xref: /openbmc/linux/net/ipv4/ipmr.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	IP multicast routing support for mrouted 3.6/3.8
4  *
5  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6  *	  Linux Consultancy and Custom Driver Development
7  *
8  *	Fixes:
9  *	Michael Chastain	:	Incorrect size of copying.
10  *	Alan Cox		:	Added the cache manager code
11  *	Alan Cox		:	Fixed the clone/copy bug and device race.
12  *	Mike McLagan		:	Routing by source
13  *	Malcolm Beattie		:	Buffer handling fixes.
14  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
15  *	SVR Anand		:	Fixed several multicast bugs and problems.
16  *	Alexey Kuznetsov	:	Status, optimisations and more.
17  *	Brad Parker		:	Better behaviour on mrouted upcall
18  *					overflow.
19  *      Carlos Picoto           :       PIMv1 Support
20  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
21  *					Relax this requirement to work with older peers.
22  */
23 
24 #include <linux/uaccess.h>
25 #include <linux/types.h>
26 #include <linux/cache.h>
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/kernel.h>
31 #include <linux/fcntl.h>
32 #include <linux/stat.h>
33 #include <linux/socket.h>
34 #include <linux/in.h>
35 #include <linux/inet.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/igmp.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mroute.h>
42 #include <linux/init.h>
43 #include <linux/if_ether.h>
44 #include <linux/slab.h>
45 #include <net/net_namespace.h>
46 #include <net/ip.h>
47 #include <net/protocol.h>
48 #include <linux/skbuff.h>
49 #include <net/route.h>
50 #include <net/icmp.h>
51 #include <net/udp.h>
52 #include <net/raw.h>
53 #include <linux/notifier.h>
54 #include <linux/if_arp.h>
55 #include <linux/netfilter_ipv4.h>
56 #include <linux/compat.h>
57 #include <linux/export.h>
58 #include <linux/rhashtable.h>
59 #include <net/ip_tunnels.h>
60 #include <net/checksum.h>
61 #include <net/netlink.h>
62 #include <net/fib_rules.h>
63 #include <linux/netconf.h>
64 #include <net/rtnh.h>
65 
66 #include <linux/nospec.h>
67 
68 struct ipmr_rule {
69 	struct fib_rule		common;
70 };
71 
72 struct ipmr_result {
73 	struct mr_table		*mrt;
74 };
75 
76 /* Big lock, protecting vif table, mrt cache and mroute socket state.
77  * Note that the changes are semaphored via rtnl_lock.
78  */
79 
80 static DEFINE_RWLOCK(mrt_lock);
81 
82 /* Multicast router control variables */
83 
84 /* Special spinlock for queue of unresolved entries */
85 static DEFINE_SPINLOCK(mfc_unres_lock);
86 
87 /* We return to original Alan's scheme. Hash table of resolved
88  * entries is changed only in process context and protected
89  * with weak lock mrt_lock. Queue of unresolved entries is protected
90  * with strong spinlock mfc_unres_lock.
91  *
92  * In this case data path is free of exclusive locks at all.
93  */
94 
95 static struct kmem_cache *mrt_cachep __ro_after_init;
96 
97 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
98 static void ipmr_free_table(struct mr_table *mrt);
99 
100 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
101 			  struct net_device *dev, struct sk_buff *skb,
102 			  struct mfc_cache *cache, int local);
103 static int ipmr_cache_report(struct mr_table *mrt,
104 			     struct sk_buff *pkt, vifi_t vifi, int assert);
105 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
106 				 int cmd);
107 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
108 static void mroute_clean_tables(struct mr_table *mrt, int flags);
109 static void ipmr_expire_process(struct timer_list *t);
110 
111 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
112 #define ipmr_for_each_table(mrt, net)					\
113 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list,	\
114 				lockdep_rtnl_is_held() ||		\
115 				list_empty(&net->ipv4.mr_tables))
116 
117 static struct mr_table *ipmr_mr_table_iter(struct net *net,
118 					   struct mr_table *mrt)
119 {
120 	struct mr_table *ret;
121 
122 	if (!mrt)
123 		ret = list_entry_rcu(net->ipv4.mr_tables.next,
124 				     struct mr_table, list);
125 	else
126 		ret = list_entry_rcu(mrt->list.next,
127 				     struct mr_table, list);
128 
129 	if (&ret->list == &net->ipv4.mr_tables)
130 		return NULL;
131 	return ret;
132 }
133 
134 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
135 {
136 	struct mr_table *mrt;
137 
138 	ipmr_for_each_table(mrt, net) {
139 		if (mrt->id == id)
140 			return mrt;
141 	}
142 	return NULL;
143 }
144 
145 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
146 			   struct mr_table **mrt)
147 {
148 	int err;
149 	struct ipmr_result res;
150 	struct fib_lookup_arg arg = {
151 		.result = &res,
152 		.flags = FIB_LOOKUP_NOREF,
153 	};
154 
155 	/* update flow if oif or iif point to device enslaved to l3mdev */
156 	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
157 
158 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
159 			       flowi4_to_flowi(flp4), 0, &arg);
160 	if (err < 0)
161 		return err;
162 	*mrt = res.mrt;
163 	return 0;
164 }
165 
166 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
167 			    int flags, struct fib_lookup_arg *arg)
168 {
169 	struct ipmr_result *res = arg->result;
170 	struct mr_table *mrt;
171 
172 	switch (rule->action) {
173 	case FR_ACT_TO_TBL:
174 		break;
175 	case FR_ACT_UNREACHABLE:
176 		return -ENETUNREACH;
177 	case FR_ACT_PROHIBIT:
178 		return -EACCES;
179 	case FR_ACT_BLACKHOLE:
180 	default:
181 		return -EINVAL;
182 	}
183 
184 	arg->table = fib_rule_get_table(rule, arg);
185 
186 	mrt = ipmr_get_table(rule->fr_net, arg->table);
187 	if (!mrt)
188 		return -EAGAIN;
189 	res->mrt = mrt;
190 	return 0;
191 }
192 
193 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
194 {
195 	return 1;
196 }
197 
198 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
199 	FRA_GENERIC_POLICY,
200 };
201 
202 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
203 			       struct fib_rule_hdr *frh, struct nlattr **tb,
204 			       struct netlink_ext_ack *extack)
205 {
206 	return 0;
207 }
208 
209 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
210 			     struct nlattr **tb)
211 {
212 	return 1;
213 }
214 
215 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
216 			  struct fib_rule_hdr *frh)
217 {
218 	frh->dst_len = 0;
219 	frh->src_len = 0;
220 	frh->tos     = 0;
221 	return 0;
222 }
223 
224 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
225 	.family		= RTNL_FAMILY_IPMR,
226 	.rule_size	= sizeof(struct ipmr_rule),
227 	.addr_size	= sizeof(u32),
228 	.action		= ipmr_rule_action,
229 	.match		= ipmr_rule_match,
230 	.configure	= ipmr_rule_configure,
231 	.compare	= ipmr_rule_compare,
232 	.fill		= ipmr_rule_fill,
233 	.nlgroup	= RTNLGRP_IPV4_RULE,
234 	.policy		= ipmr_rule_policy,
235 	.owner		= THIS_MODULE,
236 };
237 
238 static int __net_init ipmr_rules_init(struct net *net)
239 {
240 	struct fib_rules_ops *ops;
241 	struct mr_table *mrt;
242 	int err;
243 
244 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
245 	if (IS_ERR(ops))
246 		return PTR_ERR(ops);
247 
248 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
249 
250 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
251 	if (IS_ERR(mrt)) {
252 		err = PTR_ERR(mrt);
253 		goto err1;
254 	}
255 
256 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
257 	if (err < 0)
258 		goto err2;
259 
260 	net->ipv4.mr_rules_ops = ops;
261 	return 0;
262 
263 err2:
264 	ipmr_free_table(mrt);
265 err1:
266 	fib_rules_unregister(ops);
267 	return err;
268 }
269 
270 static void __net_exit ipmr_rules_exit(struct net *net)
271 {
272 	struct mr_table *mrt, *next;
273 
274 	rtnl_lock();
275 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
276 		list_del(&mrt->list);
277 		ipmr_free_table(mrt);
278 	}
279 	fib_rules_unregister(net->ipv4.mr_rules_ops);
280 	rtnl_unlock();
281 }
282 
283 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
284 			   struct netlink_ext_ack *extack)
285 {
286 	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
287 }
288 
289 static unsigned int ipmr_rules_seq_read(struct net *net)
290 {
291 	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
292 }
293 
294 bool ipmr_rule_default(const struct fib_rule *rule)
295 {
296 	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
297 }
298 EXPORT_SYMBOL(ipmr_rule_default);
299 #else
300 #define ipmr_for_each_table(mrt, net) \
301 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
302 
303 static struct mr_table *ipmr_mr_table_iter(struct net *net,
304 					   struct mr_table *mrt)
305 {
306 	if (!mrt)
307 		return net->ipv4.mrt;
308 	return NULL;
309 }
310 
311 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
312 {
313 	return net->ipv4.mrt;
314 }
315 
316 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
317 			   struct mr_table **mrt)
318 {
319 	*mrt = net->ipv4.mrt;
320 	return 0;
321 }
322 
323 static int __net_init ipmr_rules_init(struct net *net)
324 {
325 	struct mr_table *mrt;
326 
327 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
328 	if (IS_ERR(mrt))
329 		return PTR_ERR(mrt);
330 	net->ipv4.mrt = mrt;
331 	return 0;
332 }
333 
334 static void __net_exit ipmr_rules_exit(struct net *net)
335 {
336 	rtnl_lock();
337 	ipmr_free_table(net->ipv4.mrt);
338 	net->ipv4.mrt = NULL;
339 	rtnl_unlock();
340 }
341 
342 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
343 			   struct netlink_ext_ack *extack)
344 {
345 	return 0;
346 }
347 
348 static unsigned int ipmr_rules_seq_read(struct net *net)
349 {
350 	return 0;
351 }
352 
353 bool ipmr_rule_default(const struct fib_rule *rule)
354 {
355 	return true;
356 }
357 EXPORT_SYMBOL(ipmr_rule_default);
358 #endif
359 
360 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
