1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * IP multicast routing support for mrouted 3.6/3.8 4 * 5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * Linux Consultancy and Custom Driver Development 7 * 8 * Fixes: 9 * Michael Chastain : Incorrect size of copying. 10 * Alan Cox : Added the cache manager code 11 * Alan Cox : Fixed the clone/copy bug and device race. 12 * Mike McLagan : Routing by source 13 * Malcolm Beattie : Buffer handling fixes. 14 * Alexey Kuznetsov : Double buffer free and other fixes. 15 * SVR Anand : Fixed several multicast bugs and problems. 16 * Alexey Kuznetsov : Status, optimisations and more. 17 * Brad Parker : Better behaviour on mrouted upcall 18 * overflow. 19 * Carlos Picoto : PIMv1 Support 20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 21 * Relax this requirement to work with older peers. 22 */ 23 24 #include <linux/uaccess.h> 25 #include <linux/types.h> 26 #include <linux/cache.h> 27 #include <linux/capability.h> 28 #include <linux/errno.h> 29 #include <linux/mm.h> 30 #include <linux/kernel.h> 31 #include <linux/fcntl.h> 32 #include <linux/stat.h> 33 #include <linux/socket.h> 34 #include <linux/in.h> 35 #include <linux/inet.h> 36 #include <linux/netdevice.h> 37 #include <linux/inetdevice.h> 38 #include <linux/igmp.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <linux/mroute.h> 42 #include <linux/init.h> 43 #include <linux/if_ether.h> 44 #include <linux/slab.h> 45 #include <net/net_namespace.h> 46 #include <net/ip.h> 47 #include <net/protocol.h> 48 #include <linux/skbuff.h> 49 #include <net/route.h> 50 #include <net/icmp.h> 51 #include <net/udp.h> 52 #include <net/raw.h> 53 #include <linux/notifier.h> 54 #include <linux/if_arp.h> 55 #include <linux/netfilter_ipv4.h> 56 #include <linux/compat.h> 57 #include <linux/export.h> 58 #include <linux/rhashtable.h> 59 #include <net/ip_tunnels.h> 60 #include <net/checksum.h> 61 #include <net/netlink.h> 62 #include <net/fib_rules.h> 63 #include <linux/netconf.h> 64 #include <net/rtnh.h> 65 66 #include <linux/nospec.h> 67 68 struct ipmr_rule { 69 struct fib_rule common; 70 }; 71 72 struct ipmr_result { 73 struct mr_table *mrt; 74 }; 75 76 /* Big lock, protecting vif table, mrt cache and mroute socket state. 77 * Note that the changes are semaphored via rtnl_lock. 78 */ 79 80 static DEFINE_SPINLOCK(mrt_lock); 81 82 static struct net_device *vif_dev_read(const struct vif_device *vif) 83 { 84 return rcu_dereference(vif->dev); 85 } 86 87 /* Multicast router control variables */ 88 89 /* Special spinlock for queue of unresolved entries */ 90 static DEFINE_SPINLOCK(mfc_unres_lock); 91 92 /* We return to original Alan's scheme. Hash table of resolved 93 * entries is changed only in process context and protected 94 * with weak lock mrt_lock. Queue of unresolved entries is protected 95 * with strong spinlock mfc_unres_lock. 96 * 97 * In this case data path is free of exclusive locks at all. 98 */ 99 100 static struct kmem_cache *mrt_cachep __ro_after_init; 101 102 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 103 static void ipmr_free_table(struct mr_table *mrt); 104 105 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 106 struct net_device *dev, struct sk_buff *skb, 107 struct mfc_cache *cache, int local); 108 static int ipmr_cache_report(const struct mr_table *mrt, 109 struct sk_buff *pkt, vifi_t vifi, int assert); 110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 111 int cmd); 112 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt); 113 static void mroute_clean_tables(struct mr_table *mrt, int flags); 114 static void ipmr_expire_process(struct timer_list *t); 115 116 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 117 #define ipmr_for_each_table(mrt, net) \ 118 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \ 119 lockdep_rtnl_is_held() || \ 120 list_empty(&net->ipv4.mr_tables)) 121 122 static struct mr_table *ipmr_mr_table_iter(struct net *net, 123 struct mr_table *mrt) 124 { 125 struct mr_table *ret; 126 127 if (!mrt) 128 ret = list_entry_rcu(net->ipv4.mr_tables.next, 129 struct mr_table, list); 130 else 131 ret = list_entry_rcu(mrt->list.next, 132 struct mr_table, list); 133 134 if (&ret->list == &net->ipv4.mr_tables) 135 return NULL; 136 return ret; 137 } 138 139 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 140 { 141 struct mr_table *mrt; 142 143 ipmr_for_each_table(mrt, net) { 144 if (mrt->id == id) 145 return mrt; 146 } 147 return NULL; 148 } 149 150 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 151 struct mr_table **mrt) 152 { 153 int err; 154 struct ipmr_result res; 155 struct fib_lookup_arg arg = { 156 .result = &res, 157 .flags = FIB_LOOKUP_NOREF, 158 }; 159 160 /* update flow if oif or iif point to device enslaved to l3mdev */ 161 l3mdev_update_flow(net, flowi4_to_flowi(flp4)); 162 163 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 164 flowi4_to_flowi(flp4), 0, &arg); 165 if (err < 0) 166 return err; 167 *mrt = res.mrt; 168 return 0; 169 } 170 171 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 172 int flags, struct fib_lookup_arg *arg) 173 { 174 struct ipmr_result *res = arg->result; 175 struct mr_table *mrt; 176 177 switch (rule->action) { 178 case FR_ACT_TO_TBL: 179 break; 180 case FR_ACT_UNREACHABLE: 181 return -ENETUNREACH; 182 case FR_ACT_PROHIBIT: 183 return -EACCES; 184 case FR_ACT_BLACKHOLE: 185 default: 186 return -EINVAL; 187 } 188 189 arg->table = fib_rule_get_table(rule, arg); 190 191 mrt = ipmr_get_table(rule->fr_net, arg->table); 192 if (!mrt) 193 return -EAGAIN; 194 res->mrt = mrt; 195 return 0; 196 } 197 198 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 199 { 200 return 1; 201 } 202 203 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 204 struct fib_rule_hdr *frh, struct nlattr **tb, 205 struct netlink_ext_ack *extack) 206 { 207 return 0; 208 } 209 210 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 211 struct nlattr **tb) 212 { 213 return 1; 214 } 215 216 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 217 struct fib_rule_hdr *frh) 218 { 219 frh->dst_len = 0; 220 frh->src_len = 0; 221 frh->tos = 0; 222 return 0; 223 } 224 225 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 226 .family = RTNL_FAMILY_IPMR, 227 .rule_size = sizeof(struct ipmr_rule), 228 .addr_size = sizeof(u32), 229 .action = ipmr_rule_action, 230 .match = ipmr_rule_match, 231 .configure = ipmr_rule_configure, 232 .compare = ipmr_rule_compare, 233 .fill = ipmr_rule_fill, 234 .nlgroup = RTNLGRP_IPV4_RULE, 235 .owner = THIS_MODULE, 236 }; 237 238 static int __net_init ipmr_rules_init(struct net *net) 239 { 240 struct fib_rules_ops *ops; 241 struct mr_table *mrt; 242 int err; 243 244 ops = fib_rules_register(&ipmr_rules_ops_template, net); 245 if (IS_ERR(ops)) 246 return PTR_ERR(ops); 247 248 INIT_LIST_HEAD(&net->ipv4.mr_tables); 249 250 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 251 if (IS_ERR(mrt)) { 252 err = PTR_ERR(mrt); 253 goto err1; 254 } 255 256 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 257 if (err < 0) 258 goto err2; 259 260 net->ipv4.mr_rules_ops = ops; 261 return 0; 262 263 err2: 264 rtnl_lock(); 265 ipmr_free_table(mrt); 266 rtnl_unlock(); 267 err1: 268 fib_rules_unregister(ops); 269 return err; 270 } 271 272 static void __net_exit ipmr_rules_exit(struct net *net) 273 { 274 struct mr_table *mrt, *next; 275 276 ASSERT_RTNL(); 277 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 278 list_del(&mrt->list); 279 ipmr_free_table(mrt); 280 } 281 fib_rules_unregister(net->ipv4.mr_rules_ops); 282 } 283 284 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, 285 struct netlink_ext_ack *extack) 286 { 287 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack); 288 } 289 290 static unsigned int ipmr_rules_seq_read(struct net *net) 291 { 292 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR); 293 } 294 295 bool ipmr_rule_default(const struct fib_rule *rule) 296 { 297 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT; 298 } 299 EXPORT_SYMBOL(ipmr_rule_default); 300 #else 301 #define ipmr_for_each_table(mrt, net) \ 302 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 303 304 static struct mr_table *ipmr_mr_table_iter(struct net *net, 305 struct mr_table *mrt) 306 { 307 if (!mrt) 308 return net->ipv4.mrt; 309 return NULL; 310 } 311 312 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 313 { 314 return net->ipv4.mrt; 315 } 316 317 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 318 struct mr_table **mrt) 319 { 320 *mrt = net->ipv4.mrt; 321 return 0; 322 } 323 324 static int __net_init ipmr_rules_init(struct net *net) 325 { 326 struct mr_table *mrt; 327 328 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 329 if (IS_ERR(mrt)) 330 return PTR_ERR(mrt); 331 net->ipv4.mrt = mrt; 332 return 0; 333 } 334 335 static void __net_exit ipmr_rules_exit(struct net *net) 336 { 337 ASSERT_RTNL(); 338 ipmr_free_table(net->ipv4.mrt); 339 net->ipv4.mrt = NULL; 340 } 341 342 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, 343 struct netlink_ext_ack *extack) 344 { 345 return 0; 346 } 347 348 static unsigned int ipmr_rules_seq_read(struct net *net) 349 { 350 return 0; 351 } 352 353 bool ipmr_rule_default(const