xref: /openbmc/linux/net/ipv4/ipmr.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  *	IP multicast routing support for mrouted 3.6/3.8
3  *
4  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *	  Linux Consultancy and Custom Driver Development
6  *
7  *	This program is free software; you can redistribute it and/or
8  *	modify it under the terms of the GNU General Public License
9  *	as published by the Free Software Foundation; either version
10  *	2 of the License, or (at your option) any later version.
11  *
12  *	Fixes:
13  *	Michael Chastain	:	Incorrect size of copying.
14  *	Alan Cox		:	Added the cache manager code
15  *	Alan Cox		:	Fixed the clone/copy bug and device race.
16  *	Mike McLagan		:	Routing by source
17  *	Malcolm Beattie		:	Buffer handling fixes.
18  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
19  *	SVR Anand		:	Fixed several multicast bugs and problems.
20  *	Alexey Kuznetsov	:	Status, optimisations and more.
21  *	Brad Parker		:	Better behaviour on mrouted upcall
22  *					overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
25  *					Relax this requirement to work with older peers.
26  *
27  */
28 
29 #include <linux/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/cache.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/icmp.h>
56 #include <net/udp.h>
57 #include <net/raw.h>
58 #include <linux/notifier.h>
59 #include <linux/if_arp.h>
60 #include <linux/netfilter_ipv4.h>
61 #include <linux/compat.h>
62 #include <linux/export.h>
63 #include <net/ip_tunnels.h>
64 #include <net/checksum.h>
65 #include <net/netlink.h>
66 #include <net/fib_rules.h>
67 #include <linux/netconf.h>
68 #include <net/nexthop.h>
69 #include <net/switchdev.h>
70 
71 struct ipmr_rule {
72 	struct fib_rule		common;
73 };
74 
75 struct ipmr_result {
76 	struct mr_table		*mrt;
77 };
78 
79 /* Big lock, protecting vif table, mrt cache and mroute socket state.
80  * Note that the changes are semaphored via rtnl_lock.
81  */
82 
83 static DEFINE_RWLOCK(mrt_lock);
84 
85 /* Multicast router control variables */
86 
87 /* Special spinlock for queue of unresolved entries */
88 static DEFINE_SPINLOCK(mfc_unres_lock);
89 
90 /* We return to original Alan's scheme. Hash table of resolved
91  * entries is changed only in process context and protected
92  * with weak lock mrt_lock. Queue of unresolved entries is protected
93  * with strong spinlock mfc_unres_lock.
94  *
95  * In this case data path is free of exclusive locks at all.
96  */
97 
98 static struct kmem_cache *mrt_cachep __ro_after_init;
99 
100 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
101 static void ipmr_free_table(struct mr_table *mrt);
102 
103 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
104 			  struct net_device *dev, struct sk_buff *skb,
105 			  struct mfc_cache *cache, int local);
106 static int ipmr_cache_report(struct mr_table *mrt,
107 			     struct sk_buff *pkt, vifi_t vifi, int assert);
108 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
109 				 int cmd);
110 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
111 static void mroute_clean_tables(struct mr_table *mrt, bool all);
112 static void ipmr_expire_process(struct timer_list *t);
113 
114 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
115 #define ipmr_for_each_table(mrt, net) \
116 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
117 
118 static struct mr_table *ipmr_mr_table_iter(struct net *net,
119 					   struct mr_table *mrt)
120 {
121 	struct mr_table *ret;
122 
123 	if (!mrt)
124 		ret = list_entry_rcu(net->ipv4.mr_tables.next,
125 				     struct mr_table, list);
126 	else
127 		ret = list_entry_rcu(mrt->list.next,
128 				     struct mr_table, list);
129 
130 	if (&ret->list == &net->ipv4.mr_tables)
131 		return NULL;
132 	return ret;
133 }
134 
135 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
136 {
137 	struct mr_table *mrt;
138 
139 	ipmr_for_each_table(mrt, net) {
140 		if (mrt->id == id)
141 			return mrt;
142 	}
143 	return NULL;
144 }
145 
146 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
147 			   struct mr_table **mrt)
148 {
149 	int err;
150 	struct ipmr_result res;
151 	struct fib_lookup_arg arg = {
152 		.result = &res,
153 		.flags = FIB_LOOKUP_NOREF,
154 	};
155 
156 	/* update flow if oif or iif point to device enslaved to l3mdev */
157 	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
158 
159 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
160 			       flowi4_to_flowi(flp4), 0, &arg);
161 	if (err < 0)
162 		return err;
163 	*mrt = res.mrt;
164 	return 0;
165 }
166 
167 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
168 			    int flags, struct fib_lookup_arg *arg)
169 {
170 	struct ipmr_result *res = arg->result;
171 	struct mr_table *mrt;
172 
173 	switch (rule->action) {
174 	case FR_ACT_TO_TBL:
175 		break;
176 	case FR_ACT_UNREACHABLE:
177 		return -ENETUNREACH;
178 	case FR_ACT_PROHIBIT:
179 		return -EACCES;
180 	case FR_ACT_BLACKHOLE:
181 	default:
182 		return -EINVAL;
183 	}
184 
185 	arg->table = fib_rule_get_table(rule, arg);
186 
187 	mrt = ipmr_get_table(rule->fr_net, arg->table);
188 	if (!mrt)
189 		return -EAGAIN;
190 	res->mrt = mrt;
191 	return 0;
192 }
193 
194 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
195 {
196 	return 1;
197 }
198 
199 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
200 	FRA_GENERIC_POLICY,
201 };
202 
203 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
204 			       struct fib_rule_hdr *frh, struct nlattr **tb)
205 {
206 	return 0;
207 }
208 
209 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
210 			     struct nlattr **tb)
211 {
212 	return 1;
213 }
214 
215 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
216 			  struct fib_rule_hdr *frh)
217 {
218 	frh->dst_len = 0;
219 	frh->src_len = 0;
220 	frh->tos     = 0;
221 	return 0;
222 }
223 
224 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
225 	.family		= RTNL_FAMILY_IPMR,
226 	.rule_size	= sizeof(struct ipmr_rule),
227 	.addr_size	= sizeof(u32),
228 	.action		= ipmr_rule_action,
229 	.match		= ipmr_rule_match,
230 	.configure	= ipmr_rule_configure,
231 	.compare	= ipmr_rule_compare,
232 	.fill		= ipmr_rule_fill,
233 	.nlgroup	= RTNLGRP_IPV4_RULE,
234 	.policy		= ipmr_rule_policy,
235 	.owner		= THIS_MODULE,
236 };
237 
238 static int __net_init ipmr_rules_init(struct net *net)
239 {
240 	struct fib_rules_ops *ops;
241 	struct mr_table *mrt;
242 	int err;
243 
244 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
245 	if (IS_ERR(ops))
246 		return PTR_ERR(ops);
247 
248 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
249 
250 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
251 	if (IS_ERR(mrt)) {
252 		err = PTR_ERR(mrt);
253 		goto err1;
254 	}
255 
256 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
257 	if (err < 0)
258 		goto err2;
259 
260 	net->ipv4.mr_rules_ops = ops;
261 	return 0;
262 
263 err2:
264 	ipmr_free_table(mrt);
265 err1:
266 	fib_rules_unregister(ops);
267 	return err;
268 }
269 
270 static void __net_exit ipmr_rules_exit(struct net *net)
271 {
272 	struct mr_table *mrt, *next;
273 
274 	rtnl_lock();
275 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
276 		list_del(&mrt->list);
277 		ipmr_free_table(mrt);
278 	}
279 	fib_rules_unregister(net->ipv4.mr_rules_ops);
280 	rtnl_unlock();
281 }
282 
283 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
284 {
285 	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR);
286 }
287 
288 static unsigned int ipmr_rules_seq_read(struct net *net)
289 {
290 	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
291 }
292 
293 bool ipmr_rule_default(const struct fib_rule *rule)
294 {
295 	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
296 }
297 EXPORT_SYMBOL(ipmr_rule_default);
298 #else
299 #define ipmr_for_each_table(mrt, net) \
300 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
301 
302 static struct mr_table *ipmr_mr_table_iter(struct net *net,
303 					   struct mr_table *mrt)
304 {
305 	if (!mrt)
306 		return net->ipv4.mrt;
307 	return NULL;
308 }
309 
310 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
311 {
312 	return net->ipv4.mrt;
313 }
314 
315 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
316 			   struct mr_table **mrt)
317 {
318 	*mrt = net->ipv4.mrt;
319 	return 0;
320 }
321 
322 static int __net_init ipmr_rules_init(struct net *net)
323 {
324 	struct mr_table *mrt;
325 
326 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
327 	if (IS_ERR(mrt))
328 		return PTR_ERR(mrt);
329 	net->ipv4.mrt = mrt;
330 	return 0;
331 }
332 
333 static void __net_exit ipmr_rules_exit(struct net *net)
334 {
335 	rtnl_lock();
336 	ipmr_free_table(net->ipv4.mrt);
337 	net->ipv4.mrt = NULL;
338 	rtnl_unlock();
339 }
340 
341 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
342 {
343 	return 0;
344 }
345 
346 static unsigned int ipmr_rules_seq_read(struct net *net)
347 {
348 	return 0;
349 }
350 
351 bool ipmr_rule_default(const struct fib_rule *rule)
352 {
353 	return true;
354 }
355 EXPORT_SYMBOL(ipmr_rule_default);
356 #endif
357 
358 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
359 				const void *ptr)
360 {
361 	const struct mfc_cache_cmp_arg *cmparg = arg->key;
362 	struct mfc_cache *c = (struct mfc_cache *)ptr;
363 
364 	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
365 	       cmparg->mfc_origin != c->mfc_origin;
366 }
367 
368 static const struct rhashtable_params ipmr_rht_params = {
369 	.head_offset = offsetof(struct mr_mfc, mnode),
370 	.key_offset = offsetof(struct mfc_cache, cmparg),
371 	.key_len = sizeof(struct mfc_cache_cmp_arg),
372 	.nelem_hint = 3,
373 	.locks_mul = 1,
374 	.obj_cmpfn = ipmr_hash_cmp,