361 				const void *ptr)
362 {
363 	const struct mfc_cache_cmp_arg *cmparg = arg->key;
364 	struct mfc_cache *c = (struct mfc_cache *)ptr;
365 
366 	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
367 	       cmparg->mfc_origin != c->mfc_origin;
368 }
369 
370 static const struct rhashtable_params ipmr_rht_params = {
371 	.head_offset = offsetof(struct mr_mfc, mnode),
372 	.key_offset = offsetof(struct mfc_cache, cmparg),
373 	.key_len = sizeof(struct mfc_cache_cmp_arg),
374 	.nelem_hint = 3,
375 	.obj_cmpfn = ipmr_hash_cmp,
376 	.automatic_shrinking = true,
377 };
378 
379 static void ipmr_new_table_set(struct mr_table *mrt,
380 			       struct net *net)
381 {
382 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
383 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
384 #endif
385 }
386 
387 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
388 	.mfc_mcastgrp = htonl(INADDR_ANY),
389 	.mfc_origin = htonl(INADDR_ANY),
390 };
391 
392 static struct mr_table_ops ipmr_mr_table_ops = {
393 	.rht_params = &ipmr_rht_params,
394 	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
395 };
396 
397 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
398 {
399 	struct mr_table *mrt;
400 
401 	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
402 	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
403 		return ERR_PTR(-EINVAL);
404 
405 	mrt = ipmr_get_table(net, id);
406 	if (mrt)
407 		return mrt;
408 
409 	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
410 			      ipmr_expire_process, ipmr_new_table_set);
411 }
412 
413 static void ipmr_free_table(struct mr_table *mrt)
414 {
415 	del_timer_sync(&mrt->ipmr_expire_timer);
416 	mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
417 				 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
418 	rhltable_destroy(&mrt->mfc_hash);
419 	kfree(mrt);
420 }
421 
422 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
423 
424 /* Initialize ipmr pimreg/tunnel in_device */
425 static bool ipmr_init_vif_indev(const struct net_device *dev)
426 {
427 	struct in_device *in_dev;
428 
429 	ASSERT_RTNL();
430 
431 	in_dev = __in_dev_get_rtnl(dev);
432 	if (!in_dev)
433 		return false;
434 	ipv4_devconf_setall(in_dev);
435 	neigh_parms_data_state_setall(in_dev->arp_parms);
436 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
437 
438 	return true;
439 }
440 
441 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
442 {
443 	struct net_device *tunnel_dev, *new_dev;
444 	struct ip_tunnel_parm p = { };
445 	int err;
446 
447 	tunnel_dev = __dev_get_by_name(net, "tunl0");
448 	if (!tunnel_dev)
449 		goto out;
450 
451 	p.iph.daddr = v->vifc_rmt_addr.s_addr;
452 	p.iph.saddr = v->vifc_lcl_addr.s_addr;
453 	p.iph.version = 4;
454 	p.iph.ihl = 5;
455 	p.iph.protocol = IPPROTO_IPIP;
456 	sprintf(p.name, "dvmrp%d", v->vifc_vifi);
457 
458 	if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
459 		goto out;
460 	err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
461 			SIOCADDTUNNEL);
462 	if (err)
463 		goto out;
464 
465 	new_dev = __dev_get_by_name(net, p.name);
466 	if (!new_dev)
467 		goto out;
468 
469 	new_dev->flags |= IFF_MULTICAST;
470 	if (!ipmr_init_vif_indev(new_dev))
471 		goto out_unregister;
472 	if (dev_open(new_dev, NULL))
473 		goto out_unregister;
474 	dev_hold(new_dev);
475 	err = dev_set_allmulti(new_dev, 1);
476 	if (err) {
477 		dev_close(new_dev);
478 		tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
479 				SIOCDELTUNNEL);
480 		dev_put(new_dev);
481 		new_dev = ERR_PTR(err);
482 	}
483 	return new_dev;
484 
485 out_unregister:
486 	unregister_netdevice(new_dev);
487 out:
488 	return ERR_PTR(-ENOBUFS);
489 }
490 
491 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
492 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
493 {
494 	struct net *net = dev_net(dev);
495 	struct mr_table *mrt;
496 	struct flowi4 fl4 = {
497 		.flowi4_oif	= dev->ifindex,
498 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
499 		.flowi4_mark	= skb->mark,
500 	};
501 	int err;
502 
503 	err = ipmr_fib_lookup(net, &fl4, &mrt);
504 	if (err < 0) {
505 		kfree_skb(skb);
506 		return err;
507 	}
508 
509 	read_lock(&mrt_lock);
510 	dev->stats.tx_bytes += skb->len;
511 	dev->stats.tx_packets++;
512 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
513 	read_unlock(&mrt_lock);
514 	kfree_skb(skb);
515 	return NETDEV_TX_OK;
516 }
517 
518 static int reg_vif_get_iflink(const struct net_device *dev)
519 {
520 	return 0;
521 }
522 
523 static const struct net_device_ops reg_vif_netdev_ops = {
524 	.ndo_start_xmit	= reg_vif_xmit,
525 	.ndo_get_iflink = reg_vif_get_iflink,
526 };
527 
528 static void reg_vif_setup(struct net_device *dev)
529 {
530 	dev->type		= ARPHRD_PIMREG;
531 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
532 	dev->flags		= IFF_NOARP;
533 	dev->netdev_ops		= &reg_vif_netdev_ops;
534 	dev->needs_free_netdev	= true;
535 	dev->features		|= NETIF_F_NETNS_LOCAL;
536 }
537 
538 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
539 {
540 	struct net_device *dev;
541 	char name[IFNAMSIZ];
542 
543 	if (mrt->id == RT_TABLE_DEFAULT)
544 		sprintf(name, "pimreg");
545 	else
546 		sprintf(name, "pimreg%u", mrt->id);
547 
548 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
549 
550 	if (!dev)
551 		return NULL;
552 
553 	dev_net_set(dev, net);
554 
555 	if (register_netdevice(dev)) {
556 		free_netdev(dev);
557 		return NULL;
558 	}
559 
560 	if (!ipmr_init_vif_indev(dev))
561 		goto failure;
562 	if (dev_open(dev, NULL))
563 		goto failure;
564 
565 	dev_hold(dev);
566 
567 	return dev;
568 
569 failure:
570 	unregister_netdevice(dev);
571 	return NULL;
572 }
573 
574 /* called with rcu_read_lock() */
575 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
576 		     unsigned int pimlen)
577 {
578 	struct net_device *reg_dev = NULL;
579 	struct iphdr *encap;
580 
581 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
582 	/* Check that:
583 	 * a. packet is really sent to a multicast group
584 	 * b. packet is not a NULL-REGISTER
585 	 * c. packet is not truncated
586 	 */
587 	if (!ipv4_is_multicast(encap->daddr) ||
588 	    encap->tot_len == 0 ||
589 	    ntohs(encap->tot_len) + pimlen > skb->len)
590 		return 1;
591 
592 	read_lock(&mrt_lock);
593 	if (mrt->mroute_reg_vif_num >= 0)
594 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
595 	read_unlock(&mrt_lock);
596 
597 	if (!reg_dev)
598 		return 1;
599 
600 	skb->mac_header = skb->network_header;
601 	skb_pull(skb, (u8 *)encap - skb->data);
602 	skb_reset_network_header(skb);
603 	skb->protocol = htons(ETH_P_IP);
604 	skb->ip_summed = CHECKSUM_NONE;
605 
606 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
607 
608 	netif_rx(skb);
609 
610 	return NET_RX_SUCCESS;
611 }
612 #else
613 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
614 {
615 	return NULL;
616 }
617 #endif
618 
619 static int call_ipmr_vif_entry_notifiers(struct net *net,
620 					 enum fib_event_type event_type,
621 					 struct vif_device *vif,
622 					 vifi_t vif_index, u32 tb_id)
623 {
624 	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
625 				     vif, vif_index, tb_id,
626 				     &net->ipv4.ipmr_seq);
627 }
628 
629 static int call_ipmr_mfc_entry_notifiers(struct net *net,
630 					 enum fib_event_type event_type,
631 					 struct mfc_cache *mfc, u32 tb_id)
632 {
633 	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
634 				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
635 }
636 
637 /**
638  *	vif_delete - Delete a VIF entry
639  *	@mrt: Table to delete from
640  *	@vifi: VIF identifier to delete
641  *	@notify: Set to 1, if the caller is a notifier_call
642  *	@head: if unregistering the VIF, place it on this queue
643  */
644 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
645 		      struct list_head *head)
646 {
647 	struct net *net = read_pnet(&mrt->net);
648 	struct vif_device *v;
649 	struct net_device *dev;
650 	struct in_device *in_dev;
651 
652 	if (vifi < 0 || vifi >= mrt->maxvif)
653 		return -EADDRNOTAVAIL;
654 
655 	v = &mrt->vif_table[vifi];
656 
657 	if (VIF_EXISTS(mrt, vifi))
658 		call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
659 					      mrt->id);
660 
661 	write_lock_bh(&mrt_lock);
662 	dev = v->dev;
663 	v->dev = NULL;
664 
665 	if (!dev) {
666 		write_unlock_bh(&mrt_lock);
667 		return -EADDRNOTAVAIL;
668 	}
669 
670 	if (vifi == mrt->mroute_reg_vif_num)
671 		mrt->mroute_reg_vif_num = -1;
672 
673 	if (vifi + 1 == mrt->maxvif) {
674 		int tmp;
675 
676 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
677 			if (VIF_EXISTS(mrt, tmp))
678 				break;
679 		}
680 		mrt->maxvif = tmp+1;
681 	}
682 
683 	write_unlock_bh(&mrt_lock);
684 
685 	dev_set_allmulti(dev, -1);
686 
687 	in_dev = __in_dev_get_rtnl(dev);
688 	if (in_dev) {
689 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
690 		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
691 					    NETCONFA_MC_FORWARDING,
692 					    dev->ifindex, &in_dev->cnf);
693 		ip_rt_multicast_event(in_dev);
694 	}
695 
696 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
697 		unregister_netdevice_queue(dev, head);
698 
699 	dev_put(dev);
700 	return 0;
701 }
702 
703 static void ipmr_cache_free_rcu(struct rcu_head *head)
704 {
705 	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
706 
707 	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
708 }
709 
710 static void ipmr_cache_free(struct mfc_cache *c)
711 {
712 	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
713 }
714 
715 /* Destroy an unresolved cache entry, killing queued skbs
716  * and reporting error to netlink readers.