struct fib_rule *rule) 354 { 355 return true; 356 } 357 EXPORT_SYMBOL(ipmr_rule_default); 358 #endif 359 360 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg, 361 const void *ptr) 362 { 363 const struct mfc_cache_cmp_arg *cmparg = arg->key; 364 const struct mfc_cache *c = ptr; 365 366 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp || 367 cmparg->mfc_origin != c->mfc_origin; 368 } 369 370 static const struct rhashtable_params ipmr_rht_params = { 371 .head_offset = offsetof(struct mr_mfc, mnode), 372 .key_offset = offsetof(struct mfc_cache, cmparg), 373 .key_len = sizeof(struct mfc_cache_cmp_arg), 374 .nelem_hint = 3, 375 .obj_cmpfn = ipmr_hash_cmp, 376 .automatic_shrinking = true, 377 }; 378 379 static void ipmr_new_table_set(struct mr_table *mrt, 380 struct net *net) 381 { 382 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 383 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 384 #endif 385 } 386 387 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = { 388 .mfc_mcastgrp = htonl(INADDR_ANY), 389 .mfc_origin = htonl(INADDR_ANY), 390 }; 391 392 static struct mr_table_ops ipmr_mr_table_ops = { 393 .rht_params = &ipmr_rht_params, 394 .cmparg_any = &ipmr_mr_table_ops_cmparg_any, 395 }; 396 397 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 398 { 399 struct mr_table *mrt; 400 401 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 402 if (id != RT_TABLE_DEFAULT && id >= 1000000000) 403 return ERR_PTR(-EINVAL); 404 405 mrt = ipmr_get_table(net, id); 406 if (mrt) 407 return mrt; 408 409 return mr_table_alloc(net, id, &ipmr_mr_table_ops, 410 ipmr_expire_process, ipmr_new_table_set); 411 } 412 413 static void ipmr_free_table(struct mr_table *mrt) 414 { 415 timer_shutdown_sync(&mrt->ipmr_expire_timer); 416 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC | 417 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC); 418 rhltable_destroy(&mrt->mfc_hash); 419 kfree(mrt); 420 } 421 422 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 423 424 /* Initialize ipmr pimreg/tunnel in_device */ 425 static bool ipmr_init_vif_indev(const struct net_device *dev) 426 { 427 struct in_device *in_dev; 428 429 ASSERT_RTNL(); 430 431 in_dev = __in_dev_get_rtnl(dev); 432 if (!in_dev) 433 return false; 434 ipv4_devconf_setall(in_dev); 435 neigh_parms_data_state_setall(in_dev->arp_parms); 436 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 437 438 return true; 439 } 440 441 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 442 { 443 struct net_device *tunnel_dev, *new_dev; 444 struct ip_tunnel_parm p = { }; 445 int err; 446 447 tunnel_dev = __dev_get_by_name(net, "tunl0"); 448 if (!tunnel_dev) 449 goto out; 450 451 p.iph.daddr = v->vifc_rmt_addr.s_addr; 452 p.iph.saddr = v->vifc_lcl_addr.s_addr; 453 p.iph.version = 4; 454 p.iph.ihl = 5; 455 p.iph.protocol = IPPROTO_IPIP; 456 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 457 458 if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl) 459 goto out; 460 err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p, 461 SIOCADDTUNNEL); 462 if (err) 463 goto out; 464 465 new_dev = __dev_get_by_name(net, p.name); 466 if (!new_dev) 467 goto out; 468 469 new_dev->flags |= IFF_MULTICAST; 470 if (!ipmr_init_vif_indev(new_dev)) 471 goto out_unregister; 472 if (dev_open(new_dev, NULL)) 473 goto out_unregister; 474 dev_hold(new_dev); 475 err = dev_set_allmulti(new_dev, 1); 476 if (err) { 477 dev_close(new_dev); 478 tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p, 479 SIOCDELTUNNEL); 480 dev_put(new_dev); 481 new_dev = ERR_PTR(err); 482 } 483 return new_dev; 484 485 out_unregister: 486 unregister_netdevice(new_dev); 487 out: 488 return ERR_PTR(-ENOBUFS); 489 } 490 491 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 492 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 493 { 494 struct net *net = dev_net(dev); 495 struct mr_table *mrt; 496 struct flowi4 fl4 = { 497 .flowi4_oif = dev->ifindex, 498 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 499 .flowi4_mark = skb->mark, 500 }; 501 int err; 502 503 err = ipmr_fib_lookup(net, &fl4, &mrt); 504 if (err < 0) { 505 kfree_skb(skb); 506 return err; 507 } 508 509 DEV_STATS_ADD(dev, tx_bytes, skb->len); 510 DEV_STATS_INC(dev, tx_packets); 511 rcu_read_lock(); 512 513 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */ 514 ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num), 515 IGMPMSG_WHOLEPKT); 516 517 rcu_read_unlock(); 518 kfree_skb(skb); 519 return NETDEV_TX_OK; 520 } 521 522 static int reg_vif_get_iflink(const struct net_device *dev) 523 { 524 return 0; 525 } 526 527 static const struct net_device_ops reg_vif_netdev_ops = { 528 .ndo_start_xmit = reg_vif_xmit, 529 .ndo_get_iflink = reg_vif_get_iflink, 530 }; 531 532 static void reg_vif_setup(struct net_device *dev) 533 { 534 dev->type = ARPHRD_PIMREG; 535 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 536 dev->flags = IFF_NOARP; 537 dev->netdev_ops = ®_vif_netdev_ops; 538 dev->needs_free_netdev = true; 539 dev->features |= NETIF_F_NETNS_LOCAL; 540 } 541 542 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 543 { 544 struct net_device *dev; 545 char name[IFNAMSIZ]; 546 547 if (mrt->id == RT_TABLE_DEFAULT) 548 sprintf(name, "pimreg"); 549 else 550 sprintf(name, "pimreg%u", mrt->id); 551 552 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 553 554 if (!dev) 555 return NULL; 556 557 dev_net_set(dev, net); 558 559 if (register_netdevice(dev)) { 560 free_netdev(dev); 561 return NULL; 562 } 563 564 if (!ipmr_init_vif_indev(dev)) 565 goto failure; 566 if (dev_open(dev, NULL)) 567 goto failure; 568 569 dev_hold(dev); 570 571 return dev; 572 573 failure: 574 unregister_netdevice(dev); 575 return NULL; 576 } 577 578 /* called with rcu_read_lock() */ 579 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 580 unsigned int pimlen) 581 { 582 struct net_device *reg_dev = NULL; 583 struct iphdr *encap; 584 int vif_num; 585 586 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 587 /* Check that: 588 * a. packet is really sent to a multicast group 589 * b. packet is not a NULL-REGISTER 590 * c. packet is not truncated 591 */ 592 if (!ipv4_is_multicast(encap->daddr) || 593 encap->tot_len == 0 || 594 ntohs(encap->tot_len) + pimlen > skb->len) 595 return 1; 596 597 /* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */ 598 vif_num = READ_ONCE(mrt->mroute_reg_vif_num); 599 if (vif_num >= 0) 600 reg_dev = vif_dev_read(&mrt->vif_table[vif_num]); 601 if (!reg_dev) 602 return 1; 603 604 skb->mac_header = skb->network_header; 605 skb_pull(skb, (u8 *)encap - skb->data); 606 skb_reset_network_header(skb); 607 skb->protocol = htons(ETH_P_IP); 608 skb->ip_summed = CHECKSUM_NONE; 609 610 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 611 612 netif_rx(skb); 613 614 return NET_RX_SUCCESS; 615 } 616 #else 617 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 618 { 619 return NULL; 620 } 621 #endif 622 623 static int call_ipmr_vif_entry_notifiers(struct net *net, 624 enum fib_event_type event_type, 625 struct vif_device *vif, 626 struct net_device *vif_dev, 627 vifi_t vif_index, u32 tb_id) 628 { 629 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type, 630 vif, vif_dev, vif_index, tb_id, 631 &net->ipv4.ipmr_seq); 632 } 633 634 static int call_ipmr_mfc_entry_notifiers(struct net *net, 635 enum fib_event_type event_type, 636 struct mfc_cache *mfc, u32 tb_id) 637 { 638 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type, 639 &mfc->_c, tb_id, &net->ipv4.ipmr_seq); 640 } 641 642 /** 643 * vif_delete - Delete a VIF entry 644 * @mrt: Table to delete from 645 * @vifi: VIF identifier to delete 646 * @notify: Set to 1, if the caller is a notifier_call 647 * @head: if unregistering the VIF, place it on this queue 648 */ 649 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 650 struct list_head *head) 651 { 652 struct net *net = read_pnet(&mrt->net); 653 struct vif_device *v; 654 struct net_device *dev; 655 struct in_device *in_dev; 656 657 if (vifi < 0 || vifi >= mrt->maxvif) 658 return -EADDRNOTAVAIL; 659 660 v = &mrt->vif_table[vifi]; 661 662 dev = rtnl_dereference(v->dev); 663 if (!dev) 664 return -EADDRNOTAVAIL; 665 666 spin_lock(&mrt_lock); 667 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev, 668 vifi, mrt->id); 669 RCU_INIT_POINTER(v->dev, NULL); 670 671 if (vifi == mrt->mroute_reg_vif_num) { 672 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */ 673 WRITE_ONCE(mrt->mroute_reg_vif_num, -1); 674 } 675 if (vifi + 1 == mrt->maxvif) { 676 int tmp; 677 678 for (tmp = vifi - 1; tmp >= 0; tmp--) { 679 if (VIF_EXISTS(mrt, tmp)) 680 break; 681 } 682 WRITE_ONCE(mrt->maxvif, tmp + 1); 683 } 684 685 spin_unlock(&mrt_lock); 686 687 dev_set_allmulti(dev, -1); 688 689 in_dev = __in_dev_get_rtnl(dev); 690 if (in_dev) { 691 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 692 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, 693 NETCONFA_MC_FORWARDING, 694 dev->ifindex, &in_dev->cnf); 695 ip_rt_multicast_event(in_dev); 696 } 697 698 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 699 unregister_netdevice_queue(dev, head); 700 701 netdev_put(dev, &v->dev_tracker); 702 return 0; 703 } 704 705 static void ipmr_cache_free_rcu(struct rcu_head *head) 706 { 707 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu); 708 709 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c); 710 } 711 712 static void ipmr_cache_free(struct mfc_cache *c) 713 { 714 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu); 715 } 716 717 /* Destroy an unresolved cache entry, killing queued skbs 718 * and reporting error to netlink readers. 