1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * IP multicast routing support for mrouted 3.6/3.8 4 * 5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * Linux Consultancy and Custom Driver Development 7 * 8 * Fixes: 9 * Michael Chastain : Incorrect size of copying. 10 * Alan Cox : Added the cache manager code 11 * Alan Cox : Fixed the clone/copy bug and device race. 12 * Mike McLagan : Routing by source 13 * Malcolm Beattie : Buffer handling fixes. 14 * Alexey Kuznetsov : Double buffer free and other fixes. 15 * SVR Anand : Fixed several multicast bugs and problems. 16 * Alexey Kuznetsov : Status, optimisations and more. 17 * Brad Parker : Better behaviour on mrouted upcall 18 * overflow. 19 * Carlos Picoto : PIMv1 Support 20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 21 * Relax this requirement to work with older peers. 22 */ 23 24 #include <linux/uaccess.h> 25 #include <linux/types.h> 26 #include <linux/cache.h> 27 #include <linux/capability.h> 28 #include <linux/errno.h> 29 #include <linux/mm.h> 30 #include <linux/kernel.h> 31 #include <linux/fcntl.h> 32 #include <linux/stat.h> 33 #include <linux/socket.h> 34 #include <linux/in.h> 35 #include <linux/inet.h> 36 #include <linux/netdevice.h> 37 #include <linux/inetdevice.h> 38 #include <linux/igmp.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <linux/mroute.h> 42 #include <linux/init.h> 43 #include <linux/if_ether.h> 44 #include <linux/slab.h> 45 #include <net/net_namespace.h> 46 #include <net/ip.h> 47 #include <net/protocol.h> 48 #include <linux/skbuff.h> 49 #include <net/route.h> 50 #include <net/icmp.h> 51 #include <net/udp.h> 52 #include <net/raw.h> 53 #include <linux/notifier.h> 54 #include <linux/if_arp.h> 55 #include <linux/netfilter_ipv4.h> 56 #include <linux/compat.h> 57 #include <linux/export.h> 58 #include <linux/rhashtable.h> 59 #include <net/ip_tunnels.h> 60 #include <net/checksum.h> 61 #include <net/netlink.h> 62 #include <net/fib_rules.h> 63 #include <linux/netconf.h> 64 #include <net/rtnh.h> 65 66 #include <linux/nospec.h> 67 68 struct ipmr_rule { 69 struct fib_rule common; 70 }; 71 72 struct ipmr_result { 73 struct mr_table *mrt; 74 }; 75 76 /* Big lock, protecting vif table, mrt cache and mroute socket state. 77 * Note that the changes are semaphored via rtnl_lock. 78 */ 79 80 static DEFINE_RWLOCK(mrt_lock); 81 82 /* Multicast router control variables */ 83 84 /* Special spinlock for queue of unresolved entries */ 85 static DEFINE_SPINLOCK(mfc_unres_lock); 86 87 /* We return to original Alan's scheme. Hash table of resolved 88 * entries is changed only in process context and protected 89 * with weak lock mrt_lock. Queue of unresolved entries is protected 90 * with strong spinlock mfc_unres_lock. 91 * 92 * In this case data path is free of exclusive locks at all. 93 */ 94 95 static struct kmem_cache *mrt_cachep __ro_after_init; 96 97 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 98 static void ipmr_free_table(struct mr_table *mrt); 99 100 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 101 struct net_device *dev, struct sk_buff *skb, 102 struct mfc_cache *cache, int local); 103 static int ipmr_cache_report(struct mr_table *mrt, 104 struct sk_buff *pkt, vifi_t vifi, int assert); 105 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 106 int cmd); 107 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt); 108 static void mroute_clean_tables(struct mr_table *mrt, int flags); 109 static void ipmr_expire_process(struct timer_list *t); 110 111 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 112 #define ipmr_for_each_table(mrt, net) \ 113 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list) 114 115 static struct mr_table *ipmr_mr_table_iter(struct net *net, 116 struct mr_table *mrt) 117 { 118 struct mr_table *ret; 119 120 if (!mrt) 121 ret = list_entry_rcu(net->ipv4.mr_tables.next, 122 struct mr_table, list); 123 else 124 ret = list_entry_rcu(mrt->list.next, 125 struct mr_table, list); 126 127 if (&ret->list == &net->ipv4.mr_tables) 128 return NULL; 129 return ret; 130 } 131 132 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 133 { 134 struct mr_table *mrt; 135 136 ipmr_for_each_table(mrt, net) { 137 if (mrt->id == id) 138 return mrt; 139 } 140 return NULL; 141 } 142 143 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 144 struct mr_table **mrt) 145 { 146 int err; 147 struct ipmr_result res; 148 struct fib_lookup_arg arg = { 149 .result = &res, 150 .flags = FIB_LOOKUP_NOREF, 151 }; 152 153 /* update flow if oif or iif point to device enslaved to l3mdev */ 154 l3mdev_update_flow(net, flowi4_to_flowi(flp4)); 155 156 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 157 flowi4_to_flowi(flp4), 0, &arg); 158 if (err < 0) 159 return err; 160 *mrt = res.mrt; 161 return 0; 162 } 163 164 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 165 int flags, struct fib_lookup_arg *arg) 166 { 167 struct ipmr_result *res = arg->result; 168 struct mr_table *mrt; 169 170 switch (rule->action) { 171 case FR_ACT_TO_TBL: 172 break; 173 case FR_ACT_UNREACHABLE: 174 return -ENETUNREACH; 175 case FR_ACT_PROHIBIT: 176 return -EACCES; 177 case FR_ACT_BLACKHOLE: 178 default: 179 return -EINVAL; 180 } 181 182 arg->table = fib_rule_get_table(rule, arg); 183 184 mrt = ipmr_get_table(rule->fr_net, arg->table); 185 if (!mrt) 186 return -EAGAIN; 187 res->mrt = mrt; 188 return 0; 189 } 190 191 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 192 { 193 return 1; 194 } 195 196 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = { 197 FRA_GENERIC_POLICY, 198 }; 199 200 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 201 struct fib_rule_hdr *frh, struct nlattr **tb, 202 struct netlink_ext_ack *extack) 203 { 204 return 0; 205 } 206 207 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 208 struct nlattr **tb) 209 { 210 return 1; 211 } 212 213 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 214 struct fib_rule_hdr *frh) 215 { 216 frh->dst_len = 0; 217 frh->src_len = 0; 218 frh->tos = 0; 219 return 0; 220 } 221 222 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 223 .family = RTNL_FAMILY_IPMR, 224 .rule_size = sizeof(struct ipmr_rule), 225 .addr_size = sizeof(u32), 226 .action = ipmr_rule_action, 227 .match = ipmr_rule_match, 228 .configure = ipmr_rule_configure, 229 .compare = ipmr_rule_compare, 230 .fill = ipmr_rule_fill, 231 .nlgroup = RTNLGRP_IPV4_RULE, 232 .policy = ipmr_rule_policy, 233 .owner = THIS_MODULE, 234 }; 235 236 static int __net_init ipmr_rules_init(struct net *net) 237 { 238 struct fib_rules_ops *ops; 239 struct mr_table *mrt; 240 int err; 241 242 ops = fib_rules_register(&ipmr_rules_ops_template, net); 243 if (IS_ERR(ops)) 244 return PTR_ERR(ops); 245 246 INIT_LIST_HEAD(&net->ipv4.mr_tables); 247 248 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 249 if (IS_ERR(mrt)) { 250 err = PTR_ERR(mrt); 251 goto err1; 252 } 253 254 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 255 if (err < 0) 256 goto err2; 257 258 net->ipv4.mr_rules_ops = ops; 259 return 0; 260 261 err2: 262 ipmr_free_table(mrt); 263 err1: 264 fib_rules_unregister(ops); 265 return err; 266 } 267 268 static void __net_exit ipmr_rules_exit(struct net *net) 269 { 270 struct mr_table *mrt, *next; 271 272 rtnl_lock(); 273 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 274 list_del(&mrt->list); 275 ipmr_free_table(mrt); 276 } 277 fib_rules_unregister(net->ipv4.mr_rules_ops); 278 rtnl_unlock(); 279 } 280 281 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb) 282 { 283 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR); 284 } 285 286 static unsigned int ipmr_rules_seq_read(struct net *net) 287 { 288 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR); 289 } 290 291 bool ipmr_rule_default(const struct fib_rule *rule) 292 { 293 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT; 294 } 295 EXPORT_SYMBOL(ipmr_rule_default); 296 #else 297 #define ipmr_for_each_table(mrt, net) \ 298 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 299 300 static struct mr_table *ipmr_mr_table_iter(struct net *net, 301 struct mr_table *mrt) 302 { 303 if (!mrt) 304 return net->ipv4.mrt; 305 return NULL; 306 } 307 308 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 309 { 310 return net->ipv4.mrt; 311 } 312 313 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 314 struct mr_table **mrt) 315 { 316 *mrt = net->ipv4.mrt; 317 return 0; 318 } 319 320 static int __net_init ipmr_rules_init(struct net *net) 321 { 322 struct mr_table *mrt; 323 324 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 325 if (IS_ERR(mrt)) 326 return PTR_ERR(mrt); 327 net->ipv4.mrt = mrt; 328 return 0; 329 } 330 331 static void __net_exit ipmr_rules_exit(struct net *net) 332 { 333 rtnl_lock(); 334 ipmr_free_table(net->ipv4.mrt); 335 net->ipv4.mrt = NULL; 336 rtnl_unlock(); 337 } 338 339 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb) 340 { 341 return 0; 342 } 343 344 static unsigned int ipmr_rules_seq_read(struct net *net) 345 { 346 return 0; 347 } 348 349 bool ipmr_rule_default(const struct fib_rule *rule) 350 { 351 return true; 352 } 353 EXPORT_SYMBOL(ipmr_rule_default); 354 #endif 355 356 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg, 357 const void *ptr) 358 { 359 const struct mfc_cache_cmp_arg *cmparg = arg->key; 360 struct mfc_cache *c = (struct mfc_cache *)ptr; 361 362 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp || 363 cmparg->mfc_origin != c->mfc_origin; 364 } 365 366 static const struct rhashtable_params ipmr_rht_params = { 367 .head_offset = offsetof(struct mr_mfc, mnode), 368 .key_offset = offsetof(struct mfc_cache, cmparg), 369 .key_len = sizeof(struct mfc_cache_cmp_arg), 370 .nelem_hint = 3, 371 .obj_cmpfn = ipmr_hash_cmp, 372 .automatic_shrinking = true, 373 }; 374 375 static void ipmr_new_table_set(struct mr_table *mrt, 376 struct net *net) 377 { 378 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 379 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 380 #endif 381 } 382 383 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = { 384 .mfc_mcastgrp = htonl(INADDR_ANY), 385 .mfc_origin = htonl(INADDR_ANY), 386 }; 387 388 static struct mr_table_ops ipmr_mr_table_ops = { 389 .rht_params = &ipmr_rht_params, 390 .cmparg_any = &ipmr_mr_table_ops_cmparg_any, 391 }; 392 393 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 394 { 395 struct mr_table *mrt; 396 397 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 398 if (id != RT_TABLE_DEFAULT && id >= 1000000000) 399 return ERR_PTR(-EINVAL); 400 401 mrt = ipmr_get_table(net, id); 402 if (mrt) 403 return mrt; 404 405 return mr_table_alloc(net, id, &ipmr_mr_table_ops, 406 ipmr_expire_process, ipmr_new_table_set); 407 } 408 409 static void