 	if (IS_ERR(ops))
256 		return PTR_ERR(ops);
257 
258 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
259 
260 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
261 	if (IS_ERR(mrt)) {
262 		err = PTR_ERR(mrt);
263 		goto err1;
264 	}
265 
266 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
267 	if (err < 0)
268 		goto err2;
269 
270 	net->ipv4.mr_rules_ops = ops;
271 	return 0;
272 
273 err2:
274 	rtnl_lock();
275 	ipmr_free_table(mrt);
276 	rtnl_unlock();
277 err1:
278 	fib_rules_unregister(ops);
279 	return err;
280 }
281 
282 static void __net_exit ipmr_rules_exit(struct net *net)
283 {
284 	struct mr_table *mrt, *next;
285 
286 	ASSERT_RTNL();
287 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
288 		list_del(&mrt->list);
289 		ipmr_free_table(mrt);
290 	}
291 	fib_rules_unregister(net->ipv4.mr_rules_ops);
292 }
293 
294 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
295 			   struct netlink_ext_ack *extack)
296 {
297 	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
298 }
299 
300 static unsigned int ipmr_rules_seq_read(struct net *net)
301 {
302 	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
303 }
304 
305 bool ipmr_rule_default(const struct fib_rule *rule)
306 {
307 	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
308 }
309 EXPORT_SYMBOL(ipmr_rule_default);
310 #else
311 #define ipmr_for_each_table(mrt, net) \
312 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
313 
314 static struct mr_table *ipmr_mr_table_iter(struct net *net,
315 					   struct mr_table *mrt)
316 {
317 	if (!mrt)
318 		return net->ipv4.mrt;
319 	return NULL;
320 }
321 
322 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
323 {
324 	return net->ipv4.mrt;
325 }
326 
327 #define __ipmr_get_table ipmr_get_table
328 
329 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
330 			   struct mr_table **mrt)
331 {
332 	*mrt = net->ipv4.mrt;
333 	return 0;
334 }
335 
336 static int __net_init ipmr_rules_init(struct net *net)
337 {
338 	struct mr_table *mrt;
339 
340 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
341 	if (IS_ERR(mrt))
342 		return PTR_ERR(mrt);
343 	net->ipv4.mrt = mrt;
344 	return 0;
345 }
346 
347 static void __net_exit ipmr_rules_exit(struct net *net)
348 {
349 	ASSERT_RTNL();
350 	ipmr_free_table(net->ipv4.mrt);
351 	net->ipv4.mrt = NULL;
352 }
353 
354 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
355 			   struct netlink_ext_ack *extack)
356 {
357 	return 0;
358 }
359 
360 static unsigned int ipmr_rules_seq_read(struct net *net)
361 {
362 	return 0;
363 }
364 
365 bool ipmr_rule_default(const struct fib_rule *rule)
366 {
367 	return true;
368 }
369 EXPORT_SYMBOL(ipmr_rule_default);
370 #endif
371 
372 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
373 				const void *ptr)
374 {
375 	const struct mfc_cache_cmp_arg *cmparg = arg->key;
376 	const struct mfc_cache *c = ptr;
377 
378 	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
379 	       cmparg->mfc_origin != c->mfc_origin;
380 }
381 
382 static const struct rhashtable_params ipmr_rht_params = {
383 	.head_offset = offsetof(struct mr_mfc, mnode),
384 	.key_offset = offsetof(struct mfc_cache, cmparg),
385 	.key_len = sizeof(struct mfc_cache_cmp_arg),
386 	.nelem_hint = 3,
387 	.obj_cmpfn = ipmr_hash_cmp,
388 	.automatic_shrinking = true,
389 };
390 
391 static void ipmr_new_table_set(struct mr_table *mrt,
392 			       struct net *net)
393 {
394 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
395 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
396 #endif
397 }
398 
399 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
400 	.mfc_mcastgrp = htonl(INADDR_ANY),
401 	.mfc_origin = htonl(INADDR_ANY),
402 };
403 
404 static struct mr_table_ops ipmr_mr_table_ops = {
405 	.rht_params = &ipmr_rht_params,
406 	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
407 };
408 
409 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
410 {
411 	struct mr_table *mrt;
412 
413 	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
414 	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
415 		return ERR_PTR(-EINVAL);
416 
417 	mrt = __ipmr_get_table(net, id);
418 	if (mrt)
419 		return mrt;
420 
421 	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
422 			      ipmr_expire_process, ipmr_new_table_set);
423 }
424 
425 static void ipmr_free_table(struct mr_table *mrt)
426 {
427 	timer_shutdown_sync(&mrt->ipmr_expire_timer);
428 	mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
429 				 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
430 	rhltable_destroy(&mrt->mfc_hash);
431 	kfree(mrt);
432 }
433 
434 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
435 
436 /* Initialize ipmr pimreg/tunnel in_device */
437 static bool ipmr_init_vif_indev(const struct net_device *dev)
438 {
439 	struct in_device *in_dev;
440 
441 	ASSERT_RTNL();
442 
443 	in_dev = __in_dev_get_rtnl(dev);
444 	if (!in_dev)
445 		return false;
446 	ipv4_devconf_setall(in_dev);
447 	neigh_parms_data_state_setall(in_dev->arp_parms);
448 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
449 
450 	return true;
451 }
452 
453 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
454 {
455 	struct net_device *tunnel_dev, *new_dev;
456 	struct ip_tunnel_parm p = { };
457 	int err;
458 
459 	tunnel_dev = __dev_get_by_name(net, "tunl0");
460 	if (!tunnel_dev)
461 		goto out;
462 
463 	p.iph.daddr = v->vifc_rmt_addr.s_addr;
464 	p.iph.saddr = v->vifc_lcl_addr.s_addr;
465 	p.iph.version = 4;
466 	p.iph.ihl = 5;
467 	p.iph.protocol = IPPROTO_IPIP;
468 	sprintf(p.name, "dvmrp%d", v->vifc_vifi);
469 
470 	if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
471 		goto out;
472 	err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
473 			SIOCADDTUNNEL);
474 	if (err)
475 		goto out;
476 
477 	new_dev = __dev_get_by_name(net, p.name);
478 	if (!new_dev)
479 		goto out;
480 
481 	new_dev->flags |= IFF_MULTICAST;
482 	if (!ipmr_init_vif_indev(new_dev))
483 		goto out_unregister;
484 	if (dev_open(new_dev, NULL))
485 		goto out_unregister;
486 	dev_hold(new_dev);
487 	err = dev_set_allmulti(new_dev, 1);
488 	if (err) {
489 		dev_close(new_dev);
490 		tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
491 				SIOCDELTUNNEL);
492 		dev_put(new_dev);
493 		new_dev = ERR_PTR(err);
494 	}
495 	return new_dev;
496 
497 out_unregister:
498 	unregister_netdevice(new_dev);
499 out:
500 	return ERR_PTR(-ENOBUFS);
501 }
502 
503 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
504 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
505 {
506 	struct net *net = dev_net(dev);
507 	struct mr_table *mrt;
508 	struct flowi4 fl4 = {
509 		.flowi4_oif	= dev->ifindex,
510 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
511 		.flowi4_mark	= skb->mark,
512 	};
513 	int err;
514 
515 	err = ipmr_fib_lookup(net, &fl4, &mrt);
516 	if (err < 0) {
517 		kfree_skb(skb);
518 		return err;
519 	}
520 
521 	DEV_STATS_ADD(dev, tx_bytes, skb->len);
522 	DEV_STATS_INC(dev, tx_packets);
523 	rcu_read_lock();
524 
525 	/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
526 	ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num),
527 			  IGMPMSG_WHOLEPKT);
528 
529 	rcu_read_unlock();
530 	kfree_skb(skb);
531 	return NETDEV_TX_OK;
532 }
533 
534 static int reg_vif_get_iflink(const struct net_device *dev)
535 {
536 	return 0;
537 }
538 
539 static const struct net_device_ops reg_vif_netdev_ops = {
540 	.ndo_start_xmit	= reg_vif_xmit,
541 	.ndo_get_iflink = reg_vif_get_iflink,
542 };
543 
544 static void reg_vif_setup(struct net_device *dev)
545 {
546 	dev->type		= ARPHRD_PIMREG;
547 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
548 	dev->flags		= IFF_NOARP;
549 	dev->netdev_ops		= &reg_vif_netdev_ops;
550 	dev->needs_free_netdev	= true;
551 	dev->features		|= NETIF_F_NETNS_LOCAL;
552 }
553 
554 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
555 {
556 	struct net_device *dev;
557 	char name[IFNAMSIZ];
558 
559 	if (mrt->id == RT_TABLE_DEFAULT)
560 		sprintf(name, "pimreg");
561 	else
562 		sprintf(name, "pimreg%u", mrt->id);
563 
564 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
565 
566 	if (!dev)
567 		return NULL;
568 
569 	dev_net_set(dev, net);
570 
571 	if (register_netdevice(dev)) {
572 		free_netdev(dev);
573 		return NULL;
574 	}
575 
576 	if (!ipmr_init_vif_indev(dev))
577 		goto failure;
578 	if (dev_open(dev, NULL))
579 		goto failure;
580 
581 	dev_hold(dev);
582 
583 	return dev;
584 
585 failure:
586 	unregister_netdevice(dev);
587 	return NULL;
588 }
589 
590 /* called with rcu_read_lock() */
591 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
592 		     unsigned int pimlen)
593 {
594 	struct net_device *reg_dev = NULL;
595 	struct iphdr *encap;
596 	int vif_num;
597 
598 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
599 	/* Check that:
600 	 * a. packet is really sent to a multicast group
601 	 * b. packet is not a NULL-REGISTER
602 	 * c. packet is not truncated
603 	 */
604 	if (!ipv4_is_multicast(encap->daddr) ||
605 	    encap->tot_len == 0 ||
606 	    ntohs(encap->tot_len) + pimlen > skb->len)
607 		return 1;
608 
609 	/* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
610 	vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
611 	if (vif_num >= 0)
612 		reg_dev = vif_dev_read(&mrt->vif_table[vif_num]);
613 	if (!reg_dev)
614 		return 1;
615 
616 	skb->mac_header = skb->network_header;
617 	skb_pull(skb, (u8 *)encap - skb->data);
618 	skb_reset_network_header(skb);
619 	skb->protocol = htons(ETH_P_IP);
620 	skb->ip_summed = CHECKSUM_NONE;
621 
622 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
623 
624 	netif_rx(skb);
625 
626 	return NET_RX_SUCCESS;
627 }
628 #else
629 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
630 {
631 	return NULL;
632 }
633 #endif
634 
635 static int call_ipmr_vif_entry_notifiers(struct net *net,
636 					 enum fib_event_type event_type,
637 					 struct vif_device *vif,
638 					 struct net_device *vif_dev,
639 					 vifi_t vif_index, u32 tb_id)
640 {
641 	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
642 				     vif, vif_dev, vif_index, tb_id,
643 				     &net->ipv4.ipmr_seq);
644 }
645 
646 static int call_ipmr_mfc_entry_notifiers(struct net *net,
647 					 enum fib_event_type event_type,
648 					 struct mfc_cache *mfc, u32 tb_id)
649 {
650 	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
651 				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
652 }
653 
654 /**
655  *	vif_delete - Delete a VIF entry
656  *	@mrt: Table to delete from
657  *	@vifi: VIF identifier to delete
658  *	@notify: Set to 1, if the caller is a notifier_call
659  *	@head: if unregistering the VIF, place it on this queue
660  */
661 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
662 		      struct list_head *head)
663 {
664 	struct net *net = read_pnet(&mrt->net);
665 	struct vif_device *v;
666 	struct net_device *dev;
667 	struct in_device *in_dev;
668 
669 	if (vifi < 0 || vifi >= mrt->maxvif)
670 		return -EADDRNOTAVAIL;
671 
672 	v = &mrt->vif_table[vifi];
673 
674 	dev = rtnl_dereference(v->dev);
675 	if (!dev)
676 		return -EADDRNOTAVAIL;
677 
678 	spin_lock(&mrt_lock);
679 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev,
680 				      vifi, mrt->id);
681 	RCU_INIT_POINTER(v->dev, NULL);
682 
683 	if (vifi == mrt->mroute_reg_vif_num) {
684 		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
685 		WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
686 	}
687 	if (vifi + 1 == mrt->maxvif) {
688 		int tmp;
689 
690 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
691 			if (VIF_EXISTS(mrt, tmp))
692 				break;
693 		}
694 		WRITE_ONCE(mrt->maxvif, tmp + 1);
695 	}
696 
697 	spin_unlock(&mrt_lock);
698 
699 	dev_set_allmulti(dev, -1);
700 
701 	in_dev = __in_dev_get_rtnl(dev);
702 	if (in_dev) {
703 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
704 		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
705 					    NETCONFA_MC_FORWARDING,
706 					    dev->ifindex, &in_dev->cnf);
707 		ip_rt_multicast_event(in_dev);
708 	}
709 
710 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
711 		unregister_netdevice_queue(dev, head);
712 
713 	netdev_put(dev, &v->dev_tracker);
714 	return 0;
715 }
716 
717 static void ipmr_cache_free_rcu(struct rcu_head *head)
718 {
719 	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
720 
721 	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
722 }
723 
724 static void ipmr_cache_free(struct mfc_cache *c)
725 {
726 	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
727 }
728 
729 /* Destroy an unresolved cache entry, killing queued skbs
730  * and reporting error to netlink readers.