719 */ 720 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 721 { 722 struct net *net = read_pnet(&mrt->net); 723 struct sk_buff *skb; 724 struct nlmsgerr *e; 725 726 atomic_dec(&mrt->cache_resolve_queue_len); 727 728 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) { 729 if (ip_hdr(skb)->version == 0) { 730 struct nlmsghdr *nlh = skb_pull(skb, 731 sizeof(struct iphdr)); 732 nlh->nlmsg_type = NLMSG_ERROR; 733 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 734 skb_trim(skb, nlh->nlmsg_len); 735 e = nlmsg_data(nlh); 736 e->error = -ETIMEDOUT; 737 memset(&e->msg, 0, sizeof(e->msg)); 738 739 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 740 } else { 741 kfree_skb(skb); 742 } 743 } 744 745 ipmr_cache_free(c); 746 } 747 748 /* Timer process for the unresolved queue. */ 749 static void ipmr_expire_process(struct timer_list *t) 750 { 751 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer); 752 struct mr_mfc *c, *next; 753 unsigned long expires; 754 unsigned long now; 755 756 if (!spin_trylock(&mfc_unres_lock)) { 757 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 758 return; 759 } 760 761 if (list_empty(&mrt->mfc_unres_queue)) 762 goto out; 763 764 now = jiffies; 765 expires = 10*HZ; 766 767 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 768 if (time_after(c->mfc_un.unres.expires, now)) { 769 unsigned long interval = c->mfc_un.unres.expires - now; 770 if (interval < expires) 771 expires = interval; 772 continue; 773 } 774 775 list_del(&c->list); 776 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE); 777 ipmr_destroy_unres(mrt, (struct mfc_cache *)c); 778 } 779 780 if (!list_empty(&mrt->mfc_unres_queue)) 781 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 782 783 out: 784 spin_unlock(&mfc_unres_lock); 785 } 786 787 /* Fill oifs list. It is called under locked mrt_lock. */ 788 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache, 789 unsigned char *ttls) 790 { 791 int vifi; 792 793 cache->mfc_un.res.minvif = MAXVIFS; 794 cache->mfc_un.res.maxvif = 0; 795 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 796 797 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 798 if (VIF_EXISTS(mrt, vifi) && 799 ttls[vifi] && ttls[vifi] < 255) { 800 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 801 if (cache->mfc_un.res.minvif > vifi) 802 cache->mfc_un.res.minvif = vifi; 803 if (cache->mfc_un.res.maxvif <= vifi) 804 cache->mfc_un.res.maxvif = vifi + 1; 805 } 806 } 807 cache->mfc_un.res.lastuse = jiffies; 808 } 809 810 static int vif_add(struct net *net, struct mr_table *mrt, 811 struct vifctl *vifc, int mrtsock) 812 { 813 struct netdev_phys_item_id ppid = { }; 814 int vifi = vifc->vifc_vifi; 815 struct vif_device *v = &mrt->vif_table[vifi]; 816 struct net_device *dev; 817 struct in_device *in_dev; 818 int err; 819 820 /* Is vif busy ? */ 821 if (VIF_EXISTS(mrt, vifi)) 822 return -EADDRINUSE; 823 824 switch (vifc->vifc_flags) { 825 case VIFF_REGISTER: 826 if (!ipmr_pimsm_enabled()) 827 return -EINVAL; 828 /* Special Purpose VIF in PIM 829 * All the packets will be sent to the daemon 830 */ 831 if (mrt->mroute_reg_vif_num >= 0) 832 return -EADDRINUSE; 833 dev = ipmr_reg_vif(net, mrt); 834 if (!dev) 835 return -ENOBUFS; 836 err = dev_set_allmulti(dev, 1); 837 if (err) { 838 unregister_netdevice(dev); 839 dev_put(dev); 840 return err; 841 } 842 break; 843 case VIFF_TUNNEL: 844 dev = ipmr_new_tunnel(net, vifc); 845 if (IS_ERR(dev)) 846 return PTR_ERR(dev); 847 break; 848 case VIFF_USE_IFINDEX: 849 case 0: 850 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 851 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 852 if (dev && !__in_dev_get_rtnl(dev)) { 853 dev_put(dev); 854 return -EADDRNOTAVAIL; 855 } 856 } else { 857 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 858 } 859 if (!dev) 860 return -EADDRNOTAVAIL; 861 err = dev_set_allmulti(dev, 1); 862 if (err) { 863 dev_put(dev); 864 return err; 865 } 866 break; 867 default: 868 return -EINVAL; 869 } 870 871 in_dev = __in_dev_get_rtnl(dev); 872 if (!in_dev) { 873 dev_put(dev); 874 return -EADDRNOTAVAIL; 875 } 876 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 877 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, 878 dev->ifindex, &in_dev->cnf); 879 ip_rt_multicast_event(in_dev); 880 881 /* Fill in the VIF structures */ 882 vif_device_init(v, dev, vifc->vifc_rate_limit, 883 vifc->vifc_threshold, 884 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0), 885 (VIFF_TUNNEL | VIFF_REGISTER)); 886 887 err = dev_get_port_parent_id(dev, &ppid, true); 888 if (err == 0) { 889 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len); 890 v->dev_parent_id.id_len = ppid.id_len; 891 } else { 892 v->dev_parent_id.id_len = 0; 893 } 894 895 v->local = vifc->vifc_lcl_addr.s_addr; 896 v->remote = vifc->vifc_rmt_addr.s_addr; 897 898 /* And finish update writing critical data */ 899 spin_lock(&mrt_lock); 900 rcu_assign_pointer(v->dev, dev); 901 netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC); 902 if (v->flags & VIFF_REGISTER) { 903 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */ 904 WRITE_ONCE(mrt->mroute_reg_vif_num, vifi); 905 } 906 if (vifi+1 > mrt->maxvif) 907 WRITE_ONCE(mrt->maxvif, vifi + 1); 908 spin_unlock(&mrt_lock); 909 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev, 910 vifi, mrt->id); 911 return 0; 912 } 913 914 /* called with rcu_read_lock() */ 915 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 916 __be32 origin, 917 __be32 mcastgrp) 918 { 919 struct mfc_cache_cmp_arg arg = { 920 .mfc_mcastgrp = mcastgrp, 921 .mfc_origin = origin 922 }; 923 924 return mr_mfc_find(mrt, &arg); 925 } 926 927 /* Look for a (*,G) entry */ 928 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 929 __be32 mcastgrp, int vifi) 930 { 931 struct mfc_cache_cmp_arg arg = { 932 .mfc_mcastgrp = mcastgrp, 933 .mfc_origin = htonl(INADDR_ANY) 934 }; 935 936 if (mcastgrp == htonl(INADDR_ANY)) 937 return mr_mfc_find_any_parent(mrt, vifi); 938 return mr_mfc_find_any(mrt, vifi, &arg); 939 } 940 941 /* Look for a (S,G,iif) entry if parent != -1 */ 942 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt, 943 __be32 origin, __be32 mcastgrp, 944 int parent) 945 { 946 struct mfc_cache_cmp_arg arg = { 947 .mfc_mcastgrp = mcastgrp, 948 .mfc_origin = origin, 949 }; 950 951 return mr_mfc_find_parent(mrt, &arg, parent); 952 } 953 954 /* Allocate a multicast cache entry */ 955 static struct mfc_cache *ipmr_cache_alloc(void) 956 { 957 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 958 959 if (c) { 960 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; 961 c->_c.mfc_un.res.minvif = MAXVIFS; 962 c->_c.free = ipmr_cache_free_rcu; 963 refcount_set(&c->_c.mfc_un.res.refcount, 1); 964 } 965 return c; 966 } 967 968 static struct mfc_cache *ipmr_cache_alloc_unres(void) 969 { 970 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 971 972 if (c) { 973 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved); 974 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ; 975 } 976 return c; 977 } 978 979 /* A cache entry has gone into a resolved state from queued */ 980 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 981 struct mfc_cache *uc, struct mfc_cache *c) 982 { 983 struct sk_buff *skb; 984 struct nlmsgerr *e; 985 986 /* Play the pending entries through our router */ 987 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) { 988 if (ip_hdr(skb)->version == 0) { 989 struct nlmsghdr *nlh = skb_pull(skb, 990 sizeof(struct iphdr)); 991 992 if (mr_fill_mroute(mrt, skb, &c->_c, 993 nlmsg_data(nlh)) > 0) { 994 nlh->nlmsg_len = skb_tail_pointer(skb) - 995 (u8 *)nlh; 996 } else { 997 nlh->nlmsg_type = NLMSG_ERROR; 998 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 999 skb_trim(skb, nlh->nlmsg_len); 1000 e = nlmsg_data(nlh); 1001 e->error = -EMSGSIZE; 1002 memset(&e->msg, 0, sizeof(e->msg)); 1003 } 1004 1005 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 1006 } else { 1007 rcu_read_lock(); 1008 ip_mr_forward(net, mrt, skb->dev, skb, c, 0); 1009 rcu_read_unlock(); 1010 } 1011 } 1012 } 1013 1014 /* Bounce a cache query up to mrouted and netlink. 1015 * 1016 * Called under rcu_read_lock(). 1017 */ 1018 static int ipmr_cache_report(const struct mr_table *mrt, 1019 struct sk_buff *pkt, vifi_t vifi, int assert) 1020 { 1021 const int ihl = ip_hdrlen(pkt); 1022 struct sock *mroute_sk; 1023 struct igmphdr *igmp; 1024 struct igmpmsg *msg; 1025 struct sk_buff *skb; 1026 int ret; 1027 1028 mroute_sk = rcu_dereference(mrt->mroute_sk); 1029 if (!mroute_sk) 1030 return -EINVAL; 1031 1032 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) 1033 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 1034 else 1035 skb = alloc_skb(128, GFP_ATOMIC); 1036 1037 if (!skb) 1038 return -ENOBUFS; 1039 1040 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) { 1041 /* Ugly, but we have no choice with this interface. 