717  */
718 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
719 {
720 	struct net *net = read_pnet(&mrt->net);
721 	struct sk_buff *skb;
722 	struct nlmsgerr *e;
723 
724 	atomic_dec(&mrt->cache_resolve_queue_len);
725 
726 	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
727 		if (ip_hdr(skb)->version == 0) {
728 			struct nlmsghdr *nlh = skb_pull(skb,
729 							sizeof(struct iphdr));
730 			nlh->nlmsg_type = NLMSG_ERROR;
731 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
732 			skb_trim(skb, nlh->nlmsg_len);
733 			e = nlmsg_data(nlh);
734 			e->error = -ETIMEDOUT;
735 			memset(&e->msg, 0, sizeof(e->msg));
736 
737 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
738 		} else {
739 			kfree_skb(skb);
740 		}
741 	}
742 
743 	ipmr_cache_free(c);
744 }
745 
746 /* Timer process for the unresolved queue. */
747 static void ipmr_expire_process(struct timer_list *t)
748 {
749 	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
750 	struct mr_mfc *c, *next;
751 	unsigned long expires;
752 	unsigned long now;
753 
754 	if (!spin_trylock(&mfc_unres_lock)) {
755 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
756 		return;
757 	}
758 
759 	if (list_empty(&mrt->mfc_unres_queue))
760 		goto out;
761 
762 	now = jiffies;
763 	expires = 10*HZ;
764 
765 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
766 		if (time_after(c->mfc_un.unres.expires, now)) {
767 			unsigned long interval = c->mfc_un.unres.expires - now;
768 			if (interval < expires)
769 				expires = interval;
770 			continue;
771 		}
772 
773 		list_del(&c->list);
774 		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
775 		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
776 	}
777 
778 	if (!list_empty(&mrt->mfc_unres_queue))
779 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
780 
781 out:
782 	spin_unlock(&mfc_unres_lock);
783 }
784 
785 /* Fill oifs list. It is called under write locked mrt_lock. */
786 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
787 				   unsigned char *ttls)
788 {
789 	int vifi;
790 
791 	cache->mfc_un.res.minvif = MAXVIFS;
792 	cache->mfc_un.res.maxvif = 0;
793 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
794 
795 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
796 		if (VIF_EXISTS(mrt, vifi) &&
797 		    ttls[vifi] && ttls[vifi] < 255) {
798 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
799 			if (cache->mfc_un.res.minvif > vifi)
800 				cache->mfc_un.res.minvif = vifi;
801 			if (cache->mfc_un.res.maxvif <= vifi)
802 				cache->mfc_un.res.maxvif = vifi + 1;
803 		}
804 	}
805 	cache->mfc_un.res.lastuse = jiffies;
806 }
807 
808 static int vif_add(struct net *net, struct mr_table *mrt,
809 		   struct vifctl *vifc, int mrtsock)
810 {
811 	struct netdev_phys_item_id ppid = { };
812 	int vifi = vifc->vifc_vifi;
813 	struct vif_device *v = &mrt->vif_table[vifi];
814 	struct net_device *dev;
815 	struct in_device *in_dev;
816 	int err;
817 
818 	/* Is vif busy ? */
819 	if (VIF_EXISTS(mrt, vifi))
820 		return -EADDRINUSE;
821 
822 	switch (vifc->vifc_flags) {
823 	case VIFF_REGISTER:
824 		if (!ipmr_pimsm_enabled())
825 			return -EINVAL;
826 		/* Special Purpose VIF in PIM
827 		 * All the packets will be sent to the daemon
828 		 */
829 		if (mrt->mroute_reg_vif_num >= 0)
830 			return -EADDRINUSE;
831 		dev = ipmr_reg_vif(net, mrt);
832 		if (!dev)
833 			return -ENOBUFS;
834 		err = dev_set_allmulti(dev, 1);
835 		if (err) {
836 			unregister_netdevice(dev);
837 			dev_put(dev);
838 			return err;
839 		}
840 		break;
841 	case VIFF_TUNNEL:
842 		dev = ipmr_new_tunnel(net, vifc);
843 		if (IS_ERR(dev))
844 			return PTR_ERR(dev);
845 		break;
846 	case VIFF_USE_IFINDEX:
847 	case 0:
848 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
849 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
850 			if (dev && !__in_dev_get_rtnl(dev)) {
851 				dev_put(dev);
852 				return -EADDRNOTAVAIL;
853 			}
854 		} else {
855 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
856 		}
857 		if (!dev)
858 			return -EADDRNOTAVAIL;
859 		err = dev_set_allmulti(dev, 1);
860 		if (err) {
861 			dev_put(dev);
862 			return err;
863 		}
864 		break;
865 	default:
866 		return -EINVAL;
867 	}
868 
869 	in_dev = __in_dev_get_rtnl(dev);
870 	if (!in_dev) {
871 		dev_put(dev);
872 		return -EADDRNOTAVAIL;
873 	}
874 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
875 	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
876 				    dev->ifindex, &in_dev->cnf);
877 	ip_rt_multicast_event(in_dev);
878 
879 	/* Fill in the VIF structures */
880 	vif_device_init(v, dev, vifc->vifc_rate_limit,
881 			vifc->vifc_threshold,
882 			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
883 			(VIFF_TUNNEL | VIFF_REGISTER));
884 
885 	err = dev_get_port_parent_id(dev, &ppid, true);
886 	if (err == 0) {
887 		memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
888 		v->dev_parent_id.id_len = ppid.id_len;
889 	} else {
890 		v->dev_parent_id.id_len = 0;
891 	}
892 
893 	v->local = vifc->vifc_lcl_addr.s_addr;
894 	v->remote = vifc->vifc_rmt_addr.s_addr;
895 
896 	/* And finish update writing critical data */
897 	write_lock_bh(&mrt_lock);
898 	v->dev = dev;
899 	if (v->flags & VIFF_REGISTER)
900 		mrt->mroute_reg_vif_num = vifi;
901 	if (vifi+1 > mrt->maxvif)
902 		mrt->maxvif = vifi+1;
903 	write_unlock_bh(&mrt_lock);
904 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
905 	return 0;
906 }
907 
908 /* called with rcu_read_lock() */
909 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
910 					 __be32 origin,
911 					 __be32 mcastgrp)
912 {
913 	struct mfc_cache_cmp_arg arg = {
914 			.mfc_mcastgrp = mcastgrp,
915 			.mfc_origin = origin
916 	};
917 
918 	return mr_mfc_find(mrt, &arg);
919 }
920 
921 /* Look for a (*,G) entry */
922 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
923 					     __be32 mcastgrp, int vifi)
924 {
925 	struct mfc_cache_cmp_arg arg = {
926 			.mfc_mcastgrp = mcastgrp,
927 			.mfc_origin = htonl(INADDR_ANY)
928 	};
929 
930 	if (mcastgrp == htonl(INADDR_ANY))
931 		return mr_mfc_find_any_parent(mrt, vifi);
932 	return mr_mfc_find_any(mrt, vifi, &arg);
933 }
934 
935 /* Look for a (S,G,iif) entry if parent != -1 */
936 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
937 						__be32 origin, __be32 mcastgrp,
938 						int parent)
939 {
940 	struct mfc_cache_cmp_arg arg = {
941 			.mfc_mcastgrp = mcastgrp,
942 			.mfc_origin = origin,
943 	};
944 
945 	return mr_mfc_find_parent(mrt, &arg, parent);
946 }
947 
948 /* Allocate a multicast cache entry */
949 static struct mfc_cache *ipmr_cache_alloc(void)
950 {
951 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
952 
953 	if (c) {
954 		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
955 		c->_c.mfc_un.res.minvif = MAXVIFS;
956 		c->_c.free = ipmr_cache_free_rcu;
957 		refcount_set(&c->_c.mfc_un.res.refcount, 1);
958 	}
959 	return c;
960 }
961 
962 static struct mfc_cache *ipmr_cache_alloc_unres(void)
963 {
964 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
965 
966 	if (c) {
967 		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
968 		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
969 	}
970 	return c;
971 }
972 
973 /* A cache entry has gone into a resolved state from queued */
974 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
975 			       struct mfc_cache *uc, struct mfc_cache *c)
976 {
977 	struct sk_buff *skb;
978 	struct nlmsgerr *e;
979 
980 	/* Play the pending entries through our router */
981 	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
982 		if (ip_hdr(skb)->version == 0) {
983 			struct nlmsghdr *nlh = skb_pull(skb,
984 							sizeof(struct iphdr));
985 
986 			if (mr_fill_mroute(mrt, skb, &c->_c,
987 					   nlmsg_data(nlh)) > 0) {
988 				nlh->nlmsg_len = skb_tail_pointer(skb) -
989 						 (u8 *)nlh;
990 			} else {
991 				nlh->nlmsg_type = NLMSG_ERROR;
992 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
993 				skb_trim(skb, nlh->nlmsg_len);
994 				e = nlmsg_data(nlh);
995 				e->error = -EMSGSIZE;
996 				memset(&e->msg, 0, sizeof(e->msg));
997 			}
998 
999 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1000 		} else {
1001 			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1002 		}
1003 	}
1004 }
1005 
1006 /* Bounce a cache query up to mrouted and netlink.
1007  *
1008  * Called under mrt_lock.
1009  */
1010 static int ipmr_cache_report(struct mr_table *mrt,
1011 			     struct sk_buff *pkt, vifi_t vifi, int assert)
1012 {
1013 	const int ihl = ip_hdrlen(pkt);
1014 	struct sock *mroute_sk;
1015 	struct igmphdr *igmp;
1016 	struct igmpmsg *msg;
1017 	struct sk_buff *skb;
1018 	int ret;
1019 
1020 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1021 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1022 	else
1023 		skb = alloc_skb(128, GFP_ATOMIC);
1024 
1025 	if (!skb)
1026 		return -ENOBUFS;
1027 
1028 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1029 		/* Ugly, but we have no choice with this interface.
1030 		 * Duplicate old header, fix ihl, length etc.
1031 		 * And all this only to mangle msg->im_msgtype and
1032 		 * to set msg->im_mbz to "mbz" :-)
1033 		 */
1034 		skb_push(skb, sizeof(struct iphdr));
1035 		skb_reset_network_header(skb);
1036 		skb_reset_transport_header(skb);
1037 		msg = (struct igmpmsg *)skb_network_header(skb);
1038 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1039 		msg->im_msgtype = assert;
1040 		msg->im_mbz = 0;
1041 		if (assert == IGMPMSG_WRVIFWHOLE)
1042 			msg->im_vif = vifi;
1043 		else
1044 			msg->im_vif = mrt->mroute_reg_vif_num;
1045 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1046 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1047 					     sizeof(struct iphdr));
1048 	} else {
1049 		/* Copy the IP header */
1050 		skb_set_network_header(skb, skb->len);
1051 		skb_put(skb, ihl);
1052 		skb_copy_to_linear_data(skb, pkt->data, ihl);
1053 		/* Flag to the kernel this is a route add */
1054 		ip_hdr(skb)->protocol = 0;
1055 		msg = (struct igmpmsg *)skb_network_header(skb);
1056 		msg->im_vif = vifi;
1057 		skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1058 		/* Add our header */
1059 		igmp = skb_put(skb, sizeof(struct igmphdr));
1060 		igmp->type = assert;
1061 		msg->im_msgtype = assert;
1062 		igmp->code = 0;
1063 		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1064 		skb->transport_header = skb->network_header;
1065 	}
1066 
1067 	rcu_read_lock();
1068 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1069 	if (!mroute_sk) {
1070 		rcu_read_unlock();
1071 		kfree_skb(skb);
1072 		return -EINVAL;
1073 	}
1074 
1075 	igmpmsg_netlink_event(mrt, skb);
1076 
1077 	/* Deliver to mrouted */
1078 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1079 	rcu_read_unlock();
1080 	if (ret < 0) {
1081 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1082 		kfree_skb(skb);
1083 	}
1084 
1085 	return ret;
1086 }
1087 
1088 /* Queue a packet for resolution. It gets locked cache entry! */
1089 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1090 				 struct sk_buff *skb, struct net_device *dev)
1091 {
1092 	const struct iphdr *iph = ip_hdr(skb);
1093 	struct mfc_cache *c;
1094 	bool found = false;
1095 	int err;
1096 
1097 	spin_lock_bh(&mfc_unres_lock);
1098 	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1099 		if (c->mfc_mcastgrp == iph->daddr &&
1100 		    c->mfc_origin == iph->saddr) {
1101 			found = true;
1102 			break;
1103 		}
1104 	}
1105 
1106 	if (!found) {
1107 		/* Create a new entry if allowable */
1108 		c = ipmr_cache_alloc_unres();
1109 		if (!c) {
1110 			spin_unlock_bh(&mfc_unres_lock);
1111 
1112 			kfree_skb(skb);
1113 			return -ENOBUFS;
1114 		}
1115 
1116 		/* Fill in the new cache entry */
1117 		c->_c.mfc_parent = -1;
1118 		c->mfc_origin	= iph->saddr;
1119 		c->mfc_mcastgrp	= iph->daddr;
1120 
1121 		/* Reflect first query at mrouted. */
1122 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1123 
1124 		if (err < 0) {
1125 			/* If the report failed throw the cache entry
1126 			   out - Brad Parker
1127 			 */
1128 			spin_unlock_bh(&mfc_unres_lock);
1129 
1130 			ipmr_cache_free(c);
1131 			kfree_skb(skb);
1132 			return err;
1133 		}
1134 
1135 		atomic_inc(&mrt->cache_resolve_queue_len);
1136 		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1137 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1138 
1139 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1140 			mod_timer(&mrt->ipmr_expire_timer,
1141 				  c->_c.mfc_un.unres.expires);
1142 	}
1143 
1144 	/* See if we can append the packet */
1145 	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1146 		kfree_skb(skb);
1147 		err = -ENOBUFS;
1148 	} else {
1149 		if (dev) {
1150 			skb->dev = dev;
1151 			skb->skb_iif = dev->ifindex;
1152 		}
1153 		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1154 		err = 0;
1155 	}
1156 
1157 	spin_unlock_bh(&mfc_unres_lock);
1158 	return err;
1159 }
1160 
1161 /* MFC cache manipulation by user space mroute daemon */
1162 
1163 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1164 {
1165 	struct net *net = read_pnet(&mrt->net);
1166 	struct mfc_cache *c;
1167 
1168 	/* The entries are added/deleted only under RTNL */
1169 	rcu_read_lock();
1170 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1171 				   mfc->mfcc_mcastgrp.s_addr, parent);
1172 	rcu_read_unlock();
1173 	if (!c)
1174 		return -ENOENT;
1175 	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1176 	list_del_rcu(&c->_c.list);
1177 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1178 	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1179 	mr_cache_put(&c->_c);
1180 
1181 	return 0;
1182 }
1183 
1184 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1185 			struct mfcctl *mfc, int mrtsock, int parent)
1186 {
1187 	struct mfc_cache *uc, *c;
1188 	struct mr_mfc *_uc;
1189 	bool found;
1190 	int ret;
1191 
1192 	if (mfc->mfcc_parent >= MAXVIFS)
1193 		return -ENFILE;
1194 
1195 	/* The entries are added/deleted only under RTNL */
1196 	rcu_read_lock();
1197 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1198 				   mfc->mfcc_mcastgrp.s_addr, parent);
1199 	rcu_read_unlock();
1200 	if (c) {
1201 		write_lock_bh(&mrt_lock);
1202 		c->_c.mfc_parent = mfc->mfcc_parent;
1203 		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1204 		if (!mrtsock)
1205 			c->_c.mfc_flags |= MFC_STATIC;
1206 		write_unlock_bh(&mrt_lock);
1207 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1208 					      mrt->id);
1209 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1210 		return 0;
1211 	}
1212 
1213 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1214 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1215 		return -EINVAL;
1216 
1217 	c = ipmr_cache_alloc();
1218 	if (!c)
1219 		return -ENOMEM;
1220 
1221 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1222 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1223 	c->_c.mfc_parent = mfc->mfcc_parent;
1224 	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1225 	if (!mrtsock)
1226 		c->_c.mfc_flags |= MFC_STATIC;
1227 
1228 	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1229 				  ipmr_rht_params);
1230 	if (ret) {
1231 		pr_err("ipmr: rhtable insert error %d\n", ret);
1232 		ipmr_cache_free(c);
1233 		return ret;
1234 	}
1235 	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1236 	/* Check to see if we resolved a queued list. If so we
1237 	 * need to send on the frames and tidy up.