375 	.automatic_shrinking = true,
376 };
377 
378 static void ipmr_new_table_set(struct mr_table *mrt,
379 			       struct net *net)
380 {
381 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
382 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
383 #endif
384 }
385 
386 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
387 	.mfc_mcastgrp = htonl(INADDR_ANY),
388 	.mfc_origin = htonl(INADDR_ANY),
389 };
390 
391 static struct mr_table_ops ipmr_mr_table_ops = {
392 	.rht_params = &ipmr_rht_params,
393 	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
394 };
395 
396 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
397 {
398 	struct mr_table *mrt;
399 
400 	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
401 	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
402 		return ERR_PTR(-EINVAL);
403 
404 	mrt = ipmr_get_table(net, id);
405 	if (mrt)
406 		return mrt;
407 
408 	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
409 			      ipmr_expire_process, ipmr_new_table_set);
410 }
411 
412 static void ipmr_free_table(struct mr_table *mrt)
413 {
414 	del_timer_sync(&mrt->ipmr_expire_timer);
415 	mroute_clean_tables(mrt, true);
416 	rhltable_destroy(&mrt->mfc_hash);
417 	kfree(mrt);
418 }
419 
420 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
421 
422 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
423 {
424 	struct net *net = dev_net(dev);
425 
426 	dev_close(dev);
427 
428 	dev = __dev_get_by_name(net, "tunl0");
429 	if (dev) {
430 		const struct net_device_ops *ops = dev->netdev_ops;
431 		struct ifreq ifr;
432 		struct ip_tunnel_parm p;
433 
434 		memset(&p, 0, sizeof(p));
435 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
436 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
437 		p.iph.version = 4;
438 		p.iph.ihl = 5;
439 		p.iph.protocol = IPPROTO_IPIP;
440 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
441 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
442 
443 		if (ops->ndo_do_ioctl) {
444 			mm_segment_t oldfs = get_fs();
445 
446 			set_fs(KERNEL_DS);
447 			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
448 			set_fs(oldfs);
449 		}
450 	}
451 }
452 
453 /* Initialize ipmr pimreg/tunnel in_device */
454 static bool ipmr_init_vif_indev(const struct net_device *dev)
455 {
456 	struct in_device *in_dev;
457 
458 	ASSERT_RTNL();
459 
460 	in_dev = __in_dev_get_rtnl(dev);
461 	if (!in_dev)
462 		return false;
463 	ipv4_devconf_setall(in_dev);
464 	neigh_parms_data_state_setall(in_dev->arp_parms);
465 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
466 
467 	return true;
468 }
469 
470 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
471 {
472 	struct net_device  *dev;
473 
474 	dev = __dev_get_by_name(net, "tunl0");
475 
476 	if (dev) {
477 		const struct net_device_ops *ops = dev->netdev_ops;
478 		int err;
479 		struct ifreq ifr;
480 		struct ip_tunnel_parm p;
481 
482 		memset(&p, 0, sizeof(p));
483 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
484 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
485 		p.iph.version = 4;
486 		p.iph.ihl = 5;
487 		p.iph.protocol = IPPROTO_IPIP;
488 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
489 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
490 
491 		if (ops->ndo_do_ioctl) {
492 			mm_segment_t oldfs = get_fs();
493 
494 			set_fs(KERNEL_DS);
495 			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
496 			set_fs(oldfs);
497 		} else {
498 			err = -EOPNOTSUPP;
499 		}
500 		dev = NULL;
501 
502 		if (err == 0 &&
503 		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
504 			dev->flags |= IFF_MULTICAST;
505 			if (!ipmr_init_vif_indev(dev))
506 				goto failure;
507 			if (dev_open(dev))
508 				goto failure;
509 			dev_hold(dev);
510 		}
511 	}
512 	return dev;
513 
514 failure:
515 	unregister_netdevice(dev);
516 	return NULL;
517 }
518 
519 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
520 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
521 {
522 	struct net *net = dev_net(dev);
523 	struct mr_table *mrt;
524 	struct flowi4 fl4 = {
525 		.flowi4_oif	= dev->ifindex,
526 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
527 		.flowi4_mark	= skb->mark,
528 	};
529 	int err;
530 
531 	err = ipmr_fib_lookup(net, &fl4, &mrt);
532 	if (err < 0) {
533 		kfree_skb(skb);
534 		return err;
535 	}
536 
537 	read_lock(&mrt_lock);
538 	dev->stats.tx_bytes += skb->len;
539 	dev->stats.tx_packets++;
540 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
541 	read_unlock(&mrt_lock);
542 	kfree_skb(skb);
543 	return NETDEV_TX_OK;
544 }
545 
546 static int reg_vif_get_iflink(const struct net_device *dev)
547 {
548 	return 0;
549 }
550 
551 static const struct net_device_ops reg_vif_netdev_ops = {
552 	.ndo_start_xmit	= reg_vif_xmit,
553 	.ndo_get_iflink = reg_vif_get_iflink,
554 };
555 
556 static void reg_vif_setup(struct net_device *dev)
557 {
558 	dev->type		= ARPHRD_PIMREG;
559 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
560 	dev->flags		= IFF_NOARP;
561 	dev->netdev_ops		= &reg_vif_netdev_ops;
562 	dev->needs_free_netdev	= true;
563 	dev->features		|= NETIF_F_NETNS_LOCAL;
564 }
565 
566 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
567 {
568 	struct net_device *dev;
569 	char name[IFNAMSIZ];
570 
571 	if (mrt->id == RT_TABLE_DEFAULT)
572 		sprintf(name, "pimreg");
573 	else
574 		sprintf(name, "pimreg%u", mrt->id);
575 
576 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
577 
578 	if (!dev)
579 		return NULL;
580 
581 	dev_net_set(dev, net);
582 
583 	if (register_netdevice(dev)) {
584 		free_netdev(dev);
585 		return NULL;
586 	}
587 
588 	if (!ipmr_init_vif_indev(dev))
589 		goto failure;
590 	if (dev_open(dev))
591 		goto failure;
592 
593 	dev_hold(dev);
594 
595 	return dev;
596 
597 failure:
598 	unregister_netdevice(dev);
599 	return NULL;
600 }
601 
602 /* called with rcu_read_lock() */
603 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
604 		     unsigned int pimlen)
605 {
606 	struct net_device *reg_dev = NULL;
607 	struct iphdr *encap;
608 
609 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
610 	/* Check that:
611 	 * a. packet is really sent to a multicast group
612 	 * b. packet is not a NULL-REGISTER
613 	 * c. packet is not truncated
614 	 */
615 	if (!ipv4_is_multicast(encap->daddr) ||
616 	    encap->tot_len == 0 ||
617 	    ntohs(encap->tot_len) + pimlen > skb->len)
618 		return 1;
619 
620 	read_lock(&mrt_lock);
621 	if (mrt->mroute_reg_vif_num >= 0)
622 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
623 	read_unlock(&mrt_lock);
624 
625 	if (!reg_dev)
626 		return 1;
627 
628 	skb->mac_header = skb->network_header;
629 	skb_pull(skb, (u8 *)encap - skb->data);
630 	skb_reset_network_header(skb);
631 	skb->protocol = htons(ETH_P_IP);
632 	skb->ip_summed = CHECKSUM_NONE;
633 
634 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
635 
636 	netif_rx(skb);
637 
638 	return NET_RX_SUCCESS;
639 }
640 #else
641 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
642 {
643 	return NULL;
644 }
645 #endif
646 
647 static int call_ipmr_vif_entry_notifiers(struct net *net,
648 					 enum fib_event_type event_type,
649 					 struct vif_device *vif,
650 					 vifi_t vif_index, u32 tb_id)
651 {
652 	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
653 				     vif, vif_index, tb_id,
654 				     &net->ipv4.ipmr_seq);
655 }
656 
657 static int call_ipmr_mfc_entry_notifiers(struct net *net,
658 					 enum fib_event_type event_type,
659 					 struct mfc_cache *mfc, u32 tb_id)
660 {
661 	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
662 				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
663 }
664 
665 /**
666  *	vif_delete - Delete a VIF entry
667  *	@notify: Set to 1, if the caller is a notifier_call
668  */
669 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
670 		      struct list_head *head)
671 {
672 	struct net *net = read_pnet(&mrt->net);
673 	struct vif_device *v;
674 	struct net_device *dev;
675 	struct in_device *in_dev;
676 
677 	if (vifi < 0 || vifi >= mrt->maxvif)
678 		return -EADDRNOTAVAIL;
679 
680 	v = &mrt->vif_table[vifi];
681 
682 	if (VIF_EXISTS(mrt, vifi))
683 		call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
684 					      mrt->id);
685 
686 	write_lock_bh(&mrt_lock);
687 	dev = v->dev;
688 	v->dev = NULL;
689 
690 	if (!dev) {
691 		write_unlock_bh(&mrt_lock);
692 		return -EADDRNOTAVAIL;
693 	}
694 
695 	if (vifi == mrt->mroute_reg_vif_num)
696 		mrt->mroute_reg_vif_num = -1;
697 
698 	if (vifi + 1 == mrt->maxvif) {
699 		int tmp;
700 
701 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
702 			if (VIF_EXISTS(mrt, tmp))
703 				break;
704 		}
705 		mrt->maxvif = tmp+1;
706 	}
707 
708 	write_unlock_bh(&mrt_lock);
709 
710 	dev_set_allmulti(dev, -1);
711 
712 	in_dev = __in_dev_get_rtnl(dev);
713 	if (in_dev) {
714 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
715 		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
716 					    NETCONFA_MC_FORWARDING,
717 					    dev->ifindex, &in_dev->cnf);
718 		ip_rt_multicast_event(in_dev);
719 	}
720 
721 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
722 		unregister_netdevice_queue(dev, head);
723 
724 	dev_put(dev);
725 	return 0;
726 }
727 
728 static void ipmr_cache_free_rcu(struct rcu_head *head)
729 {
730 	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
731 
732 	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
733 }
734 
735 static void ipmr_cache_free(struct mfc_cache *c)
736 {
737 	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
738 }
739 
740 /* Destroy an unresolved cache entry, killing queued skbs
741  * and reporting error to netlink readers.
