xref: /openbmc/linux/net/ipv4/ipmr.c (revision 6a613ac6)
1 /*
2  *	IP multicast routing support for mrouted 3.6/3.8
3  *
4  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *	  Linux Consultancy and Custom Driver Development
6  *
7  *	This program is free software; you can redistribute it and/or
8  *	modify it under the terms of the GNU General Public License
9  *	as published by the Free Software Foundation; either version
10  *	2 of the License, or (at your option) any later version.
11  *
12  *	Fixes:
13  *	Michael Chastain	:	Incorrect size of copying.
14  *	Alan Cox		:	Added the cache manager code
15  *	Alan Cox		:	Fixed the clone/copy bug and device race.
16  *	Mike McLagan		:	Routing by source
17  *	Malcolm Beattie		:	Buffer handling fixes.
18  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
19  *	SVR Anand		:	Fixed several multicast bugs and problems.
20  *	Alexey Kuznetsov	:	Status, optimisations and more.
21  *	Brad Parker		:	Better behaviour on mrouted upcall
22  *					overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
25  *					Relax this requirement to work with older peers.
26  *
27  */
28 
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 
70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
71 #define CONFIG_IP_PIMSM	1
72 #endif
73 
74 struct mr_table {
75 	struct list_head	list;
76 	possible_net_t		net;
77 	u32			id;
78 	struct sock __rcu	*mroute_sk;
79 	struct timer_list	ipmr_expire_timer;
80 	struct list_head	mfc_unres_queue;
81 	struct list_head	mfc_cache_array[MFC_LINES];
82 	struct vif_device	vif_table[MAXVIFS];
83 	int			maxvif;
84 	atomic_t		cache_resolve_queue_len;
85 	bool			mroute_do_assert;
86 	bool			mroute_do_pim;
87 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
88 	int			mroute_reg_vif_num;
89 #endif
90 };
91 
92 struct ipmr_rule {
93 	struct fib_rule		common;
94 };
95 
96 struct ipmr_result {
97 	struct mr_table		*mrt;
98 };
99 
100 /* Big lock, protecting vif table, mrt cache and mroute socket state.
101  * Note that the changes are semaphored via rtnl_lock.
102  */
103 
104 static DEFINE_RWLOCK(mrt_lock);
105 
106 /*
107  *	Multicast router control variables
108  */
109 
110 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
111 
112 /* Special spinlock for queue of unresolved entries */
113 static DEFINE_SPINLOCK(mfc_unres_lock);
114 
115 /* We return to original Alan's scheme. Hash table of resolved
116  * entries is changed only in process context and protected
117  * with weak lock mrt_lock. Queue of unresolved entries is protected
118  * with strong spinlock mfc_unres_lock.
119  *
120  * In this case data path is free of exclusive locks at all.
121  */
122 
123 static struct kmem_cache *mrt_cachep __read_mostly;
124 
125 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
126 static void ipmr_free_table(struct mr_table *mrt);
127 
128 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
129 			  struct sk_buff *skb, struct mfc_cache *cache,
130 			  int local);
131 static int ipmr_cache_report(struct mr_table *mrt,
132 			     struct sk_buff *pkt, vifi_t vifi, int assert);
133 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
134 			      struct mfc_cache *c, struct rtmsg *rtm);
135 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
136 				 int cmd);
137 static void mroute_clean_tables(struct mr_table *mrt, bool all);
138 static void ipmr_expire_process(unsigned long arg);
139 
140 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
141 #define ipmr_for_each_table(mrt, net) \
142 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
143 
144 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
145 {
146 	struct mr_table *mrt;
147 
148 	ipmr_for_each_table(mrt, net) {
149 		if (mrt->id == id)
150 			return mrt;
151 	}
152 	return NULL;
153 }
154 
155 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
156 			   struct mr_table **mrt)
157 {
158 	int err;
159 	struct ipmr_result res;
160 	struct fib_lookup_arg arg = {
161 		.result = &res,
162 		.flags = FIB_LOOKUP_NOREF,
163 	};
164 
165 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
166 			       flowi4_to_flowi(flp4), 0, &arg);
167 	if (err < 0)
168 		return err;
169 	*mrt = res.mrt;
170 	return 0;
171 }
172 
173 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
174 			    int flags, struct fib_lookup_arg *arg)
175 {
176 	struct ipmr_result *res = arg->result;
177 	struct mr_table *mrt;
178 
179 	switch (rule->action) {
180 	case FR_ACT_TO_TBL:
181 		break;
182 	case FR_ACT_UNREACHABLE:
183 		return -ENETUNREACH;
184 	case FR_ACT_PROHIBIT:
185 		return -EACCES;
186 	case FR_ACT_BLACKHOLE:
187 	default:
188 		return -EINVAL;
189 	}
190 
191 	mrt = ipmr_get_table(rule->fr_net, rule->table);
192 	if (!mrt)
193 		return -EAGAIN;
194 	res->mrt = mrt;
195 	return 0;
196 }
197 
198 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
199 {
200 	return 1;
201 }
202 
203 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
204 	FRA_GENERIC_POLICY,
205 };
206 
207 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
208 			       struct fib_rule_hdr *frh, struct nlattr **tb)
209 {
210 	return 0;
211 }
212 
213 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
214 			     struct nlattr **tb)
215 {
216 	return 1;
217 }
218 
219 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
220 			  struct fib_rule_hdr *frh)
221 {
222 	frh->dst_len = 0;
223 	frh->src_len = 0;
224 	frh->tos     = 0;
225 	return 0;
226 }
227 
228 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
229 	.family		= RTNL_FAMILY_IPMR,
230 	.rule_size	= sizeof(struct ipmr_rule),
231 	.addr_size	= sizeof(u32),
232 	.action		= ipmr_rule_action,
233 	.match		= ipmr_rule_match,
234 	.configure	= ipmr_rule_configure,
235 	.compare	= ipmr_rule_compare,
236 	.fill		= ipmr_rule_fill,
237 	.nlgroup	= RTNLGRP_IPV4_RULE,
238 	.policy		= ipmr_rule_policy,
239 	.owner		= THIS_MODULE,
240 };
241 
242 static int __net_init ipmr_rules_init(struct net *net)
243 {
244 	struct fib_rules_ops *ops;
245 	struct mr_table *mrt;
246 	int err;
247 
248 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
249 	if (IS_ERR(ops))
250 		return PTR_ERR(ops);
251 
252 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
253 
254 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
255 	if (!mrt) {
256 		err = -ENOMEM;
257 		goto err1;
258 	}
259 
260 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
261 	if (err < 0)
262 		goto err2;
263 
264 	net->ipv4.mr_rules_ops = ops;
265 	return 0;
266 
267 err2:
268 	ipmr_free_table(mrt);
269 err1:
270 	fib_rules_unregister(ops);
271 	return err;
272 }
273 
274 static void __net_exit ipmr_rules_exit(struct net *net)
275 {
276 	struct mr_table *mrt, *next;
277 
278 	rtnl_lock();
279 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
280 		list_del(&mrt->list);
281 		ipmr_free_table(mrt);
282 	}
283 	fib_rules_unregister(net->ipv4.mr_rules_ops);
284 	rtnl_unlock();
285 }
286 #else
287 #define ipmr_for_each_table(mrt, net) \
288 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
289 
290 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
291 {
292 	return net->ipv4.mrt;
293 }
294 
295 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
296 			   struct mr_table **mrt)
297 {
298 	*mrt = net->ipv4.mrt;
299 	return 0;
300 }
301 
302 static int __net_init ipmr_rules_init(struct net *net)
303 {
304 	net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
305 	return net->ipv4.mrt ? 0 : -ENOMEM;
306 }
307 
308 static void __net_exit ipmr_rules_exit(struct net *net)
309 {
310 	rtnl_lock();
311 	ipmr_free_table(net->ipv4.mrt);
312 	net->ipv4.mrt = NULL;
313 	rtnl_unlock();
314 }
315 #endif
316 
317 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
318 {
319 	struct mr_table *mrt;
320 	unsigned int i;
321 
322 	mrt = ipmr_get_table(net, id);
323 	if (mrt)
324 		return mrt;
325 
326 	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
327 	if (!mrt)
328 		return NULL;
329 	write_pnet(&mrt->net, net);
330 	mrt->id = id;
331 
332 	/* Forwarding cache */
333 	for (i = 0; i < MFC_LINES; i++)
334 		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
335 
336 	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
337 
338 	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
339 		    (unsigned long)mrt);
340 
341 #ifdef CONFIG_IP_PIMSM
342 	mrt->mroute_reg_vif_num = -1;
343 #endif
344 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
345 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
346 #endif
347 	return mrt;
348 }
349 
350 static void ipmr_free_table(struct mr_table *mrt)
351 {
352 	del_timer_sync(&mrt->ipmr_expire_timer);
353 	mroute_clean_tables(mrt, true);
354 	kfree(mrt);
355 }
356 
357 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
358 
359 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
360 {
361 	struct net *net = dev_net(dev);
362 
363 	dev_close(dev);
364 
365 	dev = __dev_get_by_name(net, "tunl0");
366 	if (dev) {
367 		const struct net_device_ops *ops = dev->netdev_ops;
368 		struct ifreq ifr;
369 		struct ip_tunnel_parm p;
370 
371 		memset(&p, 0, sizeof(p));
372 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
373 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
374 		p.iph.version = 4;
375 		p.iph.ihl = 5;
376 		p.iph.protocol = IPPROTO_IPIP;
377 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
378 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
379 
380 		if (ops->ndo_do_ioctl) {
381 			mm_segment_t oldfs = get_fs();
382 
383 			set_fs(KERNEL_DS);
384 			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
385 			set_fs(oldfs);
386 		}
387 	}
388 }
389 
390 static
391 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
392 {
393 	struct net_device  *dev;
394 
395 	dev = __dev_get_by_name(net, "tunl0");
396 
397 	if (dev) {
398 		const struct net_device_ops *ops = dev->netdev_ops;
399 		int err;
400 		struct ifreq ifr;
401 		struct ip_tunnel_parm p;
402 		struct in_device  *in_dev;
403 
404 		memset(&p, 0, sizeof(p));
405 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
406 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
407 		p.iph.version = 4;
408 		p.iph.ihl = 5;
409 		p.iph.protocol = IPPROTO_IPIP;
410 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