1042 * Duplicate old header, fix ihl, length etc. 1043 * And all this only to mangle msg->im_msgtype and 1044 * to set msg->im_mbz to "mbz" :-) 1045 */ 1046 skb_push(skb, sizeof(struct iphdr)); 1047 skb_reset_network_header(skb); 1048 skb_reset_transport_header(skb); 1049 msg = (struct igmpmsg *)skb_network_header(skb); 1050 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 1051 msg->im_msgtype = assert; 1052 msg->im_mbz = 0; 1053 if (assert == IGMPMSG_WRVIFWHOLE) { 1054 msg->im_vif = vifi; 1055 msg->im_vif_hi = vifi >> 8; 1056 } else { 1057 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */ 1058 int vif_num = READ_ONCE(mrt->mroute_reg_vif_num); 1059 1060 msg->im_vif = vif_num; 1061 msg->im_vif_hi = vif_num >> 8; 1062 } 1063 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 1064 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 1065 sizeof(struct iphdr)); 1066 } else { 1067 /* Copy the IP header */ 1068 skb_set_network_header(skb, skb->len); 1069 skb_put(skb, ihl); 1070 skb_copy_to_linear_data(skb, pkt->data, ihl); 1071 /* Flag to the kernel this is a route add */ 1072 ip_hdr(skb)->protocol = 0; 1073 msg = (struct igmpmsg *)skb_network_header(skb); 1074 msg->im_vif = vifi; 1075 msg->im_vif_hi = vifi >> 8; 1076 ipv4_pktinfo_prepare(mroute_sk, pkt); 1077 memcpy(skb->cb, pkt->cb, sizeof(skb->cb)); 1078 /* Add our header */ 1079 igmp = skb_put(skb, sizeof(struct igmphdr)); 1080 igmp->type = assert; 1081 msg->im_msgtype = assert; 1082 igmp->code = 0; 1083 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 1084 skb->transport_header = skb->network_header; 1085 } 1086 1087 igmpmsg_netlink_event(mrt, skb); 1088 1089 /* Deliver to mrouted */ 1090 ret = sock_queue_rcv_skb(mroute_sk, skb); 1091 1092 if (ret < 0) { 1093 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1094 kfree_skb(skb); 1095 } 1096 1097 return ret; 1098 } 1099 1100 /* Queue a packet for resolution. It gets locked cache entry! */ 1101 /* Called under rcu_read_lock() */ 1102 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, 1103 struct sk_buff *skb, struct net_device *dev) 1104 { 1105 const struct iphdr *iph = ip_hdr(skb); 1106 struct mfc_cache *c; 1107 bool found = false; 1108 int err; 1109 1110 spin_lock_bh(&mfc_unres_lock); 1111 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) { 1112 if (c->mfc_mcastgrp == iph->daddr && 1113 c->mfc_origin == iph->saddr) { 1114 found = true; 1115 break; 1116 } 1117 } 1118 1119 if (!found) { 1120 /* Create a new entry if allowable */ 1121 c = ipmr_cache_alloc_unres(); 1122 if (!c) { 1123 spin_unlock_bh(&mfc_unres_lock); 1124 1125 kfree_skb(skb); 1126 return -ENOBUFS; 1127 } 1128 1129 /* Fill in the new cache entry */ 1130 c->_c.mfc_parent = -1; 1131 c->mfc_origin = iph->saddr; 1132 c->mfc_mcastgrp = iph->daddr; 1133 1134 /* Reflect first query at mrouted. */ 1135 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1136 1137 if (err < 0) { 1138 /* If the report failed throw the cache entry 1139 out - Brad Parker 1140 */ 1141 spin_unlock_bh(&mfc_unres_lock); 1142 1143 ipmr_cache_free(c); 1144 kfree_skb(skb); 1145 return err; 1146 } 1147 1148 atomic_inc(&mrt->cache_resolve_queue_len); 1149 list_add(&c->_c.list, &mrt->mfc_unres_queue); 1150 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1151 1152 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1153 mod_timer(&mrt->ipmr_expire_timer, 1154 c->_c.mfc_un.unres.expires); 1155 } 1156 1157 /* See if we can append the packet */ 1158 if (c->_c.mfc_un.unres.unresolved.qlen > 3) { 1159 kfree_skb(skb); 1160 err = -ENOBUFS; 1161 } else { 1162 if (dev) { 1163 skb->dev = dev; 1164 skb->skb_iif = dev->ifindex; 1165 } 1166 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb); 1167 err = 0; 1168 } 1169 1170 spin_unlock_bh(&mfc_unres_lock); 1171 return err; 1172 } 1173 1174 /* MFC cache manipulation by user space mroute daemon */ 1175 1176 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1177 { 1178 struct net *net = read_pnet(&mrt->net); 1179 struct mfc_cache *c; 1180 1181 /* The entries are added/deleted only under RTNL */ 1182 rcu_read_lock(); 1183 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1184 mfc->mfcc_mcastgrp.s_addr, parent); 1185 rcu_read_unlock(); 1186 if (!c) 1187 return -ENOENT; 1188 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params); 1189 list_del_rcu(&c->_c.list); 1190 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id); 1191 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1192 mr_cache_put(&c->_c); 1193 1194 return 0; 1195 } 1196 1197 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1198 struct mfcctl *mfc, int mrtsock, int parent) 1199 { 1200 struct mfc_cache *uc, *c; 1201 struct mr_mfc *_uc; 1202 bool found; 1203 int ret; 1204 1205 if (mfc->mfcc_parent >= MAXVIFS) 1206 return -ENFILE; 1207 1208 /* The entries are added/deleted only under RTNL */ 1209 rcu_read_lock(); 1210 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1211 mfc->mfcc_mcastgrp.s_addr, parent); 1212 rcu_read_unlock(); 1213 if (c) { 1214 spin_lock(&mrt_lock); 1215 c->_c.mfc_parent = mfc->mfcc_parent; 1216 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1217 if (!mrtsock) 1218 c->_c.mfc_flags |= MFC_STATIC; 1219 spin_unlock(&mrt_lock); 1220 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c, 1221 mrt->id); 1222 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1223 return 0; 1224 } 1225 1226 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1227 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1228 return -EINVAL; 1229 1230 c = ipmr_cache_alloc(); 1231 if (!c) 1232 return -ENOMEM; 1233 1234 c->mfc_origin = mfc->mfcc_origin.s_addr; 1235 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1236 c->_c.mfc_parent = mfc->mfcc_parent; 1237 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1238 if (!mrtsock) 1239 c->_c.mfc_flags |= MFC_STATIC; 1240 1241 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode, 1242 ipmr_rht_params); 1243 if (ret) { 1244 pr_err("ipmr: rhtable insert error %d\n", ret); 1245 ipmr_cache_free(c); 1246 return ret; 1247 } 1248 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list); 1249 /* Check to see if we resolved a queued list. If so we 1250 * need to send on the frames and tidy up. 1251 */ 1252 found = false; 1253 spin_lock_bh(&mfc_unres_lock); 1254 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) { 1255 uc = (struct mfc_cache *)_uc; 1256 if (uc->mfc_origin == c->mfc_origin && 1257 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1258 list_del(&_uc->list); 1259 atomic_dec(&mrt->cache_resolve_queue_len); 1260 found = true; 1261 break; 1262 } 1263 } 1264 if (list_empty(&mrt->mfc_unres_queue)) 1265 del_timer(&mrt->ipmr_expire_timer); 1266 spin_unlock_bh(&mfc_unres_lock); 1267 1268 if (found) { 1269 ipmr_cache_resolve(net, mrt, uc, c); 1270 ipmr_cache_free(uc); 1271 } 1272 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id); 1273 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1274 return 0; 1275 } 1276 1277 /* Close the multicast socket, and clear the vif tables etc */ 1278 static void mroute_clean_tables(struct mr_table *mrt, int flags) 1279 { 1280 struct net *net = read_pnet(&mrt->net); 1281 struct mr_mfc *c, *tmp; 1282 struct mfc_cache *cache; 1283 LIST_HEAD(list); 1284 int i; 1285 1286 /* Shut down all active vif entries */ 1287 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) { 1288 for (i = 0; i < mrt->maxvif; i++) { 1289 if (((mrt->vif_table[i].flags & VIFF_STATIC) && 1290 !(flags & MRT_FLUSH_VIFS_STATIC)) || 1291 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS))) 1292 continue; 1293 vif_delete(mrt, i, 0, &list); 1294 } 1295 unregister_netdevice_many(&list); 1296 } 1297 1298 /* Wipe the cache */ 1299 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) { 1300 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) { 1301 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) || 1302 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC))) 1303 continue; 1304 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params); 1305 list_del_rcu(&c->list); 1306 cache = (struct mfc_cache *)c; 1307 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache, 1308 mrt->id); 1309 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1310 mr_cache_put(c); 1311 } 1312 } 1313 1314 if (flags & MRT_FLUSH_MFC) { 1315 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1316 spin_lock_bh(&mfc_unres_lock); 1317 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) { 1318 list_del(&c->list); 1319 cache = (struct mfc_cache *)c; 1320 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1321 ipmr_destroy_unres(mrt, cache); 1322 } 1323 spin_unlock_bh(&mfc_unres_lock); 1324 } 1325 } 1326 } 1327 1328 /* called from ip_ra_control(), before an RCU grace period, 1329 * we don't need to call synchronize_rcu() here 1330 */ 1331 static void mrtsock_destruct(struct sock *sk) 1332 { 1333 struct net *net = sock_net(sk); 1334 struct mr_table *mrt; 1335 1336 rtnl_lock(); 1337 ipmr_for_each_table(mrt, net) { 1338 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1339 