731  */
732 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
733 {
734 	struct net *net = read_pnet(&mrt->net);
735 	struct sk_buff *skb;
736 	struct nlmsgerr *e;
737 
738 	atomic_dec(&mrt->cache_resolve_queue_len);
739 
740 	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
741 		if (ip_hdr(skb)->version == 0) {
742 			struct nlmsghdr *nlh = skb_pull(skb,
743 							sizeof(struct iphdr));
744 			nlh->nlmsg_type = NLMSG_ERROR;
745 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
746 			skb_trim(skb, nlh->nlmsg_len);
747 			e = nlmsg_data(nlh);
748 			e->error = -ETIMEDOUT;
749 			memset(&e->msg, 0, sizeof(e->msg));
750 
751 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
752 		} else {
753 			kfree_skb(skb);
754 		}
755 	}
756 
757 	ipmr_cache_free(c);
758 }
759 
760 /* Timer process for the unresolved queue. */
761 static void ipmr_expire_process(struct timer_list *t)
762 {
763 	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
764 	struct mr_mfc *c, *next;
765 	unsigned long expires;
766 	unsigned long now;
767 
768 	if (!spin_trylock(&mfc_unres_lock)) {
769 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
770 		return;
771 	}
772 
773 	if (list_empty(&mrt->mfc_unres_queue))
774 		goto out;
775 
776 	now = jiffies;
777 	expires = 10*HZ;
778 
779 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
780 		if (time_after(c->mfc_un.unres.expires, now)) {
781 			unsigned long interval = c->mfc_un.unres.expires - now;
782 			if (interval < expires)
783 				expires = interval;
784 			continue;
785 		}
786 
787 		list_del(&c->list);
788 		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
789 		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
790 	}
791 
792 	if (!list_empty(&mrt->mfc_unres_queue))
793 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
794 
795 out:
796 	spin_unlock(&mfc_unres_lock);
797 }
798 
799 /* Fill oifs list. It is called under locked mrt_lock. */
800 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
801 				   unsigned char *ttls)
802 {
803 	int vifi;
804 
805 	cache->mfc_un.res.minvif = MAXVIFS;
806 	cache->mfc_un.res.maxvif = 0;
807 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
808 
809 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
810 		if (VIF_EXISTS(mrt, vifi) &&
811 		    ttls[vifi] && ttls[vifi] < 255) {
812 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
813 			if (cache->mfc_un.res.minvif > vifi)
814 				cache->mfc_un.res.minvif = vifi;
815 			if (cache->mfc_un.res.maxvif <= vifi)
816 				cache->mfc_un.res.maxvif = vifi + 1;
817 		}
818 	}
819 	cache->mfc_un.res.lastuse = jiffies;
820 }
821 
822 static int vif_add(struct net *net, struct mr_table *mrt,
823 		   struct vifctl *vifc, int mrtsock)
824 {
825 	struct netdev_phys_item_id ppid = { };
826 	int vifi = vifc->vifc_vifi;
827 	struct vif_device *v = &mrt->vif_table[vifi];
828 	struct net_device *dev;
829 	struct in_device *in_dev;
830 	int err;
831 
832 	/* Is vif busy ? */
833 	if (VIF_EXISTS(mrt, vifi))
834 		return -EADDRINUSE;
835 
836 	switch (vifc->vifc_flags) {
837 	case VIFF_REGISTER:
838 		if (!ipmr_pimsm_enabled())
839 			return -EINVAL;
840 		/* Special Purpose VIF in PIM
841 		 * All the packets will be sent to the daemon
842 		 */
843 		if (mrt->mroute_reg_vif_num >= 0)
844 			return -EADDRINUSE;
845 		dev = ipmr_reg_vif(net, mrt);
846 		if (!dev)
847 			return -ENOBUFS;
848 		err = dev_set_allmulti(dev, 1);
849 		if (err) {
850 			unregister_netdevice(dev);
851 			dev_put(dev);
852 			return err;
853 		}
854 		break;
855 	case VIFF_TUNNEL:
856 		dev = ipmr_new_tunnel(net, vifc);
857 		if (IS_ERR(dev))
858 			return PTR_ERR(dev);
859 		break;
860 	case VIFF_USE_IFINDEX:
861 	case 0:
862 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
863 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
864 			if (dev && !__in_dev_get_rtnl(dev)) {
865 				dev_put(dev);
866 				return -EADDRNOTAVAIL;
867 			}
868 		} else {
869 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
870 		}
871 		if (!dev)
872 			return -EADDRNOTAVAIL;
873 		err = dev_set_allmulti(dev, 1);
874 		if (err) {
875 			dev_put(dev);
876 			return err;
877 		}
878 		break;
879 	default:
880 		return -EINVAL;
881 	}
882 
883 	in_dev = __in_dev_get_rtnl(dev);
884 	if (!in_dev) {
885 		dev_put(dev);
886 		return -EADDRNOTAVAIL;
887 	}
888 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
889 	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
890 				    dev->ifindex, &in_dev->cnf);
891 	ip_rt_multicast_event(in_dev);
892 
893 	/* Fill in the VIF structures */
894 	vif_device_init(v, dev, vifc->vifc_rate_limit,
895 			vifc->vifc_threshold,
896 			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
897 			(VIFF_TUNNEL | VIFF_REGISTER));
898 
899 	err = dev_get_port_parent_id(dev, &ppid, true);
900 	if (err == 0) {
901 		memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
902 		v->dev_parent_id.id_len = ppid.id_len;
903 	} else {
904 		v->dev_parent_id.id_len = 0;
905 	}
906 
907 	v->local = vifc->vifc_lcl_addr.s_addr;
908 	v->remote = vifc->vifc_rmt_addr.s_addr;
909 
910 	/* And finish update writing critical data */
911 	spin_lock(&mrt_lock);
912 	rcu_assign_pointer(v->dev, dev);
913 	netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
914 	if (v->flags & VIFF_REGISTER) {
915 		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
916 		WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
917 	}
918 	if (vifi+1 > mrt->maxvif)
919 		WRITE_ONCE(mrt->maxvif, vifi + 1);
920 	spin_unlock(&mrt_lock);
921 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev,
922 				      vifi, mrt->id);
923 	return 0;
924 }
925 
926 /* called with rcu_read_lock() */
927 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
928 					 __be32 origin,
929 					 __be32 mcastgrp)
930 {
931 	struct mfc_cache_cmp_arg arg = {
932 			.mfc_mcastgrp = mcastgrp,
933 			.mfc_origin = origin
934 	};
935 
936 	return mr_mfc_find(mrt, &arg);
937 }
938 
939 /* Look for a (*,G) entry */
940 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
941 					     __be32 mcastgrp, int vifi)
942 {
943 	struct mfc_cache_cmp_arg arg = {
944 			.mfc_mcastgrp = mcastgrp,
945 			.mfc_origin = htonl(INADDR_ANY)
946 	};
947 
948 	if (mcastgrp == htonl(INADDR_ANY))
949 		return mr_mfc_find_any_parent(mrt, vifi);
950 	return mr_mfc_find_any(mrt, vifi, &arg);
951 }
952 
953 /* Look for a (S,G,iif) entry if parent != -1 */
954 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
955 						__be32 origin, __be32 mcastgrp,
956 						int parent)
957 {
958 	struct mfc_cache_cmp_arg arg = {
959 			.mfc_mcastgrp = mcastgrp,
960 			.mfc_origin = origin,
961 	};
962 
963 	return mr_mfc_find_parent(mrt, &arg, parent);
964 }
965 
966 /* Allocate a multicast cache entry */
967 static struct mfc_cache *ipmr_cache_alloc(void)
968 {
969 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
970 
971 	if (c) {
972 		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
973 		c->_c.mfc_un.res.minvif = MAXVIFS;
974 		c->_c.free = ipmr_cache_free_rcu;
975 		refcount_set(&c->_c.mfc_un.res.refcount, 1);
976 	}
977 	return c;
978 }
979 
980 static struct mfc_cache *ipmr_cache_alloc_unres(void)
981 {
982 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
983 
984 	if (c) {
985 		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
986 		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
987 	}
988 	return c;
989 }
990 
991 /* A cache entry has gone into a resolved state from queued */
992 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
993 			       struct mfc_cache *uc, struct mfc_cache *c)
994 {
995 	struct sk_buff *skb;
996 	struct nlmsgerr *e;
997 
998 	/* Play the pending entries through our router */
999 	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1000 		if (ip_hdr(skb)->version == 0) {
1001 			struct nlmsghdr *nlh = skb_pull(skb,
1002 							sizeof(struct iphdr));
1003 
1004 			if (mr_fill_mroute(mrt, skb, &c->_c,
1005 					   nlmsg_data(nlh)) > 0) {
1006 				nlh->nlmsg_len = skb_tail_pointer(skb) -
1007 						 (u8 *)nlh;
1008 			} else {
1009 				nlh->nlmsg_type = NLMSG_ERROR;
1010 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1011 				skb_trim(skb, nlh->nlmsg_len);
1012 				e = nlmsg_data(nlh);
1013 				e->error = -EMSGSIZE;
1014 				memset(&e->msg, 0, sizeof(e->msg));
1015 			}
1016 
1017 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1018 		} else {
1019 			rcu_read_lock();
1020 			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1021 			rcu_read_unlock();
1022 		}
1023 	}
1024 }
1025 
1026 /* Bounce a cache query up to mrouted and netlink.