411 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
412 
413 		if (ops->ndo_do_ioctl) {
414 			mm_segment_t oldfs = get_fs();
415 
416 			set_fs(KERNEL_DS);
417 			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
418 			set_fs(oldfs);
419 		} else {
420 			err = -EOPNOTSUPP;
421 		}
422 		dev = NULL;
423 
424 		if (err == 0 &&
425 		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
426 			dev->flags |= IFF_MULTICAST;
427 
428 			in_dev = __in_dev_get_rtnl(dev);
429 			if (!in_dev)
430 				goto failure;
431 
432 			ipv4_devconf_setall(in_dev);
433 			neigh_parms_data_state_setall(in_dev->arp_parms);
434 			IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
435 
436 			if (dev_open(dev))
437 				goto failure;
438 			dev_hold(dev);
439 		}
440 	}
441 	return dev;
442 
443 failure:
444 	unregister_netdevice(dev);
445 	return NULL;
446 }
447 
448 #ifdef CONFIG_IP_PIMSM
449 
450 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
451 {
452 	struct net *net = dev_net(dev);
453 	struct mr_table *mrt;
454 	struct flowi4 fl4 = {
455 		.flowi4_oif	= dev->ifindex,
456 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
457 		.flowi4_mark	= skb->mark,
458 	};
459 	int err;
460 
461 	err = ipmr_fib_lookup(net, &fl4, &mrt);
462 	if (err < 0) {
463 		kfree_skb(skb);
464 		return err;
465 	}
466 
467 	read_lock(&mrt_lock);
468 	dev->stats.tx_bytes += skb->len;
469 	dev->stats.tx_packets++;
470 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
471 	read_unlock(&mrt_lock);
472 	kfree_skb(skb);
473 	return NETDEV_TX_OK;
474 }
475 
476 static int reg_vif_get_iflink(const struct net_device *dev)
477 {
478 	return 0;
479 }
480 
481 static const struct net_device_ops reg_vif_netdev_ops = {
482 	.ndo_start_xmit	= reg_vif_xmit,
483 	.ndo_get_iflink = reg_vif_get_iflink,
484 };
485 
486 static void reg_vif_setup(struct net_device *dev)
487 {
488 	dev->type		= ARPHRD_PIMREG;
489 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
490 	dev->flags		= IFF_NOARP;
491 	dev->netdev_ops		= &reg_vif_netdev_ops;
492 	dev->destructor		= free_netdev;
493 	dev->features		|= NETIF_F_NETNS_LOCAL;
494 }
495 
496 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
497 {
498 	struct net_device *dev;
499 	struct in_device *in_dev;
500 	char name[IFNAMSIZ];
501 
502 	if (mrt->id == RT_TABLE_DEFAULT)
503 		sprintf(name, "pimreg");
504 	else
505 		sprintf(name, "pimreg%u", mrt->id);
506 
507 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
508 
509 	if (!dev)
510 		return NULL;
511 
512 	dev_net_set(dev, net);
513 
514 	if (register_netdevice(dev)) {
515 		free_netdev(dev);
516 		return NULL;
517 	}
518 
519 	rcu_read_lock();
520 	in_dev = __in_dev_get_rcu(dev);
521 	if (!in_dev) {
522 		rcu_read_unlock();
523 		goto failure;
524 	}
525 
526 	ipv4_devconf_setall(in_dev);
527 	neigh_parms_data_state_setall(in_dev->arp_parms);
528 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
529 	rcu_read_unlock();
530 
531 	if (dev_open(dev))
532 		goto failure;
533 
534 	dev_hold(dev);
535 
536 	return dev;
537 
538 failure:
539 	unregister_netdevice(dev);
540 	return NULL;
541 }
542 #endif
543 
544 /**
545  *	vif_delete - Delete a VIF entry
546  *	@notify: Set to 1, if the caller is a notifier_call
547  */
548 
549 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
550 		      struct list_head *head)
551 {
552 	struct vif_device *v;
553 	struct net_device *dev;
554 	struct in_device *in_dev;
555 
556 	if (vifi < 0 || vifi >= mrt->maxvif)
557 		return -EADDRNOTAVAIL;
558 
559 	v = &mrt->vif_table[vifi];
560 
561 	write_lock_bh(&mrt_lock);
562 	dev = v->dev;
563 	v->dev = NULL;
564 
565 	if (!dev) {
566 		write_unlock_bh(&mrt_lock);
567 		return -EADDRNOTAVAIL;
568 	}
569 
570 #ifdef CONFIG_IP_PIMSM
571 	if (vifi == mrt->mroute_reg_vif_num)
572 		mrt->mroute_reg_vif_num = -1;
573 #endif
574 
575 	if (vifi + 1 == mrt->maxvif) {
576 		int tmp;
577 
578 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
579 			if (VIF_EXISTS(mrt, tmp))
580 				break;
581 		}
582 		mrt->maxvif = tmp+1;
583 	}
584 
585 	write_unlock_bh(&mrt_lock);
586 
587 	dev_set_allmulti(dev, -1);
588 
589 	in_dev = __in_dev_get_rtnl(dev);
590 	if (in_dev) {
591 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
592 		inet_netconf_notify_devconf(dev_net(dev),
593 					    NETCONFA_MC_FORWARDING,
594 					    dev->ifindex, &in_dev->cnf);
595 		ip_rt_multicast_event(in_dev);
596 	}
597 
598 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
599 		unregister_netdevice_queue(dev, head);
600 
601 	dev_put(dev);
602 	return 0;
603 }
604 
605 static void ipmr_cache_free_rcu(struct rcu_head *head)
606 {
607 	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
608 
609 	kmem_cache_free(mrt_cachep, c);
610 }
611 
612 static inline void ipmr_cache_free(struct mfc_cache *c)
613 {
614 	call_rcu(&c->rcu, ipmr_cache_free_rcu);
615 }
616 
617 /* Destroy an unresolved cache entry, killing queued skbs
618  * and reporting error to netlink readers.
619  */
620 
621 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
622 {
623 	struct net *net = read_pnet(&mrt->net);
624 	struct sk_buff *skb;
625 	struct nlmsgerr *e;
626 
627 	atomic_dec(&mrt->cache_resolve_queue_len);
628 
629 	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
630 		if (ip_hdr(skb)->version == 0) {
631 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
632 			nlh->nlmsg_type = NLMSG_ERROR;
633 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
634 			skb_trim(skb, nlh->nlmsg_len);
635 			e = nlmsg_data(nlh);
636 			e->error = -ETIMEDOUT;
637 			memset(&e->msg, 0, sizeof(e->msg));
638 
639 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
640 		} else {
641 			kfree_skb(skb);
642 		}
643 	}
644 
645 	ipmr_cache_free(c);
646 }
647 
648 
649 /* Timer process for the unresolved queue. */
650 
651 static void ipmr_expire_process(unsigned long arg)
652 {
653 	struct mr_table *mrt = (struct mr_table *)arg;
654 	unsigned long now;
655 	unsigned long expires;
656 	struct mfc_cache *c, *next;
657 
658 	if (!spin_trylock(&mfc_unres_lock)) {
659 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
660 		return;
661 	}
662 
663 	if (list_empty(&mrt->mfc_unres_queue))
664 		goto out;
665 
666 	now = jiffies;
667 	expires = 10*HZ;
668 
669 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
670 		if (time_after(c->mfc_un.unres.expires, now)) {
671 			unsigned long interval = c->mfc_un.unres.expires - now;
672 			if (interval < expires)
673 				expires = interval;
674 			continue;
675 		}
676 
677 		list_del(&c->list);
678 		mroute_netlink_event(mrt, c, RTM_DELROUTE);
679 		ipmr_destroy_unres(mrt, c);
680 	}
681 
682 	if (!list_empty(&mrt->mfc_unres_queue))
683 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
684 
685 out:
686 	spin_unlock(&mfc_unres_lock);
687 }
688 
689 /* Fill oifs list. It is called under write locked mrt_lock. */
690 
691 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
692 				   unsigned char *ttls)
693 {
694 	int vifi;
695 
696 	cache->mfc_un.res.minvif = MAXVIFS;
697 	cache->mfc_un.res.maxvif = 0;
698 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
699 
700 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
701 		if (VIF_EXISTS(mrt, vifi) &&
702 		    ttls[vifi] && ttls[vifi] < 255) {
703 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
704 			if (cache->mfc_un.res.minvif > vifi)
705 				cache->mfc_un.res.minvif = vifi;
706 			if (cache->mfc_un.res.maxvif <= vifi)
707 				cache->mfc_un.res.maxvif = vifi + 1;
708 		}
709 	}
710 }
711 
712 static int vif_add(struct net *net, struct mr_table *mrt,
713 		   struct vifctl *vifc, int mrtsock)
714 {
715 	int vifi = vifc->vifc_vifi;
716 	struct vif_device *v = &mrt->vif_table[vifi];
717 	struct net_device *dev;
718 	struct in_device *in_dev;
719 	int err;
720 
721 	/* Is vif busy ? */
722 	if (VIF_EXISTS(mrt, vifi))
723 		return -EADDRINUSE;
724 
725 	switch (vifc->vifc_flags) {
726 #ifdef CONFIG_IP_PIMSM
727 	case VIFF_REGISTER:
728 		/*
729 		 * Special Purpose VIF in PIM
730 		 * All the packets will be sent to the daemon
731 		 */
732 		if (mrt->mroute_reg_vif_num >= 0)
733 			return -EADDRINUSE;
734 		dev = ipmr_reg_vif(net, mrt);
735 		if (!dev)
736 			return -ENOBUFS;
737 		err = dev_set_allmulti(dev, 1);
738 		if (err) {
739 			unregister_netdevice(dev);
740 			dev_put(dev);
741 			return err;
742 		}
743 		break;
744 #endif
745 	case VIFF_TUNNEL:
746 		dev = ipmr_new_tunnel(net, vifc);
747 		if (!dev)
748 			return -ENOBUFS;
749 		err = dev_set_allmulti(dev, 1);
750 		if (err) {
751 			ipmr_del_tunnel(dev, vifc);
752 			dev_put(dev);
753 			return err;
754 		}
755 		break;
756 
757 	case VIFF_USE_IFINDEX:
758 	case 0:
759 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
760 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
761 			if (dev && !__in_dev_get_rtnl(dev)) {
762 				dev_put(dev);
763 				return -EADDRNOTAVAIL;
764 			}
765 		} else {
766 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
767 		}
768 		if (!dev)
769 			return -EADDRNOTAVAIL;
770 		err = dev_set_allmulti(dev, 1);
771 		if (err) {
772 			dev_put(dev);
773 			return err;
774 		}
775 		break;
776 	default:
777 		return -EINVAL;
778 	}
779 
780 	in_dev = __in_dev_get_rtnl(dev);
781 	if (!in_dev) {
782 		dev_put(dev);
783 		return -EADDRNOTAVAIL;
784 	}
785 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
786 	inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
787 				    &in_dev->cnf);
788 	ip_rt_multicast_event(in_dev);
789 
790 	/* Fill in the VIF structures */
791 
792 	v->rate_limit = vifc->vifc_rate_limit;
793 	v->local = vifc->vifc_lcl_addr.s_addr;
794 	v->remote = vifc->vifc_rmt_addr.s_addr;
795 	v->flags = vifc->vifc_flags;
796 	if (!mrtsock)
797 		v->flags |= VIFF_STATIC;
798 	v->threshold = vifc->vifc_threshold;
799 	v->bytes_in = 0;
800 	v->bytes_out = 0;
801 	v->pkt_in = 0;
802 	v->pkt_out = 0;
803 	v->link = dev->ifindex;
804 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
805 		v->link = dev_get_iflink(dev);
806 
807 	/* And finish update writing critical data */
808 	write_lock_bh(&mrt_lock);
809 	v->dev = dev;
810 #ifdef CONFIG_IP_PIMSM
811 	if (v->flags & VIFF_REGISTER)
812 		mrt->mroute_reg_vif_num = vifi;
813 #endif
814 	if (vifi+1 > mrt->maxvif)