742  */
743 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
744 {
745 	struct net *net = read_pnet(&mrt->net);
746 	struct sk_buff *skb;
747 	struct nlmsgerr *e;
748 
749 	atomic_dec(&mrt->cache_resolve_queue_len);
750 
751 	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
752 		if (ip_hdr(skb)->version == 0) {
753 			struct nlmsghdr *nlh = skb_pull(skb,
754 							sizeof(struct iphdr));
755 			nlh->nlmsg_type = NLMSG_ERROR;
756 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
757 			skb_trim(skb, nlh->nlmsg_len);
758 			e = nlmsg_data(nlh);
759 			e->error = -ETIMEDOUT;
760 			memset(&e->msg, 0, sizeof(e->msg));
761 
762 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
763 		} else {
764 			kfree_skb(skb);
765 		}
766 	}
767 
768 	ipmr_cache_free(c);
769 }
770 
771 /* Timer process for the unresolved queue. */
772 static void ipmr_expire_process(struct timer_list *t)
773 {
774 	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
775 	struct mr_mfc *c, *next;
776 	unsigned long expires;
777 	unsigned long now;
778 
779 	if (!spin_trylock(&mfc_unres_lock)) {
780 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
781 		return;
782 	}
783 
784 	if (list_empty(&mrt->mfc_unres_queue))
785 		goto out;
786 
787 	now = jiffies;
788 	expires = 10*HZ;
789 
790 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
791 		if (time_after(c->mfc_un.unres.expires, now)) {
792 			unsigned long interval = c->mfc_un.unres.expires - now;
793 			if (interval < expires)
794 				expires = interval;
795 			continue;
796 		}
797 
798 		list_del(&c->list);
799 		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
800 		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
801 	}
802 
803 	if (!list_empty(&mrt->mfc_unres_queue))
804 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
805 
806 out:
807 	spin_unlock(&mfc_unres_lock);
808 }
809 
810 /* Fill oifs list. It is called under write locked mrt_lock. */
811 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
812 				   unsigned char *ttls)
813 {
814 	int vifi;
815 
816 	cache->mfc_un.res.minvif = MAXVIFS;
817 	cache->mfc_un.res.maxvif = 0;
818 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
819 
820 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
821 		if (VIF_EXISTS(mrt, vifi) &&
822 		    ttls[vifi] && ttls[vifi] < 255) {
823 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
824 			if (cache->mfc_un.res.minvif > vifi)
825 				cache->mfc_un.res.minvif = vifi;
826 			if (cache->mfc_un.res.maxvif <= vifi)
827 				cache->mfc_un.res.maxvif = vifi + 1;
828 		}
829 	}
830 	cache->mfc_un.res.lastuse = jiffies;
831 }
832 
833 static int vif_add(struct net *net, struct mr_table *mrt,
834 		   struct vifctl *vifc, int mrtsock)
835 {
836 	int vifi = vifc->vifc_vifi;
837 	struct switchdev_attr attr = {
838 		.id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
839 	};
840 	struct vif_device *v = &mrt->vif_table[vifi];
841 	struct net_device *dev;
842 	struct in_device *in_dev;
843 	int err;
844 
845 	/* Is vif busy ? */
846 	if (VIF_EXISTS(mrt, vifi))
847 		return -EADDRINUSE;
848 
849 	switch (vifc->vifc_flags) {
850 	case VIFF_REGISTER:
851 		if (!ipmr_pimsm_enabled())
852 			return -EINVAL;
853 		/* Special Purpose VIF in PIM
854 		 * All the packets will be sent to the daemon
855 		 */
856 		if (mrt->mroute_reg_vif_num >= 0)
857 			return -EADDRINUSE;
858 		dev = ipmr_reg_vif(net, mrt);
859 		if (!dev)
860 			return -ENOBUFS;
861 		err = dev_set_allmulti(dev, 1);
862 		if (err) {
863 			unregister_netdevice(dev);
864 			dev_put(dev);
865 			return err;
866 		}
867 		break;
868 	case VIFF_TUNNEL:
869 		dev = ipmr_new_tunnel(net, vifc);
870 		if (!dev)
871 			return -ENOBUFS;
872 		err = dev_set_allmulti(dev, 1);
873 		if (err) {
874 			ipmr_del_tunnel(dev, vifc);
875 			dev_put(dev);
876 			return err;
877 		}
878 		break;
879 	case VIFF_USE_IFINDEX:
880 	case 0:
881 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
882 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
883 			if (dev && !__in_dev_get_rtnl(dev)) {
884 				dev_put(dev);
885 				return -EADDRNOTAVAIL;
886 			}
887 		} else {
888 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
889 		}
890 		if (!dev)
891 			return -EADDRNOTAVAIL;
892 		err = dev_set_allmulti(dev, 1);
893 		if (err) {
894 			dev_put(dev);
895 			return err;
896 		}
897 		break;
898 	default:
899 		return -EINVAL;
900 	}
901 
902 	in_dev = __in_dev_get_rtnl(dev);
903 	if (!in_dev) {
904 		dev_put(dev);
905 		return -EADDRNOTAVAIL;
906 	}
907 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
908 	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
909 				    dev->ifindex, &in_dev->cnf);
910 	ip_rt_multicast_event(in_dev);
911 
912 	/* Fill in the VIF structures */
913 	vif_device_init(v, dev, vifc->vifc_rate_limit,
914 			vifc->vifc_threshold,
915 			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
916 			(VIFF_TUNNEL | VIFF_REGISTER));
917 
918 	attr.orig_dev = dev;
919 	if (!switchdev_port_attr_get(dev, &attr)) {
920 		memcpy(v->dev_parent_id.id, attr.u.ppid.id, attr.u.ppid.id_len);
921 		v->dev_parent_id.id_len = attr.u.ppid.id_len;
922 	} else {
923 		v->dev_parent_id.id_len = 0;
924 	}
925 
926 	v->local = vifc->vifc_lcl_addr.s_addr;
927 	v->remote = vifc->vifc_rmt_addr.s_addr;
928 
929 	/* And finish update writing critical data */
930 	write_lock_bh(&mrt_lock);
931 	v->dev = dev;
932 	if (v->flags & VIFF_REGISTER)
933 		mrt->mroute_reg_vif_num = vifi;
934 	if (vifi+1 > mrt->maxvif)
935 		mrt->maxvif = vifi+1;
936 	write_unlock_bh(&mrt_lock);
937 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
938 	return 0;
939 }
940 
941 /* called with rcu_read_lock() */
942 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
943 					 __be32 origin,
944 					 __be32 mcastgrp)
945 {
946 	struct mfc_cache_cmp_arg arg = {
947 			.mfc_mcastgrp = mcastgrp,
948 			.mfc_origin = origin
949 	};
950 
951 	return mr_mfc_find(mrt, &arg);
952 }
953 
954 /* Look for a (*,G) entry */
955 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
956 					     __be32 mcastgrp, int vifi)
957 {
958 	struct mfc_cache_cmp_arg arg = {
959 			.mfc_mcastgrp = mcastgrp,
960 			.mfc_origin = htonl(INADDR_ANY)
961 	};
962 
963 	if (mcastgrp == htonl(INADDR_ANY))
964 		return mr_mfc_find_any_parent(mrt, vifi);
965 	return mr_mfc_find_any(mrt, vifi, &arg);
966 }
967 
968 /* Look for a (S,G,iif) entry if parent != -1 */
969 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
970 						__be32 origin, __be32 mcastgrp,
971 						int parent)
972 {
973 	struct mfc_cache_cmp_arg arg = {
974 			.mfc_mcastgrp = mcastgrp,
975 			.mfc_origin = origin,
976 	};
977 
978 	return mr_mfc_find_parent(mrt, &arg, parent);
979 }
980 
981 /* Allocate a multicast cache entry */
982 static struct mfc_cache *ipmr_cache_alloc(void)
983 {
984 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
985 
986 	if (c) {
987 		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
988 		c->_c.mfc_un.res.minvif = MAXVIFS;
989 		c->_c.free = ipmr_cache_free_rcu;
990 		refcount_set(&c->_c.mfc_un.res.refcount, 1);
991 	}
992 	return c;
993 }
994 
995 static struct mfc_cache *ipmr_cache_alloc_unres(void)
996 {
997 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
998 
999 	if (c) {
1000 		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
1001 		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
1002 	}
1003 	return c;
1004 }
1005 
1006 /* A cache entry has gone into a resolved state from queued */
1007 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
1008 			       struct mfc_cache *uc, struct mfc_cache *c)
1009 {
1010 	struct sk_buff *skb;
1011 	struct nlmsgerr *e;
1012 
1013 	/* Play the pending entries through our router */
1014 	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1015 		if (ip_hdr(skb)->version == 0) {
1016 			struct nlmsghdr *nlh = skb_pull(skb,
1017 							sizeof(struct iphdr));
1018 
1019 			if (mr_fill_mroute(mrt, skb, &c->_c,
1020 					   nlmsg_data(nlh)) > 0) {
1021 				nlh->nlmsg_len = skb_tail_pointer(skb) -
1022 						 (u8 *)nlh;
1023 			} else {
1024 				nlh->nlmsg_type = NLMSG_ERROR;
1025 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1026 				skb_trim(skb, nlh->nlmsg_len);
1027 				e = nlmsg_data(nlh);
1028 				e->error = -EMSGSIZE;
1029 				memset(&e->msg, 0, sizeof(e->msg));
1030 			}
1031 
1032 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1033 		} else {
1034 			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1035 		}
1036 	}
1037 }
1038 
1039 /* Bounce a cache query up to mrouted and netlink.
1040  *
1041  * Called under mrt_lock.
1042  */
1043 static int ipmr_cache_report(struct mr_table *mrt,
1044 			     struct sk_buff *pkt, vifi_t vifi, int assert)
1045 {
1046 	const int ihl = ip_hdrlen(pkt);
1047 	struct sock *mroute_sk;
1048 	struct igmphdr *igmp;
1049 	struct igmpmsg *msg;
1050 	struct sk_buff *skb;
1051 	int ret;
1052 
1053 	if (assert == IGMPMSG_WHOLEPKT)
1054 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1055 	else
1056 		skb = alloc_skb(128, GFP_ATOMIC);
1057 
1058 	if (!skb)
1059 		return -ENOBUFS;
1060 
1061 	if (assert == IGMPMSG_WHOLEPKT) {
1062 		/* Ugly, but we have no choice with this interface.
1063 		 * Duplicate old header, fix ihl, length etc.
1064 		 * And all this only to mangle msg->im_msgtype and
1065 		 * to set msg->im_mbz to "mbz" :-)
1066 		 */
1067 		skb_push(skb, sizeof(struct iphdr));
1068 		skb_reset_network_header(skb);
1069 		skb_reset_transport_header(skb);
1070 		msg = (struct igmpmsg *)skb_network_header(skb);
1071 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1072 		msg->im_msgtype = IGMPMSG_WHOLEPKT;
1073 		msg->im_mbz = 0;
1074 		msg->im_vif = mrt->mroute_reg_vif_num;
1075 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1076 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1077 					     sizeof(struct iphdr));
1078 	} else {
1079 		/* Copy the IP header */
1080 		skb_set_network_header(skb, skb->len);
1081 		skb_put(skb, ihl);
1082 		skb_copy_to_linear_data(skb, pkt->data, ihl);
1083 		/* Flag to the kernel this is a route add */
1084 		ip_hdr(skb)->protocol = 0;
1085 		msg = (struct igmpmsg *)skb_network_header(skb);
1086 		msg->im_vif = vifi;
1087 		skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1088 		/* Add our header */
1089 		igmp = skb_put(skb, sizeof(struct igmphdr));
1090 		igmp->type = assert;
1091 		msg->im_msgtype = assert;
1092 		igmp->code = 0;
1093 		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1094 		skb->transport_header = skb->network_header;
1095 	}
1096 
1097 	rcu_read_lock();
1098 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1099 	if (!mroute_sk) {
1100 		rcu_read_unlock();
1101 		kfree_skb(skb);
1102 		return -EINVAL;
1103 	}
1104 
1105 	igmpmsg_netlink_event(mrt, skb);
1106 
1107 	/* Deliver to mrouted */
1108 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1109 	rcu_read_unlock();
1110 	if (ret < 0) {
1111 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1112 		kfree_skb(skb);
1113 	}
1114 
1115 	return ret;
1116 }
1117 
1118 /* Queue a packet for resolution. It gets locked cache entry! */
1119 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1120 				 struct sk_buff *skb, struct net_device *dev)
1121 {
1122 	const struct iphdr *iph = ip_hdr(skb);
1123 	struct mfc_cache *c;
1124 	bool found = false;
1125 	int err;
1126 
1127 	spin_lock_bh(&mfc_unres_lock);
1128 	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1129 		if (c->mfc_mcastgrp == iph->daddr &&
1130 		    c->mfc_origin == iph->saddr) {
1131 			found = true;
1132 			break;
1133 		}
1134 	}
1135 
1136 	if (!found) {
1137 		/* Create a new entry if allowable */
1138 		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1139 		    (c = ipmr_cache_alloc_unres()) == NULL) {
1140 			spin_unlock_bh(&mfc_unres_lock);
1141 
1142 			kfree_skb(skb);
1143 			return -ENOBUFS;
1144 		}
1145 
1146 		/* Fill in the new cache entry */
1147 		c->_c.mfc_parent = -1;
1148 		c->mfc_origin	= iph->saddr;
1149 		c->mfc_mcastgrp	= iph->daddr;
1150 
1151 		/* Reflect first query at mrouted. */
1152 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1153 
1154 		if (err < 0) {
1155 			/* If the report failed throw the cache entry
1156 			   out - Brad Parker
1157 			 */
1158 			spin_unlock_bh(&mfc_unres_lock);
1159 
1160 			ipmr_cache_free(c);
1161 			kfree_skb(skb);
1162 			return err;
1163 		}
1164 
1165 		atomic_inc(&mrt->cache_resolve_queue_len);
1166 		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1167 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1168 
1169 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1170 			mod_timer(&mrt->ipmr_expire_timer,
1171 				  c->_c.mfc_un.unres.expires);
1172 	}
1173 
1174 	/* See if we can append the packet */
1175 	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1176 		kfree_skb(skb);
1177 		err = -ENOBUFS;
1178 	} else {
1179 		if (dev) {
1180 			skb->dev = dev;
1181 			skb->skb_iif = dev->ifindex;
1182 		}
1183 		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1184 		err = 0;
1185 	}
1186 
1187 	spin_unlock_bh(&mfc_unres_lock);
1188 	return err;
1189 }
1190 
1191 /* MFC cache manipulation by user space mroute daemon */
1192 
1193 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1194 {
1195 	struct net *net = read_pnet(&mrt->net);
1196 	struct mfc_cache *c;
1197 
1198 	/* The entries are added/deleted only under RTNL */
1199 	rcu_read_lock();
1200 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1201 				   mfc->mfcc_mcastgrp.s_addr, parent);
1202 	rcu_read_unlock();
1203 	if (!c)
1204 		return -ENOENT;
1205 	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1206 	list_del_rcu(&c->_c.list);
1207 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1208 	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1209 	mr_cache_put(&c->_c);
1210 
1211 	return 0;
1212 }
1213 
1214 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1215 			struct mfcctl *mfc, int mrtsock, int parent)
1216 {
1217 	struct mfc_cache *uc, *c;
1218 	struct mr_mfc *_uc;
1219 	bool found;
1220 	int ret;
1221 
1222 	if (mfc->mfcc_parent >= MAXVIFS)
1223 		return -ENFILE;
1224 
1225 	/* The entries are added/deleted only under RTNL */
1226 	rcu_read_lock();
1227 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1228 				   mfc->mfcc_mcastgrp.s_addr, parent);
1229 	rcu_read_unlock();
1230 	if (c) {
1231 		write_lock_bh(&mrt_lock);
1232 		c->_c.mfc_parent = mfc->mfcc_parent;
1233 		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1234 		if (!mrtsock)
1235 			c->_c.mfc_flags |= MFC_STATIC;
1236 		write_unlock_bh(&mrt_lock);
1237 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1238 					      mrt->id);
1239 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1240 		return 0;
1241 	}
1242 
1243 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1244 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1245 		return -EINVAL;
1246 
1247 	c = ipmr_cache_alloc();
1248 	if (!c)
1249 		return -ENOMEM;
1250 
1251 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1252 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1253 	c->_c.mfc_parent = mfc->mfcc_parent;
1254 	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1255 	if (!mrtsock)
1256 		c->_c.mfc_flags |= MFC_STATIC;
1257 
1258 	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1259 				  ipmr_rht_params);
1260 	if (ret) {
1261 		pr_err("ipmr: rhtable insert error %d\n", ret);
1262 		ipmr_cache_free(c);
1263 		return ret;
1264 	}
1265 	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1266 	/* Check to see if we resolved a queued list. If so we
1267 	 * need to send on the frames and tidy up.