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1340 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1341 NETCONFA_MC_FORWARDING, 1342 NETCONFA_IFINDEX_ALL, 1343 net->ipv4.devconf_all); 1344 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1345 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC); 1346 } 1347 } 1348 rtnl_unlock(); 1349 } 1350 1351 /* Socket options and virtual interface manipulation. The whole 1352 * virtual interface system is a complete heap, but unfortunately 1353 * that's how BSD mrouted happens to think. Maybe one day with a proper 1354 * MOSPF/PIM router set up we can clean this up. 1355 */ 1356 1357 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval, 1358 unsigned int optlen) 1359 { 1360 struct net *net = sock_net(sk); 1361 int val, ret = 0, parent = 0; 1362 struct mr_table *mrt; 1363 struct vifctl vif; 1364 struct mfcctl mfc; 1365 bool do_wrvifwhole; 1366 u32 uval; 1367 1368 /* There's one exception to the lock - MRT_DONE which needs to unlock */ 1369 rtnl_lock(); 1370 if (sk->sk_type != SOCK_RAW || 1371 inet_sk(sk)->inet_num != IPPROTO_IGMP) { 1372 ret = -EOPNOTSUPP; 1373 goto out_unlock; 1374 } 1375 1376 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1377 if (!mrt) { 1378 ret = -ENOENT; 1379 goto out_unlock; 1380 } 1381 if (optname != MRT_INIT) { 1382 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1383 !ns_capable(net->user_ns, CAP_NET_ADMIN)) { 1384 ret = -EACCES; 1385 goto out_unlock; 1386 } 1387 } 1388 1389 switch (optname) { 1390 case MRT_INIT: 1391 if (optlen != sizeof(int)) { 1392 ret = -EINVAL; 1393 break; 1394 } 1395 if (rtnl_dereference(mrt->mroute_sk)) { 1396 ret = -EADDRINUSE; 1397 break; 1398 } 1399 1400 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1401 if (ret == 0) { 1402 rcu_assign_pointer(mrt->mroute_sk, sk); 1403 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1404 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1405 NETCONFA_MC_FORWARDING, 1406 NETCONFA_IFINDEX_ALL, 1407 net->ipv4.devconf_all); 1408 } 1409 break; 1410 case MRT_DONE: 1411 if (sk != rcu_access_pointer(mrt->mroute_sk)) { 1412 ret = -EACCES; 1413 } else { 1414 /* We need to unlock here because mrtsock_destruct takes 1415 * care of rtnl itself and we can't change that due to 1416 * the IP_ROUTER_ALERT setsockopt which runs without it. 1417 */ 1418 rtnl_unlock(); 1419 ret = ip_ra_control(sk, 0, NULL); 1420 goto out; 1421 } 1422 break; 1423 case MRT_ADD_VIF: 1424 case MRT_DEL_VIF: 1425 if (optlen != sizeof(vif)) { 1426 ret = -EINVAL; 1427 break; 1428 } 1429 if (copy_from_sockptr(&vif, optval, sizeof(vif))) { 1430 ret = -EFAULT; 1431 break; 1432 } 1433 if (vif.vifc_vifi >= MAXVIFS) { 1434 ret = -ENFILE; 1435 break; 1436 } 1437 if (optname == MRT_ADD_VIF) { 1438 ret = vif_add(net, mrt, &vif, 1439 sk == rtnl_dereference(mrt->mroute_sk)); 1440 } else { 1441 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1442 } 1443 break; 1444 /* Manipulate the forwarding caches. These live 1445 * in a sort of kernel/user symbiosis. 1446 */ 1447 case MRT_ADD_MFC: 1448 case MRT_DEL_MFC: 1449 parent = -1; 1450 fallthrough; 1451 case MRT_ADD_MFC_PROXY: 1452 case MRT_DEL_MFC_PROXY: 1453 if (optlen != sizeof(mfc)) { 1454 ret = -EINVAL; 1455 break; 1456 } 1457 if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) { 1458 ret = -EFAULT; 1459 break; 1460 } 1461 if (parent == 0) 1462 parent = mfc.mfcc_parent; 1463 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1464 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1465 else 1466 ret = ipmr_mfc_add(net, mrt, &mfc, 1467 sk == rtnl_dereference(mrt->mroute_sk), 1468 parent); 1469 break; 1470 case MRT_FLUSH: 1471 if (optlen != sizeof(val)) { 1472 ret = -EINVAL; 1473 break; 1474 } 1475 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1476 ret = -EFAULT; 1477 break; 1478 } 1479 mroute_clean_tables(mrt, val); 1480 break; 1481 /* Control PIM assert. */ 1482 case MRT_ASSERT: 1483 if (optlen != sizeof(val)) { 1484 ret = -EINVAL; 1485 break; 1486 } 1487 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1488 ret = -EFAULT; 1489 break; 1490 } 1491 mrt->mroute_do_assert = val; 1492 break; 1493 case MRT_PIM: 1494 if (!ipmr_pimsm_enabled()) { 1495 ret = -ENOPROTOOPT; 1496 break; 1497 } 1498 if (optlen != sizeof(val)) { 1499 ret = -EINVAL; 1500 break; 1501 } 1502 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1503 ret = -EFAULT; 1504 break; 1505 } 1506 1507 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE); 1508 val = !!val; 1509 if (val != mrt->mroute_do_pim) { 1510 mrt->mroute_do_pim = val; 1511 mrt->mroute_do_assert = val; 1512 mrt->mroute_do_wrvifwhole = do_wrvifwhole; 1513 } 1514 break; 1515 case MRT_TABLE: 1516 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) { 1517 ret = -ENOPROTOOPT; 1518 break; 1519 } 1520 if (optlen != sizeof(uval)) { 1521 ret = -EINVAL; 1522 break; 1523 } 1524 if (copy_from_sockptr(&uval, optval, sizeof(uval))) { 1525 ret = -EFAULT; 1526 break; 1527 } 1528 1529 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1530 ret = -EBUSY; 1531 } else { 1532 mrt = ipmr_new_table(net, uval); 1533 if (IS_ERR(mrt)) 1534 ret = PTR_ERR(mrt); 1535 else 1536 raw_sk(sk)->ipmr_table = uval; 1537 } 1538 break; 1539 /* Spurious command, or MRT_VERSION which you cannot set. */ 1540 default: 1541 ret = -ENOPROTOOPT; 1542 } 1543 out_unlock: 1544 rtnl_unlock(); 1545 out: 1546 return ret; 1547 } 1548 1549 /* Execute if this ioctl is a special mroute ioctl */ 1550 int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1551 { 1552 switch (cmd) { 1553 /* These userspace buffers will be consumed by ipmr_ioctl() */ 1554 case SIOCGETVIFCNT: { 1555 struct sioc_vif_req buffer; 1556 1557 return sock_ioctl_inout(sk, cmd, arg, &buffer, 1558 sizeof(buffer)); 1559 } 1560 case SIOCGETSGCNT: { 1561 struct sioc_sg_req buffer; 1562 1563 return sock_ioctl_inout(sk, cmd, arg, &buffer, 1564 sizeof(buffer)); 1565 } 1566 } 1567 /* return code > 0 means that the ioctl was not executed */ 1568 return 1; 1569 } 1570 1571 /* Getsock opt support for the multicast routing system. */ 1572 int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval, 1573 sockptr_t optlen) 1574 { 1575 int olr; 1576 int val; 1577 struct net *net = sock_net(sk); 1578 struct mr_table *mrt; 1579 1580 if (sk->sk_type != SOCK_RAW || 1581 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1582 return -EOPNOTSUPP; 1583 1584 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1585 if (!mrt) 1586 return -ENOENT; 1587 1588 switch (optname) { 1589 case MRT_VERSION: 1590 val = 0x0305; 1591 break; 1592 case MRT_PIM: 1593 if (!ipmr_pimsm_enabled()) 1594 return -ENOPROTOOPT; 1595 val = mrt->mroute_do_pim; 1596 break; 1597 case MRT_ASSERT: 1598 val = mrt->mroute_do_assert; 1599 break; 1600 default: 1601 return -ENOPROTOOPT; 1602 } 1603 1604 if (copy_from_sockptr(&olr, optlen, sizeof(int))) 1605 return -EFAULT; 1606 olr = min_t(unsigned int, olr, sizeof(int)); 1607 if (olr < 0) 1608 return -EINVAL; 1609 if (copy_to_sockptr(optlen, &olr, sizeof(int))) 1610 return -EFAULT; 1611 if (copy_to_sockptr(optval, &val, olr)) 1612 return -EFAULT; 1613 return 0; 1614 } 1615 1616 /* The IP multicast ioctl support routines. */ 1617 int ipmr_ioctl(struct sock *sk, int cmd, void *arg) 1618 { 1619 struct vif_device *vif; 1620 struct mfc_cache *c; 1621 struct net *net = sock_net(sk); 1622 struct sioc_vif_req *vr; 1623 struct sioc_sg_req *sr; 1624 struct mr_table *mrt; 1625 1626 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1627 if (!mrt) 1628 return -ENOENT; 1629 1630 switch (cmd) { 1631 case SIOCGETVIFCNT: 1632 vr = (struct sioc_vif_req *)arg; 1633 if (vr->vifi >= mrt->maxvif) 1634 return -EINVAL; 1635 vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif); 1636 rcu_read_lock(); 1637 vif = &mrt->vif_table[vr->vifi]; 1638 if (VIF_EXISTS(mrt, vr->vifi)) { 1639 vr->icount = READ_ONCE(vif->pkt_in); 1640 vr->ocount = READ_ONCE(vif->pkt_out); 1641 vr->ibytes = READ_ONCE(vif->bytes_in); 1642 vr->obytes = READ_ONCE(vif->bytes_out); 1643 rcu_read_unlock(); 1644 1645 return 0; 1646 } 1647 rcu_read_unlock(); 1648 return -EADDRNOTAVAIL; 1649 case SIOCGETSGCNT: 1650 sr = (struct sioc_sg_req *)arg; 1651 1652 rcu_read_lock(); 1653 c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr); 1654 if (c) { 1655 sr->pktcnt = c->_c.mfc_un.res.pkt; 1656 sr->bytecnt = c->_c.mfc_un.res.bytes; 1657 sr->wrong_if = c->_c.mfc_un.res.wrong_if; 1658 rcu_read_unlock(); 1659 return 0; 1660 } 1661 rcu_read_unlock(); 1662 return -EADDRNOTAVAIL; 1663 default: 1664 return -ENOIOCTLCMD; 1665 } 1666 } 1667 1668 #ifdef CONFIG_COMPAT 1669 struct compat_sioc_sg_req { 1670 struct in_addr src; 1671 struct in_addr grp; 1672 compat_ulong_t pktcnt; 1673 compat_ulong_t bytecnt; 1674 compat_ulong_t wrong_if; 1675 }; 1676 1677 struct compat_sioc_vif_req { 1678 vifi_t vifi; /* Which iface */ 1679 compat_ulong_t icount; 1680 compat_ulong_t ocount; 1681 compat_ulong_t ibytes; 1682 compat_ulong_t obytes; 1683 }; 1684 1685 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1686 { 1687 struct compat_sioc_sg_req sr; 1688 struct compat_sioc_vif_req vr; 1689 struct vif_device *vif; 1690 struct mfc_cache *c; 1691 struct net *net = sock_net(sk); 1692 