1027  *
1028  * Called under rcu_read_lock().
1029  */
1030 static int ipmr_cache_report(const struct mr_table *mrt,
1031 			     struct sk_buff *pkt, vifi_t vifi, int assert)
1032 {
1033 	const int ihl = ip_hdrlen(pkt);
1034 	struct sock *mroute_sk;
1035 	struct igmphdr *igmp;
1036 	struct igmpmsg *msg;
1037 	struct sk_buff *skb;
1038 	int ret;
1039 
1040 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1041 	if (!mroute_sk)
1042 		return -EINVAL;
1043 
1044 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1045 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1046 	else
1047 		skb = alloc_skb(128, GFP_ATOMIC);
1048 
1049 	if (!skb)
1050 		return -ENOBUFS;
1051 
1052 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1053 		/* Ugly, but we have no choice with this interface.
1054 		 * Duplicate old header, fix ihl, length etc.
1055 		 * And all this only to mangle msg->im_msgtype and
1056 		 * to set msg->im_mbz to "mbz" :-)
1057 		 */
1058 		skb_push(skb, sizeof(struct iphdr));
1059 		skb_reset_network_header(skb);
1060 		skb_reset_transport_header(skb);
1061 		msg = (struct igmpmsg *)skb_network_header(skb);
1062 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1063 		msg->im_msgtype = assert;
1064 		msg->im_mbz = 0;
1065 		if (assert == IGMPMSG_WRVIFWHOLE) {
1066 			msg->im_vif = vifi;
1067 			msg->im_vif_hi = vifi >> 8;
1068 		} else {
1069 			/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1070 			int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1071 
1072 			msg->im_vif = vif_num;
1073 			msg->im_vif_hi = vif_num >> 8;
1074 		}
1075 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1076 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1077 					     sizeof(struct iphdr));
1078 	} else {
1079 		/* Copy the IP header */
1080 		skb_set_network_header(skb, skb->len);
1081 		skb_put(skb, ihl);
1082 		skb_copy_to_linear_data(skb, pkt->data, ihl);
1083 		/* Flag to the kernel this is a route add */
1084 		ip_hdr(skb)->protocol = 0;
1085 		msg = (struct igmpmsg *)skb_network_header(skb);
1086 		msg->im_vif = vifi;
1087 		msg->im_vif_hi = vifi >> 8;
1088 		ipv4_pktinfo_prepare(mroute_sk, pkt, false);
1089 		memcpy(skb->cb, pkt->cb, sizeof(skb->cb));
1090 		/* Add our header */
1091 		igmp = skb_put(skb, sizeof(struct igmphdr));
1092 		igmp->type = assert;
1093 		msg->im_msgtype = assert;
1094 		igmp->code = 0;
1095 		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1096 		skb->transport_header = skb->network_header;
1097 	}
1098 
1099 	igmpmsg_netlink_event(mrt, skb);
1100 
1101 	/* Deliver to mrouted */
1102 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1103 
1104 	if (ret < 0) {
1105 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1106 		kfree_skb(skb);
1107 	}
1108 
1109 	return ret;
1110 }
1111 
1112 /* Queue a packet for resolution. It gets locked cache entry! */
1113 /* Called under rcu_read_lock() */
1114 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1115 				 struct sk_buff *skb, struct net_device *dev)
1116 {
1117 	const struct iphdr *iph = ip_hdr(skb);
1118 	struct mfc_cache *c;
1119 	bool found = false;
1120 	int err;
1121 
1122 	spin_lock_bh(&mfc_unres_lock);
1123 	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1124 		if (c->mfc_mcastgrp == iph->daddr &&
1125 		    c->mfc_origin == iph->saddr) {
1126 			found = true;
1127 			break;
1128 		}
1129 	}
1130 
1131 	if (!found) {
1132 		/* Create a new entry if allowable */
1133 		c = ipmr_cache_alloc_unres();
1134 		if (!c) {
1135 			spin_unlock_bh(&mfc_unres_lock);
1136 
1137 			kfree_skb(skb);
1138 			return -ENOBUFS;
1139 		}
1140 
1141 		/* Fill in the new cache entry */
1142 		c->_c.mfc_parent = -1;
1143 		c->mfc_origin	= iph->saddr;
1144 		c->mfc_mcastgrp	= iph->daddr;
1145 
1146 		/* Reflect first query at mrouted. */
1147 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1148 
1149 		if (err < 0) {
1150 			/* If the report failed throw the cache entry
1151 			   out - Brad Parker
1152 			 */
1153 			spin_unlock_bh(&mfc_unres_lock);
1154 
1155 			ipmr_cache_free(c);
1156 			kfree_skb(skb);
1157 			return err;
1158 		}
1159 
1160 		atomic_inc(&mrt->cache_resolve_queue_len);
1161 		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1162 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1163 
1164 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1165 			mod_timer(&mrt->ipmr_expire_timer,
1166 				  c->_c.mfc_un.unres.expires);
1167 	}
1168 
1169 	/* See if we can append the packet */
1170 	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1171 		kfree_skb(skb);
1172 		err = -ENOBUFS;
1173 	} else {
1174 		if (dev) {
1175 			skb->dev = dev;
1176 			skb->skb_iif = dev->ifindex;
1177 		}
1178 		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1179 		err = 0;
1180 	}
1181 
1182 	spin_unlock_bh(&mfc_unres_lock);
1183 	return err;
1184 }
1185 
1186 /* MFC cache manipulation by user space mroute daemon */
1187 
1188 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1189 {
1190 	struct net *net = read_pnet(&mrt->net);
1191 	struct mfc_cache *c;
1192 
1193 	/* The entries are added/deleted only under RTNL */
1194 	rcu_read_lock();
1195 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1196 				   mfc->mfcc_mcastgrp.s_addr, parent);
1197 	rcu_read_unlock();
1198 	if (!c)
1199 		return -ENOENT;
1200 	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1201 	list_del_rcu(&c->_c.list);
1202 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1203 	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1204 	mr_cache_put(&c->_c);
1205 
1206 	return 0;
1207 }
1208 
1209 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1210 			struct mfcctl *mfc, int mrtsock, int parent)
1211 {
1212 	struct mfc_cache *uc, *c;
1213 	struct mr_mfc *_uc;
1214 	bool found;
1215 	int ret;
1216 
1217 	if (mfc->mfcc_parent >= MAXVIFS)
1218 		return -ENFILE;
1219 
1220 	/* The entries are added/deleted only under RTNL */
1221 	rcu_read_lock();
1222 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1223 				   mfc->mfcc_mcastgrp.s_addr, parent);
1224 	rcu_read_unlock();
1225 	if (c) {
1226 		spin_lock(&mrt_lock);
1227 		c->_c.mfc_parent = mfc->mfcc_parent;
1228 		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1229 		if (!mrtsock)
1230 			c->_c.mfc_flags |= MFC_STATIC;
1231 		spin_unlock(&mrt_lock);
1232 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1233 					      mrt->id);
1234 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1235 		return 0;
1236 	}
1237 
1238 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1239 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1240 		return -EINVAL;
1241 
1242 	c = ipmr_cache_alloc();
1243 	if (!c)
1244 		return -ENOMEM;
1245 
1246 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1247 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1248 	c->_c.mfc_parent = mfc->mfcc_parent;
1249 	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1250 	if (!mrtsock)
1251 		c->_c.mfc_flags |= MFC_STATIC;
1252 
1253 	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1254 				  ipmr_rht_params);
1255 	if (ret) {
1256 		pr_err("ipmr: rhtable insert error %d\n", ret);
1257 		ipmr_cache_free(c);
1258 		return ret;
1259 	}
1260 	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1261 	/* Check to see if we resolved a queued list. If so we
1262 	 * need to send on the frames and tidy up.
1263 	 */
1264 	found = false;
1265 	spin_lock_bh(&mfc_unres_lock);
1266 	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1267 		uc = (struct mfc_cache *)_uc;
1268 		if (uc->mfc_origin == c->mfc_origin &&
1269 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1270 			list_del(&_uc->list);
1271 			atomic_dec(&mrt->cache_resolve_queue_len);
1272 			found = true;
1273 			break;
1274 		}
1275 	}
1276 	if (list_empty(&mrt->mfc_unres_queue))
1277 		del_timer(&mrt->ipmr_expire_timer);
1278 	spin_unlock_bh(&mfc_unres_lock);
1279 
1280 	if (found) {
1281 		ipmr_cache_resolve(net, mrt, uc, c);
1282 		ipmr_cache_free(uc);
1283 	}
1284 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1285 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1286 	return 0;
1287 }
1288 
1289 /* Close the multicast socket, and clear the vif tables etc */
1290 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1291 {
1292 	struct net *net = read_pnet(&mrt->net);
1293 	struct mr_mfc *c, *tmp;
1294 	struct mfc_cache *cache;
1295 	LIST_HEAD(list);
1296 	int i;
1297 
1298 	/* Shut down all active vif entries */
1299 	if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1300 		for (i = 0; i < mrt->maxvif; i++) {
1301 			if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1302 			     !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1303 			    (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1304 				continue;
1305 			vif_delete(mrt, i, 0, &list);
1306 		}
1307 		unregister_netdevice_many(&list);
1308 	}
1309 
1310 	/* Wipe the cache */
1311 	if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1312 		list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1313 			if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1314 			    (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1315 				continue;
1316 			rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1317 			list_del_rcu(&c->list);
1318 			cache = (struct mfc_cache *)c;
1319 			call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1320 						      mrt->id);
1321 			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1322 			mr_cache_put(c);
1323 		}
1324 	}
1325 
1326 	if (flags & MRT_FLUSH_MFC) {
1327 		if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1328 			spin_lock_bh(&mfc_unres_lock);
1329 			list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1330 				list_del(&c->list);
1331 				cache = (struct mfc_cache *)c;
1332 				mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1333 				ipmr_destroy_unres(mrt, cache);
1334 			}
1335 			spin_unlock_bh(&mfc_unres_lock);
1336 		}
1337 	}
1338 }
1339 
1340 /* called from ip_ra_control(), before an RCU grace period,
1341  * we don't need to call synchronize_rcu() here
1342  */
1343 static void mrtsock_destruct(struct sock *sk)
1344 {
1345 	struct net *net = sock_net(sk);
1346 	struct mr_table *mrt;
1347 
1348 	rtnl_lock();
1349 	ipmr_for_each_table(mrt, net) {
1350 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1351 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1352 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1353 						    NETCONFA_MC_FORWARDING,
1354 						    NETCONFA_IFINDEX_ALL,
1355 						    net->ipv4.devconf_all);
1356 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1357 			mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1358 		}
1359 	}
1360 	rtnl_unlock();
1361 }
1362 
1363 /* Socket options and virtual interface manipulation. The whole
1364  * virtual interface system is a complete heap, but unfortunately
1365  * that's how BSD mrouted happens to think. Maybe one day with a proper
1366  * MOSPF/PIM router set up we can clean this up.