ipmr_free_table(struct mr_table *mrt) 410 { 411 del_timer_sync(&mrt->ipmr_expire_timer); 412 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC | 413 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC); 414 rhltable_destroy(&mrt->mfc_hash); 415 kfree(mrt); 416 } 417 418 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 419 420 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v) 421 { 422 struct net *net = dev_net(dev); 423 424 dev_close(dev); 425 426 dev = __dev_get_by_name(net, "tunl0"); 427 if (dev) { 428 const struct net_device_ops *ops = dev->netdev_ops; 429 struct ifreq ifr; 430 struct ip_tunnel_parm p; 431 432 memset(&p, 0, sizeof(p)); 433 p.iph.daddr = v->vifc_rmt_addr.s_addr; 434 p.iph.saddr = v->vifc_lcl_addr.s_addr; 435 p.iph.version = 4; 436 p.iph.ihl = 5; 437 p.iph.protocol = IPPROTO_IPIP; 438 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 439 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 440 441 if (ops->ndo_do_ioctl) { 442 mm_segment_t oldfs = get_fs(); 443 444 set_fs(KERNEL_DS); 445 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL); 446 set_fs(oldfs); 447 } 448 } 449 } 450 451 /* Initialize ipmr pimreg/tunnel in_device */ 452 static bool ipmr_init_vif_indev(const struct net_device *dev) 453 { 454 struct in_device *in_dev; 455 456 ASSERT_RTNL(); 457 458 in_dev = __in_dev_get_rtnl(dev); 459 if (!in_dev) 460 return false; 461 ipv4_devconf_setall(in_dev); 462 neigh_parms_data_state_setall(in_dev->arp_parms); 463 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 464 465 return true; 466 } 467 468 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 469 { 470 struct net_device *dev; 471 472 dev = __dev_get_by_name(net, "tunl0"); 473 474 if (dev) { 475 const struct net_device_ops *ops = dev->netdev_ops; 476 int err; 477 struct ifreq ifr; 478 struct ip_tunnel_parm p; 479 480 memset(&p, 0, sizeof(p)); 481 p.iph.daddr = v->vifc_rmt_addr.s_addr; 482 p.iph.saddr = v->vifc_lcl_addr.s_addr; 483 p.iph.version = 4; 484 p.iph.ihl = 5; 485 p.iph.protocol = IPPROTO_IPIP; 486 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 487 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 488 489 if (ops->ndo_do_ioctl) { 490 mm_segment_t oldfs = get_fs(); 491 492 set_fs(KERNEL_DS); 493 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL); 494 set_fs(oldfs); 495 } else { 496 err = -EOPNOTSUPP; 497 } 498 dev = NULL; 499 500 if (err == 0 && 501 (dev = __dev_get_by_name(net, p.name)) != NULL) { 502 dev->flags |= IFF_MULTICAST; 503 if (!ipmr_init_vif_indev(dev)) 504 goto failure; 505 if (dev_open(dev, NULL)) 506 goto failure; 507 dev_hold(dev); 508 } 509 } 510 return dev; 511 512 failure: 513 unregister_netdevice(dev); 514 return NULL; 515 } 516 517 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 518 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 519 { 520 struct net *net = dev_net(dev); 521 struct mr_table *mrt; 522 struct flowi4 fl4 = { 523 .flowi4_oif = dev->ifindex, 524 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 525 .flowi4_mark = skb->mark, 526 }; 527 int err; 528 529 err = ipmr_fib_lookup(net, &fl4, &mrt); 530 if (err < 0) { 531 kfree_skb(skb); 532 return err; 533 } 534 535 read_lock(&mrt_lock); 536 dev->stats.tx_bytes += skb->len; 537 dev->stats.tx_packets++; 538 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT); 539 read_unlock(&mrt_lock); 540 kfree_skb(skb); 541 return NETDEV_TX_OK; 542 } 543 544 static int reg_vif_get_iflink(const struct net_device *dev) 545 { 546 return 0; 547 } 548 549 static const struct net_device_ops reg_vif_netdev_ops = { 550 .ndo_start_xmit = reg_vif_xmit, 551 .ndo_get_iflink = reg_vif_get_iflink, 552 }; 553 554 static void reg_vif_setup(struct net_device *dev) 555 { 556 dev->type = ARPHRD_PIMREG; 557 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 558 dev->flags = IFF_NOARP; 559 dev->netdev_ops = ®_vif_netdev_ops; 560 dev->needs_free_netdev = true; 561 dev->features |= NETIF_F_NETNS_LOCAL; 562 } 563 564 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 565 { 566 struct net_device *dev; 567 char name[IFNAMSIZ]; 568 569 if (mrt->id == RT_TABLE_DEFAULT) 570 sprintf(name, "pimreg"); 571 else 572 sprintf(name, "pimreg%u", mrt->id); 573 574 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 575 576 if (!dev) 577 return NULL; 578 579 dev_net_set(dev, net); 580 581 if (register_netdevice(dev)) { 582 free_netdev(dev); 583 return NULL; 584 } 585 586 if (!ipmr_init_vif_indev(dev)) 587 goto failure; 588 if (dev_open(dev, NULL)) 589 goto failure; 590 591 dev_hold(dev); 592 593 return dev; 594 595 failure: 596 unregister_netdevice(dev); 597 return NULL; 598 } 599 600 /* called with rcu_read_lock() */ 601 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 602 unsigned int pimlen) 603 { 604 struct net_device *reg_dev = NULL; 605 struct iphdr *encap; 606 607 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 608 /* Check that: 609 * a. packet is really sent to a multicast group 610 * b. packet is not a NULL-REGISTER 611 * c. packet is not truncated 612 */ 613 if (!ipv4_is_multicast(encap->daddr) || 614 encap->tot_len == 0 || 615 ntohs(encap->tot_len) + pimlen > skb->len) 616 return 1; 617 618 read_lock(&mrt_lock); 619 if (mrt->mroute_reg_vif_num >= 0) 620 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev; 621 read_unlock(&mrt_lock); 622 623 if (!reg_dev) 624 return 1; 625 626 skb->mac_header = skb->network_header; 627 skb_pull(skb, (u8 *)encap - skb->data); 628 skb_reset_network_header(skb); 629 skb->protocol = htons(ETH_P_IP); 630 skb->ip_summed = CHECKSUM_NONE; 631 632 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 633 634 netif_rx(skb); 635 636 return NET_RX_SUCCESS; 637 } 638 #else 639 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 640 { 641 return NULL; 642 } 643 #endif 644 645 static int call_ipmr_vif_entry_notifiers(struct net *net, 646 enum fib_event_type event_type, 647 struct vif_device *vif, 648 vifi_t vif_index, u32 tb_id) 649 { 650 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type, 651 vif, vif_index, tb_id, 652 &net->ipv4.ipmr_seq); 653 } 654 655 static int call_ipmr_mfc_entry_notifiers(struct net *net, 656 enum fib_event_type event_type, 657 struct mfc_cache *mfc, u32 tb_id) 658 { 659 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type, 660 &mfc->_c, tb_id, &net->ipv4.ipmr_seq); 661 } 662 663 /** 664 * vif_delete - Delete a VIF entry 665 * @notify: Set to 1, if the caller is a notifier_call 666 */ 667 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 668 struct list_head *head) 669 { 670 struct net *net = read_pnet(&mrt->net); 671 struct vif_device *v; 672 struct net_device *dev; 673 struct in_device *in_dev; 674 675 if (vifi < 0 || vifi >= mrt->maxvif) 676 return -EADDRNOTAVAIL; 677 678 v = &mrt->vif_table[vifi]; 679 680 if (VIF_EXISTS(mrt, vifi)) 681 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi, 682 mrt->id); 683 684 write_lock_bh(&mrt_lock); 685 dev = v->dev; 686 v->dev = NULL; 687 688 if (!dev) { 689 write_unlock_bh(&mrt_lock); 690 return -EADDRNOTAVAIL; 691 } 692 693 if (vifi == mrt->mroute_reg_vif_num) 694 mrt->mroute_reg_vif_num = -1; 695 696 if (vifi + 1 == mrt->maxvif) { 697 int tmp; 698 699 for (tmp = vifi - 1; tmp >= 0; tmp--) { 700 if (VIF_EXISTS(mrt, tmp)) 701 break; 702 } 703 mrt->maxvif = tmp+1; 704 } 705 706 write_unlock_bh(&mrt_lock); 707 708 dev_set_allmulti(dev, -1); 709 710 in_dev = __in_dev_get_rtnl(dev); 711 if (in_dev) { 712 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 713 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, 714 NETCONFA_MC_FORWARDING, 715 dev->ifindex, &in_dev->cnf); 716 ip_rt_multicast_event(in_dev); 717 } 718 719 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 720 unregister_netdevice_queue(dev, head); 721 722 dev_put(dev); 723 return 0; 724 } 725 726 static void ipmr_cache_free_rcu(struct rcu_head *head) 727 { 728 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu); 729 730 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c); 731 } 732 733 static void ipmr_cache_free(struct mfc_cache *c) 734 { 735 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu); 736 } 737 738 /* Destroy an unresolved cache entry, killing queued skbs 739 * and reporting error to netlink readers. 740 */ 741 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 742 { 743 struct net *net = read_pnet(&mrt->net); 744 struct sk_buff *skb; 745 struct nlmsgerr *e; 746 747 atomic_dec(&mrt->cache_resolve_queue_len); 748 749 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) { 750 if (ip_hdr(skb)->version == 0) { 751 struct nlmsghdr *nlh = skb_pull(skb, 752 sizeof(struct iphdr)); 753 nlh->nlmsg_type = NLMSG_ERROR; 754 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 755 skb_trim(skb, nlh->nlmsg_len); 756 e = nlmsg_data(nlh); 757 e->error = -ETIMEDOUT; 758 memset(&e->msg, 0, sizeof(e->msg)); 759 760 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 761 } else { 762 kfree_skb(skb); 763 } 764 } 765 766 ipmr_cache_free(c); 767 } 768 769 /* Timer process for the unresolved queue. */ 770 static void ipmr_expire_process(struct timer_list *t) 771 { 772 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer); 773 struct mr_mfc *c, *next; 774 unsigned long expires; 775 unsigned long now; 776 777 if (!spin_trylock(&mfc_unres_lock)) { 778 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 779 return; 780 } 781 782 if (list_empty(&mrt->mfc_unres_queue)) 783 goto out; 784 785 now = jiffies; 786 expires = 10*HZ; 787 788 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 789 if (time_after(c->mfc_un.unres.expires, now)) { 790 unsigned long interval = c->mfc_un.unres.expires - now; 791 if (interval < expires) 792 expires = interval; 793 continue; 794 } 795 796 list_del(&c->list); 797 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE); 798 ipmr_destroy_unres(mrt, (struct mfc_cache *)c); 799 } 800 801 if (!list_empty(&mrt->mfc_unres_queue)) 802 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 803 804 out: 805 spin_unlock(&mfc_unres_lock); 806 } 807 808 /* Fill oifs list. It is called under write locked mrt_lock. */ 809 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache, 810 unsigned char *ttls) 811 { 812 int vifi; 813 814 cache->mfc_un.res.minvif = MAXVIFS; 815 cache->mfc_un.res.maxvif = 0; 816 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 817 818 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 819 if (VIF_EXISTS(mrt, vifi) && 820 ttls[vifi] && ttls[vifi] < 255) { 821 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 822 if (cache->mfc_un.res.minvif > vifi) 823 cache->mfc_un.res.minvif = vifi; 824 if (cache->mfc_un.res.maxvif <= vifi) 825 cache->mfc_un.res.maxvif = vifi + 1; 826 } 827 } 828 cache->mfc_un.res.lastuse = jiffies; 829 } 830 831 static int vif_add(struct net *net, struct mr_table *mrt, 832 struct vifctl *vifc, int mrtsock) 833 { 834 struct netdev_phys_item_id ppid = { }; 835 int vifi = vifc->vifc_vifi; 836 struct vif_device *v = &mrt->vif_table[vifi]; 837 struct net_device *dev; 838 struct in_device *in_dev; 839 int err; 840 841 /* Is vif busy ? */ 842 if (VIF_EXISTS(mrt, vifi)) 843 return -EADDRINUSE; 844 845 switch (vifc->vifc_flags) { 846 case VIFF_REGISTER: 847 if (!ipmr_pimsm_enabled()) 848 return -EINVAL; 849 /* Special Purpose VIF in PIM 850 * All the packets will be sent to the daemon 851 */ 852 if (mrt->mroute_reg_vif_num >= 0) 853 return -EADDRINUSE; 854 dev = ipmr_reg_vif(net, mrt); 855 if (!dev) 856 return -ENOBUFS; 857 err = dev_set_allmulti(dev, 1); 858 if (err) { 859 unregister_netdevice(dev); 860 dev_put(dev); 861 return err; 862 } 863 break; 864 case VIFF_TUNNEL: 865 dev = ipmr_new_tunnel(net, vifc); 866 if (!dev) 867 return -ENOBUFS; 868 err = dev_set_allmulti(dev, 1); 869 if (err) { 870 ipmr_del_tunnel(dev, vifc); 871 dev_put(dev); 872 return err; 873 } 874 break; 875 case VIFF_USE_IFINDEX: 876 case 0: 877 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 878 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 879 if (dev && !