1238 	 */
1239 	found = false;
1240 	spin_lock_bh(&mfc_unres_lock);
1241 	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1242 		uc = (struct mfc_cache *)_uc;
1243 		if (uc->mfc_origin == c->mfc_origin &&
1244 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1245 			list_del(&_uc->list);
1246 			atomic_dec(&mrt->cache_resolve_queue_len);
1247 			found = true;
1248 			break;
1249 		}
1250 	}
1251 	if (list_empty(&mrt->mfc_unres_queue))
1252 		del_timer(&mrt->ipmr_expire_timer);
1253 	spin_unlock_bh(&mfc_unres_lock);
1254 
1255 	if (found) {
1256 		ipmr_cache_resolve(net, mrt, uc, c);
1257 		ipmr_cache_free(uc);
1258 	}
1259 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1260 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1261 	return 0;
1262 }
1263 
1264 /* Close the multicast socket, and clear the vif tables etc */
1265 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1266 {
1267 	struct net *net = read_pnet(&mrt->net);
1268 	struct mr_mfc *c, *tmp;
1269 	struct mfc_cache *cache;
1270 	LIST_HEAD(list);
1271 	int i;
1272 
1273 	/* Shut down all active vif entries */
1274 	if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1275 		for (i = 0; i < mrt->maxvif; i++) {
1276 			if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1277 			     !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1278 			    (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1279 				continue;
1280 			vif_delete(mrt, i, 0, &list);
1281 		}
1282 		unregister_netdevice_many(&list);
1283 	}
1284 
1285 	/* Wipe the cache */
1286 	if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1287 		list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1288 			if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1289 			    (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1290 				continue;
1291 			rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1292 			list_del_rcu(&c->list);
1293 			cache = (struct mfc_cache *)c;
1294 			call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1295 						      mrt->id);
1296 			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1297 			mr_cache_put(c);
1298 		}
1299 	}
1300 
1301 	if (flags & MRT_FLUSH_MFC) {
1302 		if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1303 			spin_lock_bh(&mfc_unres_lock);
1304 			list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1305 				list_del(&c->list);
1306 				cache = (struct mfc_cache *)c;
1307 				mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1308 				ipmr_destroy_unres(mrt, cache);
1309 			}
1310 			spin_unlock_bh(&mfc_unres_lock);
1311 		}
1312 	}
1313 }
1314 
1315 /* called from ip_ra_control(), before an RCU grace period,
1316  * we dont need to call synchronize_rcu() here
1317  */
1318 static void mrtsock_destruct(struct sock *sk)
1319 {
1320 	struct net *net = sock_net(sk);
1321 	struct mr_table *mrt;
1322 
1323 	rtnl_lock();
1324 	ipmr_for_each_table(mrt, net) {
1325 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1326 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1327 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1328 						    NETCONFA_MC_FORWARDING,
1329 						    NETCONFA_IFINDEX_ALL,
1330 						    net->ipv4.devconf_all);
1331 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1332 			mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1333 		}
1334 	}
1335 	rtnl_unlock();
1336 }
1337 
1338 /* Socket options and virtual interface manipulation. The whole
1339  * virtual interface system is a complete heap, but unfortunately
1340  * that's how BSD mrouted happens to think. Maybe one day with a proper
1341  * MOSPF/PIM router set up we can clean this up.
1342  */
1343 
1344 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1345 			 unsigned int optlen)
1346 {
1347 	struct net *net = sock_net(sk);
1348 	int val, ret = 0, parent = 0;
1349 	struct mr_table *mrt;
1350 	struct vifctl vif;
1351 	struct mfcctl mfc;
1352 	bool do_wrvifwhole;
1353 	u32 uval;
1354 
1355 	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1356 	rtnl_lock();
1357 	if (sk->sk_type != SOCK_RAW ||
1358 	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1359 		ret = -EOPNOTSUPP;
1360 		goto out_unlock;
1361 	}
1362 
1363 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1364 	if (!mrt) {
1365 		ret = -ENOENT;
1366 		goto out_unlock;
1367 	}
1368 	if (optname != MRT_INIT) {
1369 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1370 		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1371 			ret = -EACCES;
1372 			goto out_unlock;
1373 		}
1374 	}
1375 
1376 	switch (optname) {
1377 	case MRT_INIT:
1378 		if (optlen != sizeof(int)) {
1379 			ret = -EINVAL;
1380 			break;
1381 		}
1382 		if (rtnl_dereference(mrt->mroute_sk)) {
1383 			ret = -EADDRINUSE;
1384 			break;
1385 		}
1386 
1387 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1388 		if (ret == 0) {
1389 			rcu_assign_pointer(mrt->mroute_sk, sk);
1390 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1391 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1392 						    NETCONFA_MC_FORWARDING,
1393 						    NETCONFA_IFINDEX_ALL,
1394 						    net->ipv4.devconf_all);
1395 		}
1396 		break;
1397 	case MRT_DONE:
1398 		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1399 			ret = -EACCES;
1400 		} else {
1401 			/* We need to unlock here because mrtsock_destruct takes
1402 			 * care of rtnl itself and we can't change that due to
1403 			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1404 			 */
1405 			rtnl_unlock();
1406 			ret = ip_ra_control(sk, 0, NULL);
1407 			goto out;
1408 		}
1409 		break;
1410 	case MRT_ADD_VIF:
1411 	case MRT_DEL_VIF:
1412 		if (optlen != sizeof(vif)) {
1413 			ret = -EINVAL;
1414 			break;
1415 		}
1416 		if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1417 			ret = -EFAULT;
1418 			break;
1419 		}
1420 		if (vif.vifc_vifi >= MAXVIFS) {
1421 			ret = -ENFILE;
1422 			break;
1423 		}
1424 		if (optname == MRT_ADD_VIF) {
1425 			ret = vif_add(net, mrt, &vif,
1426 				      sk == rtnl_dereference(mrt->mroute_sk));
1427 		} else {
1428 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1429 		}
1430 		break;
1431 	/* Manipulate the forwarding caches. These live
1432 	 * in a sort of kernel/user symbiosis.
1433 	 */
1434 	case MRT_ADD_MFC:
1435 	case MRT_DEL_MFC:
1436 		parent = -1;
1437 		fallthrough;
1438 	case MRT_ADD_MFC_PROXY:
1439 	case MRT_DEL_MFC_PROXY:
1440 		if (optlen != sizeof(mfc)) {
1441 			ret = -EINVAL;
1442 			break;
1443 		}
1444 		if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1445 			ret = -EFAULT;
1446 			break;
1447 		}
1448 		if (parent == 0)
1449 			parent = mfc.mfcc_parent;
1450 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1451 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1452 		else
1453 			ret = ipmr_mfc_add(net, mrt, &mfc,
1454 					   sk == rtnl_dereference(mrt->mroute_sk),
1455 					   parent);
1456 		break;
1457 	case MRT_FLUSH:
1458 		if (optlen != sizeof(val)) {
1459 			ret = -EINVAL;
1460 			break;
1461 		}
1462 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1463 			ret = -EFAULT;
1464 			break;
1465 		}
1466 		mroute_clean_tables(mrt, val);
1467 		break;
1468 	/* Control PIM assert. */
1469 	case MRT_ASSERT:
1470 		if (optlen != sizeof(val)) {
1471 			ret = -EINVAL;
1472 			break;
1473 		}
1474 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1475 			ret = -EFAULT;
1476 			break;
1477 		}
1478 		mrt->mroute_do_assert = val;
1479 		break;
1480 	case MRT_PIM:
1481 		if (!ipmr_pimsm_enabled()) {
1482 			ret = -ENOPROTOOPT;
1483 			break;
1484 		}
1485 		if (optlen != sizeof(val)) {
1486 			ret = -EINVAL;
1487 			break;
1488 		}
1489 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1490 			ret = -EFAULT;
1491 			break;
1492 		}
1493 
1494 		do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1495 		val = !!val;
1496 		if (val != mrt->mroute_do_pim) {
1497 			mrt->mroute_do_pim = val;
1498 			mrt->mroute_do_assert = val;
1499 			mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1500 		}
1501 		break;
1502 	case MRT_TABLE:
1503 		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1504 			ret = -ENOPROTOOPT;
1505 			break;
1506 		}
1507 		if (optlen != sizeof(uval)) {
1508 			ret = -EINVAL;
1509 			break;
1510 		}
1511 		if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1512 			ret = -EFAULT;
1513 			break;
1514 		}
1515 
1516 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1517 			ret = -EBUSY;
1518 		} else {
1519 			mrt = ipmr_new_table(net, uval);
1520 			if (IS_ERR(mrt))
1521 				ret = PTR_ERR(mrt);
1522 			else
1523 				raw_sk(sk)->ipmr_table = uval;
1524 		}
1525 		break;
1526 	/* Spurious command, or MRT_VERSION which you cannot set. */
1527 	default:
1528 		ret = -ENOPROTOOPT;
1529 	}
1530 out_unlock:
1531 	rtnl_unlock();
1532 out:
1533 	return ret;
1534 }
1535 
1536 /* Getsock opt support for the multicast routing system. */
1537 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1538 {
1539 	int olr;
1540 	int val;
1541 	struct net *net = sock_net(sk);
1542 	struct mr_table *mrt;
1543 
1544 	if (sk->sk_type != SOCK_RAW ||
1545 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1546 		return -EOPNOTSUPP;
1547 
1548 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1549 	if (!mrt)
1550 		return -ENOENT;
1551 
1552 	switch (optname) {
1553 	case MRT_VERSION:
1554 		val = 0x0305;
1555 		break;
1556 	case MRT_PIM:
1557 		if (!ipmr_pimsm_enabled())
1558 			return -ENOPROTOOPT;
1559 		val = mrt->mroute_do_pim;
1560 		break;
1561 	case MRT_ASSERT:
1562 		val = mrt->mroute_do_assert;
1563 		break;
1564 	default:
1565 		return -ENOPROTOOPT;
1566 	}
1567 
1568 	if (get_user(olr, optlen))
1569 		return -EFAULT;
1570 	olr = min_t(unsigned int, olr, sizeof(int));
1571 	if (olr < 0)
1572 		return -EINVAL;
1573 	if (put_user(olr, optlen))
1574 		return -EFAULT;
1575 	if (copy_to_user(optval, &val, olr))
1576 		return -EFAULT;
1577 	return 0;
1578 }
1579 
1580 /* The IP multicast ioctl support routines. */
1581 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1582 {
1583 	struct sioc_sg_req sr;
1584 	struct sioc_vif_req vr;
1585 	struct vif_device *vif;
1586 	struct mfc_cache *c;
1587 	struct net *net = sock_net(sk);
1588 	struct mr_table *mrt;
1589 
1590 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1591 	if (!mrt)
1592 		return -ENOENT;
1593 
1594 	switch (cmd) {
1595 	case SIOCGETVIFCNT:
1596 		if (copy_from_user(&vr, arg, sizeof(vr)))
1597 			return -EFAULT;
1598 		if (vr.vifi >= mrt->maxvif)