1367  */
1368 
1369 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1370 			 unsigned int optlen)
1371 {
1372 	struct net *net = sock_net(sk);
1373 	int val, ret = 0, parent = 0;
1374 	struct mr_table *mrt;
1375 	struct vifctl vif;
1376 	struct mfcctl mfc;
1377 	bool do_wrvifwhole;
1378 	u32 uval;
1379 
1380 	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1381 	rtnl_lock();
1382 	if (sk->sk_type != SOCK_RAW ||
1383 	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1384 		ret = -EOPNOTSUPP;
1385 		goto out_unlock;
1386 	}
1387 
1388 	mrt = __ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1389 	if (!mrt) {
1390 		ret = -ENOENT;
1391 		goto out_unlock;
1392 	}
1393 	if (optname != MRT_INIT) {
1394 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1395 		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1396 			ret = -EACCES;
1397 			goto out_unlock;
1398 		}
1399 	}
1400 
1401 	switch (optname) {
1402 	case MRT_INIT:
1403 		if (optlen != sizeof(int)) {
1404 			ret = -EINVAL;
1405 			break;
1406 		}
1407 		if (rtnl_dereference(mrt->mroute_sk)) {
1408 			ret = -EADDRINUSE;
1409 			break;
1410 		}
1411 
1412 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1413 		if (ret == 0) {
1414 			rcu_assign_pointer(mrt->mroute_sk, sk);
1415 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1416 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1417 						    NETCONFA_MC_FORWARDING,
1418 						    NETCONFA_IFINDEX_ALL,
1419 						    net->ipv4.devconf_all);
1420 		}
1421 		break;
1422 	case MRT_DONE:
1423 		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1424 			ret = -EACCES;
1425 		} else {
1426 			/* We need to unlock here because mrtsock_destruct takes
1427 			 * care of rtnl itself and we can't change that due to
1428 			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1429 			 */
1430 			rtnl_unlock();
1431 			ret = ip_ra_control(sk, 0, NULL);
1432 			goto out;
1433 		}
1434 		break;
1435 	case MRT_ADD_VIF:
1436 	case MRT_DEL_VIF:
1437 		if (optlen != sizeof(vif)) {
1438 			ret = -EINVAL;
1439 			break;
1440 		}
1441 		if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1442 			ret = -EFAULT;
1443 			break;
1444 		}
1445 		if (vif.vifc_vifi >= MAXVIFS) {
1446 			ret = -ENFILE;
1447 			break;
1448 		}
1449 		if (optname == MRT_ADD_VIF) {
1450 			ret = vif_add(net, mrt, &vif,
1451 				      sk == rtnl_dereference(mrt->mroute_sk));
1452 		} else {
1453 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1454 		}
1455 		break;
1456 	/* Manipulate the forwarding caches. These live
1457 	 * in a sort of kernel/user symbiosis.
1458 	 */
1459 	case MRT_ADD_MFC:
1460 	case MRT_DEL_MFC:
1461 		parent = -1;
1462 		fallthrough;
1463 	case MRT_ADD_MFC_PROXY:
1464 	case MRT_DEL_MFC_PROXY:
1465 		if (optlen != sizeof(mfc)) {
1466 			ret = -EINVAL;
1467 			break;
1468 		}
1469 		if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1470 			ret = -EFAULT;
1471 			break;
1472 		}
1473 		if (parent == 0)
1474 			parent = mfc.mfcc_parent;
1475 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1476 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1477 		else
1478 			ret = ipmr_mfc_add(net, mrt, &mfc,
1479 					   sk == rtnl_dereference(mrt->mroute_sk),
1480 					   parent);
1481 		break;
1482 	case MRT_FLUSH:
1483 		if (optlen != sizeof(val)) {
1484 			ret = -EINVAL;
1485 			break;
1486 		}
1487 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1488 			ret = -EFAULT;
1489 			break;
1490 		}
1491 		mroute_clean_tables(mrt, val);
1492 		break;
1493 	/* Control PIM assert. */
1494 	case MRT_ASSERT:
1495 		if (optlen != sizeof(val)) {
1496 			ret = -EINVAL;
1497 			break;
1498 		}
1499 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1500 			ret = -EFAULT;
1501 			break;
1502 		}
1503 		mrt->mroute_do_assert = val;
1504 		break;
1505 	case MRT_PIM:
1506 		if (!ipmr_pimsm_enabled()) {
1507 			ret = -ENOPROTOOPT;
1508 			break;
1509 		}
1510 		if (optlen != sizeof(val)) {
1511 			ret = -EINVAL;
1512 			break;
1513 		}
1514 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1515 			ret = -EFAULT;
1516 			break;
1517 		}
1518 
1519 		do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1520 		val = !!val;
1521 		if (val != mrt->mroute_do_pim) {
1522 			mrt->mroute_do_pim = val;
1523 			mrt->mroute_do_assert = val;
1524 			mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1525 		}
1526 		break;
1527 	case MRT_TABLE:
1528 		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1529 			ret = -ENOPROTOOPT;
1530 			break;
1531 		}
1532 		if (optlen != sizeof(uval)) {
1533 			ret = -EINVAL;
1534 			break;
1535 		}
1536 		if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1537 			ret = -EFAULT;
1538 			break;
1539 		}
1540 
1541 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1542 			ret = -EBUSY;
1543 		} else {
1544 			mrt = ipmr_new_table(net, uval);
1545 			if (IS_ERR(mrt))
1546 				ret = PTR_ERR(mrt);
1547 			else
1548 				raw_sk(sk)->ipmr_table = uval;
1549 		}
1550 		break;
1551 	/* Spurious command, or MRT_VERSION which you cannot set. */
1552 	default:
1553 		ret = -ENOPROTOOPT;
1554 	}
1555 out_unlock:
1556 	rtnl_unlock();
1557 out:
1558 	return ret;
1559 }
1560 
1561 /* Execute if this ioctl is a special mroute ioctl */
1562 int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1563 {
1564 	switch (cmd) {
1565 	/* These userspace buffers will be consumed by ipmr_ioctl() */
1566 	case SIOCGETVIFCNT: {
1567 		struct sioc_vif_req buffer;
1568 
1569 		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1570 				      sizeof(buffer));
1571 		}
1572 	case SIOCGETSGCNT: {
1573 		struct sioc_sg_req buffer;
1574 
1575 		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1576 				      sizeof(buffer));
1577 		}
1578 	}
1579 	/* return code > 0 means that the ioctl was not executed */
1580 	return 1;
1581 }
1582 
1583 /* Getsock opt support for the multicast routing system. */
1584 int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1585 			 sockptr_t optlen)
1586 {
1587 	int olr;
1588 	int val;
1589 	struct net *net = sock_net(sk);
1590 	struct mr_table *mrt;
1591 
1592 	if (sk->sk_type != SOCK_RAW ||
1593 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1594 		return -EOPNOTSUPP;
1595 
1596 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1597 	if (!mrt)
1598 		return -ENOENT;
1599 
1600 	switch (optname) {
1601 	case MRT_VERSION:
1602 		val = 0x0305;
1603 		break;
1604 	case MRT_PIM:
1605 		if (!ipmr_pimsm_enabled())
1606 			return -ENOPROTOOPT;
1607 		val = mrt->mroute_do_pim;
1608 		break;
1609 	case MRT_ASSERT:
1610 		val = mrt->mroute_do_assert;
1611 		break;
1612 	default:
1613 		return -ENOPROTOOPT;
1614 	}
1615 
1616 	if (copy_from_sockptr(&olr, optlen, sizeof(int)))
1617 		return -EFAULT;
1618 	if (olr < 0)
1619 		return -EINVAL;
1620 
1621 	olr = min_t(unsigned int, olr, sizeof(int));
1622 
1623 	if (copy_to_sockptr(optlen, &olr, sizeof(int)))
1624 		return -EFAULT;
1625 	if (copy_to_sockptr(optval, &val, olr))
1626 		return -EFAULT;
1627 	return 0;
1628 }
1629 
1630 /* The IP multicast ioctl support routines. */
1631 int ipmr_ioctl(struct sock *sk, int cmd, void *arg)
1632 {
1633 	struct vif_device *vif;
1634 	struct mfc_cache *c;
1635 	struct net *net = sock_net(sk);
1636 	struct sioc_vif_req *vr;
1637 	struct sioc_sg_req *sr;
1638 	struct mr_table *mrt;
1639 
1640 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1641 	if (!mrt)
1642 		return -ENOENT;
1643 
1644 	switch (cmd) {
1645 	case SIOCGETVIFCNT:
1646 		vr = (struct sioc_vif_req *)arg;
1647 		if (vr->vifi >= mrt->maxvif)
1648 			return -EINVAL;
1649 		vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif);
1650 		rcu_read_lock();
1651 		vif = &mrt->vif_table[vr->vifi];
1652 		if (VIF_EXISTS(mrt, vr->vifi)) {
1653 			vr->icount = READ_ONCE(vif->pkt_in);
1654 			vr->ocount = READ_ONCE(vif->pkt_out);
1655 			vr->ibytes = READ_ONCE(vif->bytes_in);
1656 			vr->obytes = READ_ONCE(vif->bytes_out);
1657 			rcu_read_unlock();
1658 
1659 			return 0;
1660 		}
1661 		rcu_read_unlock();
1662 		return -EADDRNOTAVAIL;
1663 	case SIOCGETSGCNT:
1664 		sr = (struct sioc_sg_req *)arg;
1665 
1666 		rcu_read_lock();
1667 		c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr);
1668 		if (c) {
1669 			sr->pktcnt = c->_c.mfc_un.res.pkt;
1670 			sr->bytecnt = c->_c.mfc_un.res.bytes;
1671 			sr->wrong_if = c->_c.mfc_un.res.wrong_if;
1672 			rcu_read_unlock();
1673 			return 0;
1674 		}
1675 		rcu_read_unlock();
1676 		return -EADDRNOTAVAIL;
1677 	default:
1678 		return -ENOIOCTLCMD;
1679 	}
1680 }
1681 
1682 #ifdef CONFIG_COMPAT
1683 struct compat_sioc_sg_req {
1684 	struct in_addr src;
1685 	struct in_addr grp;
1686 	compat_ulong_t pktcnt;
1687 	compat_ulong_t bytecnt;
1688 	compat_ulong_t wrong_if;
1689 };
1690 
1691 struct compat_sioc_vif_req {
1692 	vifi_t	vifi;		/* Which iface */
1693 	compat_ulong_t icount;
1694 	compat_ulong_t ocount;
1695 	compat_ulong_t ibytes;
1696 	compat_ulong_t obytes;
1697 };
1698 
1699 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1700 {
1701 	struct compat_sioc_sg_req sr;
1702 	struct compat_sioc_vif_req vr;
1703 	struct vif_device *vif;
1704 	struct mfc_cache *c;
1705 	struct net *net = sock_net(sk);
1706 	struct mr_table *mrt;
1707 
1708 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1709 	if (!mrt)
1710 		return -ENOENT;
1711 
1712 	switch (cmd) {
1713 	case SIOCGETVIFCNT:
1714 		if (copy_from_user(&vr, arg, sizeof(vr)))
1715 			return -EFAULT;
1716 		if (vr.vifi >= mrt->maxvif)
1717 			return -EINVAL;
1718 		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1719 		rcu_read_lock();
1720 		vif = &mrt->vif_table[vr.vifi];
1721 		if (VIF_EXISTS(mrt, vr.vifi)) {
1722 			vr.icount = READ_ONCE(vif->pkt_in);
1723 			vr.ocount = READ_ONCE(vif->pkt_out);
1724 			vr.ibytes = READ_ONCE(vif->bytes_in);
1725 			vr.obytes = READ_ONCE(vif->bytes_out);
1726 			rcu_read_unlock();
1727 
1728 			if (copy_to_user(arg, &vr, sizeof(vr)))
1729 				return -EFAULT;
1730 			return 0;
1731 		}
1732 		rcu_read_unlock();
1733 		return -EADDRNOTAVAIL;
1734 	case SIOCGETSGCNT:
1735 		if (copy_from_user(&sr, arg, sizeof(sr)))
1736 			return -EFAULT;
1737 
1738 		rcu_read_lock();
1739 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1740 		if (c) {
1741 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1742 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1743 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1744 			rcu_read_unlock();
1745 
1746 			if (copy_to_user(arg, &sr, sizeof(sr)))
1747 				return -EFAULT;
1748 			return 0;
1749 		}
1750 		rcu_read_unlock();
1751 		return -EADDRNOTAVAIL;
1752 	default:
1753 		return -ENOIOCTLCMD;
1754 	}
1755 }
1756 #endif
1757 
1758 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1759 {
1760 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1761 	struct net *net = dev_net(dev);
1762 	struct mr_table *mrt;
1763 	struct vif_device *v;
1764 	int ct;
1765 
1766 	if (event != NETDEV_UNREGISTER)
1767 		return NOTIFY_DONE;
1768 
1769 	ipmr_for_each_table(mrt, net) {
1770 		v = &mrt->vif_table[0];
1771 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1772 			if (rcu_access_pointer(v->dev) == dev)
1773 				vif_delete(mrt, ct, 1, NULL);
1774 		}
1775 	}
1776 	return NOTIFY_DONE;
1777 }
1778 
1779 static struct notifier_block ip_mr_notifier = {
1780 	.notifier_call = ipmr_device_event,
1781 };
1782 
1783 /* Encapsulate a packet by attaching a valid IPIP header to it.