1268 	 */
1269 	found = false;
1270 	spin_lock_bh(&mfc_unres_lock);
1271 	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1272 		uc = (struct mfc_cache *)_uc;
1273 		if (uc->mfc_origin == c->mfc_origin &&
1274 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1275 			list_del(&_uc->list);
1276 			atomic_dec(&mrt->cache_resolve_queue_len);
1277 			found = true;
1278 			break;
1279 		}
1280 	}
1281 	if (list_empty(&mrt->mfc_unres_queue))
1282 		del_timer(&mrt->ipmr_expire_timer);
1283 	spin_unlock_bh(&mfc_unres_lock);
1284 
1285 	if (found) {
1286 		ipmr_cache_resolve(net, mrt, uc, c);
1287 		ipmr_cache_free(uc);
1288 	}
1289 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1290 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1291 	return 0;
1292 }
1293 
1294 /* Close the multicast socket, and clear the vif tables etc */
1295 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1296 {
1297 	struct net *net = read_pnet(&mrt->net);
1298 	struct mr_mfc *c, *tmp;
1299 	struct mfc_cache *cache;
1300 	LIST_HEAD(list);
1301 	int i;
1302 
1303 	/* Shut down all active vif entries */
1304 	for (i = 0; i < mrt->maxvif; i++) {
1305 		if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1306 			continue;
1307 		vif_delete(mrt, i, 0, &list);
1308 	}
1309 	unregister_netdevice_many(&list);
1310 
1311 	/* Wipe the cache */
1312 	list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1313 		if (!all && (c->mfc_flags & MFC_STATIC))
1314 			continue;
1315 		rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1316 		list_del_rcu(&c->list);
1317 		cache = (struct mfc_cache *)c;
1318 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1319 					      mrt->id);
1320 		mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1321 		mr_cache_put(c);
1322 	}
1323 
1324 	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1325 		spin_lock_bh(&mfc_unres_lock);
1326 		list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1327 			list_del(&c->list);
1328 			cache = (struct mfc_cache *)c;
1329 			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1330 			ipmr_destroy_unres(mrt, cache);
1331 		}
1332 		spin_unlock_bh(&mfc_unres_lock);
1333 	}
1334 }
1335 
1336 /* called from ip_ra_control(), before an RCU grace period,
1337  * we dont need to call synchronize_rcu() here
1338  */
1339 static void mrtsock_destruct(struct sock *sk)
1340 {
1341 	struct net *net = sock_net(sk);
1342 	struct mr_table *mrt;
1343 
1344 	rtnl_lock();
1345 	ipmr_for_each_table(mrt, net) {
1346 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1347 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1348 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1349 						    NETCONFA_MC_FORWARDING,
1350 						    NETCONFA_IFINDEX_ALL,
1351 						    net->ipv4.devconf_all);
1352 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1353 			mroute_clean_tables(mrt, false);
1354 		}
1355 	}
1356 	rtnl_unlock();
1357 }
1358 
1359 /* Socket options and virtual interface manipulation. The whole
1360  * virtual interface system is a complete heap, but unfortunately
1361  * that's how BSD mrouted happens to think. Maybe one day with a proper
1362  * MOSPF/PIM router set up we can clean this up.
1363  */
1364 
1365 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1366 			 unsigned int optlen)
1367 {
1368 	struct net *net = sock_net(sk);
1369 	int val, ret = 0, parent = 0;
1370 	struct mr_table *mrt;
1371 	struct vifctl vif;
1372 	struct mfcctl mfc;
1373 	u32 uval;
1374 
1375 	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1376 	rtnl_lock();
1377 	if (sk->sk_type != SOCK_RAW ||
1378 	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1379 		ret = -EOPNOTSUPP;
1380 		goto out_unlock;
1381 	}
1382 
1383 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1384 	if (!mrt) {
1385 		ret = -ENOENT;
1386 		goto out_unlock;
1387 	}
1388 	if (optname != MRT_INIT) {
1389 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1390 		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1391 			ret = -EACCES;
1392 			goto out_unlock;
1393 		}
1394 	}
1395 
1396 	switch (optname) {
1397 	case MRT_INIT:
1398 		if (optlen != sizeof(int)) {
1399 			ret = -EINVAL;
1400 			break;
1401 		}
1402 		if (rtnl_dereference(mrt->mroute_sk)) {
1403 			ret = -EADDRINUSE;
1404 			break;
1405 		}
1406 
1407 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1408 		if (ret == 0) {
1409 			rcu_assign_pointer(mrt->mroute_sk, sk);
1410 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1411 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1412 						    NETCONFA_MC_FORWARDING,
1413 						    NETCONFA_IFINDEX_ALL,
1414 						    net->ipv4.devconf_all);
1415 		}
1416 		break;
1417 	case MRT_DONE:
1418 		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1419 			ret = -EACCES;
1420 		} else {
1421 			/* We need to unlock here because mrtsock_destruct takes
1422 			 * care of rtnl itself and we can't change that due to
1423 			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1424 			 */
1425 			rtnl_unlock();
1426 			ret = ip_ra_control(sk, 0, NULL);
1427 			goto out;
1428 		}
1429 		break;
1430 	case MRT_ADD_VIF:
1431 	case MRT_DEL_VIF:
1432 		if (optlen != sizeof(vif)) {
1433 			ret = -EINVAL;
1434 			break;
1435 		}
1436 		if (copy_from_user(&vif, optval, sizeof(vif))) {
1437 			ret = -EFAULT;
1438 			break;
1439 		}
1440 		if (vif.vifc_vifi >= MAXVIFS) {
1441 			ret = -ENFILE;
1442 			break;
1443 		}
1444 		if (optname == MRT_ADD_VIF) {
1445 			ret = vif_add(net, mrt, &vif,
1446 				      sk == rtnl_dereference(mrt->mroute_sk));
1447 		} else {
1448 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1449 		}
1450 		break;
1451 	/* Manipulate the forwarding caches. These live
1452 	 * in a sort of kernel/user symbiosis.
1453 	 */
1454 	case MRT_ADD_MFC:
1455 	case MRT_DEL_MFC:
1456 		parent = -1;
1457 		/* fall through */
1458 	case MRT_ADD_MFC_PROXY:
1459 	case MRT_DEL_MFC_PROXY:
1460 		if (optlen != sizeof(mfc)) {
1461 			ret = -EINVAL;
1462 			break;
1463 		}
1464 		if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1465 			ret = -EFAULT;
1466 			break;
1467 		}
1468 		if (parent == 0)
1469 			parent = mfc.mfcc_parent;
1470 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1471 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1472 		else
1473 			ret = ipmr_mfc_add(net, mrt, &mfc,
1474 					   sk == rtnl_dereference(mrt->mroute_sk),
1475 					   parent);
1476 		break;
1477 	/* Control PIM assert. */
1478 	case MRT_ASSERT:
1479 		if (optlen != sizeof(val)) {
1480 			ret = -EINVAL;
1481 			break;
1482 		}
1483 		if (get_user(val, (int __user *)optval)) {
1484 			ret = -EFAULT;
1485 			break;
1486 		}
1487 		mrt->mroute_do_assert = val;
1488 		break;
1489 	case MRT_PIM:
1490 		if (!ipmr_pimsm_enabled()) {
1491 			ret = -ENOPROTOOPT;
1492 			break;
1493 		}
1494 		if (optlen != sizeof(val)) {
1495 			ret = -EINVAL;
1496 			break;
1497 		}
1498 		if (get_user(val, (int __user *)optval)) {
1499 			ret = -EFAULT;
1500 			break;
1501 		}
1502 
1503 		val = !!val;
1504 		if (val != mrt->mroute_do_pim) {
1505 			mrt->mroute_do_pim = val;
1506 			mrt->mroute_do_assert = val;
1507 		}
1508 		break;
1509 	case MRT_TABLE:
1510 		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1511 			ret = -ENOPROTOOPT;
1512 			break;
1513 		}
1514 		if (optlen != sizeof(uval)) {
1515 			ret = -EINVAL;
1516 			break;
1517 		}
1518 		if (get_user(uval, (u32 __user *)optval)) {
1519 			ret = -EFAULT;
1520 			break;
1521 		}
1522 
1523 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1524 			ret = -EBUSY;
1525 		} else {
1526 			mrt = ipmr_new_table(net, uval);
1527 			if (IS_ERR(mrt))
1528 				ret = PTR_ERR(mrt);
1529 			else
1530 				raw_sk(sk)->ipmr_table = uval;
1531 		}
1532 		break;
1533 	/* Spurious command, or MRT_VERSION which you cannot set. */
1534 	default:
1535 		ret = -ENOPROTOOPT;
1536 	}
1537 out_unlock:
1538 	rtnl_unlock();
1539 out:
1540 	return ret;
1541 }
1542 
1543 /* Getsock opt support for the multicast routing system. */
1544 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1545 {
1546 	int olr;
1547 	int val;
1548 	struct net *net = sock_net(sk);
1549 	struct mr_table *mrt;
1550 
1551 	if (sk->sk_type != SOCK_RAW ||
1552 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1553 		return -EOPNOTSUPP;
1554 
1555 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1556 	if (!mrt)
1557 		return -ENOENT;
1558 
1559 	switch (optname) {
1560 	case MRT_VERSION:
1561 		val = 0x0305;
1562 		break;
1563 	case MRT_PIM:
1564 		if (!ipmr_pimsm_enabled())
1565 			return -ENOPROTOOPT;
1566 		val = mrt->mroute_do_pim;
1567 		break;
1568 	case MRT_ASSERT:
1569 		val = mrt->mroute_do_assert;
1570 		break;
1571 	default:
1572 		return -ENOPROTOOPT;
1573 	}
1574 
1575 	if (get_user(olr, optlen))
1576 		return -EFAULT;
1577 	olr = min_t(unsigned int, olr, sizeof(int));
1578 	if (olr < 0)
1579 		return -EINVAL;
1580 	if (put_user(olr, optlen))
1581 		return -EFAULT;
1582 	if (copy_to_user(optval, &val, olr))
1583 		return -EFAULT;
1584 	return 0;
1585 }
1586 
1587 /* The IP multicast ioctl support routines. */
1588 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1589 {
1590 	struct sioc_sg_req sr;
1591 	struct sioc_vif_req vr;