815 		mrt->maxvif = vifi+1;
816 	write_unlock_bh(&mrt_lock);
817 	return 0;
818 }
819 
820 /* called with rcu_read_lock() */
821 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
822 					 __be32 origin,
823 					 __be32 mcastgrp)
824 {
825 	int line = MFC_HASH(mcastgrp, origin);
826 	struct mfc_cache *c;
827 
828 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
829 		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
830 			return c;
831 	}
832 	return NULL;
833 }
834 
835 /* Look for a (*,*,oif) entry */
836 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
837 						    int vifi)
838 {
839 	int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
840 	struct mfc_cache *c;
841 
842 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
843 		if (c->mfc_origin == htonl(INADDR_ANY) &&
844 		    c->mfc_mcastgrp == htonl(INADDR_ANY) &&
845 		    c->mfc_un.res.ttls[vifi] < 255)
846 			return c;
847 
848 	return NULL;
849 }
850 
851 /* Look for a (*,G) entry */
852 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
853 					     __be32 mcastgrp, int vifi)
854 {
855 	int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
856 	struct mfc_cache *c, *proxy;
857 
858 	if (mcastgrp == htonl(INADDR_ANY))
859 		goto skip;
860 
861 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
862 		if (c->mfc_origin == htonl(INADDR_ANY) &&
863 		    c->mfc_mcastgrp == mcastgrp) {
864 			if (c->mfc_un.res.ttls[vifi] < 255)
865 				return c;
866 
867 			/* It's ok if the vifi is part of the static tree */
868 			proxy = ipmr_cache_find_any_parent(mrt,
869 							   c->mfc_parent);
870 			if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
871 				return c;
872 		}
873 
874 skip:
875 	return ipmr_cache_find_any_parent(mrt, vifi);
876 }
877 
878 /*
879  *	Allocate a multicast cache entry
880  */
881 static struct mfc_cache *ipmr_cache_alloc(void)
882 {
883 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
884 
885 	if (c)
886 		c->mfc_un.res.minvif = MAXVIFS;
887 	return c;
888 }
889 
890 static struct mfc_cache *ipmr_cache_alloc_unres(void)
891 {
892 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
893 
894 	if (c) {
895 		skb_queue_head_init(&c->mfc_un.unres.unresolved);
896 		c->mfc_un.unres.expires = jiffies + 10*HZ;
897 	}
898 	return c;
899 }
900 
901 /*
902  *	A cache entry has gone into a resolved state from queued
903  */
904 
905 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
906 			       struct mfc_cache *uc, struct mfc_cache *c)
907 {
908 	struct sk_buff *skb;
909 	struct nlmsgerr *e;
910 
911 	/* Play the pending entries through our router */
912 
913 	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
914 		if (ip_hdr(skb)->version == 0) {
915 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
916 
917 			if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
918 				nlh->nlmsg_len = skb_tail_pointer(skb) -
919 						 (u8 *)nlh;
920 			} else {
921 				nlh->nlmsg_type = NLMSG_ERROR;
922 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
923 				skb_trim(skb, nlh->nlmsg_len);
924 				e = nlmsg_data(nlh);
925 				e->error = -EMSGSIZE;
926 				memset(&e->msg, 0, sizeof(e->msg));
927 			}
928 
929 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
930 		} else {
931 			ip_mr_forward(net, mrt, skb, c, 0);
932 		}
933 	}
934 }
935 
936 /*
937  *	Bounce a cache query up to mrouted. We could use netlink for this but mrouted
938  *	expects the following bizarre scheme.
939  *
940  *	Called under mrt_lock.
941  */
942 
943 static int ipmr_cache_report(struct mr_table *mrt,
944 			     struct sk_buff *pkt, vifi_t vifi, int assert)
945 {
946 	struct sk_buff *skb;
947 	const int ihl = ip_hdrlen(pkt);
948 	struct igmphdr *igmp;
949 	struct igmpmsg *msg;
950 	struct sock *mroute_sk;
951 	int ret;
952 
953 #ifdef CONFIG_IP_PIMSM
954 	if (assert == IGMPMSG_WHOLEPKT)
955 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
956 	else
957 #endif
958 		skb = alloc_skb(128, GFP_ATOMIC);
959 
960 	if (!skb)
961 		return -ENOBUFS;
962 
963 #ifdef CONFIG_IP_PIMSM
964 	if (assert == IGMPMSG_WHOLEPKT) {
965 		/* Ugly, but we have no choice with this interface.
966 		 * Duplicate old header, fix ihl, length etc.
967 		 * And all this only to mangle msg->im_msgtype and
968 		 * to set msg->im_mbz to "mbz" :-)
969 		 */
970 		skb_push(skb, sizeof(struct iphdr));
971 		skb_reset_network_header(skb);
972 		skb_reset_transport_header(skb);
973 		msg = (struct igmpmsg *)skb_network_header(skb);
974 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
975 		msg->im_msgtype = IGMPMSG_WHOLEPKT;
976 		msg->im_mbz = 0;
977 		msg->im_vif = mrt->mroute_reg_vif_num;
978 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
979 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
980 					     sizeof(struct iphdr));
981 	} else
982 #endif
983 	{
984 
985 	/* Copy the IP header */
986 
987 	skb_set_network_header(skb, skb->len);
988 	skb_put(skb, ihl);
989 	skb_copy_to_linear_data(skb, pkt->data, ihl);
990 	ip_hdr(skb)->protocol = 0;	/* Flag to the kernel this is a route add */
991 	msg = (struct igmpmsg *)skb_network_header(skb);
992 	msg->im_vif = vifi;
993 	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
994 
995 	/* Add our header */
996 
997 	igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
998 	igmp->type	=
999 	msg->im_msgtype = assert;
1000 	igmp->code	= 0;
1001 	ip_hdr(skb)->tot_len = htons(skb->len);		/* Fix the length */
1002 	skb->transport_header = skb->network_header;
1003 	}
1004 
1005 	rcu_read_lock();
1006 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1007 	if (!mroute_sk) {
1008 		rcu_read_unlock();
1009 		kfree_skb(skb);
1010 		return -EINVAL;
1011 	}
1012 
1013 	/* Deliver to mrouted */
1014 
1015 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1016 	rcu_read_unlock();
1017 	if (ret < 0) {
1018 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1019 		kfree_skb(skb);
1020 	}
1021 
1022 	return ret;
1023 }
1024 
1025 /*
1026  *	Queue a packet for resolution. It gets locked cache entry!
1027  */
1028 
1029 static int
1030 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
1031 {
1032 	bool found = false;
1033 	int err;
1034 	struct mfc_cache *c;
1035 	const struct iphdr *iph = ip_hdr(skb);
1036 
1037 	spin_lock_bh(&mfc_unres_lock);
1038 	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1039 		if (c->mfc_mcastgrp == iph->daddr &&
1040 		    c->mfc_origin == iph->saddr) {
1041 			found = true;
1042 			break;
1043 		}
1044 	}
1045 
1046 	if (!found) {
1047 		/* Create a new entry if allowable */
1048 
1049 		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1050 		    (c = ipmr_cache_alloc_unres()) == NULL) {
1051 			spin_unlock_bh(&mfc_unres_lock);
1052 
1053 			kfree_skb(skb);
1054 			return -ENOBUFS;
1055 		}
1056 
1057 		/* Fill in the new cache entry */
1058 
1059 		c->mfc_parent	= -1;
1060 		c->mfc_origin	= iph->saddr;
1061 		c->mfc_mcastgrp	= iph->daddr;
1062 
1063 		/* Reflect first query at mrouted. */
1064 
1065 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1066 		if (err < 0) {
1067 			/* If the report failed throw the cache entry
1068 			   out - Brad Parker
1069 			 */
1070 			spin_unlock_bh(&mfc_unres_lock);
1071 
1072 			ipmr_cache_free(c);
1073 			kfree_skb(skb);
1074 			return err;
1075 		}
1076 
1077 		atomic_inc(&mrt->cache_resolve_queue_len);
1078 		list_add(&c->list, &mrt->mfc_unres_queue);
1079 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1080 
1081 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1082 			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1083 	}
1084 
1085 	/* See if we can append the packet */
1086 
1087 	if (c->mfc_un.unres.unresolved.qlen > 3) {
1088 		kfree_skb(skb);
1089 		err = -ENOBUFS;
1090 	} else {
1091 		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1092 		err = 0;
1093 	}
1094 
1095 	spin_unlock_bh(&mfc_unres_lock);
1096 	return err;
1097 }
1098 
1099 /*
1100  *	MFC cache manipulation by user space mroute daemon
1101  */
1102 
1103 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1104 {
1105 	int line;
1106 	struct mfc_cache *c, *next;
1107 
1108 	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1109 
1110 	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1111 		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1112 		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1113 		    (parent == -1 || parent == c->mfc_parent)) {
1114 			list_del_rcu(&c->list);
1115 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1116 			ipmr_cache_free(c);
1117 			return 0;
1118 		}
1119 	}
1120 	return -ENOENT;
1121 }
1122 
1123 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1124 			struct mfcctl *mfc, int mrtsock, int parent)
1125 {
1126 	bool found = false;
1127 	int line;
1128 	struct mfc_cache *uc, *c;
1129 
1130 	if (mfc->mfcc_parent >= MAXVIFS)
1131 		return -ENFILE;
1132 
1133 	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1134 
1135 	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1136 		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1137 		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1138 		    (parent == -1 || parent == c->mfc_parent)) {
1139 			found = true;
1140 			break;
1141 		}
1142 	}
1143 
1144 	if (found) {
1145 		write_lock_bh(&mrt_lock);
1146 		c->mfc_parent = mfc->mfcc_parent;
1147 		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1148 		if (!mrtsock)
1149 			c->mfc_flags |= MFC_STATIC;
1150 		write_unlock_bh(&mrt_lock);
1151 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1152 		return 0;
1153 	}
1154 
1155 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1156 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1157 		return -EINVAL;
1158 
1159 	c = ipmr_cache_alloc();
1160 	if (!c)
1161 		return -ENOMEM;
1162 
1163 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1164 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1165 	c->mfc_parent = mfc->mfcc_parent;
1166 	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1167 	if (!mrtsock)
1168 		c->mfc_flags |= MFC_STATIC;
1169 
1170 	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1171 
1172 	/*
1173 	 *	Check to see if we resolved a queued list. If so we
1174 	 *	need to send on the frames and tidy up.