1784  * This avoids tunnel drivers and other mess and gives us the speed so
1785  * important for multicast video.
1786  */
1787 static void ip_encap(struct net *net, struct sk_buff *skb,
1788 		     __be32 saddr, __be32 daddr)
1789 {
1790 	struct iphdr *iph;
1791 	const struct iphdr *old_iph = ip_hdr(skb);
1792 
1793 	skb_push(skb, sizeof(struct iphdr));
1794 	skb->transport_header = skb->network_header;
1795 	skb_reset_network_header(skb);
1796 	iph = ip_hdr(skb);
1797 
1798 	iph->version	=	4;
1799 	iph->tos	=	old_iph->tos;
1800 	iph->ttl	=	old_iph->ttl;
1801 	iph->frag_off	=	0;
1802 	iph->daddr	=	daddr;
1803 	iph->saddr	=	saddr;
1804 	iph->protocol	=	IPPROTO_IPIP;
1805 	iph->ihl	=	5;
1806 	iph->tot_len	=	htons(skb->len);
1807 	ip_select_ident(net, skb, NULL);
1808 	ip_send_check(iph);
1809 
1810 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1811 	nf_reset_ct(skb);
1812 }
1813 
1814 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1815 				      struct sk_buff *skb)
1816 {
1817 	struct ip_options *opt = &(IPCB(skb)->opt);
1818 
1819 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1820 
1821 	if (unlikely(opt->optlen))
1822 		ip_forward_options(skb);
1823 
1824 	return dst_output(net, sk, skb);
1825 }
1826 
1827 #ifdef CONFIG_NET_SWITCHDEV
1828 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1829 				   int in_vifi, int out_vifi)
1830 {
1831 	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1832 	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1833 
1834 	if (!skb->offload_l3_fwd_mark)
1835 		return false;
1836 	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1837 		return false;
1838 	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1839 					&in_vif->dev_parent_id);
1840 }
1841 #else
1842 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1843 				   int in_vifi, int out_vifi)
1844 {
1845 	return false;
1846 }
1847 #endif
1848 
1849 /* Processing handlers for ipmr_forward, under rcu_read_lock() */
1850 
1851 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1852 			    int in_vifi, struct sk_buff *skb, int vifi)
1853 {
1854 	const struct iphdr *iph = ip_hdr(skb);
1855 	struct vif_device *vif = &mrt->vif_table[vifi];
1856 	struct net_device *vif_dev;
1857 	struct net_device *dev;
1858 	struct rtable *rt;
1859 	struct flowi4 fl4;
1860 	int    encap = 0;
1861 
1862 	vif_dev = vif_dev_read(vif);
1863 	if (!vif_dev)
1864 		goto out_free;
1865 
1866 	if (vif->flags & VIFF_REGISTER) {
1867 		WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1868 		WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1869 		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1870 		DEV_STATS_INC(vif_dev, tx_packets);
1871 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1872 		goto out_free;
1873 	}
1874 
1875 	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1876 		goto out_free;
1877 
1878 	if (vif->flags & VIFF_TUNNEL) {
1879 		rt = ip_route_output_ports(net, &fl4, NULL,
1880 					   vif->remote, vif->local,
1881 					   0, 0,
1882 					   IPPROTO_IPIP,
1883 					   RT_TOS(iph->tos), vif->link);
1884 		if (IS_ERR(rt))
1885 			goto out_free;
1886 		encap = sizeof(struct iphdr);
1887 	} else {
1888 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1889 					   0, 0,
1890 					   IPPROTO_IPIP,
1891 					   RT_TOS(iph->tos), vif->link);
1892 		if (IS_ERR(rt))
1893 			goto out_free;
1894 	}
1895 
1896 	dev = rt->dst.dev;
1897 
1898 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1899 		/* Do not fragment multicasts. Alas, IPv4 does not
1900 		 * allow to send ICMP, so that packets will disappear
1901 		 * to blackhole.
1902 		 */
1903 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1904 		ip_rt_put(rt);
1905 		goto out_free;
1906 	}
1907 
1908 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1909 
1910 	if (skb_cow(skb, encap)) {
1911 		ip_rt_put(rt);
1912 		goto out_free;
1913 	}
1914 
1915 	WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1916 	WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1917 
1918 	skb_dst_drop(skb);
1919 	skb_dst_set(skb, &rt->dst);
1920 	ip_decrease_ttl(ip_hdr(skb));
1921 
1922 	/* FIXME: forward and output firewalls used to be called here.
1923 	 * What do we do with netfilter? -- RR
1924 	 */
1925 	if (vif->flags & VIFF_TUNNEL) {
1926 		ip_encap(net, skb, vif->local, vif->remote);
1927 		/* FIXME: extra output firewall step used to be here. --RR */
1928 		DEV_STATS_INC(vif_dev, tx_packets);
1929 		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1930 	}
1931 
1932 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1933 
1934 	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1935 	 * not only before forwarding, but after forwarding on all output
1936 	 * interfaces. It is clear, if mrouter runs a multicasting
1937 	 * program, it should receive packets not depending to what interface
1938 	 * program is joined.
1939 	 * If we will not make it, the program will have to join on all
1940 	 * interfaces. On the other hand, multihoming host (or router, but
1941 	 * not mrouter) cannot join to more than one interface - it will
1942 	 * result in receiving multiple packets.
1943 	 */
1944 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1945 		net, NULL, skb, skb->dev, dev,
1946 		ipmr_forward_finish);
1947 	return;
1948 
1949 out_free:
1950 	kfree_skb(skb);
1951 }
1952 
1953 /* Called with mrt_lock or rcu_read_lock() */
1954 static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1955 {
1956 	int ct;
1957 	/* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1958 	for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1959 		if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1960 			break;
1961 	}
1962 	return ct;
1963 }
1964 
1965 /* "local" means that we should preserve one skb (for local delivery) */
1966 /* Called uner rcu_read_lock() */
1967 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1968 			  struct net_device *dev, struct sk_buff *skb,
1969 			  struct mfc_cache *c, int local)
1970 {
1971 	int true_vifi = ipmr_find_vif(mrt, dev);
1972 	int psend = -1;
1973 	int vif, ct;
1974 
1975 	vif = c->_c.mfc_parent;
1976 	c->_c.mfc_un.res.pkt++;
1977 	c->_c.mfc_un.res.bytes += skb->len;
1978 	c->_c.mfc_un.res.lastuse = jiffies;
1979 
1980 	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1981 		struct mfc_cache *cache_proxy;
1982 
1983 		/* For an (*,G) entry, we only check that the incoming
1984 		 * interface is part of the static tree.
1985 		 */
1986 		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1987 		if (cache_proxy &&
1988 		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1989 			goto forward;
1990 	}
1991 
1992 	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1993 	if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
1994 		if (rt_is_output_route(skb_rtable(skb))) {
1995 			/* It is our own packet, looped back.
1996 			 * Very complicated situation...
1997 			 *
1998 			 * The best workaround until routing daemons will be
1999 			 * fixed is not to redistribute packet, if it was
2000 			 * send through wrong interface. It means, that
2001 			 * multicast applications WILL NOT work for
2002 			 * (S,G), which have default multicast route pointing
2003 			 * to wrong oif. In any case, it is not a good
2004 			 * idea to use multicasting applications on router.
2005 			 */
2006 			goto dont_forward;
2007 		}
2008 
2009 		c->_c.mfc_un.res.wrong_if++;
2010 
2011 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
2012 		    /* pimsm uses asserts, when switching from RPT to SPT,
2013 		     * so that we cannot check that packet arrived on an oif.
2014 		     * It is bad, but otherwise we would need to move pretty
2015 		     * large chunk of pimd to kernel. Ough... --ANK
2016 		     */
2017 		    (mrt->mroute_do_pim ||
2018 		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2019 		    time_after(jiffies,
2020 			       c->_c.mfc_un.res.last_assert +
2021 			       MFC_ASSERT_THRESH)) {
2022 			c->_c.mfc_un.res.last_assert = jiffies;
2023 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2024 			if (mrt->mroute_do_wrvifwhole)
2025 				ipmr_cache_report(mrt, skb, true_vifi,
2026 						  IGMPMSG_WRVIFWHOLE);
2027 		}
2028 		goto dont_forward;
2029 	}
2030 
2031 forward:
2032 	WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2033 		   mrt->vif_table[vif].pkt_in + 1);
2034 	WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2035 		   mrt->vif_table[vif].bytes_in + skb->len);
2036 
2037 	/* Forward the frame */
2038 	if (c->mfc_origin == htonl(INADDR_ANY) &&
2039 	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2040 		if (true_vifi >= 0 &&
2041 		    true_vifi != c->_c.mfc_parent &&
2042 		    ip_hdr(skb)->ttl >
2043 				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2044 			/* It's an (*,*) entry and the packet is not coming from
2045 			 * the upstream: forward the packet to the upstream
2046 			 * only.