1592 	struct vif_device *vif;
1593 	struct mfc_cache *c;
1594 	struct net *net = sock_net(sk);
1595 	struct mr_table *mrt;
1596 
1597 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1598 	if (!mrt)
1599 		return -ENOENT;
1600 
1601 	switch (cmd) {
1602 	case SIOCGETVIFCNT:
1603 		if (copy_from_user(&vr, arg, sizeof(vr)))
1604 			return -EFAULT;
1605 		if (vr.vifi >= mrt->maxvif)
1606 			return -EINVAL;
1607 		read_lock(&mrt_lock);
1608 		vif = &mrt->vif_table[vr.vifi];
1609 		if (VIF_EXISTS(mrt, vr.vifi)) {
1610 			vr.icount = vif->pkt_in;
1611 			vr.ocount = vif->pkt_out;
1612 			vr.ibytes = vif->bytes_in;
1613 			vr.obytes = vif->bytes_out;
1614 			read_unlock(&mrt_lock);
1615 
1616 			if (copy_to_user(arg, &vr, sizeof(vr)))
1617 				return -EFAULT;
1618 			return 0;
1619 		}
1620 		read_unlock(&mrt_lock);
1621 		return -EADDRNOTAVAIL;
1622 	case SIOCGETSGCNT:
1623 		if (copy_from_user(&sr, arg, sizeof(sr)))
1624 			return -EFAULT;
1625 
1626 		rcu_read_lock();
1627 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1628 		if (c) {
1629 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1630 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1631 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1632 			rcu_read_unlock();
1633 
1634 			if (copy_to_user(arg, &sr, sizeof(sr)))
1635 				return -EFAULT;
1636 			return 0;
1637 		}
1638 		rcu_read_unlock();
1639 		return -EADDRNOTAVAIL;
1640 	default:
1641 		return -ENOIOCTLCMD;
1642 	}
1643 }
1644 
1645 #ifdef CONFIG_COMPAT
1646 struct compat_sioc_sg_req {
1647 	struct in_addr src;
1648 	struct in_addr grp;
1649 	compat_ulong_t pktcnt;
1650 	compat_ulong_t bytecnt;
1651 	compat_ulong_t wrong_if;
1652 };
1653 
1654 struct compat_sioc_vif_req {
1655 	vifi_t	vifi;		/* Which iface */
1656 	compat_ulong_t icount;
1657 	compat_ulong_t ocount;
1658 	compat_ulong_t ibytes;
1659 	compat_ulong_t obytes;
1660 };
1661 
1662 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1663 {
1664 	struct compat_sioc_sg_req sr;
1665 	struct compat_sioc_vif_req vr;
1666 	struct vif_device *vif;
1667 	struct mfc_cache *c;
1668 	struct net *net = sock_net(sk);
1669 	struct mr_table *mrt;
1670 
1671 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1672 	if (!mrt)
1673 		return -ENOENT;
1674 
1675 	switch (cmd) {
1676 	case SIOCGETVIFCNT:
1677 		if (copy_from_user(&vr, arg, sizeof(vr)))
1678 			return -EFAULT;
1679 		if (vr.vifi >= mrt->maxvif)
1680 			return -EINVAL;
1681 		read_lock(&mrt_lock);
1682 		vif = &mrt->vif_table[vr.vifi];
1683 		if (VIF_EXISTS(mrt, vr.vifi)) {
1684 			vr.icount = vif->pkt_in;
1685 			vr.ocount = vif->pkt_out;
1686 			vr.ibytes = vif->bytes_in;
1687 			vr.obytes = vif->bytes_out;
1688 			read_unlock(&mrt_lock);
1689 
1690 			if (copy_to_user(arg, &vr, sizeof(vr)))
1691 				return -EFAULT;
1692 			return 0;
1693 		}
1694 		read_unlock(&mrt_lock);
1695 		return -EADDRNOTAVAIL;
1696 	case SIOCGETSGCNT:
1697 		if (copy_from_user(&sr, arg, sizeof(sr)))
1698 			return -EFAULT;
1699 
1700 		rcu_read_lock();
1701 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1702 		if (c) {
1703 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1704 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1705 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1706 			rcu_read_unlock();
1707 
1708 			if (copy_to_user(arg, &sr, sizeof(sr)))
1709 				return -EFAULT;
1710 			return 0;
1711 		}
1712 		rcu_read_unlock();
1713 		return -EADDRNOTAVAIL;
1714 	default:
1715 		return -ENOIOCTLCMD;
1716 	}
1717 }
1718 #endif
1719 
1720 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1721 {
1722 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1723 	struct net *net = dev_net(dev);
1724 	struct mr_table *mrt;
1725 	struct vif_device *v;
1726 	int ct;
1727 
1728 	if (event != NETDEV_UNREGISTER)
1729 		return NOTIFY_DONE;
1730 
1731 	ipmr_for_each_table(mrt, net) {
1732 		v = &mrt->vif_table[0];
1733 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1734 			if (v->dev == dev)
1735 				vif_delete(mrt, ct, 1, NULL);
1736 		}
1737 	}
1738 	return NOTIFY_DONE;
1739 }
1740 
1741 static struct notifier_block ip_mr_notifier = {
1742 	.notifier_call = ipmr_device_event,
1743 };
1744 
1745 /* Encapsulate a packet by attaching a valid IPIP header to it.
1746  * This avoids tunnel drivers and other mess and gives us the speed so
1747  * important for multicast video.
1748  */
1749 static void ip_encap(struct net *net, struct sk_buff *skb,
1750 		     __be32 saddr, __be32 daddr)
1751 {
1752 	struct iphdr *iph;
1753 	const struct iphdr *old_iph = ip_hdr(skb);
1754 
1755 	skb_push(skb, sizeof(struct iphdr));
1756 	skb->transport_header = skb->network_header;
1757 	skb_reset_network_header(skb);
1758 	iph = ip_hdr(skb);
1759 
1760 	iph->version	=	4;
1761 	iph->tos	=	old_iph->tos;
1762 	iph->ttl	=	old_iph->ttl;
1763 	iph->frag_off	=	0;
1764 	iph->daddr	=	daddr;
1765 	iph->saddr	=	saddr;
1766 	iph->protocol	=	IPPROTO_IPIP;
1767 	iph->ihl	=	5;
1768 	iph->tot_len	=	htons(skb->len);
1769 	ip_select_ident(net, skb, NULL);
1770 	ip_send_check(iph);
1771 
1772 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1773 	nf_reset(skb);
1774 }
1775 
1776 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1777 				      struct sk_buff *skb)
1778 {
1779 	struct ip_options *opt = &(IPCB(skb)->opt);
1780 
1781 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1782 	IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1783 
1784 	if (unlikely(opt->optlen))
1785 		ip_forward_options(skb);
1786 
1787 	return dst_output(net, sk, skb);
1788 }
1789 
1790 #ifdef CONFIG_NET_SWITCHDEV
1791 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1792 				   int in_vifi, int out_vifi)
1793 {
1794 	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1795 	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1796 
1797 	if (!skb->offload_mr_fwd_mark)
1798 		return false;
1799 	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1800 		return false;
1801 	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1802 					&in_vif->dev_parent_id);
1803 }
1804 #else
1805 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1806 				   int in_vifi, int out_vifi)
1807 {
1808 	return false;
1809 }
1810 #endif
1811 
1812 /* Processing handlers for ipmr_forward */
1813 
1814 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1815 			    int in_vifi, struct sk_buff *skb,
1816 			    struct mfc_cache *c, int vifi)
1817 {
1818 	const struct iphdr *iph = ip_hdr(skb);
1819 	struct vif_device *vif = &mrt->vif_table[vifi];
1820 	struct net_device *dev;
1821 	struct rtable *rt;
1822 	struct flowi4 fl4;
1823 	int    encap = 0;
1824 
1825 	if (!vif->dev)
1826 		goto out_free;
1827 
1828 	if (vif->flags & VIFF_REGISTER) {
1829 		vif->pkt_out++;
1830 		vif->bytes_out += skb->len;
1831 		vif->dev->stats.tx_bytes += skb->len;
1832 		vif->dev->stats.tx_packets++;
1833 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1834 		goto out_free;
1835 	}
1836 
1837 	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1838 		goto out_free;
1839 
1840 	if (vif->flags & VIFF_TUNNEL) {
1841 		rt = ip_route_output_ports(net, &fl4, NULL,
1842 					   vif->remote, vif->local,
1843 					   0, 0,
1844 					   IPPROTO_IPIP,
1845 					   RT_TOS(iph->tos), vif->link);
1846 		if (IS_ERR(rt))
1847 			goto out_free;
1848 		encap = sizeof(struct iphdr);
1849 	} else {
1850 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1851 					   0, 0,
1852 					   IPPROTO_IPIP,
1853 					   RT_TOS(iph->tos), vif->link);
1854 		if (IS_ERR(rt))
1855 			goto out_free;
1856 	}
1857 
1858 	dev = rt->dst.dev;
1859 
1860 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1861 		/* Do not fragment multicasts. Alas, IPv4 does not
1862 		 * allow to send ICMP, so that packets will disappear
1863 		 * to blackhole.
1864 		 */
1865 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1866 		ip_rt_put(rt);
1867 		goto out_free;
1868 	}
1869 
1870 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1871 
1872 	if (skb_cow(skb, encap)) {
1873 		ip_rt_put(rt);
1874 		goto out_free;
1875 	}
1876 
1877 	vif->pkt_out++;
1878 	vif->bytes_out += skb->len;
1879 
1880 	skb_dst_drop(skb);
1881 	skb_dst_set(skb, &rt->dst);
1882 	ip_decrease_ttl(ip_hdr(skb));
1883 
1884 	/* FIXME: forward and output firewalls used to be called here.
1885 	 * What do we do with netfilter? -- RR
1886 	 */
1887 	if (vif->flags & VIFF_TUNNEL) {
1888 		ip_encap(net, skb, vif->local, vif->remote);
1889 		/* FIXME: extra output firewall step used to be here. --RR */
1890 		vif->dev->stats.tx_packets++;
1891 		vif->dev->stats.tx_bytes += skb->len;
1892 	}
1893 
1894 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1895 
1896 	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1897 	 * not only before forwarding, but after forwarding on all output
1898 	 * interfaces. It is clear, if mrouter runs a multicasting
1899 	 * program, it should receive packets not depending to what interface
1900 	 * program is joined.
1901 	 * If we will not make it, the program will have to join on all
1902 	 * interfaces. On the other hand, multihoming host (or router, but
1903 	 * not mrouter) cannot join to more than one interface - it will
1904 	 * result in receiving multiple packets.