__in_dev_get_rtnl(dev)) { 880 dev_put(dev); 881 return -EADDRNOTAVAIL; 882 } 883 } else { 884 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 885 } 886 if (!dev) 887 return -EADDRNOTAVAIL; 888 err = dev_set_allmulti(dev, 1); 889 if (err) { 890 dev_put(dev); 891 return err; 892 } 893 break; 894 default: 895 return -EINVAL; 896 } 897 898 in_dev = __in_dev_get_rtnl(dev); 899 if (!in_dev) { 900 dev_put(dev); 901 return -EADDRNOTAVAIL; 902 } 903 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 904 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, 905 dev->ifindex, &in_dev->cnf); 906 ip_rt_multicast_event(in_dev); 907 908 /* Fill in the VIF structures */ 909 vif_device_init(v, dev, vifc->vifc_rate_limit, 910 vifc->vifc_threshold, 911 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0), 912 (VIFF_TUNNEL | VIFF_REGISTER)); 913 914 err = dev_get_port_parent_id(dev, &ppid, true); 915 if (err == 0) { 916 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len); 917 v->dev_parent_id.id_len = ppid.id_len; 918 } else { 919 v->dev_parent_id.id_len = 0; 920 } 921 922 v->local = vifc->vifc_lcl_addr.s_addr; 923 v->remote = vifc->vifc_rmt_addr.s_addr; 924 925 /* And finish update writing critical data */ 926 write_lock_bh(&mrt_lock); 927 v->dev = dev; 928 if (v->flags & VIFF_REGISTER) 929 mrt->mroute_reg_vif_num = vifi; 930 if (vifi+1 > mrt->maxvif) 931 mrt->maxvif = vifi+1; 932 write_unlock_bh(&mrt_lock); 933 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id); 934 return 0; 935 } 936 937 /* called with rcu_read_lock() */ 938 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 939 __be32 origin, 940 __be32 mcastgrp) 941 { 942 struct mfc_cache_cmp_arg arg = { 943 .mfc_mcastgrp = mcastgrp, 944 .mfc_origin = origin 945 }; 946 947 return mr_mfc_find(mrt, &arg); 948 } 949 950 /* Look for a (*,G) entry */ 951 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 952 __be32 mcastgrp, int vifi) 953 { 954 struct mfc_cache_cmp_arg arg = { 955 .mfc_mcastgrp = mcastgrp, 956 .mfc_origin = htonl(INADDR_ANY) 957 }; 958 959 if (mcastgrp == htonl(INADDR_ANY)) 960 return mr_mfc_find_any_parent(mrt, vifi); 961 return mr_mfc_find_any(mrt, vifi, &arg); 962 } 963 964 /* Look for a (S,G,iif) entry if parent != -1 */ 965 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt, 966 __be32 origin, __be32 mcastgrp, 967 int parent) 968 { 969 struct mfc_cache_cmp_arg arg = { 970 .mfc_mcastgrp = mcastgrp, 971 .mfc_origin = origin, 972 }; 973 974 return mr_mfc_find_parent(mrt, &arg, parent); 975 } 976 977 /* Allocate a multicast cache entry */ 978 static struct mfc_cache *ipmr_cache_alloc(void) 979 { 980 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 981 982 if (c) { 983 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; 984 c->_c.mfc_un.res.minvif = MAXVIFS; 985 c->_c.free = ipmr_cache_free_rcu; 986 refcount_set(&c->_c.mfc_un.res.refcount, 1); 987 } 988 return c; 989 } 990 991 static struct mfc_cache *ipmr_cache_alloc_unres(void) 992 { 993 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 994 995 if (c) { 996 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved); 997 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ; 998 } 999 return c; 1000 } 1001 1002 /* A cache entry has gone into a resolved state from queued */ 1003 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 1004 struct mfc_cache *uc, struct mfc_cache *c) 1005 { 1006 struct sk_buff *skb; 1007 struct nlmsgerr *e; 1008 1009 /* Play the pending entries through our router */ 1010 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) { 1011 if (ip_hdr(skb)->version == 0) { 1012 struct nlmsghdr *nlh = skb_pull(skb, 1013 sizeof(struct iphdr)); 1014 1015 if (mr_fill_mroute(mrt, skb, &c->_c, 1016 nlmsg_data(nlh)) > 0) { 1017 nlh->nlmsg_len = skb_tail_pointer(skb) - 1018 (u8 *)nlh; 1019 } else { 1020 nlh->nlmsg_type = NLMSG_ERROR; 1021 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 1022 skb_trim(skb, nlh->nlmsg_len); 1023 e = nlmsg_data(nlh); 1024 e->error = -EMSGSIZE; 1025 memset(&e->msg, 0, sizeof(e->msg)); 1026 } 1027 1028 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 1029 } else { 1030 ip_mr_forward(net, mrt, skb->dev, skb, c, 0); 1031 } 1032 } 1033 } 1034 1035 /* Bounce a cache query up to mrouted and netlink. 1036 * 1037 * Called under mrt_lock. 1038 */ 1039 static int ipmr_cache_report(struct mr_table *mrt, 1040 struct sk_buff *pkt, vifi_t vifi, int assert) 1041 { 1042 const int ihl = ip_hdrlen(pkt); 1043 struct sock *mroute_sk; 1044 struct igmphdr *igmp; 1045 struct igmpmsg *msg; 1046 struct sk_buff *skb; 1047 int ret; 1048 1049 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) 1050 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 1051 else 1052 skb = alloc_skb(128, GFP_ATOMIC); 1053 1054 if (!skb) 1055 return -ENOBUFS; 1056 1057 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) { 1058 /* Ugly, but we have no choice with this interface. 1059 * Duplicate old header, fix ihl, length etc. 1060 * And all this only to mangle msg->im_msgtype and 1061 * to set msg->im_mbz to "mbz" :-) 1062 */ 1063 skb_push(skb, sizeof(struct iphdr)); 1064 skb_reset_network_header(skb); 1065 skb_reset_transport_header(skb); 1066 msg = (struct igmpmsg *)skb_network_header(skb); 1067 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 1068 msg->im_msgtype = assert; 1069 msg->im_mbz = 0; 1070 if (assert == IGMPMSG_WRVIFWHOLE) 1071 msg->im_vif = vifi; 1072 else 1073 msg->im_vif = mrt->mroute_reg_vif_num; 1074 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 1075 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 1076 sizeof(struct iphdr)); 1077 } else { 1078 /* Copy the IP header */ 1079 skb_set_network_header(skb, skb->len); 1080 skb_put(skb, ihl); 1081 skb_copy_to_linear_data(skb, pkt->data, ihl); 1082 /* Flag to the kernel this is a route add */ 1083 ip_hdr(skb)->protocol = 0; 1084 msg = (struct igmpmsg *)skb_network_header(skb); 1085 msg->im_vif = vifi; 1086 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 1087 /* Add our header */ 1088 igmp = skb_put(skb, sizeof(struct igmphdr)); 1089 igmp->type = assert; 1090 msg->im_msgtype = assert; 1091 igmp->code = 0; 1092 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 1093 skb->transport_header = skb->network_header; 1094 } 1095 1096 rcu_read_lock(); 1097 mroute_sk = rcu_dereference(mrt->mroute_sk); 1098 if (!mroute_sk) { 1099 rcu_read_unlock(); 1100 kfree_skb(skb); 1101 return -EINVAL; 1102 } 1103 1104 igmpmsg_netlink_event(mrt, skb); 1105 1106 /* Deliver to mrouted */ 1107 ret = sock_queue_rcv_skb(mroute_sk, skb); 1108 rcu_read_unlock(); 1109 if (ret < 0) { 1110 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1111 kfree_skb(skb); 1112 } 1113 1114 return ret; 1115 } 1116 1117 /* Queue a packet for resolution. It gets locked cache entry! */ 1118 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, 1119 struct sk_buff *skb, struct net_device *dev) 1120 { 1121 const struct iphdr *iph = ip_hdr(skb); 1122 struct mfc_cache *c; 1123 bool found = false; 1124 int err; 1125 1126 spin_lock_bh(&mfc_unres_lock); 1127 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) { 1128 if (c->mfc_mcastgrp == iph->daddr && 1129 c->mfc_origin == iph->saddr) { 1130 found = true; 1131 break; 1132 } 1133 } 1134 1135 if (!found) { 1136 /* Create a new entry if allowable */ 1137 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 1138 (c = ipmr_cache_alloc_unres()) == NULL) { 1139 spin_unlock_bh(&mfc_unres_lock); 1140 1141 kfree_skb(skb); 1142 return -ENOBUFS; 1143 } 1144 1145 /* Fill in the new cache entry */ 1146 c->_c.mfc_parent = -1; 1147 c->mfc_origin = iph->saddr; 1148 c->mfc_mcastgrp = iph->daddr; 1149 1150 /* Reflect first query at mrouted. */ 1151 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1152 1153 if (err < 0) { 1154 /* If the report failed throw the cache entry 1155 out - Brad Parker 1156 */ 1157 spin_unlock_bh(&mfc_unres_lock); 1158 1159 ipmr_cache_free(c); 1160 kfree_skb(skb); 1161 return err; 1162 } 1163 1164 atomic_inc(&mrt->cache_resolve_queue_len); 1165 list_add(&c->_c.list, &mrt->mfc_unres_queue); 1166 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1167 1168 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1169 mod_timer(&mrt->ipmr_expire_timer, 1170 c->_c.mfc_un.unres.expires); 1171 } 1172 1173 /* See if we can append the packet */ 1174 if (c->_c.mfc_un.unres.unresolved.qlen > 3) { 1175 kfree_skb(skb); 1176 err = -ENOBUFS; 1177 } else { 1178 if (dev) { 1179 skb->dev = dev; 1180 skb->skb_iif = dev->ifindex; 1181 } 1182 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb); 1183 err = 0; 1184 } 1185 1186 spin_unlock_bh(&mfc_unres_lock); 1187 return err; 1188 } 1189 1190 /* MFC cache manipulation by user space mroute daemon */ 1191 1192 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1193 { 1194 struct net *net = read_pnet(&mrt->net); 1195 struct mfc_cache *c; 1196 1197 /* The entries are added/deleted only under RTNL */ 1198 rcu_read_lock(); 1199 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1200 mfc->mfcc_mcastgrp.s_addr, parent); 1201 rcu_read_unlock(); 1202 if (!c) 1203 return -ENOENT; 1204 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params); 1205 list_del_rcu(&c->_c.list); 1206 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id); 1207 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1208 mr_cache_put(&c->_c); 1209 1210 return 0; 1211 } 1212 1213 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1214 