2047 			 */
2048 			psend = c->_c.mfc_parent;
2049 			goto last_forward;
2050 		}
2051 		goto dont_forward;
2052 	}
2053 	for (ct = c->_c.mfc_un.res.maxvif - 1;
2054 	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2055 		/* For (*,G) entry, don't forward to the incoming interface */
2056 		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2057 		     ct != true_vifi) &&
2058 		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2059 			if (psend != -1) {
2060 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2061 
2062 				if (skb2)
2063 					ipmr_queue_xmit(net, mrt, true_vifi,
2064 							skb2, psend);
2065 			}
2066 			psend = ct;
2067 		}
2068 	}
2069 last_forward:
2070 	if (psend != -1) {
2071 		if (local) {
2072 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2073 
2074 			if (skb2)
2075 				ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2076 						psend);
2077 		} else {
2078 			ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2079 			return;
2080 		}
2081 	}
2082 
2083 dont_forward:
2084 	if (!local)
2085 		kfree_skb(skb);
2086 }
2087 
2088 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2089 {
2090 	struct rtable *rt = skb_rtable(skb);
2091 	struct iphdr *iph = ip_hdr(skb);
2092 	struct flowi4 fl4 = {
2093 		.daddr = iph->daddr,
2094 		.saddr = iph->saddr,
2095 		.flowi4_tos = RT_TOS(iph->tos),
2096 		.flowi4_oif = (rt_is_output_route(rt) ?
2097 			       skb->dev->ifindex : 0),
2098 		.flowi4_iif = (rt_is_output_route(rt) ?
2099 			       LOOPBACK_IFINDEX :
2100 			       skb->dev->ifindex),
2101 		.flowi4_mark = skb->mark,
2102 	};
2103 	struct mr_table *mrt;
2104 	int err;
2105 
2106 	err = ipmr_fib_lookup(net, &fl4, &mrt);
2107 	if (err)
2108 		return ERR_PTR(err);
2109 	return mrt;
2110 }
2111 
2112 /* Multicast packets for forwarding arrive here
2113  * Called with rcu_read_lock();
2114  */
2115 int ip_mr_input(struct sk_buff *skb)
2116 {
2117 	struct mfc_cache *cache;
2118 	struct net *net = dev_net(skb->dev);
2119 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2120 	struct mr_table *mrt;
2121 	struct net_device *dev;
2122 
2123 	/* skb->dev passed in is the loX master dev for vrfs.
2124 	 * As there are no vifs associated with loopback devices,
2125 	 * get the proper interface that does have a vif associated with it.
2126 	 */
2127 	dev = skb->dev;
2128 	if (netif_is_l3_master(skb->dev)) {
2129 		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2130 		if (!dev) {
2131 			kfree_skb(skb);
2132 			return -ENODEV;
2133 		}
2134 	}
2135 
2136 	/* Packet is looped back after forward, it should not be
2137 	 * forwarded second time, but still can be delivered locally.
2138 	 */
2139 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2140 		goto dont_forward;
2141 
2142 	mrt = ipmr_rt_fib_lookup(net, skb);
2143 	if (IS_ERR(mrt)) {
2144 		kfree_skb(skb);
2145 		return PTR_ERR(mrt);
2146 	}
2147 	if (!local) {
2148 		if (IPCB(skb)->opt.router_alert) {
2149 			if (ip_call_ra_chain(skb))
2150 				return 0;
2151 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2152 			/* IGMPv1 (and broken IGMPv2 implementations sort of
2153 			 * Cisco IOS <= 11.2(8)) do not put router alert
2154 			 * option to IGMP packets destined to routable
2155 			 * groups. It is very bad, because it means
2156 			 * that we can forward NO IGMP messages.
2157 			 */
2158 			struct sock *mroute_sk;
2159 
2160 			mroute_sk = rcu_dereference(mrt->mroute_sk);
2161 			if (mroute_sk) {
2162 				nf_reset_ct(skb);
2163 				raw_rcv(mroute_sk, skb);
2164 				return 0;
2165 			}
2166 		}
2167 	}
2168 
2169 	/* already under rcu_read_lock() */
2170 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2171 	if (!cache) {
2172 		int vif = ipmr_find_vif(mrt, dev);
2173 
2174 		if (vif >= 0)
2175 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2176 						    vif);
2177 	}
2178 
2179 	/* No usable cache entry */
2180 	if (!cache) {
2181 		int vif;
2182 
2183 		if (local) {
2184 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2185 			ip_local_deliver(skb);
2186 			if (!skb2)
2187 				return -ENOBUFS;
2188 			skb = skb2;
2189 		}
2190 
2191 		vif = ipmr_find_vif(mrt, dev);
2192 		if (vif >= 0)
2193 			return ipmr_cache_unresolved(mrt, vif, skb, dev);
2194 		kfree_skb(skb);
2195 		return -ENODEV;
2196 	}
2197 
2198 	ip_mr_forward(net, mrt, dev, skb, cache, local);
2199 
2200 	if (local)
2201 		return ip_local_deliver(skb);
2202 
2203 	return 0;
2204 
2205 dont_forward:
2206 	if (local)
2207 		return ip_local_deliver(skb);
2208 	kfree_skb(skb);
2209 	return 0;
2210 }
2211 
2212 #ifdef CONFIG_IP_PIMSM_V1
2213 /* Handle IGMP messages of PIMv1 */
2214 int pim_rcv_v1(struct sk_buff *skb)
2215 {
2216 	struct igmphdr *pim;
2217 	struct net *net = dev_net(skb->dev);
2218 	struct mr_table *mrt;
2219 
2220 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2221 		goto drop;
2222 
2223 	pim = igmp_hdr(skb);
2224 
2225 	mrt = ipmr_rt_fib_lookup(net, skb);
2226 	if (IS_ERR(mrt))
2227 		goto drop;
2228 	if (!mrt->mroute_do_pim ||
2229 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2230 		goto drop;
2231 
2232 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2233 drop:
2234 		kfree_skb(skb);
2235 	}
2236 	return 0;
2237 }
2238 #endif
2239 
2240 #ifdef CONFIG_IP_PIMSM_V2
2241 static int pim_rcv(struct sk_buff *skb)
2242 {
2243 	struct pimreghdr *pim;
2244 	struct net *net = dev_net(skb->dev);
2245 	struct mr_table *mrt;
2246 
2247 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2248 		goto drop;
2249 
2250 	pim = (struct pimreghdr *)skb_transport_header(skb);
2251 	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2252 	    (pim->flags & PIM_NULL_REGISTER) ||
2253 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2254 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2255 		goto drop;
2256 
2257 	mrt = ipmr_rt_fib_lookup(net, skb);
2258 	if (IS_ERR(mrt))
2259 		goto drop;
2260 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2261 drop:
2262 		kfree_skb(skb);
2263 	}
2264 	return 0;
2265 }
2266 #endif
2267 
2268 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2269 		   __be32 saddr, __be32 daddr,
2270 		   struct rtmsg *rtm, u32 portid)
2271 {
2272 	struct mfc_cache *cache;
2273 	struct mr_table *mrt;
2274 	int err;
2275 
2276 	rcu_read_lock();
2277 	mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2278 	if (!mrt) {
2279 		rcu_read_unlock();
2280 		return -ENOENT;
2281 	}
2282 
2283 	cache = ipmr_cache_find(mrt, saddr, daddr);
2284 	if (!cache && skb->dev) {
2285 		int vif = ipmr_find_vif(mrt, skb->dev);
2286 
2287 		if (vif >= 0)
2288 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2289 	}
2290 	if (!cache) {
2291 		struct sk_buff *skb2;
2292 		struct iphdr *iph;
2293 		struct net_device *dev;
2294 		int vif = -1;
2295 
2296 		dev = skb->dev;
2297 		if (dev)
2298 			vif = ipmr_find_vif(mrt, dev);
2299 		if (vif < 0) {
2300 			rcu_read_unlock();
2301 			return -ENODEV;
2302 		}
2303 
2304 		skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2305 		if (!skb2) {
2306 			rcu_read_unlock();
2307 			return -ENOMEM;
2308 		}
2309 
2310 		NETLINK_CB(skb2).portid = portid;
2311 		skb_push(skb2, sizeof(struct iphdr));
2312 		skb_reset_network_header(skb2);
2313 		iph = ip_hdr(skb2);
2314 		iph->ihl = sizeof(struct iphdr) >> 2;
2315 		iph->saddr = saddr;
2316 		iph->daddr = daddr;
2317 		iph->version = 0;
2318 		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2319 		rcu_read_unlock();
2320 		return err;
2321 	}
2322 
2323 	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2324 	rcu_read_unlock();
2325 	return err;
2326 }
2327 
2328 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2329 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2330 			    int flags)
2331 {
2332 	struct nlmsghdr *nlh;
2333 	struct rtmsg *rtm;
2334 	int err;
2335 
2336 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2337 	if (!nlh)
2338 		return -EMSGSIZE;
2339 
2340 	rtm = nlmsg_data(nlh);
2341 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2342 	rtm->rtm_dst_len  = 32;
2343 	rtm->rtm_src_len  = 32;
2344 	rtm->rtm_tos      = 0;
2345 	rtm->rtm_table    = mrt->id;
2346 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2347 		goto nla_put_failure;
2348 	rtm->rtm_type     = RTN_MULTICAST;
2349 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2350 	if (c->_c.mfc_flags & MFC_STATIC)
2351 		rtm->rtm_protocol = RTPROT_STATIC;
2352 	else
2353 		rtm->rtm_protocol = RTPROT_MROUTED;
2354 	rtm->rtm_flags    = 0;
2355 
2356 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2357 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2358 		goto nla_put_failure;
2359 	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2360 	/* do not break the dump if cache is unresolved */
2361 	if (err < 0 && err != -ENOENT)
2362 		goto nla_put_failure;
2363 
2364 	nlmsg_end(skb, nlh);
2365 	return 0;
2366 
2367 nla_put_failure:
2368 	nlmsg_cancel(skb, nlh);
2369 	return -EMSGSIZE;
2370 }
2371 
2372 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2373 			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2374 			     int flags)
2375 {
2376 	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2377 				cmd, flags);
2378 }
2379 
2380 static size_t mroute_msgsize(bool unresolved, int maxvif)
2381 {
2382 	size_t len =
2383 		NLMSG_ALIGN(sizeof(struct rtmsg))
2384 		+ nla_total_size(4)	/* RTA_TABLE */
2385 		+ nla_total_size(4)	/* RTA_SRC */
2386 		+ nla_total_size(4)	/* RTA_DST */
2387 		;
2388 
2389 	if (!unresolved)
2390 		len = len
2391 		      + nla_total_size(4)	/* RTA_IIF */
2392 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2393 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2394 						/* RTA_MFC_STATS */
2395 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2396 		;
2397 
2398 	return len;
2399 }
2400 
2401 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2402 				 int cmd)
2403 {
2404 	struct net *net = read_pnet(&mrt->net);
2405 	struct sk_buff *skb;
2406 	int err = -ENOBUFS;
2407 
2408 	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2409 				       mrt->maxvif),
2410 			GFP_ATOMIC);
2411 	if (!skb)
2412 		goto errout;
2413 
2414 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2415 	if (err < 0)
2416 		goto errout;
2417 
2418 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2419 	return;
2420 
2421 errout:
2422 	kfree_skb(skb);
2423 	if (err < 0)
2424 		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2425 }
2426 
2427 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2428 {
2429 	size_t len =
2430 		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2431 		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2432 		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2433 		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2434 		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2435 		+ nla_total_size(4)	/* IPMRA_CREPORT_TABLE */