1599 			return -EINVAL;
1600 		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1601 		read_lock(&mrt_lock);
1602 		vif = &mrt->vif_table[vr.vifi];
1603 		if (VIF_EXISTS(mrt, vr.vifi)) {
1604 			vr.icount = vif->pkt_in;
1605 			vr.ocount = vif->pkt_out;
1606 			vr.ibytes = vif->bytes_in;
1607 			vr.obytes = vif->bytes_out;
1608 			read_unlock(&mrt_lock);
1609 
1610 			if (copy_to_user(arg, &vr, sizeof(vr)))
1611 				return -EFAULT;
1612 			return 0;
1613 		}
1614 		read_unlock(&mrt_lock);
1615 		return -EADDRNOTAVAIL;
1616 	case SIOCGETSGCNT:
1617 		if (copy_from_user(&sr, arg, sizeof(sr)))
1618 			return -EFAULT;
1619 
1620 		rcu_read_lock();
1621 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1622 		if (c) {
1623 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1624 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1625 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1626 			rcu_read_unlock();
1627 
1628 			if (copy_to_user(arg, &sr, sizeof(sr)))
1629 				return -EFAULT;
1630 			return 0;
1631 		}
1632 		rcu_read_unlock();
1633 		return -EADDRNOTAVAIL;
1634 	default:
1635 		return -ENOIOCTLCMD;
1636 	}
1637 }
1638 
1639 #ifdef CONFIG_COMPAT
1640 struct compat_sioc_sg_req {
1641 	struct in_addr src;
1642 	struct in_addr grp;
1643 	compat_ulong_t pktcnt;
1644 	compat_ulong_t bytecnt;
1645 	compat_ulong_t wrong_if;
1646 };
1647 
1648 struct compat_sioc_vif_req {
1649 	vifi_t	vifi;		/* Which iface */
1650 	compat_ulong_t icount;
1651 	compat_ulong_t ocount;
1652 	compat_ulong_t ibytes;
1653 	compat_ulong_t obytes;
1654 };
1655 
1656 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1657 {
1658 	struct compat_sioc_sg_req sr;
1659 	struct compat_sioc_vif_req vr;
1660 	struct vif_device *vif;
1661 	struct mfc_cache *c;
1662 	struct net *net = sock_net(sk);
1663 	struct mr_table *mrt;
1664 
1665 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1666 	if (!mrt)
1667 		return -ENOENT;
1668 
1669 	switch (cmd) {
1670 	case SIOCGETVIFCNT:
1671 		if (copy_from_user(&vr, arg, sizeof(vr)))
1672 			return -EFAULT;
1673 		if (vr.vifi >= mrt->maxvif)
1674 			return -EINVAL;
1675 		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1676 		read_lock(&mrt_lock);
1677 		vif = &mrt->vif_table[vr.vifi];
1678 		if (VIF_EXISTS(mrt, vr.vifi)) {
1679 			vr.icount = vif->pkt_in;
1680 			vr.ocount = vif->pkt_out;
1681 			vr.ibytes = vif->bytes_in;
1682 			vr.obytes = vif->bytes_out;
1683 			read_unlock(&mrt_lock);
1684 
1685 			if (copy_to_user(arg, &vr, sizeof(vr)))
1686 				return -EFAULT;
1687 			return 0;
1688 		}
1689 		read_unlock(&mrt_lock);
1690 		return -EADDRNOTAVAIL;
1691 	case SIOCGETSGCNT:
1692 		if (copy_from_user(&sr, arg, sizeof(sr)))
1693 			return -EFAULT;
1694 
1695 		rcu_read_lock();
1696 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1697 		if (c) {
1698 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1699 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1700 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1701 			rcu_read_unlock();
1702 
1703 			if (copy_to_user(arg, &sr, sizeof(sr)))
1704 				return -EFAULT;
1705 			return 0;
1706 		}
1707 		rcu_read_unlock();
1708 		return -EADDRNOTAVAIL;
1709 	default:
1710 		return -ENOIOCTLCMD;
1711 	}
1712 }
1713 #endif
1714 
1715 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1716 {
1717 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1718 	struct net *net = dev_net(dev);
1719 	struct mr_table *mrt;
1720 	struct vif_device *v;
1721 	int ct;
1722 
1723 	if (event != NETDEV_UNREGISTER)
1724 		return NOTIFY_DONE;
1725 
1726 	ipmr_for_each_table(mrt, net) {
1727 		v = &mrt->vif_table[0];
1728 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1729 			if (v->dev == dev)
1730 				vif_delete(mrt, ct, 1, NULL);
1731 		}
1732 	}
1733 	return NOTIFY_DONE;
1734 }
1735 
1736 static struct notifier_block ip_mr_notifier = {
1737 	.notifier_call = ipmr_device_event,
1738 };
1739 
1740 /* Encapsulate a packet by attaching a valid IPIP header to it.
1741  * This avoids tunnel drivers and other mess and gives us the speed so
1742  * important for multicast video.
1743  */
1744 static void ip_encap(struct net *net, struct sk_buff *skb,
1745 		     __be32 saddr, __be32 daddr)
1746 {
1747 	struct iphdr *iph;
1748 	const struct iphdr *old_iph = ip_hdr(skb);
1749 
1750 	skb_push(skb, sizeof(struct iphdr));
1751 	skb->transport_header = skb->network_header;
1752 	skb_reset_network_header(skb);
1753 	iph = ip_hdr(skb);
1754 
1755 	iph->version	=	4;
1756 	iph->tos	=	old_iph->tos;
1757 	iph->ttl	=	old_iph->ttl;
1758 	iph->frag_off	=	0;
1759 	iph->daddr	=	daddr;
1760 	iph->saddr	=	saddr;
1761 	iph->protocol	=	IPPROTO_IPIP;
1762 	iph->ihl	=	5;
1763 	iph->tot_len	=	htons(skb->len);
1764 	ip_select_ident(net, skb, NULL);
1765 	ip_send_check(iph);
1766 
1767 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1768 	nf_reset_ct(skb);
1769 }
1770 
1771 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1772 				      struct sk_buff *skb)
1773 {
1774 	struct ip_options *opt = &(IPCB(skb)->opt);
1775 
1776 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1777 	IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1778 
1779 	if (unlikely(opt->optlen))
1780 		ip_forward_options(skb);
1781 
1782 	return dst_output(net, sk, skb);
1783 }
1784 
1785 #ifdef CONFIG_NET_SWITCHDEV
1786 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1787 				   int in_vifi, int out_vifi)
1788 {
1789 	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1790 	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1791 
1792 	if (!skb->offload_l3_fwd_mark)
1793 		return false;
1794 	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1795 		return false;
1796 	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1797 					&in_vif->dev_parent_id);
1798 }
1799 #else
1800 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1801 				   int in_vifi, int out_vifi)
1802 {
1803 	return false;
1804 }
1805 #endif
1806 
1807 /* Processing handlers for ipmr_forward */
1808 
1809 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1810 			    int in_vifi, struct sk_buff *skb, int vifi)
1811 {
1812 	const struct iphdr *iph = ip_hdr(skb);
1813 	struct vif_device *vif = &mrt->vif_table[vifi];
1814 	struct net_device *dev;
1815 	struct rtable *rt;
1816 	struct flowi4 fl4;
1817 	int    encap = 0;
1818 
1819 	if (!vif->dev)
1820 		goto out_free;
1821 
1822 	if (vif->flags & VIFF_REGISTER) {
1823 		vif->pkt_out++;
1824 		vif->bytes_out += skb->len;
1825 		vif->dev->stats.tx_bytes += skb->len;
1826 		vif->dev->stats.tx_packets++;
1827 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1828 		goto out_free;
1829 	}
1830 
1831 	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1832 		goto out_free;
1833 
1834 	if (vif->flags & VIFF_TUNNEL) {
1835 		rt = ip_route_output_ports(net, &fl4, NULL,
1836 					   vif->remote, vif->local,
1837 					   0, 0,
1838 					   IPPROTO_IPIP,
1839 					   RT_TOS(iph->tos), vif->link);
1840 		if (IS_ERR(rt))
1841 			goto out_free;
1842 		encap = sizeof(struct iphdr);
1843 	} else {
1844 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1845 					   0, 0,
1846 					   IPPROTO_IPIP,
1847 					   RT_TOS(iph->tos), vif->link);
1848 		if (IS_ERR(rt))
1849 			goto out_free;
1850 	}
1851 
1852 	dev = rt->dst.dev;
1853 
1854 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1855 		/* Do not fragment multicasts. Alas, IPv4 does not
1856 		 * allow to send ICMP, so that packets will disappear
1857 		 * to blackhole.
1858 		 */
1859 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1860 		ip_rt_put(rt);
1861 		goto out_free;
1862 	}
1863 
1864 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1865 
1866 	if (skb_cow(skb, encap)) {
1867 		ip_rt_put(rt);
1868 		goto out_free;
1869 	}
1870 
1871 	vif->pkt_out++;
1872 	vif->bytes_out += skb->len;
1873 
1874 	skb_dst_drop(skb);
1875 	skb_dst_set(skb, &rt->dst);
1876 	ip_decrease_ttl(ip_hdr(skb));
1877 
1878 	/* FIXME: forward and output firewalls used to be called here.
1879 	 * What do we do with netfilter? -- RR
1880 	 */
1881 	if (vif->flags & VIFF_TUNNEL) {
1882 		ip_encap(net, skb, vif->local, vif->remote);
1883 		/* FIXME: extra output firewall step used to be here. --RR */
1884 		vif->dev->stats.tx_packets++;
1885 		vif->dev->stats.tx_bytes += skb->len;
1886 	}
1887 
1888 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1889 
1890 	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1891 	 * not only before forwarding, but after forwarding on all output
1892 	 * interfaces. It is clear, if mrouter runs a multicasting
1893 	 * program, it should receive packets not depending to what interface
1894 	 * program is joined.
1895 	 * If we will not make it, the program will have to join on all
1896 	 * interfaces. On the other hand, multihoming host (or router, but
1897 	 * not mrouter) cannot join to more than one interface - it will
1898 	 * result in receiving multiple packets.
1899 	 */
1900 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1901 		net, NULL, skb, skb->dev, dev,
1902 		ipmr_forward_finish);
1903 	return;
1904 
1905 out_free:
1906 	kfree_skb(skb);
1907 }
1908 
1909 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1910 {
1911 	int ct;
1912 
1913 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1914 		if (mrt->vif_table[ct].dev == dev)
1915 			break;
1916 	}
1917 	return ct;
1918 }
1919 
1920 /* "local" means that we should preserve one skb (for local delivery) */
1921 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1922 			  struct net_device *dev, struct sk_buff *skb,
1923 			  struct mfc_cache *c, int local)
1924 {
1925 	int true_vifi = ipmr_find_vif(mrt, dev);
1926 	int psend = -1;
1927 	int vif, ct;
1928 
1929 	vif = c->_c.mfc_parent;
1930 	c->_c.mfc_un.res.pkt++;
1931 	c->_c.mfc_un.res.bytes += skb->len;
1932 	c->_c.mfc_un.res.lastuse = jiffies;
1933 
1934 	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1935 		struct mfc_cache *cache_proxy;
1936 
1937 		/* For an (*,G) entry, we only check that the incomming
1938 		 * interface is part of the static tree.
1939 		 */
1940 		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1941 		if (cache_proxy &&
1942 		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1943 			goto forward;
1944 	}
1945 
1946 	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1947 	if (mrt->vif_table[vif].dev != dev) {
1948 		if (rt_is_output_route(skb_rtable(skb))) {
1949 			/* It is our own packet, looped back.