1175 	 */
1176 	found = false;
1177 	spin_lock_bh(&mfc_unres_lock);
1178 	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1179 		if (uc->mfc_origin == c->mfc_origin &&
1180 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1181 			list_del(&uc->list);
1182 			atomic_dec(&mrt->cache_resolve_queue_len);
1183 			found = true;
1184 			break;
1185 		}
1186 	}
1187 	if (list_empty(&mrt->mfc_unres_queue))
1188 		del_timer(&mrt->ipmr_expire_timer);
1189 	spin_unlock_bh(&mfc_unres_lock);
1190 
1191 	if (found) {
1192 		ipmr_cache_resolve(net, mrt, uc, c);
1193 		ipmr_cache_free(uc);
1194 	}
1195 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1196 	return 0;
1197 }
1198 
1199 /*
1200  *	Close the multicast socket, and clear the vif tables etc
1201  */
1202 
1203 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1204 {
1205 	int i;
1206 	LIST_HEAD(list);
1207 	struct mfc_cache *c, *next;
1208 
1209 	/* Shut down all active vif entries */
1210 
1211 	for (i = 0; i < mrt->maxvif; i++) {
1212 		if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1213 			continue;
1214 		vif_delete(mrt, i, 0, &list);
1215 	}
1216 	unregister_netdevice_many(&list);
1217 
1218 	/* Wipe the cache */
1219 
1220 	for (i = 0; i < MFC_LINES; i++) {
1221 		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1222 			if (!all && (c->mfc_flags & MFC_STATIC))
1223 				continue;
1224 			list_del_rcu(&c->list);
1225 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1226 			ipmr_cache_free(c);
1227 		}
1228 	}
1229 
1230 	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1231 		spin_lock_bh(&mfc_unres_lock);
1232 		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1233 			list_del(&c->list);
1234 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1235 			ipmr_destroy_unres(mrt, c);
1236 		}
1237 		spin_unlock_bh(&mfc_unres_lock);
1238 	}
1239 }
1240 
1241 /* called from ip_ra_control(), before an RCU grace period,
1242  * we dont need to call synchronize_rcu() here
1243  */
1244 static void mrtsock_destruct(struct sock *sk)
1245 {
1246 	struct net *net = sock_net(sk);
1247 	struct mr_table *mrt;
1248 
1249 	rtnl_lock();
1250 	ipmr_for_each_table(mrt, net) {
1251 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1252 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1253 			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1254 						    NETCONFA_IFINDEX_ALL,
1255 						    net->ipv4.devconf_all);
1256 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1257 			mroute_clean_tables(mrt, false);
1258 		}
1259 	}
1260 	rtnl_unlock();
1261 }
1262 
1263 /*
1264  *	Socket options and virtual interface manipulation. The whole
1265  *	virtual interface system is a complete heap, but unfortunately
1266  *	that's how BSD mrouted happens to think. Maybe one day with a proper
1267  *	MOSPF/PIM router set up we can clean this up.
1268  */
1269 
1270 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1271 {
1272 	int ret, parent = 0;
1273 	struct vifctl vif;
1274 	struct mfcctl mfc;
1275 	struct net *net = sock_net(sk);
1276 	struct mr_table *mrt;
1277 
1278 	if (sk->sk_type != SOCK_RAW ||
1279 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1280 		return -EOPNOTSUPP;
1281 
1282 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1283 	if (!mrt)
1284 		return -ENOENT;
1285 
1286 	if (optname != MRT_INIT) {
1287 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1288 		    !ns_capable(net->user_ns, CAP_NET_ADMIN))
1289 			return -EACCES;
1290 	}
1291 
1292 	switch (optname) {
1293 	case MRT_INIT:
1294 		if (optlen != sizeof(int))
1295 			return -EINVAL;
1296 
1297 		rtnl_lock();
1298 		if (rtnl_dereference(mrt->mroute_sk)) {
1299 			rtnl_unlock();
1300 			return -EADDRINUSE;
1301 		}
1302 
1303 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1304 		if (ret == 0) {
1305 			rcu_assign_pointer(mrt->mroute_sk, sk);
1306 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1307 			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1308 						    NETCONFA_IFINDEX_ALL,
1309 						    net->ipv4.devconf_all);
1310 		}
1311 		rtnl_unlock();
1312 		return ret;
1313 	case MRT_DONE:
1314 		if (sk != rcu_access_pointer(mrt->mroute_sk))
1315 			return -EACCES;
1316 		return ip_ra_control(sk, 0, NULL);
1317 	case MRT_ADD_VIF:
1318 	case MRT_DEL_VIF:
1319 		if (optlen != sizeof(vif))
1320 			return -EINVAL;
1321 		if (copy_from_user(&vif, optval, sizeof(vif)))
1322 			return -EFAULT;
1323 		if (vif.vifc_vifi >= MAXVIFS)
1324 			return -ENFILE;
1325 		rtnl_lock();
1326 		if (optname == MRT_ADD_VIF) {
1327 			ret = vif_add(net, mrt, &vif,
1328 				      sk == rtnl_dereference(mrt->mroute_sk));
1329 		} else {
1330 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1331 		}
1332 		rtnl_unlock();
1333 		return ret;
1334 
1335 		/*
1336 		 *	Manipulate the forwarding caches. These live
1337 		 *	in a sort of kernel/user symbiosis.
1338 		 */
1339 	case MRT_ADD_MFC:
1340 	case MRT_DEL_MFC:
1341 		parent = -1;
1342 	case MRT_ADD_MFC_PROXY:
1343 	case MRT_DEL_MFC_PROXY:
1344 		if (optlen != sizeof(mfc))
1345 			return -EINVAL;
1346 		if (copy_from_user(&mfc, optval, sizeof(mfc)))
1347 			return -EFAULT;
1348 		if (parent == 0)
1349 			parent = mfc.mfcc_parent;
1350 		rtnl_lock();
1351 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1352 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1353 		else
1354 			ret = ipmr_mfc_add(net, mrt, &mfc,
1355 					   sk == rtnl_dereference(mrt->mroute_sk),
1356 					   parent);
1357 		rtnl_unlock();
1358 		return ret;
1359 		/*
1360 		 *	Control PIM assert.
1361 		 */
1362 	case MRT_ASSERT:
1363 	{
1364 		int v;
1365 		if (optlen != sizeof(v))
1366 			return -EINVAL;
1367 		if (get_user(v, (int __user *)optval))
1368 			return -EFAULT;
1369 		mrt->mroute_do_assert = v;
1370 		return 0;
1371 	}
1372 #ifdef CONFIG_IP_PIMSM
1373 	case MRT_PIM:
1374 	{
1375 		int v;
1376 
1377 		if (optlen != sizeof(v))
1378 			return -EINVAL;
1379 		if (get_user(v, (int __user *)optval))
1380 			return -EFAULT;
1381 		v = !!v;
1382 
1383 		rtnl_lock();
1384 		ret = 0;
1385 		if (v != mrt->mroute_do_pim) {
1386 			mrt->mroute_do_pim = v;
1387 			mrt->mroute_do_assert = v;
1388 		}
1389 		rtnl_unlock();
1390 		return ret;
1391 	}
1392 #endif
1393 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1394 	case MRT_TABLE:
1395 	{
1396 		u32 v;
1397 
1398 		if (optlen != sizeof(u32))
1399 			return -EINVAL;
1400 		if (get_user(v, (u32 __user *)optval))
1401 			return -EFAULT;
1402 
1403 		/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1404 		if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1405 			return -EINVAL;
1406 
1407 		rtnl_lock();
1408 		ret = 0;
1409 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1410 			ret = -EBUSY;
1411 		} else {
1412 			if (!ipmr_new_table(net, v))
1413 				ret = -ENOMEM;
1414 			else
1415 				raw_sk(sk)->ipmr_table = v;
1416 		}
1417 		rtnl_unlock();
1418 		return ret;
1419 	}
1420 #endif
1421 	/*
1422 	 *	Spurious command, or MRT_VERSION which you cannot
1423 	 *	set.
1424 	 */
1425 	default:
1426 		return -ENOPROTOOPT;
1427 	}
1428 }
1429 
1430 /*
1431  *	Getsock opt support for the multicast routing system.
1432  */
1433 
1434 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1435 {
1436 	int olr;
1437 	int val;
1438 	struct net *net = sock_net(sk);
1439 	struct mr_table *mrt;
1440 
1441 	if (sk->sk_type != SOCK_RAW ||
1442 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1443 		return -EOPNOTSUPP;
1444 
1445 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1446 	if (!mrt)
1447 		return -ENOENT;
1448 
1449 	if (optname != MRT_VERSION &&
1450 #ifdef CONFIG_IP_PIMSM
1451 	   optname != MRT_PIM &&
1452 #endif
1453 	   optname != MRT_ASSERT)
1454 		return -ENOPROTOOPT;
1455 
1456 	if (get_user(olr, optlen))
1457 		return -EFAULT;
1458 
1459 	olr = min_t(unsigned int, olr, sizeof(int));
1460 	if (olr < 0)
1461 		return -EINVAL;
1462 
1463 	if (put_user(olr, optlen))
1464 		return -EFAULT;
1465 	if (optname == MRT_VERSION)
1466 		val = 0x0305;
1467 #ifdef CONFIG_IP_PIMSM
1468 	else if (optname == MRT_PIM)
1469 		val = mrt->mroute_do_pim;
1470 #endif
1471 	else
1472 		val = mrt->mroute_do_assert;
1473 	if (copy_to_user(optval, &val, olr))
1474 		return -EFAULT;
1475 	return 0;
1476 }
1477 
1478 /*
1479  *	The IP multicast ioctl support routines.