struct mfcctl *mfc, int mrtsock, int parent) 1215 { 1216 struct mfc_cache *uc, *c; 1217 struct mr_mfc *_uc; 1218 bool found; 1219 int ret; 1220 1221 if (mfc->mfcc_parent >= MAXVIFS) 1222 return -ENFILE; 1223 1224 /* The entries are added/deleted only under RTNL */ 1225 rcu_read_lock(); 1226 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1227 mfc->mfcc_mcastgrp.s_addr, parent); 1228 rcu_read_unlock(); 1229 if (c) { 1230 write_lock_bh(&mrt_lock); 1231 c->_c.mfc_parent = mfc->mfcc_parent; 1232 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1233 if (!mrtsock) 1234 c->_c.mfc_flags |= MFC_STATIC; 1235 write_unlock_bh(&mrt_lock); 1236 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c, 1237 mrt->id); 1238 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1239 return 0; 1240 } 1241 1242 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1243 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1244 return -EINVAL; 1245 1246 c = ipmr_cache_alloc(); 1247 if (!c) 1248 return -ENOMEM; 1249 1250 c->mfc_origin = mfc->mfcc_origin.s_addr; 1251 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1252 c->_c.mfc_parent = mfc->mfcc_parent; 1253 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1254 if (!mrtsock) 1255 c->_c.mfc_flags |= MFC_STATIC; 1256 1257 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode, 1258 ipmr_rht_params); 1259 if (ret) { 1260 pr_err("ipmr: rhtable insert error %d\n", ret); 1261 ipmr_cache_free(c); 1262 return ret; 1263 } 1264 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list); 1265 /* Check to see if we resolved a queued list. If so we 1266 * need to send on the frames and tidy up. 1267 */ 1268 found = false; 1269 spin_lock_bh(&mfc_unres_lock); 1270 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) { 1271 uc = (struct mfc_cache *)_uc; 1272 if (uc->mfc_origin == c->mfc_origin && 1273 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1274 list_del(&_uc->list); 1275 atomic_dec(&mrt->cache_resolve_queue_len); 1276 found = true; 1277 break; 1278 } 1279 } 1280 if (list_empty(&mrt->mfc_unres_queue)) 1281 del_timer(&mrt->ipmr_expire_timer); 1282 spin_unlock_bh(&mfc_unres_lock); 1283 1284 if (found) { 1285 ipmr_cache_resolve(net, mrt, uc, c); 1286 ipmr_cache_free(uc); 1287 } 1288 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id); 1289 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1290 return 0; 1291 } 1292 1293 /* Close the multicast socket, and clear the vif tables etc */ 1294 static void mroute_clean_tables(struct mr_table *mrt, int flags) 1295 { 1296 struct net *net = read_pnet(&mrt->net); 1297 struct mr_mfc *c, *tmp; 1298 struct mfc_cache *cache; 1299 LIST_HEAD(list); 1300 int i; 1301 1302 /* Shut down all active vif entries */ 1303 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) { 1304 for (i = 0; i < mrt->maxvif; i++) { 1305 if (((mrt->vif_table[i].flags & VIFF_STATIC) && 1306 !(flags & MRT_FLUSH_VIFS_STATIC)) || 1307 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS))) 1308 continue; 1309 vif_delete(mrt, i, 0, &list); 1310 } 1311 unregister_netdevice_many(&list); 1312 } 1313 1314 /* Wipe the cache */ 1315 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) { 1316 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) { 1317 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) || 1318 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC))) 1319 continue; 1320 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params); 1321 list_del_rcu(&c->list); 1322 cache = (struct mfc_cache *)c; 1323 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache, 1324 mrt->id); 1325 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1326 mr_cache_put(c); 1327 } 1328 } 1329 1330 if (flags & MRT_FLUSH_MFC) { 1331 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1332 spin_lock_bh(&mfc_unres_lock); 1333 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) { 1334 list_del(&c->list); 1335 cache = (struct mfc_cache *)c; 1336 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1337 ipmr_destroy_unres(mrt, cache); 1338 } 1339 spin_unlock_bh(&mfc_unres_lock); 1340 } 1341 } 1342 } 1343 1344 /* called from ip_ra_control(), before an RCU grace period, 1345 * we dont need to call synchronize_rcu() here 1346 */ 1347 static void mrtsock_destruct(struct sock *sk) 1348 { 1349 struct net *net = sock_net(sk); 1350 struct mr_table *mrt; 1351 1352 rtnl_lock(); 1353 ipmr_for_each_table(mrt, net) { 1354 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1355 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1356 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1357 NETCONFA_MC_FORWARDING, 1358 NETCONFA_IFINDEX_ALL, 1359 net->ipv4.devconf_all); 1360 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1361 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC); 1362 } 1363 } 1364 rtnl_unlock(); 1365 } 1366 1367 /* Socket options and virtual interface manipulation. The whole 1368 * virtual interface system is a complete heap, but unfortunately 1369 * that's how BSD mrouted happens to think. Maybe one day with a proper 1370 * MOSPF/PIM router set up we can clean this up. 1371 */ 1372 1373 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, 1374 unsigned int optlen) 1375 { 1376 struct net *net = sock_net(sk); 1377 int val, ret = 0, parent = 0; 1378 struct mr_table *mrt; 1379 struct vifctl vif; 1380 struct mfcctl mfc; 1381 bool do_wrvifwhole; 1382 u32 uval; 1383 1384 /* There's one exception to the lock - MRT_DONE which needs to unlock */ 1385 rtnl_lock(); 1386 if (sk->sk_type != SOCK_RAW || 1387 inet_sk(sk)->inet_num != IPPROTO_IGMP) { 1388 ret = -EOPNOTSUPP; 1389 goto out_unlock; 1390 } 1391 1392 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1393 if (!mrt) { 1394 ret = -ENOENT; 1395 goto out_unlock; 1396 } 1397 if (optname != MRT_INIT) { 1398 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1399 !ns_capable(net->user_ns, CAP_NET_ADMIN)) { 1400 ret = -EACCES; 1401 goto out_unlock; 1402 } 1403 } 1404 1405 switch (optname) { 1406 case MRT_INIT: 1407 if (optlen != sizeof(int)) { 1408 ret = -EINVAL; 1409 break; 1410 } 1411 if (rtnl_dereference(mrt->mroute_sk)) { 1412 ret = -EADDRINUSE; 1413 break; 1414 } 1415 1416 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1417 if (ret == 0) { 1418 rcu_assign_pointer(mrt->mroute_sk, sk); 1419 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1420 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1421 NETCONFA_MC_FORWARDING, 1422 NETCONFA_IFINDEX_ALL, 1423 net->ipv4.devconf_all); 1424 } 1425 break; 1426 case MRT_DONE: 1427 if (sk != rcu_access_pointer(mrt->mroute_sk)) { 1428 ret = -EACCES; 1429 } else { 1430 /* We need to unlock here because mrtsock_destruct takes 1431 * care of rtnl itself and we can't change that due to 1432 * the IP_ROUTER_ALERT setsockopt which runs without it. 1433 */ 1434 rtnl_unlock(); 1435 ret = ip_ra_control(sk, 0, NULL); 1436 goto out; 1437 } 1438 break; 1439 case MRT_ADD_VIF: 1440 case MRT_DEL_VIF: 1441 if (optlen != sizeof(vif)) { 1442 ret = -EINVAL; 1443 break; 1444 } 1445 if (copy_from_user(&vif, optval, sizeof(vif))) { 1446 ret = -EFAULT; 1447 break; 1448 } 1449 if (vif.vifc_vifi >= MAXVIFS) { 1450 ret = -ENFILE; 1451 break; 1452 } 1453 if (optname == MRT_ADD_VIF) { 1454 ret = vif_add(net, mrt, &vif, 1455 sk == rtnl_dereference(mrt->mroute_sk)); 1456 } else { 1457 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1458 } 1459 break; 1460 /* Manipulate the forwarding caches. These live 1461 * in a sort of kernel/user symbiosis. 1462 */ 1463 case MRT_ADD_MFC: 1464 case MRT_DEL_MFC: 1465 parent = -1; 1466 /* fall through */ 1467 case MRT_ADD_MFC_PROXY: 1468 case MRT_DEL_MFC_PROXY: 1469 if (optlen != sizeof(mfc)) { 1470 ret = -EINVAL; 1471 break; 1472 } 1473 if (copy_from_user(&mfc, optval, sizeof(mfc))) { 1474 ret = -EFAULT; 1475 break; 1476 } 1477 if (parent == 0) 1478 parent = mfc.mfcc_parent; 1479 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1480 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1481 else 1482 ret = ipmr_mfc_add(net, mrt, &mfc, 1483 sk == rtnl_dereference(mrt->mroute_sk), 1484 parent); 1485 break; 1486 case MRT_FLUSH: 1487 if (optlen != sizeof(val)) { 1488 ret = -EINVAL; 1489 break; 1490 } 1491 if (get_user(val, (int __user *)optval)) { 1492 ret = -EFAULT; 1493 break; 1494 } 1495 mroute_clean_tables(mrt, val); 1496 break; 1497 /* Control PIM assert. */ 1498 case MRT_ASSERT: 1499 if (optlen != sizeof(val)) { 1500 ret = -EINVAL; 1501 break; 1502 } 1503 if (get_user(val, (int __user *)optval)) { 1504 ret = -EFAULT; 1505 break; 1506 } 1507 mrt->mroute_do_assert = val; 1508 break; 1509 case MRT_PIM: 1510 if (!ipmr_pimsm_enabled()) { 1511 ret = -ENOPROTOOPT; 1512 break; 1513 } 1514 if (optlen != sizeof(val)) { 1515 ret = -EINVAL; 1516 break; 1517 } 1518 if (get_user(val, (int __user *)optval)) { 1519 ret = -EFAULT; 1520 break; 1521 } 1522 1523 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE); 1524 val = !!val; 1525 if (val != mrt->mroute_do_pim) { 1526 mrt->mroute_do_pim = val; 1527 mrt->mroute_do_assert = val; 1528 mrt->mroute_do_wrvifwhole = do_wrvifwhole; 1529 } 1530 break; 1531 case MRT_TABLE: 1532 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) { 1533 ret = -ENOPROTOOPT; 1534 break; 1535 } 1536 if (optlen != sizeof(uval)) { 1537 ret = -EINVAL; 1538 break; 1539 } 1540 if (get_user(uval, (u32 __user *)optval)) { 1541 ret = -EFAULT; 1542 break; 1543 } 1544 1545 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1546 ret = -EBUSY; 1547 } else { 1548 mrt = ipmr_new_table(net, uval); 1549 if (IS_ERR(mrt)) 1550 ret = PTR_ERR(mrt); 1551 else 1552 raw_sk(sk)->ipmr_table = uval; 1553 } 1554 break; 1555 /* Spurious command, or MRT_VERSION which you cannot set. */ 1556 default: 1557 ret = -ENOPROTOOPT; 1558 } 1559 out_unlock: 1560 rtnl_unlock(); 1561 out: 1562 return ret; 1563 } 1564 1565 /* Getsock opt support for the multicast routing system. */ 1566 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1567 { 1568 int olr; 1569 int val; 1570 struct net *net = sock_net(sk); 1571 struct mr_table *mrt; 1572 1573 if (sk->sk_type != SOCK_RAW || 1574 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1575 return -EOPNOTSUPP; 1576 1577 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1578 if (!mrt) 1579 return -ENOENT; 1580 1581 switch (optname) { 1582 case MRT_VERSION: 1583 val = 0x0305; 1584 break; 1585 case MRT_PIM: 1586 if (!ipmr_pimsm_enabled()) 1587 return -ENOPROTOOPT; 1588 val = mrt->mroute_do_pim; 1589 break; 1590 case MRT_ASSERT: 1591 val = mrt->mroute_do_assert; 1592 break; 1593 default: 1594 return -ENOPROTOOPT; 1595 } 1596 1597 if (get_user(olr, optlen)) 1598 return -EFAULT; 1599 olr = min_t(unsigned int, olr, sizeof(int)); 