1905 	 */
1906 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1907 		net, NULL, skb, skb->dev, dev,
1908 		ipmr_forward_finish);
1909 	return;
1910 
1911 out_free:
1912 	kfree_skb(skb);
1913 }
1914 
1915 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1916 {
1917 	int ct;
1918 
1919 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1920 		if (mrt->vif_table[ct].dev == dev)
1921 			break;
1922 	}
1923 	return ct;
1924 }
1925 
1926 /* "local" means that we should preserve one skb (for local delivery) */
1927 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1928 			  struct net_device *dev, struct sk_buff *skb,
1929 			  struct mfc_cache *c, int local)
1930 {
1931 	int true_vifi = ipmr_find_vif(mrt, dev);
1932 	int psend = -1;
1933 	int vif, ct;
1934 
1935 	vif = c->_c.mfc_parent;
1936 	c->_c.mfc_un.res.pkt++;
1937 	c->_c.mfc_un.res.bytes += skb->len;
1938 	c->_c.mfc_un.res.lastuse = jiffies;
1939 
1940 	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1941 		struct mfc_cache *cache_proxy;
1942 
1943 		/* For an (*,G) entry, we only check that the incomming
1944 		 * interface is part of the static tree.
1945 		 */
1946 		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1947 		if (cache_proxy &&
1948 		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1949 			goto forward;
1950 	}
1951 
1952 	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1953 	if (mrt->vif_table[vif].dev != dev) {
1954 		if (rt_is_output_route(skb_rtable(skb))) {
1955 			/* It is our own packet, looped back.
1956 			 * Very complicated situation...
1957 			 *
1958 			 * The best workaround until routing daemons will be
1959 			 * fixed is not to redistribute packet, if it was
1960 			 * send through wrong interface. It means, that
1961 			 * multicast applications WILL NOT work for
1962 			 * (S,G), which have default multicast route pointing
1963 			 * to wrong oif. In any case, it is not a good
1964 			 * idea to use multicasting applications on router.
1965 			 */
1966 			goto dont_forward;
1967 		}
1968 
1969 		c->_c.mfc_un.res.wrong_if++;
1970 
1971 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1972 		    /* pimsm uses asserts, when switching from RPT to SPT,
1973 		     * so that we cannot check that packet arrived on an oif.
1974 		     * It is bad, but otherwise we would need to move pretty
1975 		     * large chunk of pimd to kernel. Ough... --ANK
1976 		     */
1977 		    (mrt->mroute_do_pim ||
1978 		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
1979 		    time_after(jiffies,
1980 			       c->_c.mfc_un.res.last_assert +
1981 			       MFC_ASSERT_THRESH)) {
1982 			c->_c.mfc_un.res.last_assert = jiffies;
1983 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1984 		}
1985 		goto dont_forward;
1986 	}
1987 
1988 forward:
1989 	mrt->vif_table[vif].pkt_in++;
1990 	mrt->vif_table[vif].bytes_in += skb->len;
1991 
1992 	/* Forward the frame */
1993 	if (c->mfc_origin == htonl(INADDR_ANY) &&
1994 	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
1995 		if (true_vifi >= 0 &&
1996 		    true_vifi != c->_c.mfc_parent &&
1997 		    ip_hdr(skb)->ttl >
1998 				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
1999 			/* It's an (*,*) entry and the packet is not coming from
2000 			 * the upstream: forward the packet to the upstream
2001 			 * only.
2002 			 */
2003 			psend = c->_c.mfc_parent;
2004 			goto last_forward;
2005 		}
2006 		goto dont_forward;
2007 	}
2008 	for (ct = c->_c.mfc_un.res.maxvif - 1;
2009 	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2010 		/* For (*,G) entry, don't forward to the incoming interface */
2011 		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2012 		     ct != true_vifi) &&
2013 		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2014 			if (psend != -1) {
2015 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2016 
2017 				if (skb2)
2018 					ipmr_queue_xmit(net, mrt, true_vifi,
2019 							skb2, c, psend);
2020 			}
2021 			psend = ct;
2022 		}
2023 	}
2024 last_forward:
2025 	if (psend != -1) {
2026 		if (local) {
2027 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2028 
2029 			if (skb2)
2030 				ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2031 						c, psend);
2032 		} else {
2033 			ipmr_queue_xmit(net, mrt, true_vifi, skb, c, psend);
2034 			return;
2035 		}
2036 	}
2037 
2038 dont_forward:
2039 	if (!local)
2040 		kfree_skb(skb);
2041 }
2042 
2043 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2044 {
2045 	struct rtable *rt = skb_rtable(skb);
2046 	struct iphdr *iph = ip_hdr(skb);
2047 	struct flowi4 fl4 = {
2048 		.daddr = iph->daddr,
2049 		.saddr = iph->saddr,
2050 		.flowi4_tos = RT_TOS(iph->tos),
2051 		.flowi4_oif = (rt_is_output_route(rt) ?
2052 			       skb->dev->ifindex : 0),
2053 		.flowi4_iif = (rt_is_output_route(rt) ?
2054 			       LOOPBACK_IFINDEX :
2055 			       skb->dev->ifindex),
2056 		.flowi4_mark = skb->mark,
2057 	};
2058 	struct mr_table *mrt;
2059 	int err;
2060 
2061 	err = ipmr_fib_lookup(net, &fl4, &mrt);
2062 	if (err)
2063 		return ERR_PTR(err);
2064 	return mrt;
2065 }
2066 
2067 /* Multicast packets for forwarding arrive here
2068  * Called with rcu_read_lock();
2069  */
2070 int ip_mr_input(struct sk_buff *skb)
2071 {
2072 	struct mfc_cache *cache;
2073 	struct net *net = dev_net(skb->dev);
2074 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2075 	struct mr_table *mrt;
2076 	struct net_device *dev;
2077 
2078 	/* skb->dev passed in is the loX master dev for vrfs.
2079 	 * As there are no vifs associated with loopback devices,
2080 	 * get the proper interface that does have a vif associated with it.
2081 	 */
2082 	dev = skb->dev;
2083 	if (netif_is_l3_master(skb->dev)) {
2084 		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2085 		if (!dev) {
2086 			kfree_skb(skb);
2087 			return -ENODEV;
2088 		}
2089 	}
2090 
2091 	/* Packet is looped back after forward, it should not be
2092 	 * forwarded second time, but still can be delivered locally.
2093 	 */
2094 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2095 		goto dont_forward;
2096 
2097 	mrt = ipmr_rt_fib_lookup(net, skb);
2098 	if (IS_ERR(mrt)) {
2099 		kfree_skb(skb);
2100 		return PTR_ERR(mrt);
2101 	}
2102 	if (!local) {
2103 		if (IPCB(skb)->opt.router_alert) {
2104 			if (ip_call_ra_chain(skb))
2105 				return 0;
2106 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2107 			/* IGMPv1 (and broken IGMPv2 implementations sort of
2108 			 * Cisco IOS <= 11.2(8)) do not put router alert
2109 			 * option to IGMP packets destined to routable
2110 			 * groups. It is very bad, because it means
2111 			 * that we can forward NO IGMP messages.
2112 			 */
2113 			struct sock *mroute_sk;
2114 
2115 			mroute_sk = rcu_dereference(mrt->mroute_sk);
2116 			if (mroute_sk) {
2117 				nf_reset(skb);
2118 				raw_rcv(mroute_sk, skb);
2119 				return 0;
2120 			}
2121 		    }
2122 	}
2123 
2124 	/* already under rcu_read_lock() */
2125 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2126 	if (!cache) {
2127 		int vif = ipmr_find_vif(mrt, dev);
2128 
2129 		if (vif >= 0)
2130 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2131 						    vif);
2132 	}
2133 
2134 	/* No usable cache entry */
2135 	if (!cache) {
2136 		int vif;
2137 
2138 		if (local) {
2139 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2140 			ip_local_deliver(skb);
2141 			if (!skb2)
2142 				return -ENOBUFS;
2143 			skb = skb2;
2144 		}
2145 
2146 		read_lock(&mrt_lock);
2147 		vif = ipmr_find_vif(mrt, dev);
2148 		if (vif >= 0) {
2149 			int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2150 			read_unlock(&mrt_lock);
2151 
2152 			return err2;
2153 		}
2154 		read_unlock(&mrt_lock);
2155 		kfree_skb(skb);
2156 		return -ENODEV;
2157 	}
2158 
2159 	read_lock(&mrt_lock);
2160 	ip_mr_forward(net, mrt, dev, skb, cache, local);
2161 	read_unlock(&mrt_lock);
2162 
2163 	if (local)
2164 		return ip_local_deliver(skb);
2165 
2166 	return 0;
2167 
2168 dont_forward:
2169 	if (local)
2170 		return ip_local_deliver(skb);
2171 	kfree_skb(skb);
2172 	return 0;
2173 }
2174 
2175 #ifdef CONFIG_IP_PIMSM_V1
2176 /* Handle IGMP messages of PIMv1 */
2177 int pim_rcv_v1(struct sk_buff *skb)
2178 {
2179 	struct igmphdr *pim;
2180 	struct net *net = dev_net(skb->dev);
2181 	struct mr_table *mrt;
2182 
2183 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2184 		goto drop;
2185 
2186 	pim = igmp_hdr(skb);
2187 
2188 	mrt = ipmr_rt_fib_lookup(net, skb);
2189 	if (IS_ERR(mrt))
2190 		goto drop;
2191 	if (!mrt->mroute_do_pim ||
2192 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2193 		goto drop;
2194 
2195 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2196 drop:
2197 		kfree_skb(skb);
2198 	}
2199 	return 0;
2200 }
2201 #endif
2202 
2203 #ifdef CONFIG_IP_PIMSM_V2
2204 static int pim_rcv(struct sk_buff *skb)
2205 {
2206 	struct pimreghdr *pim;
2207 	struct net *net = dev_net(skb->dev);
2208 	struct mr_table *mrt;
2209 
2210 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2211 		goto drop;
2212 
2213 	pim = (struct pimreghdr *)skb_transport_header(skb);
2214 	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2215 	    (pim->flags & PIM_NULL_REGISTER) ||
2216 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2217 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2218 		goto drop;
2219 
2220 	mrt = ipmr_rt_fib_lookup(net, skb);
2221 	if (IS_ERR(mrt))
2222 		goto drop;
2223 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2224 drop:
2225 		kfree_skb(skb);
2226 	}
2227 	return 0;
2228 }
2229 #endif
2230 
2231 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2232 		   __be32 saddr, __be32 daddr,
2233 		   struct rtmsg *rtm, u32 portid)
2234 {
2235 	struct mfc_cache *cache;
2236 	struct mr_table *mrt;
2237 	int err;
2238 
2239 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2240 	if (!mrt)
2241 		return -ENOENT;
2242 
2243 	rcu_read_lock();
2244 	cache = ipmr_cache_find(mrt, saddr, daddr);
2245 	if (!cache && skb->dev) {
2246 		int vif = ipmr_find_vif(mrt, skb->dev);
2247 
2248 		if (vif >= 0)
2249 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2250 	}
2251 	if (!cache) {
2252 		struct sk_buff *skb2;
2253 		struct iphdr *iph;
2254 		struct net_device *dev;
2255 		int vif = -1;
2256 
2257 		dev = skb->dev;
2258 		read_lock(&mrt_lock);
2259 		if (dev)
2260 			vif = ipmr_find_vif(mrt, dev);
2261 		if (vif < 0) {
2262 			read_unlock(&mrt_lock);
2263 			rcu_read_unlock();
2264 			return -ENODEV;
2265 		}
2266 		skb2 = skb_clone(skb, GFP_ATOMIC);
2267 		if (!skb2) {
2268 			read_unlock(&mrt_lock);
2269 			rcu_read_unlock();
2270 			return -ENOMEM;
2271 		}
2272 
2273 		NETLINK_CB(skb2).portid = portid;
2274 		skb_push(skb2, sizeof(struct iphdr));
2275 		skb_reset_network_header(skb2);
2276 		iph = ip_hdr(skb2);
2277 		iph->ihl = sizeof(struct iphdr) >> 2;
2278 		iph->saddr = saddr;
2279 		iph->daddr = daddr;
2280 		iph->version = 0;
2281 		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2282 		read_unlock(&mrt_lock);
2283 		rcu_read_unlock();
2284 		return err;
2285 	}
2286 
2287 	read_lock(&mrt_lock);
2288 	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2289 	read_unlock(&mrt_lock);
2290 	rcu_read_unlock();
2291 	return err;
2292 }
2293 
2294 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2295 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2296 			    int flags)
2297 {
2298 	struct nlmsghdr *nlh;
2299 	struct rtmsg *rtm;
2300 	int err;
2301 
2302 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2303 	if (!nlh)
2304 		return -EMSGSIZE;
2305 
2306 	rtm = nlmsg_data(nlh);
2307 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2308 	rtm->rtm_dst_len  = 32;
2309 	rtm->rtm_src_len  = 32;
2310 	rtm->rtm_tos      = 0;
2311 	rtm->rtm_table    = mrt->id;
2312 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2313 		goto nla_put_failure;
2314 	rtm->rtm_type     = RTN_MULTICAST;
2315 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2316 	if (c->_c.mfc_flags & MFC_STATIC)
2317 		rtm->rtm_protocol = RTPROT_STATIC;
2318 	else
2319 		rtm->rtm_protocol = RTPROT_MROUTED;
2320 	rtm->rtm_flags    = 0;
2321 
2322 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2323 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2324 		goto nla_put_failure;
2325 	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2326 	/* do not break the dump if cache is unresolved */
2327 	if (err < 0 && err != -ENOENT)
2328 		goto nla_put_failure;
2329 
2330 	nlmsg_end(skb, nlh);
2331 	return 0;
2332 
2333 nla_put_failure:
2334 	nlmsg_cancel(skb, nlh);
2335 	return -EMSGSIZE;
2336 }
2337 
2338 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2339 			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2340 			     int flags)
2341 {
2342 	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2343 				cmd, flags);
2344 }
2345 
2346 static size_t mroute_msgsize(bool unresolved, int maxvif)
2347 {
2348 	size_t len =
2349 		NLMSG_ALIGN(sizeof(struct rtmsg))
2350 		+ nla_total_size(4)	/* RTA_TABLE */