1480  */
1481 
1482 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1483 {
1484 	struct sioc_sg_req sr;
1485 	struct sioc_vif_req vr;
1486 	struct vif_device *vif;
1487 	struct mfc_cache *c;
1488 	struct net *net = sock_net(sk);
1489 	struct mr_table *mrt;
1490 
1491 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1492 	if (!mrt)
1493 		return -ENOENT;
1494 
1495 	switch (cmd) {
1496 	case SIOCGETVIFCNT:
1497 		if (copy_from_user(&vr, arg, sizeof(vr)))
1498 			return -EFAULT;
1499 		if (vr.vifi >= mrt->maxvif)
1500 			return -EINVAL;
1501 		read_lock(&mrt_lock);
1502 		vif = &mrt->vif_table[vr.vifi];
1503 		if (VIF_EXISTS(mrt, vr.vifi)) {
1504 			vr.icount = vif->pkt_in;
1505 			vr.ocount = vif->pkt_out;
1506 			vr.ibytes = vif->bytes_in;
1507 			vr.obytes = vif->bytes_out;
1508 			read_unlock(&mrt_lock);
1509 
1510 			if (copy_to_user(arg, &vr, sizeof(vr)))
1511 				return -EFAULT;
1512 			return 0;
1513 		}
1514 		read_unlock(&mrt_lock);
1515 		return -EADDRNOTAVAIL;
1516 	case SIOCGETSGCNT:
1517 		if (copy_from_user(&sr, arg, sizeof(sr)))
1518 			return -EFAULT;
1519 
1520 		rcu_read_lock();
1521 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1522 		if (c) {
1523 			sr.pktcnt = c->mfc_un.res.pkt;
1524 			sr.bytecnt = c->mfc_un.res.bytes;
1525 			sr.wrong_if = c->mfc_un.res.wrong_if;
1526 			rcu_read_unlock();
1527 
1528 			if (copy_to_user(arg, &sr, sizeof(sr)))
1529 				return -EFAULT;
1530 			return 0;
1531 		}
1532 		rcu_read_unlock();
1533 		return -EADDRNOTAVAIL;
1534 	default:
1535 		return -ENOIOCTLCMD;
1536 	}
1537 }
1538 
1539 #ifdef CONFIG_COMPAT
1540 struct compat_sioc_sg_req {
1541 	struct in_addr src;
1542 	struct in_addr grp;
1543 	compat_ulong_t pktcnt;
1544 	compat_ulong_t bytecnt;
1545 	compat_ulong_t wrong_if;
1546 };
1547 
1548 struct compat_sioc_vif_req {
1549 	vifi_t	vifi;		/* Which iface */
1550 	compat_ulong_t icount;
1551 	compat_ulong_t ocount;
1552 	compat_ulong_t ibytes;
1553 	compat_ulong_t obytes;
1554 };
1555 
1556 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1557 {
1558 	struct compat_sioc_sg_req sr;
1559 	struct compat_sioc_vif_req vr;
1560 	struct vif_device *vif;
1561 	struct mfc_cache *c;
1562 	struct net *net = sock_net(sk);
1563 	struct mr_table *mrt;
1564 
1565 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1566 	if (!mrt)
1567 		return -ENOENT;
1568 
1569 	switch (cmd) {
1570 	case SIOCGETVIFCNT:
1571 		if (copy_from_user(&vr, arg, sizeof(vr)))
1572 			return -EFAULT;
1573 		if (vr.vifi >= mrt->maxvif)
1574 			return -EINVAL;
1575 		read_lock(&mrt_lock);
1576 		vif = &mrt->vif_table[vr.vifi];
1577 		if (VIF_EXISTS(mrt, vr.vifi)) {
1578 			vr.icount = vif->pkt_in;
1579 			vr.ocount = vif->pkt_out;
1580 			vr.ibytes = vif->bytes_in;
1581 			vr.obytes = vif->bytes_out;
1582 			read_unlock(&mrt_lock);
1583 
1584 			if (copy_to_user(arg, &vr, sizeof(vr)))
1585 				return -EFAULT;
1586 			return 0;
1587 		}
1588 		read_unlock(&mrt_lock);
1589 		return -EADDRNOTAVAIL;
1590 	case SIOCGETSGCNT:
1591 		if (copy_from_user(&sr, arg, sizeof(sr)))
1592 			return -EFAULT;
1593 
1594 		rcu_read_lock();
1595 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1596 		if (c) {
1597 			sr.pktcnt = c->mfc_un.res.pkt;
1598 			sr.bytecnt = c->mfc_un.res.bytes;
1599 			sr.wrong_if = c->mfc_un.res.wrong_if;
1600 			rcu_read_unlock();
1601 
1602 			if (copy_to_user(arg, &sr, sizeof(sr)))
1603 				return -EFAULT;
1604 			return 0;
1605 		}
1606 		rcu_read_unlock();
1607 		return -EADDRNOTAVAIL;
1608 	default:
1609 		return -ENOIOCTLCMD;
1610 	}
1611 }
1612 #endif
1613 
1614 
1615 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1616 {
1617 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1618 	struct net *net = dev_net(dev);
1619 	struct mr_table *mrt;
1620 	struct vif_device *v;
1621 	int ct;
1622 
1623 	if (event != NETDEV_UNREGISTER)
1624 		return NOTIFY_DONE;
1625 
1626 	ipmr_for_each_table(mrt, net) {
1627 		v = &mrt->vif_table[0];
1628 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1629 			if (v->dev == dev)
1630 				vif_delete(mrt, ct, 1, NULL);
1631 		}
1632 	}
1633 	return NOTIFY_DONE;
1634 }
1635 
1636 
1637 static struct notifier_block ip_mr_notifier = {
1638 	.notifier_call = ipmr_device_event,
1639 };
1640 
1641 /*
1642  *	Encapsulate a packet by attaching a valid IPIP header to it.
1643  *	This avoids tunnel drivers and other mess and gives us the speed so
1644  *	important for multicast video.
1645  */
1646 
1647 static void ip_encap(struct net *net, struct sk_buff *skb,
1648 		     __be32 saddr, __be32 daddr)
1649 {
1650 	struct iphdr *iph;
1651 	const struct iphdr *old_iph = ip_hdr(skb);
1652 
1653 	skb_push(skb, sizeof(struct iphdr));
1654 	skb->transport_header = skb->network_header;
1655 	skb_reset_network_header(skb);
1656 	iph = ip_hdr(skb);
1657 
1658 	iph->version	=	4;
1659 	iph->tos	=	old_iph->tos;
1660 	iph->ttl	=	old_iph->ttl;
1661 	iph->frag_off	=	0;
1662 	iph->daddr	=	daddr;
1663 	iph->saddr	=	saddr;
1664 	iph->protocol	=	IPPROTO_IPIP;
1665 	iph->ihl	=	5;
1666 	iph->tot_len	=	htons(skb->len);
1667 	ip_select_ident(net, skb, NULL);
1668 	ip_send_check(iph);
1669 
1670 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1671 	nf_reset(skb);
1672 }
1673 
1674 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1675 				      struct sk_buff *skb)
1676 {
1677 	struct ip_options *opt = &(IPCB(skb)->opt);
1678 
1679 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1680 	IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1681 
1682 	if (unlikely(opt->optlen))
1683 		ip_forward_options(skb);
1684 
1685 	return dst_output(net, sk, skb);
1686 }
1687 
1688 /*
1689  *	Processing handlers for ipmr_forward
1690  */
1691 
1692 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1693 			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1694 {
1695 	const struct iphdr *iph = ip_hdr(skb);
1696 	struct vif_device *vif = &mrt->vif_table[vifi];
1697 	struct net_device *dev;
1698 	struct rtable *rt;
1699 	struct flowi4 fl4;
1700 	int    encap = 0;
1701 
1702 	if (!vif->dev)
1703 		goto out_free;
1704 
1705 #ifdef CONFIG_IP_PIMSM
1706 	if (vif->flags & VIFF_REGISTER) {
1707 		vif->pkt_out++;
1708 		vif->bytes_out += skb->len;
1709 		vif->dev->stats.tx_bytes += skb->len;
1710 		vif->dev->stats.tx_packets++;
1711 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1712 		goto out_free;
1713 	}
1714 #endif
1715 
1716 	if (vif->flags & VIFF_TUNNEL) {
1717 		rt = ip_route_output_ports(net, &fl4, NULL,
1718 					   vif->remote, vif->local,
1719 					   0, 0,
1720 					   IPPROTO_IPIP,
1721 					   RT_TOS(iph->tos), vif->link);
1722 		if (IS_ERR(rt))
1723 			goto out_free;
1724 		encap = sizeof(struct iphdr);
1725 	} else {
1726 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1727 					   0, 0,
1728 					   IPPROTO_IPIP,
1729 					   RT_TOS(iph->tos), vif->link);
1730 		if (IS_ERR(rt))
1731 			goto out_free;
1732 	}
1733 
1734 	dev = rt->dst.dev;
1735 
1736 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1737 		/* Do not fragment multicasts. Alas, IPv4 does not
1738 		 * allow to send ICMP, so that packets will disappear
1739 		 * to blackhole.
1740 		 */
1741 
1742 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1743 		ip_rt_put(rt);
1744 		goto out_free;
1745 	}
1746 
1747 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1748 
1749 	if (skb_cow(skb, encap)) {
1750 		ip_rt_put(rt);
1751 		goto out_free;
1752 	}
1753 
1754 	vif->pkt_out++;
1755 	vif->bytes_out += skb->len;
1756 
1757 	skb_dst_drop(skb);
1758 	skb_dst_set(skb, &rt->dst);
1759 	ip_decrease_ttl(ip_hdr(skb));
1760 
1761 	/* FIXME: forward and output firewalls used to be called here.
1762 	 * What do we do with netfilter? -- RR
1763 	 */
1764 	if (vif->flags & VIFF_TUNNEL) {
1765 		ip_encap(net, skb, vif->local, vif->remote);
1766 		/* FIXME: extra output firewall step used to be here. --RR */
1767 		vif->dev->stats.tx_packets++;
1768 		vif->dev->stats.tx_bytes += skb->len;
1769 	}
1770 
1771 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1772 
1773 	/*
1774 	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1775 	 * not only before forwarding, but after forwarding on all output
1776 	 * interfaces. It is clear, if mrouter runs a multicasting
1777 	 * program, it should receive packets not depending to what interface
1778 	 * program is joined.
1779 	 * If we will not make it, the program will have to join on all
1780 	 * interfaces. On the other hand, multihoming host (or router, but
1781 	 * not mrouter) cannot join to more than one interface - it will
1782 	 * result in receiving multiple packets.