1600 if (olr < 0) 1601 return -EINVAL; 1602 if (put_user(olr, optlen)) 1603 return -EFAULT; 1604 if (copy_to_user(optval, &val, olr)) 1605 return -EFAULT; 1606 return 0; 1607 } 1608 1609 /* The IP multicast ioctl support routines. */ 1610 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1611 { 1612 struct sioc_sg_req sr; 1613 struct sioc_vif_req vr; 1614 struct vif_device *vif; 1615 struct mfc_cache *c; 1616 struct net *net = sock_net(sk); 1617 struct mr_table *mrt; 1618 1619 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1620 if (!mrt) 1621 return -ENOENT; 1622 1623 switch (cmd) { 1624 case SIOCGETVIFCNT: 1625 if (copy_from_user(&vr, arg, sizeof(vr))) 1626 return -EFAULT; 1627 if (vr.vifi >= mrt->maxvif) 1628 return -EINVAL; 1629 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif); 1630 read_lock(&mrt_lock); 1631 vif = &mrt->vif_table[vr.vifi]; 1632 if (VIF_EXISTS(mrt, vr.vifi)) { 1633 vr.icount = vif->pkt_in; 1634 vr.ocount = vif->pkt_out; 1635 vr.ibytes = vif->bytes_in; 1636 vr.obytes = vif->bytes_out; 1637 read_unlock(&mrt_lock); 1638 1639 if (copy_to_user(arg, &vr, sizeof(vr))) 1640 return -EFAULT; 1641 return 0; 1642 } 1643 read_unlock(&mrt_lock); 1644 return -EADDRNOTAVAIL; 1645 case SIOCGETSGCNT: 1646 if (copy_from_user(&sr, arg, sizeof(sr))) 1647 return -EFAULT; 1648 1649 rcu_read_lock(); 1650 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1651 if (c) { 1652 sr.pktcnt = c->_c.mfc_un.res.pkt; 1653 sr.bytecnt = c->_c.mfc_un.res.bytes; 1654 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1655 rcu_read_unlock(); 1656 1657 if (copy_to_user(arg, &sr, sizeof(sr))) 1658 return -EFAULT; 1659 return 0; 1660 } 1661 rcu_read_unlock(); 1662 return -EADDRNOTAVAIL; 1663 default: 1664 return -ENOIOCTLCMD; 1665 } 1666 } 1667 1668 #ifdef CONFIG_COMPAT 1669 struct compat_sioc_sg_req { 1670 struct in_addr src; 1671 struct in_addr grp; 1672 compat_ulong_t pktcnt; 1673 compat_ulong_t bytecnt; 1674 compat_ulong_t wrong_if; 1675 }; 1676 1677 struct compat_sioc_vif_req { 1678 vifi_t vifi; /* Which iface */ 1679 compat_ulong_t icount; 1680 compat_ulong_t ocount; 1681 compat_ulong_t ibytes; 1682 compat_ulong_t obytes; 1683 }; 1684 1685 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1686 { 1687 struct compat_sioc_sg_req sr; 1688 struct compat_sioc_vif_req vr; 1689 struct vif_device *vif; 1690 struct mfc_cache *c; 1691 struct net *net = sock_net(sk); 1692 struct mr_table *mrt; 1693 1694 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1695 if (!mrt) 1696 return -ENOENT; 1697 1698 switch (cmd) { 1699 case SIOCGETVIFCNT: 1700 if (copy_from_user(&vr, arg, sizeof(vr))) 1701 return -EFAULT; 1702 if (vr.vifi >= mrt->maxvif) 1703 return -EINVAL; 1704 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif); 1705 read_lock(&mrt_lock); 1706 vif = &mrt->vif_table[vr.vifi]; 1707 if (VIF_EXISTS(mrt, vr.vifi)) { 1708 vr.icount = vif->pkt_in; 1709 vr.ocount = vif->pkt_out; 1710 vr.ibytes = vif->bytes_in; 1711 vr.obytes = vif->bytes_out; 1712 read_unlock(&mrt_lock); 1713 1714 if (copy_to_user(arg, &vr, sizeof(vr))) 1715 return -EFAULT; 1716 return 0; 1717 } 1718 read_unlock(&mrt_lock); 1719 return -EADDRNOTAVAIL; 1720 case SIOCGETSGCNT: 1721 if (copy_from_user(&sr, arg, sizeof(sr))) 1722 return -EFAULT; 1723 1724 rcu_read_lock(); 1725 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1726 if (c) { 1727 sr.pktcnt = c->_c.mfc_un.res.pkt; 1728 sr.bytecnt = c->_c.mfc_un.res.bytes; 1729 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1730 rcu_read_unlock(); 1731 1732 if (copy_to_user(arg, &sr, sizeof(sr))) 1733 return -EFAULT; 1734 return 0; 1735 } 1736 rcu_read_unlock(); 1737 return -EADDRNOTAVAIL; 1738 default: 1739 return -ENOIOCTLCMD; 1740 } 1741 } 1742 #endif 1743 1744 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1745 { 1746 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1747 struct net *net = dev_net(dev); 1748 struct mr_table *mrt; 1749 struct vif_device *v; 1750 int ct; 1751 1752 if (event != NETDEV_UNREGISTER) 1753 return NOTIFY_DONE; 1754 1755 ipmr_for_each_table(mrt, net) { 1756 v = &mrt->vif_table[0]; 1757 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1758 if (v->dev == dev) 1759 vif_delete(mrt, ct, 1, NULL); 1760 } 1761 } 1762 return NOTIFY_DONE; 1763 } 1764 1765 static struct notifier_block ip_mr_notifier = { 1766 .notifier_call = ipmr_device_event, 1767 }; 1768 1769 /* Encapsulate a packet by attaching a valid IPIP header to it. 1770 * This avoids tunnel drivers and other mess and gives us the speed so 1771 * important for multicast video. 1772 */ 1773 static void ip_encap(struct net *net, struct sk_buff *skb, 1774 __be32 saddr, __be32 daddr) 1775 { 1776 struct iphdr *iph; 1777 const struct iphdr *old_iph = ip_hdr(skb); 1778 1779 skb_push(skb, sizeof(struct iphdr)); 1780 skb->transport_header = skb->network_header; 1781 skb_reset_network_header(skb); 1782 iph = ip_hdr(skb); 1783 1784 iph->version = 4; 1785 iph->tos = old_iph->tos; 1786 iph->ttl = old_iph->ttl; 1787 iph->frag_off = 0; 1788 iph->daddr = daddr; 1789 iph->saddr = saddr; 1790 iph->protocol = IPPROTO_IPIP; 1791 iph->ihl = 5; 1792 iph->tot_len = htons(skb->len); 1793 ip_select_ident(net, skb, NULL); 1794 ip_send_check(iph); 1795 1796 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1797 nf_reset(skb); 1798 } 1799 1800 static inline int ipmr_forward_finish(struct net *net, struct sock *sk, 1801 struct sk_buff *skb) 1802 { 1803 struct ip_options *opt = &(IPCB(skb)->opt); 1804 1805 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS); 1806 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len); 1807 1808 if (unlikely(opt->optlen)) 1809 ip_forward_options(skb); 1810 1811 return dst_output(net, sk, skb); 1812 } 1813 1814 #ifdef CONFIG_NET_SWITCHDEV 1815 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1816 int in_vifi, int out_vifi) 1817 { 1818 struct vif_device *out_vif = &mrt->vif_table[out_vifi]; 1819 struct vif_device *in_vif = &mrt->vif_table[in_vifi]; 1820 1821 if (!skb->offload_l3_fwd_mark) 1822 return false; 1823 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len) 1824 return false; 1825 return netdev_phys_item_id_same(&out_vif->dev_parent_id, 1826 &in_vif->dev_parent_id); 1827 } 1828 #else 1829 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1830 int in_vifi, int out_vifi) 1831 { 1832 return false; 1833 } 1834 #endif 1835 1836 /* Processing handlers for ipmr_forward */ 1837 1838 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1839 int in_vifi, struct sk_buff *skb, int vifi) 1840 { 1841 const struct iphdr *iph = ip_hdr(skb); 1842 struct vif_device *vif = &mrt->vif_table[vifi]; 1843 struct net_device *dev; 1844 struct rtable *rt; 1845 struct flowi4 fl4; 1846 int encap = 0; 1847 1848 if (!vif->dev) 1849 goto out_free; 1850 1851 if (vif->flags & VIFF_REGISTER) { 1852 vif->pkt_out++; 1853 vif->bytes_out += skb->len; 1854 vif->dev->stats.tx_bytes += skb->len; 1855 vif->dev->stats.tx_packets++; 1856 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1857 goto out_free; 1858 } 1859 1860 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi)) 1861 goto out_free; 1862 1863 if (vif->flags & VIFF_TUNNEL) { 1864 rt = ip_route_output_ports(net, &fl4, NULL, 1865 vif->remote, vif->local, 1866 0, 0, 1867 IPPROTO_IPIP, 1868 RT_TOS(iph->tos), vif->link); 1869 if (IS_ERR(rt)) 1870 goto out_free; 1871 encap = sizeof(struct iphdr); 1872 } else { 1873 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1874 0, 0, 1875 IPPROTO_IPIP, 1876 RT_TOS(iph->tos), vif->link); 1877 if (IS_ERR(rt)) 1878 goto out_free; 1879 } 1880 1881 dev = rt->dst.dev; 1882 1883 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1884 /* Do not fragment multicasts. Alas, IPv4 does not 1885 * allow to send ICMP, so that packets will disappear 1886 * to blackhole. 1887 */ 1888 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 1889 ip_rt_put(rt); 1890 goto out_free; 1891 } 1892 1893 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1894 1895 if (skb_cow(skb, encap)) { 1896 ip_rt_put(rt); 1897 goto out_free; 1898 } 1899 1900 vif->pkt_out++; 1901 vif->bytes_out += skb->len; 1902 1903 skb_dst_drop(skb); 1904 skb_dst_set(skb, &rt->dst); 1905 ip_decrease_ttl(ip_hdr(skb)); 1906 1907 /* FIXME: forward and output firewalls used to be called here. 1908 * What do we do with netfilter? -- RR 1909 */ 1910 if (vif->flags & VIFF_TUNNEL) { 1911 ip_encap(net, skb, vif->local, vif->remote); 1912 /* FIXME: extra output firewall step used to be here. --RR */ 1913 vif->dev->stats.tx_packets++; 1914 vif->dev->stats.tx_bytes += skb->len; 1915 } 1916 1917 IPCB(skb)->flags |= IPSKB_FORWARDED; 1918 1919 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1920 * not only before forwarding, but after forwarding on all output 1921 * interfaces. It is clear, if mrouter runs a multicasting 1922 * program, it should receive packets not depending to what interface 1923 * program is joined. 1924 * If we will not make it, the program will have to join on all 1925 * interfaces. On the other hand, multihoming host (or router, but 1926 * not mrouter) cannot join to more than one interface - it will 1927 * result in receiving multiple packets. 1928 */ 1929 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, 1930 net, NULL, skb, skb->dev, dev, 1931 ipmr_forward_finish); 1932 return; 1933 1934 out_free: 1935 kfree_skb(skb); 1936 } 1937 1938 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev) 1939 { 1940 int ct; 1941 1942 for (ct = mrt->maxvif-1; ct >= 0; ct--) { 1943 if (mrt->vif_table[ct].dev == dev) 1944 break; 1945 } 1946 return ct; 1947 } 1948 1949 /* "local" means that we should preserve one skb (for local delivery) */ 1950 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1951 struct net_device *dev, struct sk_buff *skb, 1952 struct mfc_cache *c, int local) 1953 { 1954 int true_vifi = ipmr_find_vif(mrt, dev); 1955 int psend = -1; 1956 int vif, ct; 1957 1958 vif = c->_c.mfc_parent; 1959 c->_c.mfc_un.res.pkt++; 1960 c->_c.mfc_un.res.bytes += skb->len; 1961 c->_c.mfc_un.res.lastuse = jiffies; 1962 1963 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1964 struct mfc_cache *cache_proxy; 1965 1966 /* For an (*,G) entry, we only check that the incomming 1967 * interface is part of the static tree. 1968 */ 1969 cache_proxy = mr_mfc_find_any_parent(mrt, vif); 1970 if (cache_proxy && 1971 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255) 1972 goto forward; 1973 } 1974 1975 /* Wrong interface: drop packet and (maybe) send PIM assert. */ 1976 if (mrt->vif_table[vif].dev != dev) { 1977 if (rt_is_output_route(skb_rtable(skb))) { 1978 /* It is our own packet, looped back. 1979 * Very complicated situation... 