1950 			 * Very complicated situation...
1951 			 *
1952 			 * The best workaround until routing daemons will be
1953 			 * fixed is not to redistribute packet, if it was
1954 			 * send through wrong interface. It means, that
1955 			 * multicast applications WILL NOT work for
1956 			 * (S,G), which have default multicast route pointing
1957 			 * to wrong oif. In any case, it is not a good
1958 			 * idea to use multicasting applications on router.
1959 			 */
1960 			goto dont_forward;
1961 		}
1962 
1963 		c->_c.mfc_un.res.wrong_if++;
1964 
1965 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1966 		    /* pimsm uses asserts, when switching from RPT to SPT,
1967 		     * so that we cannot check that packet arrived on an oif.
1968 		     * It is bad, but otherwise we would need to move pretty
1969 		     * large chunk of pimd to kernel. Ough... --ANK
1970 		     */
1971 		    (mrt->mroute_do_pim ||
1972 		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
1973 		    time_after(jiffies,
1974 			       c->_c.mfc_un.res.last_assert +
1975 			       MFC_ASSERT_THRESH)) {
1976 			c->_c.mfc_un.res.last_assert = jiffies;
1977 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1978 			if (mrt->mroute_do_wrvifwhole)
1979 				ipmr_cache_report(mrt, skb, true_vifi,
1980 						  IGMPMSG_WRVIFWHOLE);
1981 		}
1982 		goto dont_forward;
1983 	}
1984 
1985 forward:
1986 	mrt->vif_table[vif].pkt_in++;
1987 	mrt->vif_table[vif].bytes_in += skb->len;
1988 
1989 	/* Forward the frame */
1990 	if (c->mfc_origin == htonl(INADDR_ANY) &&
1991 	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
1992 		if (true_vifi >= 0 &&
1993 		    true_vifi != c->_c.mfc_parent &&
1994 		    ip_hdr(skb)->ttl >
1995 				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
1996 			/* It's an (*,*) entry and the packet is not coming from
1997 			 * the upstream: forward the packet to the upstream
1998 			 * only.
1999 			 */
2000 			psend = c->_c.mfc_parent;
2001 			goto last_forward;
2002 		}
2003 		goto dont_forward;
2004 	}
2005 	for (ct = c->_c.mfc_un.res.maxvif - 1;
2006 	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2007 		/* For (*,G) entry, don't forward to the incoming interface */
2008 		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2009 		     ct != true_vifi) &&
2010 		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2011 			if (psend != -1) {
2012 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2013 
2014 				if (skb2)
2015 					ipmr_queue_xmit(net, mrt, true_vifi,
2016 							skb2, psend);
2017 			}
2018 			psend = ct;
2019 		}
2020 	}
2021 last_forward:
2022 	if (psend != -1) {
2023 		if (local) {
2024 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2025 
2026 			if (skb2)
2027 				ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2028 						psend);
2029 		} else {
2030 			ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2031 			return;
2032 		}
2033 	}
2034 
2035 dont_forward:
2036 	if (!local)
2037 		kfree_skb(skb);
2038 }
2039 
2040 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2041 {
2042 	struct rtable *rt = skb_rtable(skb);
2043 	struct iphdr *iph = ip_hdr(skb);
2044 	struct flowi4 fl4 = {
2045 		.daddr = iph->daddr,
2046 		.saddr = iph->saddr,
2047 		.flowi4_tos = RT_TOS(iph->tos),
2048 		.flowi4_oif = (rt_is_output_route(rt) ?
2049 			       skb->dev->ifindex : 0),
2050 		.flowi4_iif = (rt_is_output_route(rt) ?
2051 			       LOOPBACK_IFINDEX :
2052 			       skb->dev->ifindex),
2053 		.flowi4_mark = skb->mark,
2054 	};
2055 	struct mr_table *mrt;
2056 	int err;
2057 
2058 	err = ipmr_fib_lookup(net, &fl4, &mrt);
2059 	if (err)
2060 		return ERR_PTR(err);
2061 	return mrt;
2062 }
2063 
2064 /* Multicast packets for forwarding arrive here
2065  * Called with rcu_read_lock();
2066  */
2067 int ip_mr_input(struct sk_buff *skb)
2068 {
2069 	struct mfc_cache *cache;
2070 	struct net *net = dev_net(skb->dev);
2071 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2072 	struct mr_table *mrt;
2073 	struct net_device *dev;
2074 
2075 	/* skb->dev passed in is the loX master dev for vrfs.
2076 	 * As there are no vifs associated with loopback devices,
2077 	 * get the proper interface that does have a vif associated with it.
2078 	 */
2079 	dev = skb->dev;
2080 	if (netif_is_l3_master(skb->dev)) {
2081 		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2082 		if (!dev) {
2083 			kfree_skb(skb);
2084 			return -ENODEV;
2085 		}
2086 	}
2087 
2088 	/* Packet is looped back after forward, it should not be
2089 	 * forwarded second time, but still can be delivered locally.
2090 	 */
2091 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2092 		goto dont_forward;
2093 
2094 	mrt = ipmr_rt_fib_lookup(net, skb);
2095 	if (IS_ERR(mrt)) {
2096 		kfree_skb(skb);
2097 		return PTR_ERR(mrt);
2098 	}
2099 	if (!local) {
2100 		if (IPCB(skb)->opt.router_alert) {
2101 			if (ip_call_ra_chain(skb))
2102 				return 0;
2103 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2104 			/* IGMPv1 (and broken IGMPv2 implementations sort of
2105 			 * Cisco IOS <= 11.2(8)) do not put router alert
2106 			 * option to IGMP packets destined to routable
2107 			 * groups. It is very bad, because it means
2108 			 * that we can forward NO IGMP messages.
2109 			 */
2110 			struct sock *mroute_sk;
2111 
2112 			mroute_sk = rcu_dereference(mrt->mroute_sk);
2113 			if (mroute_sk) {
2114 				nf_reset_ct(skb);
2115 				raw_rcv(mroute_sk, skb);
2116 				return 0;
2117 			}
2118 		    }
2119 	}
2120 
2121 	/* already under rcu_read_lock() */
2122 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2123 	if (!cache) {
2124 		int vif = ipmr_find_vif(mrt, dev);
2125 
2126 		if (vif >= 0)
2127 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2128 						    vif);
2129 	}
2130 
2131 	/* No usable cache entry */
2132 	if (!cache) {
2133 		int vif;
2134 
2135 		if (local) {
2136 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2137 			ip_local_deliver(skb);
2138 			if (!skb2)
2139 				return -ENOBUFS;
2140 			skb = skb2;
2141 		}
2142 
2143 		read_lock(&mrt_lock);
2144 		vif = ipmr_find_vif(mrt, dev);
2145 		if (vif >= 0) {
2146 			int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2147 			read_unlock(&mrt_lock);
2148 
2149 			return err2;
2150 		}
2151 		read_unlock(&mrt_lock);
2152 		kfree_skb(skb);
2153 		return -ENODEV;
2154 	}
2155 
2156 	read_lock(&mrt_lock);
2157 	ip_mr_forward(net, mrt, dev, skb, cache, local);
2158 	read_unlock(&mrt_lock);
2159 
2160 	if (local)
2161 		return ip_local_deliver(skb);
2162 
2163 	return 0;
2164 
2165 dont_forward:
2166 	if (local)
2167 		return ip_local_deliver(skb);
2168 	kfree_skb(skb);
2169 	return 0;
2170 }
2171 
2172 #ifdef CONFIG_IP_PIMSM_V1
2173 /* Handle IGMP messages of PIMv1 */
2174 int pim_rcv_v1(struct sk_buff *skb)
2175 {
2176 	struct igmphdr *pim;
2177 	struct net *net = dev_net(skb->dev);
2178 	struct mr_table *mrt;
2179 
2180 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2181 		goto drop;
2182 
2183 	pim = igmp_hdr(skb);
2184 
2185 	mrt = ipmr_rt_fib_lookup(net, skb);
2186 	if (IS_ERR(mrt))
2187 		goto drop;
2188 	if (!mrt->mroute_do_pim ||
2189 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2190 		goto drop;
2191 
2192 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2193 drop:
2194 		kfree_skb(skb);
2195 	}
2196 	return 0;
2197 }
2198 #endif
2199 
2200 #ifdef CONFIG_IP_PIMSM_V2
2201 static int pim_rcv(struct sk_buff *skb)
2202 {
2203 	struct pimreghdr *pim;
2204 	struct net *net = dev_net(skb->dev);
2205 	struct mr_table *mrt;
2206 
2207 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2208 		goto drop;
2209 
2210 	pim = (struct pimreghdr *)skb_transport_header(skb);
2211 	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2212 	    (pim->flags & PIM_NULL_REGISTER) ||
2213 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2214 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2215 		goto drop;
2216 
2217 	mrt = ipmr_rt_fib_lookup(net, skb);
2218 	if (IS_ERR(mrt))
2219 		goto drop;
2220 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2221 drop:
2222 		kfree_skb(skb);
2223 	}
2224 	return 0;
2225 }
2226 #endif
2227 
2228 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2229 		   __be32 saddr, __be32 daddr,
2230 		   struct rtmsg *rtm, u32 portid)
2231 {
2232 	struct mfc_cache *cache;
2233 	struct mr_table *mrt;
2234 	int err;
2235 
2236 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2237 	if (!mrt)
2238 		return -ENOENT;
2239 
2240 	rcu_read_lock();
2241 	cache = ipmr_cache_find(mrt, saddr, daddr);
2242 	if (!cache && skb->dev) {
2243 		int vif = ipmr_find_vif(mrt, skb->dev);
2244 
2245 		if (vif >= 0)
2246 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2247 	}
2248 	if (!cache) {
2249 		struct sk_buff *skb2;
2250 		struct iphdr *iph;
2251 		struct net_device *dev;
2252 		int vif = -1;
2253 
2254 		dev = skb->dev;
2255 		read_lock(&mrt_lock);
2256 		if (dev)
2257 			vif = ipmr_find_vif(mrt, dev);
2258 		if (vif < 0) {
2259 			read_unlock(&mrt_lock);
2260 			rcu_read_unlock();
2261 			return -ENODEV;
2262 		}
2263 
2264 		skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2265 		if (!skb2) {
2266 			read_unlock(&mrt_lock);
2267 			rcu_read_unlock();
2268 			return -ENOMEM;
2269 		}
2270 
2271 		NETLINK_CB(skb2).portid = portid;
2272 		skb_push(skb2, sizeof(struct iphdr));
2273 		skb_reset_network_header(skb2);
2274 		iph = ip_hdr(skb2);
2275 		iph->ihl = sizeof(struct iphdr) >> 2;
2276 		iph->saddr = saddr;
2277 		iph->daddr = daddr;
2278 		iph->version = 0;
2279 		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2280 		read_unlock(&mrt_lock);
2281 		rcu_read_unlock();
2282 		return err;
2283 	}
2284 
2285 	read_lock(&mrt_lock);
2286 	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2287 	read_unlock(&mrt_lock);
2288 	rcu_read_unlock();
2289 	return err;
2290 }
2291 
2292 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2293 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2294 			    int flags)
2295 {
2296 	struct nlmsghdr *nlh;
2297 	struct rtmsg *rtm;
2298 	int err;
2299 
2300 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2301 	if (!nlh)
2302 		return -EMSGSIZE;
2303 
2304 	rtm = nlmsg_data(nlh);
2305 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2306 	rtm->rtm_dst_len  = 32;
2307 	rtm->rtm_src_len  = 32;
2308 	rtm->rtm_tos      = 0;
2309 	rtm->rtm_table    = mrt->id;
2310 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2311 		goto nla_put_failure;
2312 	rtm->rtm_type     = RTN_MULTICAST;
2313 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2314 	if (c->_c.mfc_flags & MFC_STATIC)
2315 		rtm->rtm_protocol = RTPROT_STATIC;
2316 	else
2317 		rtm->rtm_protocol = RTPROT_MROUTED;
2318 	rtm->rtm_flags    = 0;
2319 
2320 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2321 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2322 		goto nla_put_failure;
2323 	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2324 	/* do not break the dump if cache is unresolved */
2325 	if (err < 0 && err != -ENOENT)
2326 		goto nla_put_failure;
2327 
2328 	nlmsg_end(skb, nlh);
2329 	return 0;
2330 
2331 nla_put_failure:
2332 	nlmsg_cancel(skb, nlh);
2333 	return -EMSGSIZE;
2334 }
2335 
2336 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2337 			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2338 			     int flags)
2339 {
2340 	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2341 				cmd, flags);