1783 	 */
1784 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1785 		net, NULL, skb, skb->dev, dev,
1786 		ipmr_forward_finish);
1787 	return;
1788 
1789 out_free:
1790 	kfree_skb(skb);
1791 }
1792 
1793 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1794 {
1795 	int ct;
1796 
1797 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1798 		if (mrt->vif_table[ct].dev == dev)
1799 			break;
1800 	}
1801 	return ct;
1802 }
1803 
1804 /* "local" means that we should preserve one skb (for local delivery) */
1805 
1806 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1807 			  struct sk_buff *skb, struct mfc_cache *cache,
1808 			  int local)
1809 {
1810 	int psend = -1;
1811 	int vif, ct;
1812 	int true_vifi = ipmr_find_vif(mrt, skb->dev);
1813 
1814 	vif = cache->mfc_parent;
1815 	cache->mfc_un.res.pkt++;
1816 	cache->mfc_un.res.bytes += skb->len;
1817 
1818 	if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1819 		struct mfc_cache *cache_proxy;
1820 
1821 		/* For an (*,G) entry, we only check that the incomming
1822 		 * interface is part of the static tree.
1823 		 */
1824 		cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1825 		if (cache_proxy &&
1826 		    cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1827 			goto forward;
1828 	}
1829 
1830 	/*
1831 	 * Wrong interface: drop packet and (maybe) send PIM assert.
1832 	 */
1833 	if (mrt->vif_table[vif].dev != skb->dev) {
1834 		if (rt_is_output_route(skb_rtable(skb))) {
1835 			/* It is our own packet, looped back.
1836 			 * Very complicated situation...
1837 			 *
1838 			 * The best workaround until routing daemons will be
1839 			 * fixed is not to redistribute packet, if it was
1840 			 * send through wrong interface. It means, that
1841 			 * multicast applications WILL NOT work for
1842 			 * (S,G), which have default multicast route pointing
1843 			 * to wrong oif. In any case, it is not a good
1844 			 * idea to use multicasting applications on router.
1845 			 */
1846 			goto dont_forward;
1847 		}
1848 
1849 		cache->mfc_un.res.wrong_if++;
1850 
1851 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1852 		    /* pimsm uses asserts, when switching from RPT to SPT,
1853 		     * so that we cannot check that packet arrived on an oif.
1854 		     * It is bad, but otherwise we would need to move pretty
1855 		     * large chunk of pimd to kernel. Ough... --ANK
1856 		     */
1857 		    (mrt->mroute_do_pim ||
1858 		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1859 		    time_after(jiffies,
1860 			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1861 			cache->mfc_un.res.last_assert = jiffies;
1862 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1863 		}
1864 		goto dont_forward;
1865 	}
1866 
1867 forward:
1868 	mrt->vif_table[vif].pkt_in++;
1869 	mrt->vif_table[vif].bytes_in += skb->len;
1870 
1871 	/*
1872 	 *	Forward the frame
1873 	 */
1874 	if (cache->mfc_origin == htonl(INADDR_ANY) &&
1875 	    cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1876 		if (true_vifi >= 0 &&
1877 		    true_vifi != cache->mfc_parent &&
1878 		    ip_hdr(skb)->ttl >
1879 				cache->mfc_un.res.ttls[cache->mfc_parent]) {
1880 			/* It's an (*,*) entry and the packet is not coming from
1881 			 * the upstream: forward the packet to the upstream
1882 			 * only.
1883 			 */
1884 			psend = cache->mfc_parent;
1885 			goto last_forward;
1886 		}
1887 		goto dont_forward;
1888 	}
1889 	for (ct = cache->mfc_un.res.maxvif - 1;
1890 	     ct >= cache->mfc_un.res.minvif; ct--) {
1891 		/* For (*,G) entry, don't forward to the incoming interface */
1892 		if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1893 		     ct != true_vifi) &&
1894 		    ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1895 			if (psend != -1) {
1896 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1897 
1898 				if (skb2)
1899 					ipmr_queue_xmit(net, mrt, skb2, cache,
1900 							psend);
1901 			}
1902 			psend = ct;
1903 		}
1904 	}
1905 last_forward:
1906 	if (psend != -1) {
1907 		if (local) {
1908 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1909 
1910 			if (skb2)
1911 				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1912 		} else {
1913 			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1914 			return;
1915 		}
1916 	}
1917 
1918 dont_forward:
1919 	if (!local)
1920 		kfree_skb(skb);
1921 }
1922 
1923 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1924 {
1925 	struct rtable *rt = skb_rtable(skb);
1926 	struct iphdr *iph = ip_hdr(skb);
1927 	struct flowi4 fl4 = {
1928 		.daddr = iph->daddr,
1929 		.saddr = iph->saddr,
1930 		.flowi4_tos = RT_TOS(iph->tos),
1931 		.flowi4_oif = (rt_is_output_route(rt) ?
1932 			       skb->dev->ifindex : 0),
1933 		.flowi4_iif = (rt_is_output_route(rt) ?
1934 			       LOOPBACK_IFINDEX :
1935 			       skb->dev->ifindex),
1936 		.flowi4_mark = skb->mark,
1937 	};
1938 	struct mr_table *mrt;
1939 	int err;
1940 
1941 	err = ipmr_fib_lookup(net, &fl4, &mrt);
1942 	if (err)
1943 		return ERR_PTR(err);
1944 	return mrt;
1945 }
1946 
1947 /*
1948  *	Multicast packets for forwarding arrive here
1949  *	Called with rcu_read_lock();
1950  */
1951 
1952 int ip_mr_input(struct sk_buff *skb)
1953 {
1954 	struct mfc_cache *cache;
1955 	struct net *net = dev_net(skb->dev);
1956 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1957 	struct mr_table *mrt;
1958 
1959 	/* Packet is looped back after forward, it should not be
1960 	 * forwarded second time, but still can be delivered locally.
1961 	 */
1962 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1963 		goto dont_forward;
1964 
1965 	mrt = ipmr_rt_fib_lookup(net, skb);
1966 	if (IS_ERR(mrt)) {
1967 		kfree_skb(skb);
1968 		return PTR_ERR(mrt);
1969 	}
1970 	if (!local) {
1971 		if (IPCB(skb)->opt.router_alert) {
1972 			if (ip_call_ra_chain(skb))
1973 				return 0;
1974 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1975 			/* IGMPv1 (and broken IGMPv2 implementations sort of
1976 			 * Cisco IOS <= 11.2(8)) do not put router alert
1977 			 * option to IGMP packets destined to routable
1978 			 * groups. It is very bad, because it means
1979 			 * that we can forward NO IGMP messages.
1980 			 */
1981 			struct sock *mroute_sk;
1982 
1983 			mroute_sk = rcu_dereference(mrt->mroute_sk);
1984 			if (mroute_sk) {
1985 				nf_reset(skb);
1986 				raw_rcv(mroute_sk, skb);
1987 				return 0;
1988 			}
1989 		    }
1990 	}
1991 
1992 	/* already under rcu_read_lock() */
1993 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1994 	if (!cache) {
1995 		int vif = ipmr_find_vif(mrt, skb->dev);
1996 
1997 		if (vif >= 0)
1998 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1999 						    vif);
2000 	}
2001 
2002 	/*
2003 	 *	No usable cache entry
2004 	 */
2005 	if (!cache) {
2006 		int vif;
2007 
2008 		if (local) {
2009 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2010 			ip_local_deliver(skb);
2011 			if (!skb2)
2012 				return -ENOBUFS;
2013 			skb = skb2;
2014 		}
2015 
2016 		read_lock(&mrt_lock);
2017 		vif = ipmr_find_vif(mrt, skb->dev);
2018 		if (vif >= 0) {
2019 			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2020 			read_unlock(&mrt_lock);
2021 
2022 			return err2;
2023 		}
2024 		read_unlock(&mrt_lock);
2025 		kfree_skb(skb);
2026 		return -ENODEV;
2027 	}
2028 
2029 	read_lock(&mrt_lock);
2030 	ip_mr_forward(net, mrt, skb, cache, local);
2031 	read_unlock(&mrt_lock);
2032 
2033 	if (local)
2034 		return ip_local_deliver(skb);
2035 
2036 	return 0;
2037 
2038 dont_forward:
2039 	if (local)
2040 		return ip_local_deliver(skb);
2041 	kfree_skb(skb);
2042 	return 0;
2043 }
2044 
2045 #ifdef CONFIG_IP_PIMSM
2046 /* called with rcu_read_lock() */
2047 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
2048 		     unsigned int pimlen)
2049 {
2050 	struct net_device *reg_dev = NULL;
2051 	struct iphdr *encap;
2052 
2053 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
2054 	/*
2055 	 * Check that:
2056 	 * a. packet is really sent to a multicast group
2057 	 * b. packet is not a NULL-REGISTER
2058 	 * c. packet is not truncated
2059 	 */
2060 	if (!ipv4_is_multicast(encap->daddr) ||
2061 	    encap->tot_len == 0 ||
2062 	    ntohs(encap->tot_len) + pimlen > skb->len)
2063 		return 1;
2064 
2065 	read_lock(&mrt_lock);
2066 	if (mrt->mroute_reg_vif_num >= 0)
2067 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
2068 	read_unlock(&mrt_lock);
2069 
2070 	if (!reg_dev)
2071 		return 1;
2072 
2073 	skb->mac_header = skb->network_header;
2074 	skb_pull(skb, (u8 *)encap - skb->data);
2075 	skb_reset_network_header(skb);
2076 	skb->protocol = htons(ETH_P_IP);
2077 	skb->ip_summed = CHECKSUM_NONE;
2078 
2079 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
2080 
2081 	netif_rx(skb);
2082 
2083 	return NET_RX_SUCCESS;
2084 }
2085 #endif
2086 
2087 #ifdef CONFIG_IP_PIMSM_V1
2088 /*
2089  * Handle IGMP messages of PIMv1
2090  */
2091 
2092 int pim_rcv_v1(struct sk_buff *skb)
2093 {
2094 	struct igmphdr *pim;
2095 	struct net *net = dev_net(skb->dev);
2096 	struct mr_table *mrt;
2097 
2098 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2099 		goto drop;
2100 
2101 	pim = igmp_hdr(skb);
2102 
2103 	mrt = ipmr_rt_fib_lookup(net, skb);
2104 	if (IS_ERR(mrt))
2105 		goto drop;
2106 	if (!mrt->mroute_do_pim ||