struct mr_table *mrt; 1693 1694 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1695 if (!mrt) 1696 return -ENOENT; 1697 1698 switch (cmd) { 1699 case SIOCGETVIFCNT: 1700 if (copy_from_user(&vr, arg, sizeof(vr))) 1701 return -EFAULT; 1702 if (vr.vifi >= mrt->maxvif) 1703 return -EINVAL; 1704 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif); 1705 rcu_read_lock(); 1706 vif = &mrt->vif_table[vr.vifi]; 1707 if (VIF_EXISTS(mrt, vr.vifi)) { 1708 vr.icount = READ_ONCE(vif->pkt_in); 1709 vr.ocount = READ_ONCE(vif->pkt_out); 1710 vr.ibytes = READ_ONCE(vif->bytes_in); 1711 vr.obytes = READ_ONCE(vif->bytes_out); 1712 rcu_read_unlock(); 1713 1714 if (copy_to_user(arg, &vr, sizeof(vr))) 1715 return -EFAULT; 1716 return 0; 1717 } 1718 rcu_read_unlock(); 1719 return -EADDRNOTAVAIL; 1720 case SIOCGETSGCNT: 1721 if (copy_from_user(&sr, arg, sizeof(sr))) 1722 return -EFAULT; 1723 1724 rcu_read_lock(); 1725 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1726 if (c) { 1727 sr.pktcnt = c->_c.mfc_un.res.pkt; 1728 sr.bytecnt = c->_c.mfc_un.res.bytes; 1729 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1730 rcu_read_unlock(); 1731 1732 if (copy_to_user(arg, &sr, sizeof(sr))) 1733 return -EFAULT; 1734 return 0; 1735 } 1736 rcu_read_unlock(); 1737 return -EADDRNOTAVAIL; 1738 default: 1739 return -ENOIOCTLCMD; 1740 } 1741 } 1742 #endif 1743 1744 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1745 { 1746 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1747 struct net *net = dev_net(dev); 1748 struct mr_table *mrt; 1749 struct vif_device *v; 1750 int ct; 1751 1752 if (event != NETDEV_UNREGISTER) 1753 return NOTIFY_DONE; 1754 1755 ipmr_for_each_table(mrt, net) { 1756 v = &mrt->vif_table[0]; 1757 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1758 if (rcu_access_pointer(v->dev) == dev) 1759 vif_delete(mrt, ct, 1, NULL); 1760 } 1761 } 1762 return NOTIFY_DONE; 1763 } 1764 1765 static struct notifier_block ip_mr_notifier = { 1766 .notifier_call = ipmr_device_event, 1767 }; 1768 1769 /* Encapsulate a packet by attaching a valid IPIP header to it. 1770 * This avoids tunnel drivers and other mess and gives us the speed so 1771 * important for multicast video. 1772 */ 1773 static void ip_encap(struct net *net, struct sk_buff *skb, 1774 __be32 saddr, __be32 daddr) 1775 { 1776 struct iphdr *iph; 1777 const struct iphdr *old_iph = ip_hdr(skb); 1778 1779 skb_push(skb, sizeof(struct iphdr)); 1780 skb->transport_header = skb->network_header; 1781 skb_reset_network_header(skb); 1782 iph = ip_hdr(skb); 1783 1784 iph->version = 4; 1785 iph->tos = old_iph->tos; 1786 iph->ttl = old_iph->ttl; 1787 iph->frag_off = 0; 1788 iph->daddr = daddr; 1789 iph->saddr = saddr; 1790 iph->protocol = IPPROTO_IPIP; 1791 iph->ihl = 5; 1792 iph->tot_len = htons(skb->len); 1793 ip_select_ident(net, skb, NULL); 1794 ip_send_check(iph); 1795 1796 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1797 nf_reset_ct(skb); 1798 } 1799 1800 static inline int ipmr_forward_finish(struct net *net, struct sock *sk, 1801 struct sk_buff *skb) 1802 { 1803 struct ip_options *opt = &(IPCB(skb)->opt); 1804 1805 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS); 1806 1807 if (unlikely(opt->optlen)) 1808 ip_forward_options(skb); 1809 1810 return dst_output(net, sk, skb); 1811 } 1812 1813 #ifdef CONFIG_NET_SWITCHDEV 1814 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1815 int in_vifi, int out_vifi) 1816 { 1817 struct vif_device *out_vif = &mrt->vif_table[out_vifi]; 1818 struct vif_device *in_vif = &mrt->vif_table[in_vifi]; 1819 1820 if (!skb->offload_l3_fwd_mark) 1821 return false; 1822 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len) 1823 return false; 1824 return netdev_phys_item_id_same(&out_vif->dev_parent_id, 1825 &in_vif->dev_parent_id); 1826 } 1827 #else 1828 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1829 int in_vifi, int out_vifi) 1830 { 1831 return false; 1832 } 1833 #endif 1834 1835 /* Processing handlers for ipmr_forward, under rcu_read_lock() */ 1836 1837 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1838 int in_vifi, struct sk_buff *skb, int vifi) 1839 { 1840 const struct iphdr *iph = ip_hdr(skb); 1841 struct vif_device *vif = &mrt->vif_table[vifi]; 1842 struct net_device *vif_dev; 1843 struct net_device *dev; 1844 struct rtable *rt; 1845 struct flowi4 fl4; 1846 int encap = 0; 1847 1848 vif_dev = vif_dev_read(vif); 1849 if (!vif_dev) 1850 goto out_free; 1851 1852 if (vif->flags & VIFF_REGISTER) { 1853 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); 1854 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); 1855 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len); 1856 DEV_STATS_INC(vif_dev, tx_packets); 1857 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1858 goto out_free; 1859 } 1860 1861 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi)) 1862 goto out_free; 1863 1864 if (vif->flags & VIFF_TUNNEL) { 1865 rt = ip_route_output_ports(net, &fl4, NULL, 1866 vif->remote, vif->local, 1867 0, 0, 1868 IPPROTO_IPIP, 1869 RT_TOS(iph->tos), vif->link); 1870 if (IS_ERR(rt)) 1871 goto out_free; 1872 encap = sizeof(struct iphdr); 1873 } else { 1874 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1875 0, 0, 1876 IPPROTO_IPIP, 1877 RT_TOS(iph->tos), vif->link); 1878 if (IS_ERR(rt)) 1879 goto out_free; 1880 } 1881 1882 dev = rt->dst.dev; 1883 1884 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1885 /* Do not fragment multicasts. Alas, IPv4 does not 1886 * allow to send ICMP, so that packets will disappear 1887 * to blackhole. 1888 */ 1889 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 1890 ip_rt_put(rt); 1891 goto out_free; 1892 } 1893 1894 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1895 1896 if (skb_cow(skb, encap)) { 1897 ip_rt_put(rt); 1898 goto out_free; 1899 } 1900 1901 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); 1902 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); 1903 1904 skb_dst_drop(skb); 1905 skb_dst_set(skb, &rt->dst); 1906 ip_decrease_ttl(ip_hdr(skb)); 1907 1908 /* FIXME: forward and output firewalls used to be called here. 1909 * What do we do with netfilter? -- RR 1910 */ 1911 if (vif->flags & VIFF_TUNNEL) { 1912 ip_encap(net, skb, vif->local, vif->remote); 1913 /* FIXME: extra output firewall step used to be here. --RR */ 1914 DEV_STATS_INC(vif_dev, tx_packets); 1915 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len); 1916 } 1917 1918 IPCB(skb)->flags |= IPSKB_FORWARDED; 1919 1920 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1921 * not only before forwarding, but after forwarding on all output 1922 * interfaces. It is clear, if mrouter runs a multicasting 1923 * program, it should receive packets not depending to what interface 1924 * program is joined. 1925 * If we will not make it, the program will have to join on all 1926 * interfaces. On the other hand, multihoming host (or router, but 1927 * not mrouter) cannot join to more than one interface - it will 1928 * result in receiving multiple packets. 1929 */ 1930 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, 1931 net, NULL, skb, skb->dev, dev, 1932 ipmr_forward_finish); 1933 return; 1934 1935 out_free: 1936 kfree_skb(skb); 1937 } 1938 1939 /* Called with mrt_lock or rcu_read_lock() */ 1940 static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev) 1941 { 1942 int ct; 1943 /* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */ 1944 for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) { 1945 if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev) 1946 break; 1947 } 1948 return ct; 1949 } 1950 1951 /* "local" means that we should preserve one skb (for local delivery) */ 1952 /* Called uner rcu_read_lock() */ 1953 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1954 struct net_device *dev, struct sk_buff *skb, 1955 struct mfc_cache *c, int local) 1956 { 1957 int true_vifi = ipmr_find_vif(mrt, dev); 1958 int psend = -1; 1959 int vif, ct; 1960 1961 vif = c->_c.mfc_parent; 1962 c->_c.mfc_un.res.pkt++; 1963 c->_c.mfc_un.res.bytes += skb->len; 1964 c->_c.mfc_un.res.lastuse = jiffies; 1965 1966 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1967 struct mfc_cache *cache_proxy; 1968 1969 /* For an (*,G) entry, we only check that the incoming 1970 * interface is part of the static tree. 1971 */ 1972 cache_proxy = mr_mfc_find_any_parent(mrt, vif); 1973 if (cache_proxy && 1974 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255) 1975 goto forward; 1976 } 1977 1978 /* Wrong interface: drop packet and (maybe) send PIM assert. */ 1979 if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) { 1980 if (rt_is_output_route(skb_rtable(skb))) { 1981 /* It is our own packet, looped back. 1982 * Very complicated situation... 1983 * 1984 * The best workaround until routing daemons will be 1985 * fixed is not to redistribute packet, if it was 1986 * send through wrong interface. It means, that 1987 * multicast applications WILL NOT work for 1988 * (S,G), which have default multicast route pointing 1989 * to wrong oif. In any case, it is not a good 1990 * idea to use multicasting applications on router. 