1980 * 1981 * The best workaround until routing daemons will be 1982 * fixed is not to redistribute packet, if it was 1983 * send through wrong interface. It means, that 1984 * multicast applications WILL NOT work for 1985 * (S,G), which have default multicast route pointing 1986 * to wrong oif. In any case, it is not a good 1987 * idea to use multicasting applications on router. 1988 */ 1989 goto dont_forward; 1990 } 1991 1992 c->_c.mfc_un.res.wrong_if++; 1993 1994 if (true_vifi >= 0 && mrt->mroute_do_assert && 1995 /* pimsm uses asserts, when switching from RPT to SPT, 1996 * so that we cannot check that packet arrived on an oif. 1997 * It is bad, but otherwise we would need to move pretty 1998 * large chunk of pimd to kernel. Ough... --ANK 1999 */ 2000 (mrt->mroute_do_pim || 2001 c->_c.mfc_un.res.ttls[true_vifi] < 255) && 2002 time_after(jiffies, 2003 c->_c.mfc_un.res.last_assert + 2004 MFC_ASSERT_THRESH)) { 2005 c->_c.mfc_un.res.last_assert = jiffies; 2006 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 2007 if (mrt->mroute_do_wrvifwhole) 2008 ipmr_cache_report(mrt, skb, true_vifi, 2009 IGMPMSG_WRVIFWHOLE); 2010 } 2011 goto dont_forward; 2012 } 2013 2014 forward: 2015 mrt->vif_table[vif].pkt_in++; 2016 mrt->vif_table[vif].bytes_in += skb->len; 2017 2018 /* Forward the frame */ 2019 if (c->mfc_origin == htonl(INADDR_ANY) && 2020 c->mfc_mcastgrp == htonl(INADDR_ANY)) { 2021 if (true_vifi >= 0 && 2022 true_vifi != c->_c.mfc_parent && 2023 ip_hdr(skb)->ttl > 2024 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) { 2025 /* It's an (*,*) entry and the packet is not coming from 2026 * the upstream: forward the packet to the upstream 2027 * only. 2028 */ 2029 psend = c->_c.mfc_parent; 2030 goto last_forward; 2031 } 2032 goto dont_forward; 2033 } 2034 for (ct = c->_c.mfc_un.res.maxvif - 1; 2035 ct >= c->_c.mfc_un.res.minvif; ct--) { 2036 /* For (*,G) entry, don't forward to the incoming interface */ 2037 if ((c->mfc_origin != htonl(INADDR_ANY) || 2038 ct != true_vifi) && 2039 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) { 2040 if (psend != -1) { 2041 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2042 2043 if (skb2) 2044 ipmr_queue_xmit(net, mrt, true_vifi, 2045 skb2, psend); 2046 } 2047 psend = ct; 2048 } 2049 } 2050 last_forward: 2051 if (psend != -1) { 2052 if (local) { 2053 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2054 2055 if (skb2) 2056 ipmr_queue_xmit(net, mrt, true_vifi, skb2, 2057 psend); 2058 } else { 2059 ipmr_queue_xmit(net, mrt, true_vifi, skb, psend); 2060 return; 2061 } 2062 } 2063 2064 dont_forward: 2065 if (!local) 2066 kfree_skb(skb); 2067 } 2068 2069 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 2070 { 2071 struct rtable *rt = skb_rtable(skb); 2072 struct iphdr *iph = ip_hdr(skb); 2073 struct flowi4 fl4 = { 2074 .daddr = iph->daddr, 2075 .saddr = iph->saddr, 2076 .flowi4_tos = RT_TOS(iph->tos), 2077 .flowi4_oif = (rt_is_output_route(rt) ? 2078 skb->dev->ifindex : 0), 2079 .flowi4_iif = (rt_is_output_route(rt) ? 2080 LOOPBACK_IFINDEX : 2081 skb->dev->ifindex), 2082 .flowi4_mark = skb->mark, 2083 }; 2084 struct mr_table *mrt; 2085 int err; 2086 2087 err = ipmr_fib_lookup(net, &fl4, &mrt); 2088 if (err) 2089 return ERR_PTR(err); 2090 return mrt; 2091 } 2092 2093 /* Multicast packets for forwarding arrive here 2094 * Called with rcu_read_lock(); 2095 */ 2096 int ip_mr_input(struct sk_buff *skb) 2097 { 2098 struct mfc_cache *cache; 2099 struct net *net = dev_net(skb->dev); 2100 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 2101 struct mr_table *mrt; 2102 struct net_device *dev; 2103 2104 /* skb->dev passed in is the loX master dev for vrfs. 2105 * As there are no vifs associated with loopback devices, 2106 * get the proper interface that does have a vif associated with it. 2107 */ 2108 dev = skb->dev; 2109 if (netif_is_l3_master(skb->dev)) { 2110 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); 2111 if (!dev) { 2112 kfree_skb(skb); 2113 return -ENODEV; 2114 } 2115 } 2116 2117 /* Packet is looped back after forward, it should not be 2118 * forwarded second time, but still can be delivered locally. 2119 */ 2120 if (IPCB(skb)->flags & IPSKB_FORWARDED) 2121 goto dont_forward; 2122 2123 mrt = ipmr_rt_fib_lookup(net, skb); 2124 if (IS_ERR(mrt)) { 2125 kfree_skb(skb); 2126 return PTR_ERR(mrt); 2127 } 2128 if (!local) { 2129 if (IPCB(skb)->opt.router_alert) { 2130 if (ip_call_ra_chain(skb)) 2131 return 0; 2132 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 2133 /* IGMPv1 (and broken IGMPv2 implementations sort of 2134 * Cisco IOS <= 11.2(8)) do not put router alert 2135 * option to IGMP packets destined to routable 2136 * groups. It is very bad, because it means 2137 * that we can forward NO IGMP messages. 2138 */ 2139 struct sock *mroute_sk; 2140 2141 mroute_sk = rcu_dereference(mrt->mroute_sk); 2142 if (mroute_sk) { 2143 nf_reset(skb); 2144 raw_rcv(mroute_sk, skb); 2145 return 0; 2146 } 2147 } 2148 } 2149 2150 /* already under rcu_read_lock() */ 2151 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 2152 if (!cache) { 2153 int vif = ipmr_find_vif(mrt, dev); 2154 2155 if (vif >= 0) 2156 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 2157 vif); 2158 } 2159 2160 /* No usable cache entry */ 2161 if (!cache) { 2162 int vif; 2163 2164 if (local) { 2165 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2166 ip_local_deliver(skb); 2167 if (!skb2) 2168 return -ENOBUFS; 2169 skb = skb2; 2170 } 2171 2172 read_lock(&mrt_lock); 2173 vif = ipmr_find_vif(mrt, dev); 2174 if (vif >= 0) { 2175 int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev); 2176 read_unlock(&mrt_lock); 2177 2178 return err2; 2179 } 2180 read_unlock(&mrt_lock); 2181 kfree_skb(skb); 2182 return -ENODEV; 2183 } 2184 2185 read_lock(&mrt_lock); 2186 ip_mr_forward(net, mrt, dev, skb, cache, local); 2187 read_unlock(&mrt_lock); 2188 2189 if (local) 2190 return ip_local_deliver(skb); 2191 2192 return 0; 2193 2194 dont_forward: 2195 if (local) 2196 return ip_local_deliver(skb); 2197 kfree_skb(skb); 2198 return 0; 2199 } 2200 2201 #ifdef CONFIG_IP_PIMSM_V1 2202 /* Handle IGMP messages of PIMv1 */ 2203 int pim_rcv_v1(struct sk_buff *skb) 2204 { 2205 struct igmphdr *pim; 2206 struct net *net = dev_net(skb->dev); 2207 struct mr_table *mrt; 2208 2209 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2210 goto drop; 2211 2212 pim = igmp_hdr(skb); 2213 2214 mrt = ipmr_rt_fib_lookup(net, skb); 2215 if (IS_ERR(mrt)) 2216 goto drop; 2217 if (!mrt->mroute_do_pim || 2218 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2219 goto drop; 2220 2221 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2222 drop: 2223 kfree_skb(skb); 2224 } 2225 return 0; 2226 } 2227 #endif 2228 2229 #ifdef CONFIG_IP_PIMSM_V2 2230 static int pim_rcv(struct sk_buff *skb) 2231 { 2232 struct pimreghdr *pim; 2233 struct net *net = dev_net(skb->dev); 2234 struct mr_table *mrt; 2235 2236 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2237 goto drop; 2238 2239 pim = (struct pimreghdr *)skb_transport_header(skb); 2240 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) || 2241 (pim->flags & PIM_NULL_REGISTER) || 2242 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2243 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2244 goto drop; 2245 2246 mrt = ipmr_rt_fib_lookup(net, skb); 2247 if (IS_ERR(mrt)) 2248 goto drop; 2249 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2250 drop: 2251 kfree_skb(skb); 2252 } 2253 return 0; 2254 } 2255 #endif 2256 2257 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2258 __be32 saddr, __be32 daddr, 2259 struct rtmsg *rtm, u32 portid) 2260 { 2261 struct mfc_cache *cache; 2262 struct mr_table *mrt; 2263 int err; 2264 2265 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2266 if (!mrt) 2267 return -ENOENT; 2268 2269 rcu_read_lock(); 2270 cache = ipmr_cache_find(mrt, saddr, daddr); 2271 if (!cache && skb->dev) { 2272 int vif = ipmr_find_vif(mrt, skb->dev); 2273 2274 if (vif >= 0) 2275 cache = ipmr_cache_find_any(mrt, daddr, vif); 2276 } 2277 if (!cache) { 2278 struct sk_buff *skb2; 2279 struct iphdr *iph; 2280 struct net_device *dev; 2281 int vif = -1; 2282 2283 dev = skb->dev; 2284 read_lock(&mrt_lock); 2285 if (dev) 2286 vif = ipmr_find_vif(mrt, dev); 2287 if (vif < 0) { 2288 read_unlock(&mrt_lock); 2289 rcu_read_unlock(); 2290 return -ENODEV; 2291 } 2292 skb2 = skb_clone(skb, GFP_ATOMIC); 2293 if (!skb2) { 2294 read_unlock(&mrt_lock); 2295 rcu_read_unlock(); 2296 return -ENOMEM; 2297 } 2298 2299 NETLINK_CB(skb2).portid = portid; 2300 skb_push(skb2, sizeof(struct iphdr)); 2301 skb_reset_network_header(skb2); 2302 iph = ip_hdr(skb2); 2303 iph->ihl = sizeof(struct iphdr) >> 2; 2304 iph->saddr = saddr; 2305 iph->daddr = daddr; 2306 iph->version = 0; 2307 err = ipmr_cache_unresolved(mrt, vif, skb2, dev); 2308 read_unlock(&mrt_lock); 2309 rcu_read_unlock(); 2310 return err; 2311 } 2312 2313 read_lock(&mrt_lock); 2314 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm); 2315 read_unlock(&mrt_lock); 2316 rcu_read_unlock(); 2317 return err; 2318 } 2319 2320 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2321 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2322 int flags) 2323 { 2324 struct nlmsghdr *nlh; 2325 struct rtmsg *rtm; 2326 int err; 2327 2328 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2329 if (!nlh) 2330 return -EMSGSIZE; 2331 2332 rtm = nlmsg_data(nlh); 2333 rtm->rtm_family = RTNL_FAMILY_IPMR; 2334 rtm->rtm_dst_len = 32; 2335 rtm->rtm_src_len = 32; 2336 rtm->rtm_tos = 0; 2337 rtm->rtm_table = mrt->id; 2338 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2339 goto nla_put_failure; 2340 rtm->rtm_type = RTN_MULTICAST; 2341 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2342 if (c->_c.mfc_flags & MFC_STATIC) 2343 rtm->rtm_protocol = RTPROT_STATIC; 2344 else 2345 rtm->rtm_protocol = RTPROT_MROUTED; 2346 rtm->rtm_flags = 0; 2347 2348 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || 2349 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) 2350 goto nla_put_failure; 2351 err = mr_fill_mroute(mrt, skb, &c->_c, rtm); 2352 /* do not break the dump if cache is unresolved */ 2353 if (err < 0 && err != -ENOENT) 2354 goto nla_put_failure; 2355 2356 nlmsg_end(skb, nlh); 2357 return 0; 2358 2359 nla_put_failure: 2360 nlmsg_cancel(skb, nlh); 2361 return -EMSGSIZE; 2362 } 2363 2364 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2365 u32 portid, u32 seq, struct mr_mfc *c, int cmd, 2366 int flags) 2367 { 2368 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c, 2369 cmd, flags); 2370 } 2371 2372 static size_t mroute_msgsize(bool unresolved, int maxvif) 2373 { 2374 size_t len = 2375 NLMSG_ALIGN(sizeof(struct rtmsg)) 2376 + nla_total_size(4) /* RTA_TABLE */ 2377 + nla_total_size(4) /* RTA_SRC */ 2378 + nla_total_size(4) /* RTA_DST */ 2379 ; 2380 2381 if (!unresolved) 2382 len = len 2383 + nla_total_size(4) /* RTA_IIF */ 2384 + nla_total_size(0) /* RTA_MULTIPATH */ 2385 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2386 /* RTA_MFC_STATS */ 2387 + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) 2388 ; 2389 2390 return len; 2391 } 2392 2393 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2394 int cmd) 2395 { 2396 struct net *net = read_pnet(&mrt->net); 2397 struct sk_buff *skb; 2398 int err = -ENOBUFS; 2399 2400 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS, 2401 mrt->maxvif), 2402 GFP_ATOMIC); 2403 if (!skb) 2404 goto errout; 2405 2406 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2407 if (err < 0) 2408 goto errout; 2409 2410 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2411 return; 2412 2413 errout: 2414 kfree_skb(skb); 2415 if (err < 0) 2416 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2417 } 2418 2419 static size_t igmpmsg_netlink_msgsize(size_t payloadlen) 2420 { 2421 size_t len = 2422 NLMSG_ALIGN(sizeof(struct rtgenmsg)) 2423 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */ 2424 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */ 2425 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */ 2426 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */ 2427 /* IPMRA_CREPORT_PKT */ 2428 + nla_total_size(payloadlen) 2429 ; 2430 2431 return len; 2432 } 2433 2434 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt) 2435 { 2436 struct net *net = read_pnet(&mrt->net); 2437 struct nlmsghdr *nlh; 2438 struct rtgenmsg *rtgenm; 2439 struct igmpmsg *msg; 2440 struct sk_buff *skb; 2441 struct nlattr *nla; 2442 int payloadlen; 2443 2444 payloadlen = pkt->len - sizeof(struct igmpmsg); 2445 msg = (struct igmpmsg *)skb_network_header(pkt); 2446 2447 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC); 2448 if (!skb) 2449 goto errout; 2450 2451 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT, 2452 sizeof(struct rtgenmsg), 0); 2453 if (!nlh) 2454 goto errout; 2455 rtgenm = nlmsg_data(nlh); 2456 rtgenm->rtgen_family = RTNL_FAMILY_IPMR; 2457 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) || 2458 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) || 2459 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR, 2460 msg->im_src.s_addr) || 2461 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR, 2462 msg->im_dst.s_addr)) 2463 goto nla_put_failure; 2464 2465 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen); 2466 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg), 2467 nla_data(nla), payloadlen)) 2468 goto nla_put_failure; 2469 2470 nlmsg_end(skb, nlh); 2471 2472 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC); 2473 return; 2474 2475 nla_put_failure: 2476 nlmsg_cancel(skb, nlh); 2477 errout: 2478 kfree_skb(skb); 2479 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS); 2480 } 2481 2482 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb, 2483 const struct nlmsghdr *nlh, 2484 struct nlattr **tb, 2485 struct netlink_ext_ack *extack) 2486 { 2487 struct rtmsg *rtm; 2488 int i, err; 2489 2490 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { 2491 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request"); 2492 return -EINVAL; 2493 } 2494 2495 if (!netlink_strict_get_check(skb)) 2496 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 2497 rtm_ipv4_policy, extack); 2498 2499 rtm = nlmsg_data(nlh); 2500 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) || 2501 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) || 2502 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol || 2503 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) { 2504 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request"); 2505 return -EINVAL; 2506 } 2507 2508 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, 2509 rtm_ipv4_policy, extack); 2510 if (err) 2511 return err; 2512 2513 if ((tb[RTA_SRC] && !rtm->rtm_src_len) || 2514 (tb[RTA_DST] && !rtm->rtm_dst_len)) { 2515 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4"); 2516 return -EINVAL; 2517 } 2518 2519 for (i = 0; i <= RTA_MAX; i++) { 2520 if (!tb[i]) 2521 continue; 2522 2523 switch (i) { 2524 case RTA_SRC: 2525 case RTA_DST: 2526 case RTA_TABLE: 2527 break; 2528 default: 2529 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request"); 2530 return -EINVAL; 2531 } 2532 } 2533 2534 return 0; 2535 } 2536 2537 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2538 struct netlink_ext_ack *extack) 2539 { 2540 struct net *net = sock_net(in_skb->sk); 2541 struct nlattr *tb[RTA_MAX + 1]; 2542 struct sk_buff *skb = NULL; 2543 struct mfc_cache *cache; 2544 struct mr_table *mrt; 2545 __be32 src, grp; 2546 u32 tableid; 2547 int err; 2548 2549 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack); 2550 if (err < 0) 2551 goto errout; 2552 2553 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0; 2554 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0; 2555 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0; 2556 2557 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT); 2558 if (!mrt) { 2559 err = -ENOENT; 2560 goto errout_free; 2561 } 2562 2563 /* entries are added/deleted only under RTNL */ 2564 rcu_read_lock(); 2565 cache = ipmr_cache_find(mrt, src, grp); 2566 rcu_read_unlock(); 2567 if (!cache) { 2568 err = -ENOENT; 2569 goto errout_free; 2570 } 2571 2572 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL); 2573 if (!skb) { 2574 err = -ENOBUFS; 2575 goto errout_free; 2576 } 2577 2578 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid, 2579 nlh->nlmsg_seq, cache, 2580 RTM_NEWROUTE, 0); 2581 if (err < 0) 2582 goto errout_free; 2583 2584 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 2585 2586 errout: 2587 return err; 2588 2589 errout_free: 2590 kfree_skb(skb); 2591 goto errout; 2592 } 2593 2594 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2595 { 2596 struct fib_dump_filter filter = {}; 2597 int err; 2598 2599 if (cb->strict_check) { 2600 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh, 2601 &filter, cb); 2602 if (err < 0) 2603 return err; 2604 } 2605 2606 if (filter.table_id) { 2607 struct mr_table *mrt; 2608 2609 mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id); 2610 if (!mrt) { 2611 if (filter.dump_all_families) 2612 return skb->len; 2613 2614 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist"); 2615 return -ENOENT; 2616 } 2617 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute, 2618 &mfc_unres_lock, &filter); 2619 return skb->len ? : err; 2620 } 2621 2622 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter, 2623 _ipmr_fill_mroute, &mfc_unres_lock, &filter); 2624 } 2625 2626 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = { 2627 [RTA_SRC] = { .type = NLA_U32 }, 2628 [RTA_DST] = { .type = NLA_U32 }, 2629 [RTA_IIF] = { .type = NLA_U32 }, 2630 [RTA_TABLE] = { .type = NLA_U32 }, 2631 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 2632 }; 2633 2634 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol) 2635 { 2636 switch (rtm_protocol) { 2637 case RTPROT_STATIC: 2638 case RTPROT_MROUTED: 2639 return true; 2640 } 2641 return false; 2642 } 2643 2644 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc) 2645 { 2646 struct rtnexthop *rtnh = nla_data(nla); 2647 int remaining = nla_len(nla), vifi = 0; 2648 2649 while (rtnh_ok(rtnh, remaining)) { 2650 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops; 2651 if (++vifi == MAXVIFS) 2652 break; 2653 rtnh = rtnh_next(rtnh, &remaining); 2654 } 2655 2656 return remaining > 0 ? -EINVAL : vifi; 2657 } 2658 2659 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */ 2660 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh, 2661 struct mfcctl *mfcc, int *mrtsock, 2662 struct mr_table **mrtret, 2663 struct netlink_ext_ack *extack) 2664 { 2665 struct net_device *dev = NULL; 2666 u32 tblid = RT_TABLE_DEFAULT; 2667 struct mr_table *mrt; 2668 struct nlattr *attr; 2669 struct rtmsg *rtm; 2670 int ret, rem; 2671 2672 ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX, 2673 rtm_ipmr_policy, extack); 2674 if (ret < 0) 2675 goto out; 2676 rtm = nlmsg_data(nlh); 2677 2678 ret = -EINVAL; 2679 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 || 2680 rtm->rtm_type != RTN_MULTICAST || 2681 rtm->rtm_scope != RT_SCOPE_UNIVERSE || 2682 !ipmr_rtm_validate_proto(rtm->rtm_protocol)) 2683 goto out; 2684 2685 memset(mfcc, 0, sizeof(*mfcc)); 2686 mfcc->mfcc_parent = -1; 2687 ret = 0; 2688 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) { 2689 switch (nla_type(attr)) { 2690 case RTA_SRC: 2691 mfcc->mfcc_origin.s_addr = nla_get_be32(attr); 2692 break; 2693 case RTA_DST: 2694 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr); 2695 break; 2696 case RTA_IIF: 2697 dev = __dev_get_by_index(net, nla_get_u32(attr)); 2698 if (!dev) { 2699 ret = -ENODEV; 2700 goto out; 2701 } 2702 break; 2703 case RTA_MULTIPATH: 2704 if (ipmr_nla_get_ttls(attr, mfcc) < 0) { 2705 ret = -EINVAL; 2706 goto out; 2707 } 2708 break; 2709 case RTA_PREFSRC: 2710 ret = 1; 2711 break; 2712 case RTA_TABLE: 2713 tblid = nla_get_u32(attr); 2714 break; 2715 } 2716 } 2717 mrt = ipmr_get_table(net, tblid); 2718 if (!mrt) { 2719 ret = -ENOENT; 2720 goto out; 2721 } 2722 *mrtret = mrt; 2723 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0; 2724 if (dev) 2725 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev); 2726 2727 out: 2728 return ret; 2729 } 2730 2731 /* takes care of both newroute and delroute */ 2732 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh, 2733 struct netlink_ext_ack *extack) 2734 { 2735 struct net *net = sock_net(skb->sk); 2736 int ret, mrtsock, parent; 2737 struct mr_table *tbl; 2738 struct mfcctl mfcc; 2739 2740 mrtsock = 0; 2741 tbl = NULL; 2742 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack); 2743 if (ret < 0) 2744 return ret; 2745 2746 parent = ret ? mfcc.mfcc_parent : -1; 2747 if (nlh->nlmsg_type == RTM_NEWROUTE) 2748 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent); 2749 else 2750 return ipmr_mfc_delete(tbl, &mfcc, parent); 2751 } 2752 2753 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb) 2754 { 2755 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len); 2756 2757 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) || 2758 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) || 2759 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM, 2760 mrt->mroute_reg_vif_num) || 2761 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT, 2762 mrt->mroute_do_assert) || 2763 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) || 2764 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE, 2765 mrt->mroute_do_wrvifwhole)) 