2107 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2108 		goto drop;
2109 
2110 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2111 drop:
2112 		kfree_skb(skb);
2113 	}
2114 	return 0;
2115 }
2116 #endif
2117 
2118 #ifdef CONFIG_IP_PIMSM_V2
2119 static int pim_rcv(struct sk_buff *skb)
2120 {
2121 	struct pimreghdr *pim;
2122 	struct net *net = dev_net(skb->dev);
2123 	struct mr_table *mrt;
2124 
2125 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2126 		goto drop;
2127 
2128 	pim = (struct pimreghdr *)skb_transport_header(skb);
2129 	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2130 	    (pim->flags & PIM_NULL_REGISTER) ||
2131 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2132 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2133 		goto drop;
2134 
2135 	mrt = ipmr_rt_fib_lookup(net, skb);
2136 	if (IS_ERR(mrt))
2137 		goto drop;
2138 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2139 drop:
2140 		kfree_skb(skb);
2141 	}
2142 	return 0;
2143 }
2144 #endif
2145 
2146 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2147 			      struct mfc_cache *c, struct rtmsg *rtm)
2148 {
2149 	int ct;
2150 	struct rtnexthop *nhp;
2151 	struct nlattr *mp_attr;
2152 	struct rta_mfc_stats mfcs;
2153 
2154 	/* If cache is unresolved, don't try to parse IIF and OIF */
2155 	if (c->mfc_parent >= MAXVIFS)
2156 		return -ENOENT;
2157 
2158 	if (VIF_EXISTS(mrt, c->mfc_parent) &&
2159 	    nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2160 		return -EMSGSIZE;
2161 
2162 	if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2163 		return -EMSGSIZE;
2164 
2165 	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2166 		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2167 			if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2168 				nla_nest_cancel(skb, mp_attr);
2169 				return -EMSGSIZE;
2170 			}
2171 
2172 			nhp->rtnh_flags = 0;
2173 			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2174 			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2175 			nhp->rtnh_len = sizeof(*nhp);
2176 		}
2177 	}
2178 
2179 	nla_nest_end(skb, mp_attr);
2180 
2181 	mfcs.mfcs_packets = c->mfc_un.res.pkt;
2182 	mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2183 	mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2184 	if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2185 		return -EMSGSIZE;
2186 
2187 	rtm->rtm_type = RTN_MULTICAST;
2188 	return 1;
2189 }
2190 
2191 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2192 		   __be32 saddr, __be32 daddr,
2193 		   struct rtmsg *rtm, int nowait)
2194 {
2195 	struct mfc_cache *cache;
2196 	struct mr_table *mrt;
2197 	int err;
2198 
2199 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2200 	if (!mrt)
2201 		return -ENOENT;
2202 
2203 	rcu_read_lock();
2204 	cache = ipmr_cache_find(mrt, saddr, daddr);
2205 	if (!cache && skb->dev) {
2206 		int vif = ipmr_find_vif(mrt, skb->dev);
2207 
2208 		if (vif >= 0)
2209 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2210 	}
2211 	if (!cache) {
2212 		struct sk_buff *skb2;
2213 		struct iphdr *iph;
2214 		struct net_device *dev;
2215 		int vif = -1;
2216 
2217 		if (nowait) {
2218 			rcu_read_unlock();
2219 			return -EAGAIN;
2220 		}
2221 
2222 		dev = skb->dev;
2223 		read_lock(&mrt_lock);
2224 		if (dev)
2225 			vif = ipmr_find_vif(mrt, dev);
2226 		if (vif < 0) {
2227 			read_unlock(&mrt_lock);
2228 			rcu_read_unlock();
2229 			return -ENODEV;
2230 		}
2231 		skb2 = skb_clone(skb, GFP_ATOMIC);
2232 		if (!skb2) {
2233 			read_unlock(&mrt_lock);
2234 			rcu_read_unlock();
2235 			return -ENOMEM;
2236 		}
2237 
2238 		skb_push(skb2, sizeof(struct iphdr));
2239 		skb_reset_network_header(skb2);
2240 		iph = ip_hdr(skb2);
2241 		iph->ihl = sizeof(struct iphdr) >> 2;
2242 		iph->saddr = saddr;
2243 		iph->daddr = daddr;
2244 		iph->version = 0;
2245 		err = ipmr_cache_unresolved(mrt, vif, skb2);
2246 		read_unlock(&mrt_lock);
2247 		rcu_read_unlock();
2248 		return err;
2249 	}
2250 
2251 	read_lock(&mrt_lock);
2252 	if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2253 		cache->mfc_flags |= MFC_NOTIFY;
2254 	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2255 	read_unlock(&mrt_lock);
2256 	rcu_read_unlock();
2257 	return err;
2258 }
2259 
2260 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2261 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2262 			    int flags)
2263 {
2264 	struct nlmsghdr *nlh;
2265 	struct rtmsg *rtm;
2266 	int err;
2267 
2268 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2269 	if (!nlh)
2270 		return -EMSGSIZE;
2271 
2272 	rtm = nlmsg_data(nlh);
2273 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2274 	rtm->rtm_dst_len  = 32;
2275 	rtm->rtm_src_len  = 32;
2276 	rtm->rtm_tos      = 0;
2277 	rtm->rtm_table    = mrt->id;
2278 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2279 		goto nla_put_failure;
2280 	rtm->rtm_type     = RTN_MULTICAST;
2281 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2282 	if (c->mfc_flags & MFC_STATIC)
2283 		rtm->rtm_protocol = RTPROT_STATIC;
2284 	else
2285 		rtm->rtm_protocol = RTPROT_MROUTED;
2286 	rtm->rtm_flags    = 0;
2287 
2288 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2289 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2290 		goto nla_put_failure;
2291 	err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2292 	/* do not break the dump if cache is unresolved */
2293 	if (err < 0 && err != -ENOENT)
2294 		goto nla_put_failure;
2295 
2296 	nlmsg_end(skb, nlh);
2297 	return 0;
2298 
2299 nla_put_failure:
2300 	nlmsg_cancel(skb, nlh);
2301 	return -EMSGSIZE;
2302 }
2303 
2304 static size_t mroute_msgsize(bool unresolved, int maxvif)
2305 {
2306 	size_t len =
2307 		NLMSG_ALIGN(sizeof(struct rtmsg))
2308 		+ nla_total_size(4)	/* RTA_TABLE */
2309 		+ nla_total_size(4)	/* RTA_SRC */
2310 		+ nla_total_size(4)	/* RTA_DST */
2311 		;
2312 
2313 	if (!unresolved)
2314 		len = len
2315 		      + nla_total_size(4)	/* RTA_IIF */
2316 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2317 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2318 						/* RTA_MFC_STATS */
2319 		      + nla_total_size(sizeof(struct rta_mfc_stats))
2320 		;
2321 
2322 	return len;
2323 }
2324 
2325 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2326 				 int cmd)
2327 {
2328 	struct net *net = read_pnet(&mrt->net);
2329 	struct sk_buff *skb;
2330 	int err = -ENOBUFS;
2331 
2332 	skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2333 			GFP_ATOMIC);
2334 	if (!skb)
2335 		goto errout;
2336 
2337 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2338 	if (err < 0)
2339 		goto errout;
2340 
2341 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2342 	return;
2343 
2344 errout:
2345 	kfree_skb(skb);
2346 	if (err < 0)
2347 		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2348 }
2349 
2350 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2351 {
2352 	struct net *net = sock_net(skb->sk);
2353 	struct mr_table *mrt;
2354 	struct mfc_cache *mfc;
2355 	unsigned int t = 0, s_t;
2356 	unsigned int h = 0, s_h;
2357 	unsigned int e = 0, s_e;
2358 
2359 	s_t = cb->args[0];
2360 	s_h = cb->args[1];
2361 	s_e = cb->args[2];
2362 
2363 	rcu_read_lock();
2364 	ipmr_for_each_table(mrt, net) {
2365 		if (t < s_t)
2366 			goto next_table;
2367 		if (t > s_t)
2368 			s_h = 0;
2369 		for (h = s_h; h < MFC_LINES; h++) {
2370 			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2371 				if (e < s_e)
2372 					goto next_entry;
2373 				if (ipmr_fill_mroute(mrt, skb,
2374 						     NETLINK_CB(cb->skb).portid,
2375 						     cb->nlh->nlmsg_seq,
2376 						     mfc, RTM_NEWROUTE,
2377 						     NLM_F_MULTI) < 0)
2378 					goto done;
2379 next_entry:
2380 				e++;
2381 			}
2382 			e = s_e = 0;
2383 		}
2384 		spin_lock_bh(&mfc_unres_lock);
2385 		list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2386 			if (e < s_e)
2387 				goto next_entry2;
2388 			if (ipmr_fill_mroute(mrt, skb,
2389 					     NETLINK_CB(cb->skb).portid,
2390 					     cb->nlh->nlmsg_seq,
2391 					     mfc, RTM_NEWROUTE,
2392 					     NLM_F_MULTI) < 0) {
2393 				spin_unlock_bh(&mfc_unres_lock);
2394 				goto done;
2395 			}
2396 next_entry2:
2397 			e++;
2398 		}
2399 		spin_unlock_bh(&mfc_unres_lock);
2400 		e = s_e = 0;
2401 		s_h = 0;
2402 next_table:
2403 		t++;
2404 	}
2405 done:
2406 	rcu_read_unlock();
2407 
2408 	cb->args[2] = e;
2409 	cb->args[1] = h;
2410 	cb->args[0] = t;
2411 
2412 	return skb->len;
2413 }
2414 
2415 #ifdef CONFIG_PROC_FS
2416 /*
2417  *	The /proc interfaces to multicast routing :
2418  *	/proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2419  */
2420 struct ipmr_vif_iter {
2421 	struct seq_net_private p;
2422 	struct mr_table *mrt;
2423 	int ct;
2424 };
2425 
2426 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2427 					   struct ipmr_vif_iter *iter,
2428 					   loff_t pos)
2429 {
2430 	struct mr_table *mrt = iter->mrt;
2431 
2432 	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2433 		if (!VIF_EXISTS(mrt, iter->ct))
2434 			continue;
2435 		if (pos-- == 0)
2436 			return &mrt->vif_table[iter->ct];
2437 	}
2438 	return NULL;
2439 }
2440 
2441 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2442 	__acquires(mrt_lock)
2443 {
2444 	struct ipmr_vif_iter *iter = seq->private;
2445 	struct net *net = seq_file_net(seq);