2351 		+ nla_total_size(4)	/* RTA_SRC */
2352 		+ nla_total_size(4)	/* RTA_DST */
2353 		;
2354 
2355 	if (!unresolved)
2356 		len = len
2357 		      + nla_total_size(4)	/* RTA_IIF */
2358 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2359 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2360 						/* RTA_MFC_STATS */
2361 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2362 		;
2363 
2364 	return len;
2365 }
2366 
2367 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2368 				 int cmd)
2369 {
2370 	struct net *net = read_pnet(&mrt->net);
2371 	struct sk_buff *skb;
2372 	int err = -ENOBUFS;
2373 
2374 	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2375 				       mrt->maxvif),
2376 			GFP_ATOMIC);
2377 	if (!skb)
2378 		goto errout;
2379 
2380 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2381 	if (err < 0)
2382 		goto errout;
2383 
2384 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2385 	return;
2386 
2387 errout:
2388 	kfree_skb(skb);
2389 	if (err < 0)
2390 		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2391 }
2392 
2393 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2394 {
2395 	size_t len =
2396 		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2397 		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2398 		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2399 		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2400 		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2401 					/* IPMRA_CREPORT_PKT */
2402 		+ nla_total_size(payloadlen)
2403 		;
2404 
2405 	return len;
2406 }
2407 
2408 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2409 {
2410 	struct net *net = read_pnet(&mrt->net);
2411 	struct nlmsghdr *nlh;
2412 	struct rtgenmsg *rtgenm;
2413 	struct igmpmsg *msg;
2414 	struct sk_buff *skb;
2415 	struct nlattr *nla;
2416 	int payloadlen;
2417 
2418 	payloadlen = pkt->len - sizeof(struct igmpmsg);
2419 	msg = (struct igmpmsg *)skb_network_header(pkt);
2420 
2421 	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2422 	if (!skb)
2423 		goto errout;
2424 
2425 	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2426 			sizeof(struct rtgenmsg), 0);
2427 	if (!nlh)
2428 		goto errout;
2429 	rtgenm = nlmsg_data(nlh);
2430 	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2431 	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2432 	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
2433 	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2434 			    msg->im_src.s_addr) ||
2435 	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2436 			    msg->im_dst.s_addr))
2437 		goto nla_put_failure;
2438 
2439 	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2440 	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2441 				  nla_data(nla), payloadlen))
2442 		goto nla_put_failure;
2443 
2444 	nlmsg_end(skb, nlh);
2445 
2446 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2447 	return;
2448 
2449 nla_put_failure:
2450 	nlmsg_cancel(skb, nlh);
2451 errout:
2452 	kfree_skb(skb);
2453 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2454 }
2455 
2456 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2457 			     struct netlink_ext_ack *extack)
2458 {
2459 	struct net *net = sock_net(in_skb->sk);
2460 	struct nlattr *tb[RTA_MAX + 1];
2461 	struct sk_buff *skb = NULL;
2462 	struct mfc_cache *cache;
2463 	struct mr_table *mrt;
2464 	struct rtmsg *rtm;
2465 	__be32 src, grp;
2466 	u32 tableid;
2467 	int err;
2468 
2469 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX,
2470 			  rtm_ipv4_policy, extack);
2471 	if (err < 0)
2472 		goto errout;
2473 
2474 	rtm = nlmsg_data(nlh);
2475 
2476 	src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2477 	grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2478 	tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2479 
2480 	mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2481 	if (!mrt) {
2482 		err = -ENOENT;
2483 		goto errout_free;
2484 	}
2485 
2486 	/* entries are added/deleted only under RTNL */
2487 	rcu_read_lock();
2488 	cache = ipmr_cache_find(mrt, src, grp);
2489 	rcu_read_unlock();
2490 	if (!cache) {
2491 		err = -ENOENT;
2492 		goto errout_free;
2493 	}
2494 
2495 	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2496 	if (!skb) {
2497 		err = -ENOBUFS;
2498 		goto errout_free;
2499 	}
2500 
2501 	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2502 			       nlh->nlmsg_seq, cache,
2503 			       RTM_NEWROUTE, 0);
2504 	if (err < 0)
2505 		goto errout_free;
2506 
2507 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2508 
2509 errout:
2510 	return err;
2511 
2512 errout_free:
2513 	kfree_skb(skb);
2514 	goto errout;
2515 }
2516 
2517 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2518 {
2519 	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2520 				_ipmr_fill_mroute, &mfc_unres_lock);
2521 }
2522 
2523 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2524 	[RTA_SRC]	= { .type = NLA_U32 },
2525 	[RTA_DST]	= { .type = NLA_U32 },
2526 	[RTA_IIF]	= { .type = NLA_U32 },
2527 	[RTA_TABLE]	= { .type = NLA_U32 },
2528 	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2529 };
2530 
2531 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2532 {
2533 	switch (rtm_protocol) {
2534 	case RTPROT_STATIC:
2535 	case RTPROT_MROUTED:
2536 		return true;
2537 	}
2538 	return false;
2539 }
2540 
2541 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2542 {
2543 	struct rtnexthop *rtnh = nla_data(nla);
2544 	int remaining = nla_len(nla), vifi = 0;
2545 
2546 	while (rtnh_ok(rtnh, remaining)) {
2547 		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2548 		if (++vifi == MAXVIFS)
2549 			break;
2550 		rtnh = rtnh_next(rtnh, &remaining);
2551 	}
2552 
2553 	return remaining > 0 ? -EINVAL : vifi;
2554 }
2555 
2556 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2557 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2558 			    struct mfcctl *mfcc, int *mrtsock,
2559 			    struct mr_table **mrtret,
2560 			    struct netlink_ext_ack *extack)
2561 {
2562 	struct net_device *dev = NULL;
2563 	u32 tblid = RT_TABLE_DEFAULT;
2564 	struct mr_table *mrt;
2565 	struct nlattr *attr;
2566 	struct rtmsg *rtm;
2567 	int ret, rem;
2568 
2569 	ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy,
2570 			     extack);
2571 	if (ret < 0)
2572 		goto out;
2573 	rtm = nlmsg_data(nlh);
2574 
2575 	ret = -EINVAL;
2576 	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2577 	    rtm->rtm_type != RTN_MULTICAST ||
2578 	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2579 	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2580 		goto out;
2581 
2582 	memset(mfcc, 0, sizeof(*mfcc));
2583 	mfcc->mfcc_parent = -1;
2584 	ret = 0;
2585 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2586 		switch (nla_type(attr)) {
2587 		case RTA_SRC:
2588 			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2589 			break;
2590 		case RTA_DST:
2591 			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2592 			break;
2593 		case RTA_IIF:
2594 			dev = __dev_get_by_index(net, nla_get_u32(attr));
2595 			if (!dev) {
2596 				ret = -ENODEV;
2597 				goto out;
2598 			}
2599 			break;
2600 		case RTA_MULTIPATH:
2601 			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2602 				ret = -EINVAL;
2603 				goto out;
2604 			}
2605 			break;
2606 		case RTA_PREFSRC:
2607 			ret = 1;
2608 			break;
2609 		case RTA_TABLE:
2610 			tblid = nla_get_u32(attr);
2611 			break;
2612 		}
2613 	}
2614 	mrt = ipmr_get_table(net, tblid);
2615 	if (!mrt) {
2616 		ret = -ENOENT;
2617 		goto out;
2618 	}
2619 	*mrtret = mrt;
2620 	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2621 	if (dev)
2622 		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2623 
2624 out:
2625 	return ret;
2626 }
2627 
2628 /* takes care of both newroute and delroute */
2629 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2630 			  struct netlink_ext_ack *extack)
2631 {
2632 	struct net *net = sock_net(skb->sk);
2633 	int ret, mrtsock, parent;
2634 	struct mr_table *tbl;
2635 	struct mfcctl mfcc;
2636 
2637 	mrtsock = 0;
2638 	tbl = NULL;
2639 	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2640 	if (ret < 0)
2641 		return ret;
2642 
2643 	parent = ret ? mfcc.mfcc_parent : -1;
2644 	if (nlh->nlmsg_type == RTM_NEWROUTE)
2645 		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2646 	else
2647 		return ipmr_mfc_delete(tbl, &mfcc, parent);
2648 }
2649 
2650 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2651 {
2652 	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2653 
2654 	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2655 	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2656 	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2657 			mrt->mroute_reg_vif_num) ||
2658 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2659 		       mrt->mroute_do_assert) ||
2660 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim))
2661 		return false;
2662 
2663 	return true;
2664 }
2665 
2666 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2667 {
2668 	struct nlattr *vif_nest;
2669 	struct vif_device *vif;
2670 
2671 	/* if the VIF doesn't exist just continue */
2672 	if (!VIF_EXISTS(mrt, vifid))
2673 		return true;
2674 
2675 	vif = &mrt->vif_table[vifid];
2676 	vif_nest = nla_nest_start(skb, IPMRA_VIF);
2677 	if (!vif_nest)
2678 		return false;
2679 	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2680 	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2681 	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2682 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2683 			      IPMRA_VIFA_PAD) ||
2684 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2685 			      IPMRA_VIFA_PAD) ||
2686 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2687 			      IPMRA_VIFA_PAD) ||
2688 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2689 			      IPMRA_VIFA_PAD) ||
2690 	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2691 	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2692 		nla_nest_cancel(skb, vif_nest);
2693 		return false;
2694 	}
2695 	nla_nest_end(skb, vif_nest);
2696 
2697 	return true;
2698 }
2699 
2700 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2701 {
2702 	struct net *net = sock_net(skb->sk);
2703 	struct nlmsghdr *nlh = NULL;
2704 	unsigned int t = 0, s_t;
2705 	unsigned int e = 0, s_e;
2706 	struct mr_table *mrt;
2707 
2708 	s_t = cb->args[0];
2709 	s_e = cb->args[1];
2710 
2711 	ipmr_for_each_table(mrt, net) {
2712 		struct nlattr *vifs, *af;
2713 		struct ifinfomsg *hdr;
2714 		u32 i;
2715 
2716 		if (t < s_t)
2717 			goto skip_table;
2718 		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2719 				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2720 				sizeof(*hdr), NLM_F_MULTI);
2721 		if (!nlh)
2722 			break;
2723 
2724 		hdr = nlmsg_data(nlh);
2725 		memset(hdr, 0, sizeof(*hdr));
2726 		hdr->ifi_family = RTNL_FAMILY_IPMR;
2727 
2728 		af = nla_nest_start(skb, IFLA_AF_SPEC);
2729 		if (!af) {
2730 			nlmsg_cancel(skb, nlh);
2731 			goto out;
2732 		}
2733 
2734 		if (!ipmr_fill_table(mrt, skb)) {
2735 			nlmsg_cancel(skb, nlh);
2736 			goto out;
2737 		}
2738 
2739 		vifs = nla_nest_start(skb, IPMRA_TABLE_VIFS);
2740 		if (!vifs) {
2741 			nla_nest_end(skb, af);
2742 			nlmsg_end(skb, nlh);
2743 			goto out;
2744 		}
2745 		for (i = 0; i < mrt->maxvif; i++) {
2746 			if (e < s_e)
2747 				goto skip_entry;
2748 			if (!ipmr_fill_vif(mrt, i, skb)) {
2749 				nla_nest_end(skb, vifs);
2750 				nla_nest_end(skb, af);
2751 				nlmsg_end(skb, nlh);
2752 				goto out;
2753 			}
2754 skip_entry:
2755 			e++;
2756 		}
2757 		s_e = 0;
2758 		e = 0;
2759 		nla_nest_end(skb, vifs);
2760 		nla_nest_end(skb, af);
2761 		nlmsg_end(skb, nlh);
2762 skip_table:
2763 		t++;
2764 	}
2765 
2766 out:
2767 	cb->args[1] = e;
2768 	cb->args[0] = t;
2769 
2770 	return skb->len;
2771 }
2772 
2773 #ifdef CONFIG_PROC_FS
2774 /* The /proc interfaces to multicast routing :
2775  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2776  */
2777 
2778 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2779 	__acquires(mrt_lock)
2780 {
2781 	struct mr_vif_iter *iter = seq->private;
2782 	struct net *net = seq_file_net(seq);
2783 	struct mr_table *mrt;
2784 
2785 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2786 	if (!mrt)
2787 		return ERR_PTR(-ENOENT);
2788 
2789 	iter->mrt = mrt;
2790 
2791 	read_lock(&mrt_lock);
2792 	return mr_vif_seq_start(seq, pos);
2793 }
2794 
2795 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2796 	__releases(mrt_lock)
2797 {
2798 	read_unlock(&mrt_lock);
2799 }
2800 
2801 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2802 {
2803 	struct mr_vif_iter *iter = seq->private;
2804 	struct mr_table *mrt = iter->mrt;
2805 
2806 	if (v == SEQ_START_TOKEN) {
2807 		seq_puts(seq,
2808 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2809 	} else {
2810 		const struct vif_device *vif = v;
2811 		const char *name =  vif->dev ?