2342 }
2343 
2344 static size_t mroute_msgsize(bool unresolved, int maxvif)
2345 {
2346 	size_t len =
2347 		NLMSG_ALIGN(sizeof(struct rtmsg))
2348 		+ nla_total_size(4)	/* RTA_TABLE */
2349 		+ nla_total_size(4)	/* RTA_SRC */
2350 		+ nla_total_size(4)	/* RTA_DST */
2351 		;
2352 
2353 	if (!unresolved)
2354 		len = len
2355 		      + nla_total_size(4)	/* RTA_IIF */
2356 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2357 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2358 						/* RTA_MFC_STATS */
2359 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2360 		;
2361 
2362 	return len;
2363 }
2364 
2365 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2366 				 int cmd)
2367 {
2368 	struct net *net = read_pnet(&mrt->net);
2369 	struct sk_buff *skb;
2370 	int err = -ENOBUFS;
2371 
2372 	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2373 				       mrt->maxvif),
2374 			GFP_ATOMIC);
2375 	if (!skb)
2376 		goto errout;
2377 
2378 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2379 	if (err < 0)
2380 		goto errout;
2381 
2382 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2383 	return;
2384 
2385 errout:
2386 	kfree_skb(skb);
2387 	if (err < 0)
2388 		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2389 }
2390 
2391 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2392 {
2393 	size_t len =
2394 		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2395 		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2396 		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2397 		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2398 		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2399 					/* IPMRA_CREPORT_PKT */
2400 		+ nla_total_size(payloadlen)
2401 		;
2402 
2403 	return len;
2404 }
2405 
2406 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2407 {
2408 	struct net *net = read_pnet(&mrt->net);
2409 	struct nlmsghdr *nlh;
2410 	struct rtgenmsg *rtgenm;
2411 	struct igmpmsg *msg;
2412 	struct sk_buff *skb;
2413 	struct nlattr *nla;
2414 	int payloadlen;
2415 
2416 	payloadlen = pkt->len - sizeof(struct igmpmsg);
2417 	msg = (struct igmpmsg *)skb_network_header(pkt);
2418 
2419 	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2420 	if (!skb)
2421 		goto errout;
2422 
2423 	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2424 			sizeof(struct rtgenmsg), 0);
2425 	if (!nlh)
2426 		goto errout;
2427 	rtgenm = nlmsg_data(nlh);
2428 	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2429 	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2430 	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
2431 	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2432 			    msg->im_src.s_addr) ||
2433 	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2434 			    msg->im_dst.s_addr))
2435 		goto nla_put_failure;
2436 
2437 	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2438 	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2439 				  nla_data(nla), payloadlen))
2440 		goto nla_put_failure;
2441 
2442 	nlmsg_end(skb, nlh);
2443 
2444 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2445 	return;
2446 
2447 nla_put_failure:
2448 	nlmsg_cancel(skb, nlh);
2449 errout:
2450 	kfree_skb(skb);
2451 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2452 }
2453 
2454 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2455 				       const struct nlmsghdr *nlh,
2456 				       struct nlattr **tb,
2457 				       struct netlink_ext_ack *extack)
2458 {
2459 	struct rtmsg *rtm;
2460 	int i, err;
2461 
2462 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2463 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2464 		return -EINVAL;
2465 	}
2466 
2467 	if (!netlink_strict_get_check(skb))
2468 		return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2469 					      rtm_ipv4_policy, extack);
2470 
2471 	rtm = nlmsg_data(nlh);
2472 	if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2473 	    (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2474 	    rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2475 	    rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2476 		NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2477 		return -EINVAL;
2478 	}
2479 
2480 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2481 					    rtm_ipv4_policy, extack);
2482 	if (err)
2483 		return err;
2484 
2485 	if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2486 	    (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2487 		NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2488 		return -EINVAL;
2489 	}
2490 
2491 	for (i = 0; i <= RTA_MAX; i++) {
2492 		if (!tb[i])
2493 			continue;
2494 
2495 		switch (i) {
2496 		case RTA_SRC:
2497 		case RTA_DST:
2498 		case RTA_TABLE:
2499 			break;
2500 		default:
2501 			NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2502 			return -EINVAL;
2503 		}
2504 	}
2505 
2506 	return 0;
2507 }
2508 
2509 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2510 			     struct netlink_ext_ack *extack)
2511 {
2512 	struct net *net = sock_net(in_skb->sk);
2513 	struct nlattr *tb[RTA_MAX + 1];
2514 	struct sk_buff *skb = NULL;
2515 	struct mfc_cache *cache;
2516 	struct mr_table *mrt;
2517 	__be32 src, grp;
2518 	u32 tableid;
2519 	int err;
2520 
2521 	err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2522 	if (err < 0)
2523 		goto errout;
2524 
2525 	src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2526 	grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2527 	tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2528 
2529 	mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2530 	if (!mrt) {
2531 		err = -ENOENT;
2532 		goto errout_free;
2533 	}
2534 
2535 	/* entries are added/deleted only under RTNL */
2536 	rcu_read_lock();
2537 	cache = ipmr_cache_find(mrt, src, grp);
2538 	rcu_read_unlock();
2539 	if (!cache) {
2540 		err = -ENOENT;
2541 		goto errout_free;
2542 	}
2543 
2544 	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2545 	if (!skb) {
2546 		err = -ENOBUFS;
2547 		goto errout_free;
2548 	}
2549 
2550 	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2551 			       nlh->nlmsg_seq, cache,
2552 			       RTM_NEWROUTE, 0);
2553 	if (err < 0)
2554 		goto errout_free;
2555 
2556 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2557 
2558 errout:
2559 	return err;
2560 
2561 errout_free:
2562 	kfree_skb(skb);
2563 	goto errout;
2564 }
2565 
2566 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2567 {
2568 	struct fib_dump_filter filter = {};
2569 	int err;
2570 
2571 	if (cb->strict_check) {
2572 		err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2573 					    &filter, cb);
2574 		if (err < 0)
2575 			return err;
2576 	}
2577 
2578 	if (filter.table_id) {
2579 		struct mr_table *mrt;
2580 
2581 		mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id);
2582 		if (!mrt) {
2583 			if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2584 				return skb->len;
2585 
2586 			NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2587 			return -ENOENT;
2588 		}
2589 		err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2590 				    &mfc_unres_lock, &filter);
2591 		return skb->len ? : err;
2592 	}
2593 
2594 	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2595 				_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2596 }
2597 
2598 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2599 	[RTA_SRC]	= { .type = NLA_U32 },
2600 	[RTA_DST]	= { .type = NLA_U32 },
2601 	[RTA_IIF]	= { .type = NLA_U32 },
2602 	[RTA_TABLE]	= { .type = NLA_U32 },
2603 	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2604 };
2605 
2606 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2607 {
2608 	switch (rtm_protocol) {
2609 	case RTPROT_STATIC:
2610 	case RTPROT_MROUTED:
2611 		return true;
2612 	}
2613 	return false;
2614 }
2615 
2616 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2617 {
2618 	struct rtnexthop *rtnh = nla_data(nla);
2619 	int remaining = nla_len(nla), vifi = 0;
2620 
2621 	while (rtnh_ok(rtnh, remaining)) {
2622 		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2623 		if (++vifi == MAXVIFS)
2624 			break;
2625 		rtnh = rtnh_next(rtnh, &remaining);
2626 	}
2627 
2628 	return remaining > 0 ? -EINVAL : vifi;
2629 }
2630 
2631 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2632 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2633 			    struct mfcctl *mfcc, int *mrtsock,
2634 			    struct mr_table **mrtret,
2635 			    struct netlink_ext_ack *extack)
2636 {
2637 	struct net_device *dev = NULL;
2638 	u32 tblid = RT_TABLE_DEFAULT;
2639 	struct mr_table *mrt;
2640 	struct nlattr *attr;
2641 	struct rtmsg *rtm;
2642 	int ret, rem;
2643 
2644 	ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2645 					rtm_ipmr_policy, extack);
2646 	if (ret < 0)
2647 		goto out;
2648 	rtm = nlmsg_data(nlh);
2649 
2650 	ret = -EINVAL;
2651 	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2652 	    rtm->rtm_type != RTN_MULTICAST ||
2653 	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2654 	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2655 		goto out;
2656 
2657 	memset(mfcc, 0, sizeof(*mfcc));
2658 	mfcc->mfcc_parent = -1;
2659 	ret = 0;
2660 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2661 		switch (nla_type(attr)) {
2662 		case RTA_SRC:
2663 			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2664 			break;
2665 		case RTA_DST:
2666 			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2667 			break;
2668 		case RTA_IIF:
2669 			dev = __dev_get_by_index(net, nla_get_u32(attr));
2670 			if (!dev) {
2671 				ret = -ENODEV;
2672 				goto out;
2673 			}
2674 			break;
2675 		case RTA_MULTIPATH:
2676 			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2677 				ret = -EINVAL;
2678 				goto out;
2679 			}
2680 			break;
2681 		case RTA_PREFSRC:
2682 			ret = 1;
2683 			break;
2684 		case RTA_TABLE:
2685 			tblid = nla_get_u32(attr);
2686 			break;
2687 		}
2688 	}
2689 	mrt = ipmr_get_table(net, tblid);
2690 	if (!mrt) {
2691 		ret = -ENOENT;
2692 		goto out;
2693 	}
2694 	*mrtret = mrt;
2695 	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2696 	if (dev)
2697 		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2698 
2699 out:
2700 	return ret;
2701 }
2702 
2703 /* takes care of both newroute and delroute */
2704 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2705 			  struct netlink_ext_ack *extack)
2706 {
2707 	struct net *net = sock_net(skb->sk);
2708 	int ret, mrtsock, parent;
2709 	struct mr_table *tbl;
2710 	struct mfcctl mfcc;
2711 
2712 	mrtsock = 0;
2713 	tbl = NULL;
2714 	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2715 	if (ret < 0)
2716 		return ret;
2717 
2718 	parent = ret ? mfcc.mfcc_parent : -1;
2719 	if (nlh->nlmsg_type == RTM_NEWROUTE)
2720 		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2721 	else
2722 		return ipmr_mfc_delete(tbl, &mfcc, parent);
2723 }
2724 
2725 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2726 {
2727 	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2728 
2729 	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2730 	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2731 	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2732 			mrt->mroute_reg_vif_num) ||
2733 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2734 		       mrt->mroute_do_assert) ||