2436 					/* IPMRA_CREPORT_PKT */
2437 		+ nla_total_size(payloadlen)
2438 		;
2439 
2440 	return len;
2441 }
2442 
2443 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2444 {
2445 	struct net *net = read_pnet(&mrt->net);
2446 	struct nlmsghdr *nlh;
2447 	struct rtgenmsg *rtgenm;
2448 	struct igmpmsg *msg;
2449 	struct sk_buff *skb;
2450 	struct nlattr *nla;
2451 	int payloadlen;
2452 
2453 	payloadlen = pkt->len - sizeof(struct igmpmsg);
2454 	msg = (struct igmpmsg *)skb_network_header(pkt);
2455 
2456 	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2457 	if (!skb)
2458 		goto errout;
2459 
2460 	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2461 			sizeof(struct rtgenmsg), 0);
2462 	if (!nlh)
2463 		goto errout;
2464 	rtgenm = nlmsg_data(nlh);
2465 	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2466 	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2467 	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2468 	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2469 			    msg->im_src.s_addr) ||
2470 	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2471 			    msg->im_dst.s_addr) ||
2472 	    nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2473 		goto nla_put_failure;
2474 
2475 	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2476 	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2477 				  nla_data(nla), payloadlen))
2478 		goto nla_put_failure;
2479 
2480 	nlmsg_end(skb, nlh);
2481 
2482 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2483 	return;
2484 
2485 nla_put_failure:
2486 	nlmsg_cancel(skb, nlh);
2487 errout:
2488 	kfree_skb(skb);
2489 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2490 }
2491 
2492 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2493 				       const struct nlmsghdr *nlh,
2494 				       struct nlattr **tb,
2495 				       struct netlink_ext_ack *extack)
2496 {
2497 	struct rtmsg *rtm;
2498 	int i, err;
2499 
2500 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2501 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2502 		return -EINVAL;
2503 	}
2504 
2505 	if (!netlink_strict_get_check(skb))
2506 		return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2507 					      rtm_ipv4_policy, extack);
2508 
2509 	rtm = nlmsg_data(nlh);
2510 	if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2511 	    (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2512 	    rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2513 	    rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2514 		NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2515 		return -EINVAL;
2516 	}
2517 
2518 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2519 					    rtm_ipv4_policy, extack);
2520 	if (err)
2521 		return err;
2522 
2523 	if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2524 	    (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2525 		NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2526 		return -EINVAL;
2527 	}
2528 
2529 	for (i = 0; i <= RTA_MAX; i++) {
2530 		if (!tb[i])
2531 			continue;
2532 
2533 		switch (i) {
2534 		case RTA_SRC:
2535 		case RTA_DST:
2536 		case RTA_TABLE:
2537 			break;
2538 		default:
2539 			NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2540 			return -EINVAL;
2541 		}
2542 	}
2543 
2544 	return 0;
2545 }
2546 
2547 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2548 			     struct netlink_ext_ack *extack)
2549 {
2550 	struct net *net = sock_net(in_skb->sk);
2551 	struct nlattr *tb[RTA_MAX + 1];
2552 	struct sk_buff *skb = NULL;
2553 	struct mfc_cache *cache;
2554 	struct mr_table *mrt;
2555 	__be32 src, grp;
2556 	u32 tableid;
2557 	int err;
2558 
2559 	err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2560 	if (err < 0)
2561 		goto errout;
2562 
2563 	src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2564 	grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2565 	tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2566 
2567 	mrt = __ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2568 	if (!mrt) {
2569 		err = -ENOENT;
2570 		goto errout_free;
2571 	}
2572 
2573 	/* entries are added/deleted only under RTNL */
2574 	rcu_read_lock();
2575 	cache = ipmr_cache_find(mrt, src, grp);
2576 	rcu_read_unlock();
2577 	if (!cache) {
2578 		err = -ENOENT;
2579 		goto errout_free;
2580 	}
2581 
2582 	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2583 	if (!skb) {
2584 		err = -ENOBUFS;
2585 		goto errout_free;
2586 	}
2587 
2588 	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2589 			       nlh->nlmsg_seq, cache,
2590 			       RTM_NEWROUTE, 0);
2591 	if (err < 0)
2592 		goto errout_free;
2593 
2594 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2595 
2596 errout:
2597 	return err;
2598 
2599 errout_free:
2600 	kfree_skb(skb);
2601 	goto errout;
2602 }
2603 
2604 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2605 {
2606 	struct fib_dump_filter filter = {};
2607 	int err;
2608 
2609 	if (cb->strict_check) {
2610 		err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2611 					    &filter, cb);
2612 		if (err < 0)
2613 			return err;
2614 	}
2615 
2616 	if (filter.table_id) {
2617 		struct mr_table *mrt;
2618 
2619 		mrt = __ipmr_get_table(sock_net(skb->sk), filter.table_id);
2620 		if (!mrt) {
2621 			if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2622 				return skb->len;
2623 
2624 			NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2625 			return -ENOENT;
2626 		}
2627 		err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2628 				    &mfc_unres_lock, &filter);
2629 		return skb->len ? : err;
2630 	}
2631 
2632 	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2633 				_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2634 }
2635 
2636 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2637 	[RTA_SRC]	= { .type = NLA_U32 },
2638 	[RTA_DST]	= { .type = NLA_U32 },
2639 	[RTA_IIF]	= { .type = NLA_U32 },
2640 	[RTA_TABLE]	= { .type = NLA_U32 },
2641 	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2642 };
2643 
2644 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2645 {
2646 	switch (rtm_protocol) {
2647 	case RTPROT_STATIC:
2648 	case RTPROT_MROUTED:
2649 		return true;
2650 	}
2651 	return false;
2652 }
2653 
2654 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2655 {
2656 	struct rtnexthop *rtnh = nla_data(nla);
2657 	int remaining = nla_len(nla), vifi = 0;
2658 
2659 	while (rtnh_ok(rtnh, remaining)) {
2660 		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2661 		if (++vifi == MAXVIFS)
2662 			break;
2663 		rtnh = rtnh_next(rtnh, &remaining);
2664 	}
2665 
2666 	return remaining > 0 ? -EINVAL : vifi;
2667 }
2668 
2669 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2670 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2671 			    struct mfcctl *mfcc, int *mrtsock,
2672 			    struct mr_table **mrtret,
2673 			    struct netlink_ext_ack *extack)
2674 {
2675 	struct net_device *dev = NULL;
2676 	u32 tblid = RT_TABLE_DEFAULT;
2677 	struct mr_table *mrt;
2678 	struct nlattr *attr;
2679 	struct rtmsg *rtm;
2680 	int ret, rem;
2681 
2682 	ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2683 					rtm_ipmr_policy, extack);
2684 	if (ret < 0)
2685 		goto out;
2686 	rtm = nlmsg_data(nlh);
2687 
2688 	ret = -EINVAL;
2689 	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2690 	    rtm->rtm_type != RTN_MULTICAST ||
2691 	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2692 	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2693 		goto out;
2694 
2695 	memset(mfcc, 0, sizeof(*mfcc));
2696 	mfcc->mfcc_parent = -1;
2697 	ret = 0;
2698 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2699 		switch (nla_type(attr)) {
2700 		case RTA_SRC:
2701 			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2702 			break;
2703 		case RTA_DST:
2704 			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2705 			break;
2706 		case RTA_IIF:
2707 			dev = __dev_get_by_index(net, nla_get_u32(attr));
2708 			if (!dev) {
2709 				ret = -ENODEV;
2710 				goto out;
2711 			}
2712 			break;
2713 		case RTA_MULTIPATH:
2714 			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2715 				ret = -EINVAL;
2716 				goto out;
2717 			}
2718 			break;
2719 		case RTA_PREFSRC:
2720 			ret = 1;
2721 			break;
2722 		case RTA_TABLE:
2723 			tblid = nla_get_u32(attr);
2724 			break;
2725 		}
2726 	}
2727 	mrt = __ipmr_get_table(net, tblid);
2728 	if (!mrt) {
2729 		ret = -ENOENT;
2730 		goto out;
2731 	}
2732 	*mrtret = mrt;
2733 	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2734 	if (dev)
2735 		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2736 
2737 out:
2738 	return ret;
2739 }
2740 
2741 /* takes care of both newroute and delroute */
2742 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2743 			  struct netlink_ext_ack *extack)
2744 {
2745 	struct net *net = sock_net(skb->sk);
2746 	int ret, mrtsock, parent;
2747 	struct mr_table *tbl;
2748 	struct mfcctl mfcc;
2749 
2750 	mrtsock = 0;
2751 	tbl = NULL;
2752 	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2753 	if (ret < 0)
2754 		return ret;
2755 
2756 	parent = ret ? mfcc.mfcc_parent : -1;
2757 	if (nlh->nlmsg_type == RTM_NEWROUTE)
2758 		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2759 	else
2760 		return ipmr_mfc_delete(tbl, &mfcc, parent);
2761 }
2762 
2763 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2764 {
2765 	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2766 
2767 	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2768 	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2769 	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2770 			mrt->mroute_reg_vif_num) ||
2771 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2772 		       mrt->mroute_do_assert) ||
2773 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2774 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2775 		       mrt->mroute_do_wrvifwhole))
2776 		return false;
2777 
2778 	return true;
2779 }
2780 
2781 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2782 {
2783 	struct net_device *vif_dev;
2784 	struct nlattr *vif_nest;
2785 	struct vif_device *vif;
2786 
2787 	vif = &mrt->vif_table[vifid];
2788 	vif_dev = rtnl_dereference(vif->dev);
2789 	/* if the VIF doesn't exist just continue */
2790 	if (!vif_dev)
2791 		return true;
2792 
2793 	vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2794 	if (!vif_nest)
2795 		return false;
2796 
2797 	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) ||
2798 	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2799 	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2800 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2801 			      IPMRA_VIFA_PAD) ||
2802 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2803 			      IPMRA_VIFA_PAD) ||