2766 return false; 2767 2768 return true; 2769 } 2770 2771 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb) 2772 { 2773 struct nlattr *vif_nest; 2774 struct vif_device *vif; 2775 2776 /* if the VIF doesn't exist just continue */ 2777 if (!VIF_EXISTS(mrt, vifid)) 2778 return true; 2779 2780 vif = &mrt->vif_table[vifid]; 2781 vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF); 2782 if (!vif_nest) 2783 return false; 2784 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) || 2785 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) || 2786 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) || 2787 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in, 2788 IPMRA_VIFA_PAD) || 2789 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out, 2790 IPMRA_VIFA_PAD) || 2791 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in, 2792 IPMRA_VIFA_PAD) || 2793 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out, 2794 IPMRA_VIFA_PAD) || 2795 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) || 2796 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) { 2797 nla_nest_cancel(skb, vif_nest); 2798 return false; 2799 } 2800 nla_nest_end(skb, vif_nest); 2801 2802 return true; 2803 } 2804 2805 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh, 2806 struct netlink_ext_ack *extack) 2807 { 2808 struct ifinfomsg *ifm; 2809 2810 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) { 2811 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump"); 2812 return -EINVAL; 2813 } 2814 2815 if (nlmsg_attrlen(nlh, sizeof(*ifm))) { 2816 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump"); 2817 return -EINVAL; 2818 } 2819 2820 ifm = nlmsg_data(nlh); 2821 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags || 2822 ifm->ifi_change || ifm->ifi_index) { 2823 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request"); 2824 return -EINVAL; 2825 } 2826 2827 return 0; 2828 } 2829 2830 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb) 2831 { 2832 struct net *net = sock_net(skb->sk); 2833 struct nlmsghdr *nlh = NULL; 2834 unsigned int t = 0, s_t; 2835 unsigned int e = 0, s_e; 2836 struct mr_table *mrt; 2837 2838 if (cb->strict_check) { 2839 int err = ipmr_valid_dumplink(cb->nlh, cb->extack); 2840 2841 if (err < 0) 2842 return err; 2843 } 2844 2845 s_t = cb->args[0]; 2846 s_e = cb->args[1]; 2847 2848 ipmr_for_each_table(mrt, net) { 2849 struct nlattr *vifs, *af; 2850 struct ifinfomsg *hdr; 2851 u32 i; 2852 2853 if (t < s_t) 2854 goto skip_table; 2855 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, 2856 cb->nlh->nlmsg_seq, RTM_NEWLINK, 2857 sizeof(*hdr), NLM_F_MULTI); 2858 if (!nlh) 2859 break; 2860 2861 hdr = nlmsg_data(nlh); 2862 memset(hdr, 0, sizeof(*hdr)); 2863 hdr->ifi_family = RTNL_FAMILY_IPMR; 2864 2865 af = nla_nest_start_noflag(skb, IFLA_AF_SPEC); 2866 if (!af) { 2867 nlmsg_cancel(skb, nlh); 2868 goto out; 2869 } 2870 2871 if (!ipmr_fill_table(mrt, skb)) { 2872 nlmsg_cancel(skb, nlh); 2873 goto out; 2874 } 2875 2876 vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS); 2877 if (!vifs) { 2878 nla_nest_end(skb, af); 2879 nlmsg_end(skb, nlh); 2880 goto out; 2881 } 2882 for (i = 0; i < mrt->maxvif; i++) { 2883 if (e < s_e) 2884 goto skip_entry; 2885 if (!ipmr_fill_vif(mrt, i, skb)) { 2886 nla_nest_end(skb, vifs); 2887 nla_nest_end(skb, af); 2888 nlmsg_end(skb, nlh); 2889 goto out; 2890 } 2891 skip_entry: 2892 e++; 2893 } 2894 s_e = 0; 2895 e = 0; 2896 nla_nest_end(skb, vifs); 2897 nla_nest_end(skb, af); 2898 nlmsg_end(skb, nlh); 2899 skip_table: 2900 t++; 2901 } 2902 2903 out: 2904 cb->args[1] = e; 2905 cb->args[0] = t; 2906 2907 return skb->len; 2908 } 2909 2910 #ifdef CONFIG_PROC_FS 2911 /* The /proc interfaces to multicast routing : 2912 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2913 */ 2914 2915 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2916 __acquires(mrt_lock) 2917 { 2918 struct mr_vif_iter *iter = seq->private; 2919 struct net *net = seq_file_net(seq); 2920 struct mr_table *mrt; 2921 2922 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2923 if (!mrt) 2924 return ERR_PTR(-ENOENT); 2925 2926 iter->mrt = mrt; 2927 2928 read_lock(&mrt_lock); 2929 return mr_vif_seq_start(seq, pos); 2930 } 2931 2932 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2933 __releases(mrt_lock) 2934 { 2935 read_unlock(&mrt_lock); 2936 } 2937 2938 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2939 { 2940 struct mr_vif_iter *iter = seq->private; 2941 struct mr_table *mrt = iter->mrt; 2942 2943 if (v == SEQ_START_TOKEN) { 2944 seq_puts(seq, 2945 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2946 } else { 2947 const struct vif_device *vif = v; 2948 const char *name = vif->dev ? 2949 vif->dev->name : "none"; 2950 2951 seq_printf(seq, 2952 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2953 vif - mrt->vif_table, 2954 name, vif->bytes_in, vif->pkt_in, 2955 vif->bytes_out, vif->pkt_out, 2956 vif->flags, vif->local, vif->remote); 2957 } 2958 return 0; 2959 } 2960 2961 static const struct seq_operations ipmr_vif_seq_ops = { 2962 .start = ipmr_vif_seq_start, 2963 .next = mr_vif_seq_next, 2964 .stop = ipmr_vif_seq_stop, 2965 .show = ipmr_vif_seq_show, 2966 }; 2967 2968 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2969 { 2970 struct net *net = seq_file_net(seq); 2971 struct mr_table *mrt; 2972 2973 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2974 if (!mrt) 2975 return ERR_PTR(-ENOENT); 2976 2977 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock); 2978 } 2979 2980 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2981 { 2982 int n; 2983 2984 if (v == SEQ_START_TOKEN) { 2985 seq_puts(seq, 2986 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2987 } else { 2988 const struct mfc_cache *mfc = v; 2989 const struct mr_mfc_iter *it = seq->private; 2990 const struct mr_table *mrt = it->mrt; 2991 2992 seq_printf(seq, "%08X %08X %-3hd", 2993 (__force u32) mfc->mfc_mcastgrp, 2994 (__force u32) mfc->mfc_origin, 2995 mfc->_c.mfc_parent); 2996 2997 if (it->cache != &mrt->mfc_unres_queue) { 2998 seq_printf(seq, " %8lu %8lu %8lu", 2999 mfc->_c.mfc_un.res.pkt, 3000 mfc->_c.mfc_un.res.bytes, 3001 mfc->_c.mfc_un.res.wrong_if); 3002 for (n = mfc->_c.mfc_un.res.minvif; 3003 n < mfc->_c.mfc_un.res.maxvif; n++) { 3004 if (VIF_EXISTS(mrt, n) && 3005 mfc->_c.mfc_un.res.ttls[n] < 255) 3006 seq_printf(seq, 3007 " %2d:%-3d", 3008 n, mfc->_c.mfc_un.res.ttls[n]); 3009 } 3010 } else { 3011 /* unresolved mfc_caches don't contain 3012 * pkt, bytes and wrong_if values 3013 */ 3014 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 3015 } 3016 seq_putc(seq, '\n'); 3017 } 3018 return 0; 3019 } 3020 3021 static const struct seq_operations ipmr_mfc_seq_ops = { 3022 .start = ipmr_mfc_seq_start, 3023 .next = mr_mfc_seq_next, 3024 .stop = mr_mfc_seq_stop, 3025 .show = ipmr_mfc_seq_show, 3026 }; 3027 #endif 3028 3029 #ifdef CONFIG_IP_PIMSM_V2 3030 static const struct net_protocol pim_protocol = { 3031 .handler = pim_rcv, 3032 .netns_ok = 1, 3033 }; 3034 #endif 3035 3036 static unsigned int ipmr_seq_read(struct net *net) 3037 { 3038 ASSERT_RTNL(); 3039 3040 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net); 3041 } 3042 3043 static int ipmr_dump(struct net *net, struct notifier_block *nb) 3044 { 3045 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump, 3046 ipmr_mr_table_iter, &mrt_lock); 3047 } 3048 3049 static const struct fib_notifier_ops ipmr_notifier_ops_template = { 3050 .family = RTNL_FAMILY_IPMR, 3051 .fib_seq_read = ipmr_seq_read, 3052 .fib_dump = ipmr_dump, 3053 .owner = THIS_MODULE, 3054 }; 3055 3056 static int __net_init ipmr_notifier_init(struct net *net) 3057 { 3058 struct fib_notifier_ops *ops; 3059 3060 net->ipv4.ipmr_seq = 0; 3061 3062 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net); 3063 if (IS_ERR(ops)) 3064 return PTR_ERR(ops); 3065 net->ipv4.ipmr_notifier_ops = ops; 3066 3067 return 0; 3068 } 3069 3070 static void __net_exit ipmr_notifier_exit(struct net *net) 3071 { 3072 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops); 3073 net->ipv4.ipmr_notifier_ops = NULL; 3074 } 3075 3076 /* Setup for IP multicast routing */ 3077 static int __net_init ipmr_net_init(struct net *net) 3078 { 3079 int err; 3080 3081 err = ipmr_notifier_init(net); 3082 if (err) 3083 goto ipmr_notifier_fail; 3084 3085 err = ipmr_rules_init(net); 3086 if (err < 0) 3087 goto ipmr_rules_fail; 3088 3089 #ifdef CONFIG_PROC_FS 3090 err = -ENOMEM; 3091 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops, 3092 sizeof(struct mr_vif_iter))) 3093 goto proc_vif_fail; 3094 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops, 3095 sizeof(struct mr_mfc_iter))) 3096 goto proc_cache_fail; 3097 #endif 3098 return 0; 3099 3100 #ifdef CONFIG_PROC_FS 3101 proc_cache_fail: 3102 remove_proc_entry("ip_mr_vif", net->proc_net); 3103 proc_vif_fail: 3104 ipmr_rules_exit(net); 3105 #endif 3106 ipmr_rules_fail: 3107 ipmr_notifier_exit(net); 3108 ipmr_notifier_fail: 3109 return err; 3110 } 3111 3112 static void __net_exit ipmr_net_exit(struct net *net) 3113 { 3114 #ifdef CONFIG_PROC_FS 3115 remove_proc_entry("ip_mr_cache", net->proc_net); 3116 remove_proc_entry("ip_mr_vif", net->proc_net); 3117 #endif 3118 ipmr_notifier_exit(net); 3119 ipmr_rules_exit(net); 3120 } 3121 3122 static struct pernet_operations ipmr_net_ops = { 3123 .init = ipmr_net_init, 3124 .exit = ipmr_net_exit, 3125 }; 3126 3127 int __init ip_mr_init(void) 3128 { 3129 int err; 3130 3131 mrt_cachep = kmem_cache_create("ip_mrt_cache", 3132 sizeof(struct mfc_cache), 3133 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 3134 NULL); 3135 3136 err = register_pernet_subsys(&ipmr_net_ops); 3137 if (err) 3138 goto reg_pernet_fail; 3139 3140 err = register_netdevice_notifier(&ip_mr_notifier); 3141 if (err) 3142 goto reg_notif_fail; 3143 #ifdef CONFIG_IP_PIMSM_V2 3144 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 3145 pr_err("%s: can't add PIM protocol\n", __func__); 3146 err = -EAGAIN; 3147 goto add_proto_fail; 3148 } 3149 #endif 3150 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 3151 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0); 3152 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE, 3153 ipmr_rtm_route, NULL, 0); 3154 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE, 3155 ipmr_rtm_route, NULL, 0); 3156 3157 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK, 3158 NULL, ipmr_rtm_dumplink, 0); 3159 return 0; 3160 3161 #ifdef CONFIG_IP_PIMSM_V2 3162 add_proto_fail: 3163 unregister_netdevice_notifier(&ip_mr_notifier); 3164 #endif 3165 reg_notif_fail: 3166 unregister_pernet_subsys(&ipmr_net_ops); 3167 reg_pernet_fail: 3168 kmem_cache_destroy(mrt_cachep); 3169 return err; 3170 } 3171