2735 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2736 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2737 		       mrt->mroute_do_wrvifwhole))
2738 		return false;
2739 
2740 	return true;
2741 }
2742 
2743 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2744 {
2745 	struct nlattr *vif_nest;
2746 	struct vif_device *vif;
2747 
2748 	/* if the VIF doesn't exist just continue */
2749 	if (!VIF_EXISTS(mrt, vifid))
2750 		return true;
2751 
2752 	vif = &mrt->vif_table[vifid];
2753 	vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2754 	if (!vif_nest)
2755 		return false;
2756 	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2757 	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2758 	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2759 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2760 			      IPMRA_VIFA_PAD) ||
2761 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2762 			      IPMRA_VIFA_PAD) ||
2763 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2764 			      IPMRA_VIFA_PAD) ||
2765 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2766 			      IPMRA_VIFA_PAD) ||
2767 	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2768 	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2769 		nla_nest_cancel(skb, vif_nest);
2770 		return false;
2771 	}
2772 	nla_nest_end(skb, vif_nest);
2773 
2774 	return true;
2775 }
2776 
2777 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2778 			       struct netlink_ext_ack *extack)
2779 {
2780 	struct ifinfomsg *ifm;
2781 
2782 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2783 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2784 		return -EINVAL;
2785 	}
2786 
2787 	if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2788 		NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2789 		return -EINVAL;
2790 	}
2791 
2792 	ifm = nlmsg_data(nlh);
2793 	if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2794 	    ifm->ifi_change || ifm->ifi_index) {
2795 		NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2796 		return -EINVAL;
2797 	}
2798 
2799 	return 0;
2800 }
2801 
2802 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2803 {
2804 	struct net *net = sock_net(skb->sk);
2805 	struct nlmsghdr *nlh = NULL;
2806 	unsigned int t = 0, s_t;
2807 	unsigned int e = 0, s_e;
2808 	struct mr_table *mrt;
2809 
2810 	if (cb->strict_check) {
2811 		int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2812 
2813 		if (err < 0)
2814 			return err;
2815 	}
2816 
2817 	s_t = cb->args[0];
2818 	s_e = cb->args[1];
2819 
2820 	ipmr_for_each_table(mrt, net) {
2821 		struct nlattr *vifs, *af;
2822 		struct ifinfomsg *hdr;
2823 		u32 i;
2824 
2825 		if (t < s_t)
2826 			goto skip_table;
2827 		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2828 				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2829 				sizeof(*hdr), NLM_F_MULTI);
2830 		if (!nlh)
2831 			break;
2832 
2833 		hdr = nlmsg_data(nlh);
2834 		memset(hdr, 0, sizeof(*hdr));
2835 		hdr->ifi_family = RTNL_FAMILY_IPMR;
2836 
2837 		af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2838 		if (!af) {
2839 			nlmsg_cancel(skb, nlh);
2840 			goto out;
2841 		}
2842 
2843 		if (!ipmr_fill_table(mrt, skb)) {
2844 			nlmsg_cancel(skb, nlh);
2845 			goto out;
2846 		}
2847 
2848 		vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2849 		if (!vifs) {
2850 			nla_nest_end(skb, af);
2851 			nlmsg_end(skb, nlh);
2852 			goto out;
2853 		}
2854 		for (i = 0; i < mrt->maxvif; i++) {
2855 			if (e < s_e)
2856 				goto skip_entry;
2857 			if (!ipmr_fill_vif(mrt, i, skb)) {
2858 				nla_nest_end(skb, vifs);
2859 				nla_nest_end(skb, af);
2860 				nlmsg_end(skb, nlh);
2861 				goto out;
2862 			}
2863 skip_entry:
2864 			e++;
2865 		}
2866 		s_e = 0;
2867 		e = 0;
2868 		nla_nest_end(skb, vifs);
2869 		nla_nest_end(skb, af);
2870 		nlmsg_end(skb, nlh);
2871 skip_table:
2872 		t++;
2873 	}
2874 
2875 out:
2876 	cb->args[1] = e;
2877 	cb->args[0] = t;
2878 
2879 	return skb->len;
2880 }
2881 
2882 #ifdef CONFIG_PROC_FS
2883 /* The /proc interfaces to multicast routing :
2884  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2885  */
2886 
2887 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2888 	__acquires(mrt_lock)
2889 {
2890 	struct mr_vif_iter *iter = seq->private;
2891 	struct net *net = seq_file_net(seq);
2892 	struct mr_table *mrt;
2893 
2894 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2895 	if (!mrt)
2896 		return ERR_PTR(-ENOENT);
2897 
2898 	iter->mrt = mrt;
2899 
2900 	read_lock(&mrt_lock);
2901 	return mr_vif_seq_start(seq, pos);
2902 }
2903 
2904 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2905 	__releases(mrt_lock)
2906 {
2907 	read_unlock(&mrt_lock);
2908 }
2909 
2910 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2911 {
2912 	struct mr_vif_iter *iter = seq->private;
2913 	struct mr_table *mrt = iter->mrt;
2914 
2915 	if (v == SEQ_START_TOKEN) {
2916 		seq_puts(seq,
2917 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2918 	} else {
2919 		const struct vif_device *vif = v;
2920 		const char *name =  vif->dev ?
2921 				    vif->dev->name : "none";
2922 
2923 		seq_printf(seq,
2924 			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2925 			   vif - mrt->vif_table,
2926 			   name, vif->bytes_in, vif->pkt_in,
2927 			   vif->bytes_out, vif->pkt_out,
2928 			   vif->flags, vif->local, vif->remote);
2929 	}
2930 	return 0;
2931 }
2932 
2933 static const struct seq_operations ipmr_vif_seq_ops = {
2934 	.start = ipmr_vif_seq_start,
2935 	.next  = mr_vif_seq_next,
2936 	.stop  = ipmr_vif_seq_stop,
2937 	.show  = ipmr_vif_seq_show,
2938 };
2939 
2940 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2941 {
2942 	struct net *net = seq_file_net(seq);
2943 	struct mr_table *mrt;
2944 
2945 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2946 	if (!mrt)
2947 		return ERR_PTR(-ENOENT);
2948 
2949 	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2950 }
2951 
2952 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2953 {
2954 	int n;
2955 
2956 	if (v == SEQ_START_TOKEN) {
2957 		seq_puts(seq,
2958 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2959 	} else {
2960 		const struct mfc_cache *mfc = v;
2961 		const struct mr_mfc_iter *it = seq->private;
2962 		const struct mr_table *mrt = it->mrt;
2963 
2964 		seq_printf(seq, "%08X %08X %-3hd",
2965 			   (__force u32) mfc->mfc_mcastgrp,
2966 			   (__force u32) mfc->mfc_origin,
2967 			   mfc->_c.mfc_parent);
2968 
2969 		if (it->cache != &mrt->mfc_unres_queue) {
2970 			seq_printf(seq, " %8lu %8lu %8lu",
2971 				   mfc->_c.mfc_un.res.pkt,
2972 				   mfc->_c.mfc_un.res.bytes,
2973 				   mfc->_c.mfc_un.res.wrong_if);
2974 			for (n = mfc->_c.mfc_un.res.minvif;
2975 			     n < mfc->_c.mfc_un.res.maxvif; n++) {
2976 				if (VIF_EXISTS(mrt, n) &&
2977 				    mfc->_c.mfc_un.res.ttls[n] < 255)
2978 					seq_printf(seq,
2979 					   " %2d:%-3d",
2980 					   n, mfc->_c.mfc_un.res.ttls[n]);
2981 			}
2982 		} else {
2983 			/* unresolved mfc_caches don't contain
2984 			 * pkt, bytes and wrong_if values
2985 			 */
2986 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2987 		}
2988 		seq_putc(seq, '\n');
2989 	}
2990 	return 0;
2991 }
2992 
2993 static const struct seq_operations ipmr_mfc_seq_ops = {
2994 	.start = ipmr_mfc_seq_start,
2995 	.next  = mr_mfc_seq_next,
2996 	.stop  = mr_mfc_seq_stop,
2997 	.show  = ipmr_mfc_seq_show,
2998 };
2999 #endif
3000 
3001 #ifdef CONFIG_IP_PIMSM_V2
3002 static const struct net_protocol pim_protocol = {
3003 	.handler	=	pim_rcv,
3004 	.netns_ok	=	1,
3005 };
3006 #endif
3007 
3008 static unsigned int ipmr_seq_read(struct net *net)
3009 {
3010 	ASSERT_RTNL();
3011 
3012 	return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3013 }
3014 
3015 static int ipmr_dump(struct net *net, struct notifier_block *nb,
3016 		     struct netlink_ext_ack *extack)
3017 {
3018 	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3019 		       ipmr_mr_table_iter, &mrt_lock, extack);
3020 }
3021 
3022 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3023 	.family		= RTNL_FAMILY_IPMR,
3024 	.fib_seq_read	= ipmr_seq_read,
3025 	.fib_dump	= ipmr_dump,
3026 	.owner		= THIS_MODULE,
3027 };
3028 
3029 static int __net_init ipmr_notifier_init(struct net *net)
3030 {
3031 	struct fib_notifier_ops *ops;
3032 
3033 	net->ipv4.ipmr_seq = 0;
3034 
3035 	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3036 	if (IS_ERR(ops))
3037 		return PTR_ERR(ops);
3038 	net->ipv4.ipmr_notifier_ops = ops;
3039 
3040 	return 0;
3041 }
3042 
3043 static void __net_exit ipmr_notifier_exit(struct net *net)
3044 {
3045 	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3046 	net->ipv4.ipmr_notifier_ops = NULL;
3047 }
3048 
3049 /* Setup for IP multicast routing */
3050 static int __net_init ipmr_net_init(struct net *net)
3051 {
3052 	int err;
3053 
3054 	err = ipmr_notifier_init(net);
3055 	if (err)
3056 		goto ipmr_notifier_fail;
3057 
3058 	err = ipmr_rules_init(net);
3059 	if (err < 0)
3060 		goto ipmr_rules_fail;
3061 
3062 #ifdef CONFIG_PROC_FS
3063 	err = -ENOMEM;
3064 	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3065 			sizeof(struct mr_vif_iter)))
3066 		goto proc_vif_fail;
3067 	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3068 			sizeof(struct mr_mfc_iter)))
3069 		goto proc_cache_fail;
3070 #endif
3071 	return 0;
3072 
3073 #ifdef CONFIG_PROC_FS
3074 proc_cache_fail:
3075 	remove_proc_entry("ip_mr_vif", net->proc_net);
3076 proc_vif_fail:
3077 	ipmr_rules_exit(net);
3078 #endif
3079 ipmr_rules_fail:
3080 	ipmr_notifier_exit(net);
3081 ipmr_notifier_fail:
3082 	return err;
3083 }
3084 
3085 static void __net_exit ipmr_net_exit(struct net *net)
3086 {
3087 #ifdef CONFIG_PROC_FS
3088 	remove_proc_entry("ip_mr_cache", net->proc_net);
3089 	remove_proc_entry("ip_mr_vif", net->proc_net);
3090 #endif
3091 	ipmr_notifier_exit(net);
3092 	ipmr_rules_exit(net);
3093 }
3094 
3095 static struct pernet_operations ipmr_net_ops = {
3096 	.init = ipmr_net_init,
3097 	.exit = ipmr_net_exit,
3098 };
3099 
3100 int __init ip_mr_init(void)
3101 {
3102 	int err;
3103 
3104 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
3105 				       sizeof(struct mfc_cache),
3106 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3107 				       NULL);
3108 
3109 	err = register_pernet_subsys(&ipmr_net_ops);
3110 	if (err)
3111 		goto reg_pernet_fail;
3112 
3113 	err = register_netdevice_notifier(&ip_mr_notifier);
3114 	if (err)
3115 		goto reg_notif_fail;
3116 #ifdef CONFIG_IP_PIMSM_V2
3117 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3118 		pr_err("%s: can't add PIM protocol\n", __func__);
3119 		err = -EAGAIN;
3120 		goto add_proto_fail;
3121 	}
3122 #endif
3123 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3124 		      ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3125 	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3126 		      ipmr_rtm_route, NULL, 0);
3127 	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3128 		      ipmr_rtm_route, NULL, 0);
3129 
3130 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3131 		      NULL, ipmr_rtm_dumplink, 0);
3132 	return 0;
3133 
3134 #ifdef CONFIG_IP_PIMSM_V2
3135 add_proto_fail:
3136 	unregister_netdevice_notifier(&ip_mr_notifier);
3137 #endif
3138 reg_notif_fail:
3139 	unregister_pernet_subsys(&ipmr_net_ops);
3140 reg_pernet_fail:
3141 	kmem_cache_destroy(mrt_cachep);
3142 	return err;
3143 }
3144