2446 	struct mr_table *mrt;
2447 
2448 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2449 	if (!mrt)
2450 		return ERR_PTR(-ENOENT);
2451 
2452 	iter->mrt = mrt;
2453 
2454 	read_lock(&mrt_lock);
2455 	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2456 		: SEQ_START_TOKEN;
2457 }
2458 
2459 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2460 {
2461 	struct ipmr_vif_iter *iter = seq->private;
2462 	struct net *net = seq_file_net(seq);
2463 	struct mr_table *mrt = iter->mrt;
2464 
2465 	++*pos;
2466 	if (v == SEQ_START_TOKEN)
2467 		return ipmr_vif_seq_idx(net, iter, 0);
2468 
2469 	while (++iter->ct < mrt->maxvif) {
2470 		if (!VIF_EXISTS(mrt, iter->ct))
2471 			continue;
2472 		return &mrt->vif_table[iter->ct];
2473 	}
2474 	return NULL;
2475 }
2476 
2477 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2478 	__releases(mrt_lock)
2479 {
2480 	read_unlock(&mrt_lock);
2481 }
2482 
2483 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2484 {
2485 	struct ipmr_vif_iter *iter = seq->private;
2486 	struct mr_table *mrt = iter->mrt;
2487 
2488 	if (v == SEQ_START_TOKEN) {
2489 		seq_puts(seq,
2490 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2491 	} else {
2492 		const struct vif_device *vif = v;
2493 		const char *name =  vif->dev ? vif->dev->name : "none";
2494 
2495 		seq_printf(seq,
2496 			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2497 			   vif - mrt->vif_table,
2498 			   name, vif->bytes_in, vif->pkt_in,
2499 			   vif->bytes_out, vif->pkt_out,
2500 			   vif->flags, vif->local, vif->remote);
2501 	}
2502 	return 0;
2503 }
2504 
2505 static const struct seq_operations ipmr_vif_seq_ops = {
2506 	.start = ipmr_vif_seq_start,
2507 	.next  = ipmr_vif_seq_next,
2508 	.stop  = ipmr_vif_seq_stop,
2509 	.show  = ipmr_vif_seq_show,
2510 };
2511 
2512 static int ipmr_vif_open(struct inode *inode, struct file *file)
2513 {
2514 	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2515 			    sizeof(struct ipmr_vif_iter));
2516 }
2517 
2518 static const struct file_operations ipmr_vif_fops = {
2519 	.owner	 = THIS_MODULE,
2520 	.open    = ipmr_vif_open,
2521 	.read    = seq_read,
2522 	.llseek  = seq_lseek,
2523 	.release = seq_release_net,
2524 };
2525 
2526 struct ipmr_mfc_iter {
2527 	struct seq_net_private p;
2528 	struct mr_table *mrt;
2529 	struct list_head *cache;
2530 	int ct;
2531 };
2532 
2533 
2534 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2535 					  struct ipmr_mfc_iter *it, loff_t pos)
2536 {
2537 	struct mr_table *mrt = it->mrt;
2538 	struct mfc_cache *mfc;
2539 
2540 	rcu_read_lock();
2541 	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2542 		it->cache = &mrt->mfc_cache_array[it->ct];
2543 		list_for_each_entry_rcu(mfc, it->cache, list)
2544 			if (pos-- == 0)
2545 				return mfc;
2546 	}
2547 	rcu_read_unlock();
2548 
2549 	spin_lock_bh(&mfc_unres_lock);
2550 	it->cache = &mrt->mfc_unres_queue;
2551 	list_for_each_entry(mfc, it->cache, list)
2552 		if (pos-- == 0)
2553 			return mfc;
2554 	spin_unlock_bh(&mfc_unres_lock);
2555 
2556 	it->cache = NULL;
2557 	return NULL;
2558 }
2559 
2560 
2561 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2562 {
2563 	struct ipmr_mfc_iter *it = seq->private;
2564 	struct net *net = seq_file_net(seq);
2565 	struct mr_table *mrt;
2566 
2567 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2568 	if (!mrt)
2569 		return ERR_PTR(-ENOENT);
2570 
2571 	it->mrt = mrt;
2572 	it->cache = NULL;
2573 	it->ct = 0;
2574 	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2575 		: SEQ_START_TOKEN;
2576 }
2577 
2578 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2579 {
2580 	struct mfc_cache *mfc = v;
2581 	struct ipmr_mfc_iter *it = seq->private;
2582 	struct net *net = seq_file_net(seq);
2583 	struct mr_table *mrt = it->mrt;
2584 
2585 	++*pos;
2586 
2587 	if (v == SEQ_START_TOKEN)
2588 		return ipmr_mfc_seq_idx(net, seq->private, 0);
2589 
2590 	if (mfc->list.next != it->cache)
2591 		return list_entry(mfc->list.next, struct mfc_cache, list);
2592 
2593 	if (it->cache == &mrt->mfc_unres_queue)
2594 		goto end_of_list;
2595 
2596 	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2597 
2598 	while (++it->ct < MFC_LINES) {
2599 		it->cache = &mrt->mfc_cache_array[it->ct];
2600 		if (list_empty(it->cache))
2601 			continue;
2602 		return list_first_entry(it->cache, struct mfc_cache, list);
2603 	}
2604 
2605 	/* exhausted cache_array, show unresolved */
2606 	rcu_read_unlock();
2607 	it->cache = &mrt->mfc_unres_queue;
2608 	it->ct = 0;
2609 
2610 	spin_lock_bh(&mfc_unres_lock);
2611 	if (!list_empty(it->cache))
2612 		return list_first_entry(it->cache, struct mfc_cache, list);
2613 
2614 end_of_list:
2615 	spin_unlock_bh(&mfc_unres_lock);
2616 	it->cache = NULL;
2617 
2618 	return NULL;
2619 }
2620 
2621 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2622 {
2623 	struct ipmr_mfc_iter *it = seq->private;
2624 	struct mr_table *mrt = it->mrt;
2625 
2626 	if (it->cache == &mrt->mfc_unres_queue)
2627 		spin_unlock_bh(&mfc_unres_lock);
2628 	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2629 		rcu_read_unlock();
2630 }
2631 
2632 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2633 {
2634 	int n;
2635 
2636 	if (v == SEQ_START_TOKEN) {
2637 		seq_puts(seq,
2638 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2639 	} else {
2640 		const struct mfc_cache *mfc = v;
2641 		const struct ipmr_mfc_iter *it = seq->private;
2642 		const struct mr_table *mrt = it->mrt;
2643 
2644 		seq_printf(seq, "%08X %08X %-3hd",
2645 			   (__force u32) mfc->mfc_mcastgrp,
2646 			   (__force u32) mfc->mfc_origin,
2647 			   mfc->mfc_parent);
2648 
2649 		if (it->cache != &mrt->mfc_unres_queue) {
2650 			seq_printf(seq, " %8lu %8lu %8lu",
2651 				   mfc->mfc_un.res.pkt,
2652 				   mfc->mfc_un.res.bytes,
2653 				   mfc->mfc_un.res.wrong_if);
2654 			for (n = mfc->mfc_un.res.minvif;
2655 			     n < mfc->mfc_un.res.maxvif; n++) {
2656 				if (VIF_EXISTS(mrt, n) &&
2657 				    mfc->mfc_un.res.ttls[n] < 255)
2658 					seq_printf(seq,
2659 					   " %2d:%-3d",
2660 					   n, mfc->mfc_un.res.ttls[n]);
2661 			}
2662 		} else {
2663 			/* unresolved mfc_caches don't contain
2664 			 * pkt, bytes and wrong_if values
2665 			 */
2666 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2667 		}
2668 		seq_putc(seq, '\n');
2669 	}
2670 	return 0;
2671 }
2672 
2673 static const struct seq_operations ipmr_mfc_seq_ops = {
2674 	.start = ipmr_mfc_seq_start,
2675 	.next  = ipmr_mfc_seq_next,
2676 	.stop  = ipmr_mfc_seq_stop,
2677 	.show  = ipmr_mfc_seq_show,
2678 };
2679 
2680 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2681 {
2682 	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2683 			    sizeof(struct ipmr_mfc_iter));
2684 }
2685 
2686 static const struct file_operations ipmr_mfc_fops = {
2687 	.owner	 = THIS_MODULE,
2688 	.open    = ipmr_mfc_open,
2689 	.read    = seq_read,
2690 	.llseek  = seq_lseek,
2691 	.release = seq_release_net,
2692 };
2693 #endif
2694 
2695 #ifdef CONFIG_IP_PIMSM_V2
2696 static const struct net_protocol pim_protocol = {
2697 	.handler	=	pim_rcv,
2698 	.netns_ok	=	1,
2699 };
2700 #endif
2701 
2702 
2703 /*
2704  *	Setup for IP multicast routing
2705  */
2706 static int __net_init ipmr_net_init(struct net *net)
2707 {
2708 	int err;
2709 
2710 	err = ipmr_rules_init(net);
2711 	if (err < 0)
2712 		goto fail;
2713 
2714 #ifdef CONFIG_PROC_FS
2715 	err = -ENOMEM;
2716 	if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2717 		goto proc_vif_fail;
2718 	if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2719 		goto proc_cache_fail;
2720 #endif
2721 	return 0;
2722 
2723 #ifdef CONFIG_PROC_FS
2724 proc_cache_fail:
2725 	remove_proc_entry("ip_mr_vif", net->proc_net);
2726 proc_vif_fail:
2727 	ipmr_rules_exit(net);
2728 #endif
2729 fail:
2730 	return err;
2731 }
2732 
2733 static void __net_exit ipmr_net_exit(struct net *net)
2734 {
2735 #ifdef CONFIG_PROC_FS
2736 	remove_proc_entry("ip_mr_cache", net->proc_net);
2737 	remove_proc_entry("ip_mr_vif", net->proc_net);
2738 #endif
2739 	ipmr_rules_exit(net);
2740 }
2741 
2742 static struct pernet_operations ipmr_net_ops = {
2743 	.init = ipmr_net_init,
2744 	.exit = ipmr_net_exit,
2745 };
2746 
2747 int __init ip_mr_init(void)
2748 {
2749 	int err;
2750 
2751 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2752 				       sizeof(struct mfc_cache),
2753 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2754 				       NULL);
2755 	if (!mrt_cachep)
2756 		return -ENOMEM;
2757 
2758 	err = register_pernet_subsys(&ipmr_net_ops);
2759 	if (err)
2760 		goto reg_pernet_fail;
2761 
2762 	err = register_netdevice_notifier(&ip_mr_notifier);
2763 	if (err)
2764 		goto reg_notif_fail;
2765 #ifdef CONFIG_IP_PIMSM_V2
2766 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2767 		pr_err("%s: can't add PIM protocol\n", __func__);
2768 		err = -EAGAIN;
2769 		goto add_proto_fail;
2770 	}
2771 #endif
2772 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2773 		      NULL, ipmr_rtm_dumproute, NULL);
2774 	return 0;
2775 
2776 #ifdef CONFIG_IP_PIMSM_V2
2777 add_proto_fail:
2778 	unregister_netdevice_notifier(&ip_mr_notifier);
2779 #endif
2780 reg_notif_fail:
2781 	unregister_pernet_subsys(&ipmr_net_ops);
2782 reg_pernet_fail:
2783 	kmem_cache_destroy(mrt_cachep);
2784 	return err;
2785 }
2786