2812 				    vif->dev->name : "none";
2813 
2814 		seq_printf(seq,
2815 			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2816 			   vif - mrt->vif_table,
2817 			   name, vif->bytes_in, vif->pkt_in,
2818 			   vif->bytes_out, vif->pkt_out,
2819 			   vif->flags, vif->local, vif->remote);
2820 	}
2821 	return 0;
2822 }
2823 
2824 static const struct seq_operations ipmr_vif_seq_ops = {
2825 	.start = ipmr_vif_seq_start,
2826 	.next  = mr_vif_seq_next,
2827 	.stop  = ipmr_vif_seq_stop,
2828 	.show  = ipmr_vif_seq_show,
2829 };
2830 
2831 static int ipmr_vif_open(struct inode *inode, struct file *file)
2832 {
2833 	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2834 			    sizeof(struct mr_vif_iter));
2835 }
2836 
2837 static const struct file_operations ipmr_vif_fops = {
2838 	.open    = ipmr_vif_open,
2839 	.read    = seq_read,
2840 	.llseek  = seq_lseek,
2841 	.release = seq_release_net,
2842 };
2843 
2844 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2845 {
2846 	struct net *net = seq_file_net(seq);
2847 	struct mr_table *mrt;
2848 
2849 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2850 	if (!mrt)
2851 		return ERR_PTR(-ENOENT);
2852 
2853 	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2854 }
2855 
2856 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2857 {
2858 	int n;
2859 
2860 	if (v == SEQ_START_TOKEN) {
2861 		seq_puts(seq,
2862 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2863 	} else {
2864 		const struct mfc_cache *mfc = v;
2865 		const struct mr_mfc_iter *it = seq->private;
2866 		const struct mr_table *mrt = it->mrt;
2867 
2868 		seq_printf(seq, "%08X %08X %-3hd",
2869 			   (__force u32) mfc->mfc_mcastgrp,
2870 			   (__force u32) mfc->mfc_origin,
2871 			   mfc->_c.mfc_parent);
2872 
2873 		if (it->cache != &mrt->mfc_unres_queue) {
2874 			seq_printf(seq, " %8lu %8lu %8lu",
2875 				   mfc->_c.mfc_un.res.pkt,
2876 				   mfc->_c.mfc_un.res.bytes,
2877 				   mfc->_c.mfc_un.res.wrong_if);
2878 			for (n = mfc->_c.mfc_un.res.minvif;
2879 			     n < mfc->_c.mfc_un.res.maxvif; n++) {
2880 				if (VIF_EXISTS(mrt, n) &&
2881 				    mfc->_c.mfc_un.res.ttls[n] < 255)
2882 					seq_printf(seq,
2883 					   " %2d:%-3d",
2884 					   n, mfc->_c.mfc_un.res.ttls[n]);
2885 			}
2886 		} else {
2887 			/* unresolved mfc_caches don't contain
2888 			 * pkt, bytes and wrong_if values
2889 			 */
2890 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2891 		}
2892 		seq_putc(seq, '\n');
2893 	}
2894 	return 0;
2895 }
2896 
2897 static const struct seq_operations ipmr_mfc_seq_ops = {
2898 	.start = ipmr_mfc_seq_start,
2899 	.next  = mr_mfc_seq_next,
2900 	.stop  = mr_mfc_seq_stop,
2901 	.show  = ipmr_mfc_seq_show,
2902 };
2903 
2904 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2905 {
2906 	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2907 			    sizeof(struct mr_mfc_iter));
2908 }
2909 
2910 static const struct file_operations ipmr_mfc_fops = {
2911 	.open    = ipmr_mfc_open,
2912 	.read    = seq_read,
2913 	.llseek  = seq_lseek,
2914 	.release = seq_release_net,
2915 };
2916 #endif
2917 
2918 #ifdef CONFIG_IP_PIMSM_V2
2919 static const struct net_protocol pim_protocol = {
2920 	.handler	=	pim_rcv,
2921 	.netns_ok	=	1,
2922 };
2923 #endif
2924 
2925 static unsigned int ipmr_seq_read(struct net *net)
2926 {
2927 	ASSERT_RTNL();
2928 
2929 	return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
2930 }
2931 
2932 static int ipmr_dump(struct net *net, struct notifier_block *nb)
2933 {
2934 	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
2935 		       ipmr_mr_table_iter, &mrt_lock);
2936 }
2937 
2938 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
2939 	.family		= RTNL_FAMILY_IPMR,
2940 	.fib_seq_read	= ipmr_seq_read,
2941 	.fib_dump	= ipmr_dump,
2942 	.owner		= THIS_MODULE,
2943 };
2944 
2945 static int __net_init ipmr_notifier_init(struct net *net)
2946 {
2947 	struct fib_notifier_ops *ops;
2948 
2949 	net->ipv4.ipmr_seq = 0;
2950 
2951 	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
2952 	if (IS_ERR(ops))
2953 		return PTR_ERR(ops);
2954 	net->ipv4.ipmr_notifier_ops = ops;
2955 
2956 	return 0;
2957 }
2958 
2959 static void __net_exit ipmr_notifier_exit(struct net *net)
2960 {
2961 	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
2962 	net->ipv4.ipmr_notifier_ops = NULL;
2963 }
2964 
2965 /* Setup for IP multicast routing */
2966 static int __net_init ipmr_net_init(struct net *net)
2967 {
2968 	int err;
2969 
2970 	err = ipmr_notifier_init(net);
2971 	if (err)
2972 		goto ipmr_notifier_fail;
2973 
2974 	err = ipmr_rules_init(net);
2975 	if (err < 0)
2976 		goto ipmr_rules_fail;
2977 
2978 #ifdef CONFIG_PROC_FS
2979 	err = -ENOMEM;
2980 	if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2981 		goto proc_vif_fail;
2982 	if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2983 		goto proc_cache_fail;
2984 #endif
2985 	return 0;
2986 
2987 #ifdef CONFIG_PROC_FS
2988 proc_cache_fail:
2989 	remove_proc_entry("ip_mr_vif", net->proc_net);
2990 proc_vif_fail:
2991 	ipmr_rules_exit(net);
2992 #endif
2993 ipmr_rules_fail:
2994 	ipmr_notifier_exit(net);
2995 ipmr_notifier_fail:
2996 	return err;
2997 }
2998 
2999 static void __net_exit ipmr_net_exit(struct net *net)
3000 {
3001 #ifdef CONFIG_PROC_FS
3002 	remove_proc_entry("ip_mr_cache", net->proc_net);
3003 	remove_proc_entry("ip_mr_vif", net->proc_net);
3004 #endif
3005 	ipmr_notifier_exit(net);
3006 	ipmr_rules_exit(net);
3007 }
3008 
3009 static struct pernet_operations ipmr_net_ops = {
3010 	.init = ipmr_net_init,
3011 	.exit = ipmr_net_exit,
3012 };
3013 
3014 int __init ip_mr_init(void)
3015 {
3016 	int err;
3017 
3018 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
3019 				       sizeof(struct mfc_cache),
3020 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3021 				       NULL);
3022 
3023 	err = register_pernet_subsys(&ipmr_net_ops);
3024 	if (err)
3025 		goto reg_pernet_fail;
3026 
3027 	err = register_netdevice_notifier(&ip_mr_notifier);
3028 	if (err)
3029 		goto reg_notif_fail;
3030 #ifdef CONFIG_IP_PIMSM_V2
3031 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3032 		pr_err("%s: can't add PIM protocol\n", __func__);
3033 		err = -EAGAIN;
3034 		goto add_proto_fail;
3035 	}
3036 #endif
3037 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3038 		      ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3039 	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3040 		      ipmr_rtm_route, NULL, 0);
3041 	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3042 		      ipmr_rtm_route, NULL, 0);
3043 
3044 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3045 		      NULL, ipmr_rtm_dumplink, 0);
3046 	return 0;
3047 
3048 #ifdef CONFIG_IP_PIMSM_V2
3049 add_proto_fail:
3050 	unregister_netdevice_notifier(&ip_mr_notifier);
3051 #endif
3052 reg_notif_fail:
3053 	unregister_pernet_subsys(&ipmr_net_ops);
3054 reg_pernet_fail:
3055 	kmem_cache_destroy(mrt_cachep);
3056 	return err;
3057 }
3058