2804 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2805 			      IPMRA_VIFA_PAD) ||
2806 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2807 			      IPMRA_VIFA_PAD) ||
2808 	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2809 	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2810 		nla_nest_cancel(skb, vif_nest);
2811 		return false;
2812 	}
2813 	nla_nest_end(skb, vif_nest);
2814 
2815 	return true;
2816 }
2817 
2818 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2819 			       struct netlink_ext_ack *extack)
2820 {
2821 	struct ifinfomsg *ifm;
2822 
2823 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2824 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2825 		return -EINVAL;
2826 	}
2827 
2828 	if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2829 		NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2830 		return -EINVAL;
2831 	}
2832 
2833 	ifm = nlmsg_data(nlh);
2834 	if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2835 	    ifm->ifi_change || ifm->ifi_index) {
2836 		NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2837 		return -EINVAL;
2838 	}
2839 
2840 	return 0;
2841 }
2842 
2843 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2844 {
2845 	struct net *net = sock_net(skb->sk);
2846 	struct nlmsghdr *nlh = NULL;
2847 	unsigned int t = 0, s_t;
2848 	unsigned int e = 0, s_e;
2849 	struct mr_table *mrt;
2850 
2851 	if (cb->strict_check) {
2852 		int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2853 
2854 		if (err < 0)
2855 			return err;
2856 	}
2857 
2858 	s_t = cb->args[0];
2859 	s_e = cb->args[1];
2860 
2861 	ipmr_for_each_table(mrt, net) {
2862 		struct nlattr *vifs, *af;
2863 		struct ifinfomsg *hdr;
2864 		u32 i;
2865 
2866 		if (t < s_t)
2867 			goto skip_table;
2868 		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2869 				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2870 				sizeof(*hdr), NLM_F_MULTI);
2871 		if (!nlh)
2872 			break;
2873 
2874 		hdr = nlmsg_data(nlh);
2875 		memset(hdr, 0, sizeof(*hdr));
2876 		hdr->ifi_family = RTNL_FAMILY_IPMR;
2877 
2878 		af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2879 		if (!af) {
2880 			nlmsg_cancel(skb, nlh);
2881 			goto out;
2882 		}
2883 
2884 		if (!ipmr_fill_table(mrt, skb)) {
2885 			nlmsg_cancel(skb, nlh);
2886 			goto out;
2887 		}
2888 
2889 		vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2890 		if (!vifs) {
2891 			nla_nest_end(skb, af);
2892 			nlmsg_end(skb, nlh);
2893 			goto out;
2894 		}
2895 		for (i = 0; i < mrt->maxvif; i++) {
2896 			if (e < s_e)
2897 				goto skip_entry;
2898 			if (!ipmr_fill_vif(mrt, i, skb)) {
2899 				nla_nest_end(skb, vifs);
2900 				nla_nest_end(skb, af);
2901 				nlmsg_end(skb, nlh);
2902 				goto out;
2903 			}
2904 skip_entry:
2905 			e++;
2906 		}
2907 		s_e = 0;
2908 		e = 0;
2909 		nla_nest_end(skb, vifs);
2910 		nla_nest_end(skb, af);
2911 		nlmsg_end(skb, nlh);
2912 skip_table:
2913 		t++;
2914 	}
2915 
2916 out:
2917 	cb->args[1] = e;
2918 	cb->args[0] = t;
2919 
2920 	return skb->len;
2921 }
2922 
2923 #ifdef CONFIG_PROC_FS
2924 /* The /proc interfaces to multicast routing :
2925  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2926  */
2927 
2928 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2929 	__acquires(RCU)
2930 {
2931 	struct mr_vif_iter *iter = seq->private;
2932 	struct net *net = seq_file_net(seq);
2933 	struct mr_table *mrt;
2934 
2935 	rcu_read_lock();
2936 	mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2937 	if (!mrt) {
2938 		rcu_read_unlock();
2939 		return ERR_PTR(-ENOENT);
2940 	}
2941 
2942 	iter->mrt = mrt;
2943 
2944 	return mr_vif_seq_start(seq, pos);
2945 }
2946 
2947 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2948 	__releases(RCU)
2949 {
2950 	rcu_read_unlock();
2951 }
2952 
2953 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2954 {
2955 	struct mr_vif_iter *iter = seq->private;
2956 	struct mr_table *mrt = iter->mrt;
2957 
2958 	if (v == SEQ_START_TOKEN) {
2959 		seq_puts(seq,
2960 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2961 	} else {
2962 		const struct vif_device *vif = v;
2963 		const struct net_device *vif_dev;
2964 		const char *name;
2965 
2966 		vif_dev = vif_dev_read(vif);
2967 		name = vif_dev ? vif_dev->name : "none";
2968 		seq_printf(seq,
2969 			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2970 			   vif - mrt->vif_table,
2971 			   name, vif->bytes_in, vif->pkt_in,
2972 			   vif->bytes_out, vif->pkt_out,
2973 			   vif->flags, vif->local, vif->remote);
2974 	}
2975 	return 0;
2976 }
2977 
2978 static const struct seq_operations ipmr_vif_seq_ops = {
2979 	.start = ipmr_vif_seq_start,
2980 	.next  = mr_vif_seq_next,
2981 	.stop  = ipmr_vif_seq_stop,
2982 	.show  = ipmr_vif_seq_show,
2983 };
2984 
2985 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2986 {
2987 	struct net *net = seq_file_net(seq);
2988 	struct mr_table *mrt;
2989 
2990 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2991 	if (!mrt)
2992 		return ERR_PTR(-ENOENT);
2993 
2994 	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2995 }
2996 
2997 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2998 {
2999 	int n;
3000 
3001 	if (v == SEQ_START_TOKEN) {
3002 		seq_puts(seq,
3003 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
3004 	} else {
3005 		const struct mfc_cache *mfc = v;
3006 		const struct mr_mfc_iter *it = seq->private;
3007 		const struct mr_table *mrt = it->mrt;
3008 
3009 		seq_printf(seq, "%08X %08X %-3hd",
3010 			   (__force u32) mfc->mfc_mcastgrp,
3011 			   (__force u32) mfc->mfc_origin,
3012 			   mfc->_c.mfc_parent);
3013 
3014 		if (it->cache != &mrt->mfc_unres_queue) {
3015 			seq_printf(seq, " %8lu %8lu %8lu",
3016 				   mfc->_c.mfc_un.res.pkt,
3017 				   mfc->_c.mfc_un.res.bytes,
3018 				   mfc->_c.mfc_un.res.wrong_if);
3019 			for (n = mfc->_c.mfc_un.res.minvif;
3020 			     n < mfc->_c.mfc_un.res.maxvif; n++) {
3021 				if (VIF_EXISTS(mrt, n) &&
3022 				    mfc->_c.mfc_un.res.ttls[n] < 255)
3023 					seq_printf(seq,
3024 					   " %2d:%-3d",
3025 					   n, mfc->_c.mfc_un.res.ttls[n]);
3026 			}
3027 		} else {
3028 			/* unresolved mfc_caches don't contain
3029 			 * pkt, bytes and wrong_if values
3030 			 */
3031 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3032 		}
3033 		seq_putc(seq, '\n');
3034 	}
3035 	return 0;
3036 }
3037 
3038 static const struct seq_operations ipmr_mfc_seq_ops = {
3039 	.start = ipmr_mfc_seq_start,
3040 	.next  = mr_mfc_seq_next,
3041 	.stop  = mr_mfc_seq_stop,
3042 	.show  = ipmr_mfc_seq_show,
3043 };
3044 #endif
3045 
3046 #ifdef CONFIG_IP_PIMSM_V2
3047 static const struct net_protocol pim_protocol = {
3048 	.handler	=	pim_rcv,
3049 };
3050 #endif
3051 
3052 static unsigned int ipmr_seq_read(struct net *net)
3053 {
3054 	ASSERT_RTNL();
3055 
3056 	return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3057 }
3058 
3059 static int ipmr_dump(struct net *net, struct notifier_block *nb,
3060 		     struct netlink_ext_ack *extack)
3061 {
3062 	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3063 		       ipmr_mr_table_iter, extack);
3064 }
3065 
3066 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3067 	.family		= RTNL_FAMILY_IPMR,
3068 	.fib_seq_read	= ipmr_seq_read,
3069 	.fib_dump	= ipmr_dump,
3070 	.owner		= THIS_MODULE,
3071 };
3072 
3073 static int __net_init ipmr_notifier_init(struct net *net)
3074 {
3075 	struct fib_notifier_ops *ops;
3076 
3077 	net->ipv4.ipmr_seq = 0;
3078 
3079 	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3080 	if (IS_ERR(ops))
3081 		return PTR_ERR(ops);
3082 	net->ipv4.ipmr_notifier_ops = ops;
3083 
3084 	return 0;
3085 }
3086 
3087 static void __net_exit ipmr_notifier_exit(struct net *net)
3088 {
3089 	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3090 	net->ipv4.ipmr_notifier_ops = NULL;
3091 }
3092 
3093 /* Setup for IP multicast routing */
3094 static int __net_init ipmr_net_init(struct net *net)
3095 {
3096 	int err;
3097 
3098 	err = ipmr_notifier_init(net);
3099 	if (err)
3100 		goto ipmr_notifier_fail;
3101 
3102 	err = ipmr_rules_init(net);
3103 	if (err < 0)
3104 		goto ipmr_rules_fail;
3105 
3106 #ifdef CONFIG_PROC_FS
3107 	err = -ENOMEM;
3108 	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3109 			sizeof(struct mr_vif_iter)))
3110 		goto proc_vif_fail;
3111 	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3112 			sizeof(struct mr_mfc_iter)))
3113 		goto proc_cache_fail;
3114 #endif
3115 	return 0;
3116 
3117 #ifdef CONFIG_PROC_FS
3118 proc_cache_fail:
3119 	remove_proc_entry("ip_mr_vif", net->proc_net);
3120 proc_vif_fail:
3121 	rtnl_lock();
3122 	ipmr_rules_exit(net);
3123 	rtnl_unlock();
3124 #endif
3125 ipmr_rules_fail:
3126 	ipmr_notifier_exit(net);
3127 ipmr_notifier_fail:
3128 	return err;
3129 }
3130 
3131 static void __net_exit ipmr_net_exit(struct net *net)
3132 {
3133 #ifdef CONFIG_PROC_FS
3134 	remove_proc_entry("ip_mr_cache", net->proc_net);
3135 	remove_proc_entry("ip_mr_vif", net->proc_net);
3136 #endif
3137 	ipmr_notifier_exit(net);
3138 }
3139 
3140 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3141 {
3142 	struct net *net;
3143 
3144 	rtnl_lock();
3145 	list_for_each_entry(net, net_list, exit_list)
3146 		ipmr_rules_exit(net);
3147 	rtnl_unlock();
3148 }
3149 
3150 static struct pernet_operations ipmr_net_ops = {
3151 	.init = ipmr_net_init,
3152 	.exit = ipmr_net_exit,
3153 	.exit_batch = ipmr_net_exit_batch,
3154 };
3155 
3156 int __init ip_mr_init(void)
3157 {
3158 	int err;
3159 
3160 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
3161 				       sizeof(struct mfc_cache),
3162 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3163 				       NULL);
3164 
3165 	err = register_pernet_subsys(&ipmr_net_ops);
3166 	if (err)
3167 		goto reg_pernet_fail;
3168 
3169 	err = register_netdevice_notifier(&ip_mr_notifier);
3170 	if (err)
3171 		goto reg_notif_fail;
3172 #ifdef CONFIG_IP_PIMSM_V2
3173 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3174 		pr_err("%s: can't add PIM protocol\n", __func__);
3175 		err = -EAGAIN;
3176 		goto add_proto_fail;
3177 	}
3178 #endif
3179 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3180 		      ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3181 	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3182 		      ipmr_rtm_route, NULL, 0);
3183 	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3184 		      ipmr_rtm_route, NULL, 0);
3185 
3186 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3187 		      NULL, ipmr_rtm_dumplink, 0);
3188 	return 0;
3189 
3190 #ifdef CONFIG_IP_PIMSM_V2
3191 add_proto_fail:
3192 	unregister_netdevice_notifier(&ip_mr_notifier);
3193 #endif
3194 reg_notif_fail:
3195 	unregister_pernet_subsys(&ipmr_net_ops);
3196 reg_pernet_fail:
3197 	kmem_cache_destroy(mrt_cachep);
3198 	return err;
3199 }
3200