1991 */ 1992 goto dont_forward; 1993 } 1994 1995 c->_c.mfc_un.res.wrong_if++; 1996 1997 if (true_vifi >= 0 && mrt->mroute_do_assert && 1998 /* pimsm uses asserts, when switching from RPT to SPT, 1999 * so that we cannot check that packet arrived on an oif. 2000 * It is bad, but otherwise we would need to move pretty 2001 * large chunk of pimd to kernel. Ough... --ANK 2002 */ 2003 (mrt->mroute_do_pim || 2004 c->_c.mfc_un.res.ttls[true_vifi] < 255) && 2005 time_after(jiffies, 2006 c->_c.mfc_un.res.last_assert + 2007 MFC_ASSERT_THRESH)) { 2008 c->_c.mfc_un.res.last_assert = jiffies; 2009 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 2010 if (mrt->mroute_do_wrvifwhole) 2011 ipmr_cache_report(mrt, skb, true_vifi, 2012 IGMPMSG_WRVIFWHOLE); 2013 } 2014 goto dont_forward; 2015 } 2016 2017 forward: 2018 WRITE_ONCE(mrt->vif_table[vif].pkt_in, 2019 mrt->vif_table[vif].pkt_in + 1); 2020 WRITE_ONCE(mrt->vif_table[vif].bytes_in, 2021 mrt->vif_table[vif].bytes_in + skb->len); 2022 2023 /* Forward the frame */ 2024 if (c->mfc_origin == htonl(INADDR_ANY) && 2025 c->mfc_mcastgrp == htonl(INADDR_ANY)) { 2026 if (true_vifi >= 0 && 2027 true_vifi != c->_c.mfc_parent && 2028 ip_hdr(skb)->ttl > 2029 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) { 2030 /* It's an (*,*) entry and the packet is not coming from 2031 * the upstream: forward the packet to the upstream 2032 * only. 2033 */ 2034 psend = c->_c.mfc_parent; 2035 goto last_forward; 2036 } 2037 goto dont_forward; 2038 } 2039 for (ct = c->_c.mfc_un.res.maxvif - 1; 2040 ct >= c->_c.mfc_un.res.minvif; ct--) { 2041 /* For (*,G) entry, don't forward to the incoming interface */ 2042 if ((c->mfc_origin != htonl(INADDR_ANY) || 2043 ct != true_vifi) && 2044 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) { 2045 if (psend != -1) { 2046 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2047 2048 if (skb2) 2049 ipmr_queue_xmit(net, mrt, true_vifi, 2050 skb2, psend); 2051 } 2052 psend = ct; 2053 } 2054 } 2055 last_forward: 2056 if (psend != -1) { 2057 if (local) { 2058 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2059 2060 if (skb2) 2061 ipmr_queue_xmit(net, mrt, true_vifi, skb2, 2062 psend); 2063 } else { 2064 ipmr_queue_xmit(net, mrt, true_vifi, skb, psend); 2065 return; 2066 } 2067 } 2068 2069 dont_forward: 2070 if (!local) 2071 kfree_skb(skb); 2072 } 2073 2074 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 2075 { 2076 struct rtable *rt = skb_rtable(skb); 2077 struct iphdr *iph = ip_hdr(skb); 2078 struct flowi4 fl4 = { 2079 .daddr = iph->daddr, 2080 .saddr = iph->saddr, 2081 .flowi4_tos = RT_TOS(iph->tos), 2082 .flowi4_oif = (rt_is_output_route(rt) ? 2083 skb->dev->ifindex : 0), 2084 .flowi4_iif = (rt_is_output_route(rt) ? 2085 LOOPBACK_IFINDEX : 2086 skb->dev->ifindex), 2087 .flowi4_mark = skb->mark, 2088 }; 2089 struct mr_table *mrt; 2090 int err; 2091 2092 err = ipmr_fib_lookup(net, &fl4, &mrt); 2093 if (err) 2094 return ERR_PTR(err); 2095 return mrt; 2096 } 2097 2098 /* Multicast packets for forwarding arrive here 2099 * Called with rcu_read_lock(); 2100 */ 2101 int ip_mr_input(struct sk_buff *skb) 2102 { 2103 struct mfc_cache *cache; 2104 struct net *net = dev_net(skb->dev); 2105 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 2106 struct mr_table *mrt; 2107 struct net_device *dev; 2108 2109 /* skb->dev passed in is the loX master dev for vrfs. 2110 * As there are no vifs associated with loopback devices, 2111 * get the proper interface that does have a vif associated with it. 2112 */ 2113 dev = skb->dev; 2114 if (netif_is_l3_master(skb->dev)) { 2115 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); 2116 if (!dev) { 2117 kfree_skb(skb); 2118 return -ENODEV; 2119 } 2120 } 2121 2122 /* Packet is looped back after forward, it should not be 2123 * forwarded second time, but still can be delivered locally. 2124 */ 2125 if (IPCB(skb)->flags & IPSKB_FORWARDED) 2126 goto dont_forward; 2127 2128 mrt = ipmr_rt_fib_lookup(net, skb); 2129 if (IS_ERR(mrt)) { 2130 kfree_skb(skb); 2131 return PTR_ERR(mrt); 2132 } 2133 if (!local) { 2134 if (IPCB(skb)->opt.router_alert) { 2135 if (ip_call_ra_chain(skb)) 2136 return 0; 2137 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 2138 /* IGMPv1 (and broken IGMPv2 implementations sort of 2139 * Cisco IOS <= 11.2(8)) do not put router alert 2140 * option to IGMP packets destined to routable 2141 * groups. It is very bad, because it means 2142 * that we can forward NO IGMP messages. 2143 */ 2144 struct sock *mroute_sk; 2145 2146 mroute_sk = rcu_dereference(mrt->mroute_sk); 2147 if (mroute_sk) { 2148 nf_reset_ct(skb); 2149 raw_rcv(mroute_sk, skb); 2150 return 0; 2151 } 2152 } 2153 } 2154 2155 /* already under rcu_read_lock() */ 2156 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 2157 if (!cache) { 2158 int vif = ipmr_find_vif(mrt, dev); 2159 2160 if (vif >= 0) 2161 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 2162 vif); 2163 } 2164 2165 /* No usable cache entry */ 2166 if (!cache) { 2167 int vif; 2168 2169 if (local) { 2170 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2171 ip_local_deliver(skb); 2172 if (!skb2) 2173 return -ENOBUFS; 2174 skb = skb2; 2175 } 2176 2177 vif = ipmr_find_vif(mrt, dev); 2178 if (vif >= 0) 2179 return ipmr_cache_unresolved(mrt, vif, skb, dev); 2180 kfree_skb(skb); 2181 return -ENODEV; 2182 } 2183 2184 ip_mr_forward(net, mrt, dev, skb, cache, local); 2185 2186 if (local) 2187 return ip_local_deliver(skb); 2188 2189 return 0; 2190 2191 dont_forward: 2192 if (local) 2193 return ip_local_deliver(skb); 2194 kfree_skb(skb); 2195 return 0; 2196 } 2197 2198 #ifdef CONFIG_IP_PIMSM_V1 2199 /* Handle IGMP messages of PIMv1 */ 2200 int pim_rcv_v1(struct sk_buff *skb) 2201 { 2202 struct igmphdr *pim; 2203 struct net *net = dev_net(skb->dev); 2204 struct mr_table *mrt; 2205 2206 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2207 goto drop; 2208 2209 pim = igmp_hdr(skb); 2210 2211 mrt = ipmr_rt_fib_lookup(net, skb); 2212 if (IS_ERR(mrt)) 2213 goto drop; 2214 if (!mrt->mroute_do_pim || 2215 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2216 goto drop; 2217 2218 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2219 drop: 2220 kfree_skb(skb); 2221 } 2222 return 0; 2223 } 2224 #endif 2225 2226 #ifdef CONFIG_IP_PIMSM_V2 2227 static int pim_rcv(struct sk_buff *skb) 2228 { 2229 struct pimreghdr *pim; 2230 struct net *net = dev_net(skb->dev); 2231 struct mr_table *mrt; 2232 2233 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2234 goto drop; 2235 2236 pim = (struct pimreghdr *)skb_transport_header(skb); 2237 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) || 2238 (pim->flags & PIM_NULL_REGISTER) || 2239 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2240 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2241 goto drop; 2242 2243 mrt = ipmr_rt_fib_lookup(net, skb); 2244 if (IS_ERR(mrt)) 2245 goto drop; 2246 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2247 drop: 2248 kfree_skb(skb); 2249 } 2250 return 0; 2251 } 2252 #endif 2253 2254 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2255 __be32 saddr, __be32 daddr, 2256 struct rtmsg *rtm, u32 portid) 2257 { 2258 struct mfc_cache *cache; 2259 struct mr_table *mrt; 2260 int err; 2261 2262 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2263 if (!mrt) 2264 return -ENOENT; 2265 2266 rcu_read_lock(); 2267 cache = ipmr_cache_find(mrt, saddr, daddr); 2268 if (!cache && skb->dev) { 2269 int vif = ipmr_find_vif(mrt, skb->dev); 2270 2271 if (vif >= 0) 2272 cache = ipmr_cache_find_any(mrt, daddr, vif); 2273 } 2274 if (!cache) { 2275 struct sk_buff *skb2; 2276 struct iphdr *iph; 2277 struct net_device *dev; 2278 int vif = -1; 2279 2280 dev = skb->dev; 2281 if (dev) 2282 vif = ipmr_find_vif(mrt, dev); 2283 if (vif < 0) { 2284 rcu_read_unlock(); 2285 return -ENODEV; 2286 } 2287 2288 skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr)); 2289 if (!skb2) { 2290 rcu_read_unlock(); 2291 return -ENOMEM; 2292 } 2293 2294 NETLINK_CB(skb2).portid = portid; 2295 skb_push(skb2, sizeof(struct iphdr)); 2296 skb_reset_network_header(skb2); 2297 iph = ip_hdr(skb2); 2298 iph->ihl = sizeof(struct iphdr) >> 2; 2299 iph->saddr = saddr; 2300 iph->daddr = daddr; 2301 iph->version = 0; 2302 err = ipmr_cache_unresolved(mrt, vif, skb2, dev); 2303 rcu_read_unlock(); 2304 return err; 2305 } 2306 2307 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm); 2308 rcu_read_unlock(); 2309 return err; 2310 } 2311 2312 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2313 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2314 int flags) 2315 { 2316 struct nlmsghdr *nlh; 2317 struct rtmsg *rtm; 2318 int err; 2319 2320 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2321 if (!nlh) 2322 return -EMSGSIZE; 2323 2324 rtm = nlmsg_data(nlh); 2325 rtm->rtm_family = RTNL_FAMILY_IPMR; 2326 rtm->rtm_dst_len = 32; 2327 rtm->rtm_src_len = 32; 2328 rtm->rtm_tos = 0; 2329 rtm->rtm_table = mrt->id; 2330 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2331 goto nla_put_failure; 2332 rtm->rtm_type = RTN_MULTICAST; 2333 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2334 if (c->_c.mfc_flags & MFC_STATIC) 2335 rtm->rtm_protocol = RTPROT_STATIC; 2336 else 2337 rtm->rtm_protocol = RTPROT_MROUTED; 2338 rtm->rtm_flags = 0; 2339 2340 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || 2341 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) 2342 goto nla_put_failure; 2343 err = mr_fill_mroute(mrt, skb, &c->_c, rtm); 2344 /* do not break the dump if cache is unresolved */ 2345 if (err < 0 && err != -ENOENT) 2346 goto nla_put_failure; 2347 2348 nlmsg_end(skb, nlh); 2349 return 0; 2350 2351 nla_put_failure: 2352 nlmsg_cancel(skb, nlh); 2353 return -EMSGSIZE; 2354 } 2355 2356 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2357 u32 portid, u32 seq, struct mr_mfc *c, int cmd, 2358 int flags) 2359 { 2360 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c, 2361 cmd, flags); 2362 } 2363 2364 static size_t mroute_msgsize(bool unresolved, int maxvif) 2365 { 2366 size_t len = 2367 NLMSG_ALIGN(sizeof(struct rtmsg)) 2368 + nla_total_size(4) /* RTA_TABLE */ 2369 + nla_total_size(4) /* RTA_SRC */ 2370 + nla_total_size(4) /* RTA_DST */ 2371 ; 2372 2373 if (!unresolved) 2374 len = len 2375 + nla_total_size(4) /* RTA_IIF */ 2376 + nla_total_size(0) /* RTA_MULTIPATH */ 2377 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2378 /* RTA_MFC_STATS */ 2379 + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) 2380 ; 2381 2382 return len; 2383 } 2384 2385 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2386 int cmd) 2387 { 2388 struct net *net = read_pnet(&mrt->net); 2389 struct sk_buff *skb; 2390 int err = -ENOBUFS; 2391 2392 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS, 2393 mrt->maxvif), 2394 GFP_ATOMIC); 2395 if (!skb) 2396 goto errout; 2397 2398 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2399 if (err < 0) 2400 goto errout; 2401 2402 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2403 return; 2404 2405 errout: 2406 kfree_skb(skb); 2407 if (err < 0) 2408 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2409 } 2410 2411 static size_t igmpmsg_netlink_msgsize(size_t payloadlen) 2412 { 2413 size_t len = 2414 NLMSG_ALIGN(sizeof(struct rtgenmsg)) 2415 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */ 2416 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */ 2417 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */ 2418 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */ 2419 + nla_total_size(4) /* IPMRA_CREPORT_TABLE */ 2420 /* IPMRA_CREPORT_PKT */ 2421 + nla_total_size(payloadlen) 2422 ; 2423 2424 return len; 2425 } 2426 2427 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt) 2428 { 2429 struct net *net = read_pnet(&mrt->net); 2430 struct nlmsghdr *nlh; 2431 struct rtgenmsg *rtgenm; 2432 struct igmpmsg *msg; 2433 struct sk_buff *skb; 2434 struct nlattr *nla; 2435 int payloadlen; 2436 2437 payloadlen = pkt->len - sizeof(struct igmpmsg); 2438 msg = (struct igmpmsg *)skb_network_header(pkt); 2439 2440 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC); 2441 if (!skb) 2442 goto errout; 2443 2444 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT, 2445 sizeof(struct rtgenmsg), 0); 2446 if (!nlh) 2447 goto errout; 2448 rtgenm = nlmsg_data(nlh); 2449 rtgenm->rtgen_family = RTNL_FAMILY_IPMR; 2450 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) || 2451 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) || 2452 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR, 2453 msg->im_src.s_addr) || 2454 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR, 2455 msg->im_dst.s_addr) || 2456 nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id)) 2457 goto nla_put_failure; 2458 2459 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen); 2460 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg), 2461 nla_data(nla), payloadlen)) 2462 goto nla_put_failure; 2463 2464 nlmsg_end(skb, nlh); 2465 2466 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC); 2467 return; 2468 2469 nla_put_failure: 2470 nlmsg_cancel(skb, nlh); 2471 errout: 2472 kfree_skb(skb); 2473 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS); 2474 } 2475 2476 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb, 2477 const struct nlmsghdr *nlh, 2478 struct nlattr **tb, 2479 struct netlink_ext_ack *extack) 2480 { 2481 struct rtmsg *rtm; 2482 int i, err; 2483 2484 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { 2485 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request"); 2486 return -EINVAL; 2487 } 2488 2489 if (!netlink_strict_get_check(skb)) 2490 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 2491 rtm_ipv4_policy, extack); 2492 2493 rtm = nlmsg_data(nlh); 2494 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) || 2495 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) || 2496 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol || 2497 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) { 2498 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request"); 2499 return -EINVAL; 2500 } 2501 2502 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, 2503 rtm_ipv4_policy, extack); 2504 if (err) 2505 return err; 2506 2507 if ((tb[RTA_SRC] && !rtm->rtm_src_len) || 2508 (tb[RTA_DST] && !rtm->rtm_dst_len)) { 2509 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4"); 2510 return -EINVAL; 2511 } 2512 2513 for (i = 0; i <= RTA_MAX; i++) { 2514 if (!tb[i]) 2515 continue; 2516 2517 switch (i) { 2518 case RTA_SRC: 2519 case RTA_DST: 2520 case RTA_TABLE: 2521 break; 2522 default: 2523 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request"); 2524 return -EINVAL; 2525 } 2526 } 2527 2528 return 0; 2529 } 2530 2531 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2532 struct netlink_ext_ack *extack) 2533 { 2534 struct net *net = sock_net(in_skb->sk); 2535 struct nlattr *tb[RTA_MAX + 1]; 2536 struct sk_buff *skb = NULL; 2537 struct mfc_cache *cache; 2538 struct mr_table *mrt; 2539 __be32 src, grp; 2540 u32 tableid; 2541 int err; 2542 2543 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack); 2544 if (err < 0) 2545 goto errout; 2546 2547 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0; 2548 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0; 2549 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0; 2550 2551 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT); 2552 if (!mrt) { 2553 err = -ENOENT; 2554 goto errout_free; 2555 } 2556 2557 /* entries are added/deleted only under RTNL */ 2558 rcu_read_lock(); 2559 cache = ipmr_cache_find(mrt, src, grp); 2560 rcu_read_unlock(); 2561 if (!cache) { 2562 err = -ENOENT; 2563 goto errout_free; 2564 } 2565 2566 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL); 2567 if (!skb) { 2568 err = -ENOBUFS; 2569 goto errout_free; 2570 } 2571 2572 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid, 2573 nlh->nlmsg_seq, cache, 2574 RTM_NEWROUTE, 0); 2575 if (err < 0) 2576 goto errout_free; 2577 2578 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 2579 2580 errout: 2581 return err; 2582 2583 errout_free: 2584 kfree_skb(skb); 2585 goto errout; 2586 } 2587 2588 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2589 { 2590 struct fib_dump_filter filter = {}; 2591 int err; 2592 2593 if (cb->strict_check) { 2594 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh, 2595 &filter, cb); 2596 if (err < 0) 2597 return err; 2598 } 2599 2600 if (filter.table_id) { 2601 struct mr_table *mrt; 2602 2603 mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id); 2604 if (!mrt) { 2605 if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR) 2606 return skb->len; 2607 2608 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist"); 2609 return -ENOENT; 2610 } 2611 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute, 2612 &mfc_unres_lock, &filter); 2613 return skb->len ? : err; 2614 } 2615 2616 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter, 2617 _ipmr_fill_mroute, &mfc_unres_lock, &filter); 2618 } 2619 2620 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = { 2621 [RTA_SRC] = { .type = NLA_U32 }, 2622 [RTA_DST] = { .type = NLA_U32 }, 2623 [RTA_IIF] = { .type = NLA_U32 }, 2624 [RTA_TABLE] = { .type = NLA_U32 }, 2625 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 2626 }; 2627 2628 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol) 2629 { 2630 switch (rtm_protocol) { 2631 case RTPROT_STATIC: 2632 case RTPROT_MROUTED: 2633 return true; 2634 } 2635 return false; 2636 } 2637 2638 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc) 2639 { 2640 struct rtnexthop *rtnh = nla_data(nla); 2641 int remaining = nla_len(nla), vifi = 0; 2642 2643 while (rtnh_ok(rtnh, remaining)) { 2644 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops; 2645 if (++vifi == MAXVIFS) 2646 break; 2647 rtnh = rtnh_next(rtnh, &remaining); 2648 } 2649 2650 return remaining > 0 ? -EINVAL : vifi; 2651 } 2652 2653 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */ 2654 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh, 2655 struct mfcctl *mfcc, int *mrtsock, 2656 struct mr_table **mrtret, 2657 struct netlink_ext_ack *extack) 2658 { 2659 struct net_device *dev = NULL; 2660 u32 tblid = RT_TABLE_DEFAULT; 2661 struct mr_table *mrt; 2662 struct nlattr *attr; 2663 struct rtmsg *rtm; 2664 int ret, rem; 2665 2666 ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX, 2667 rtm_ipmr_policy, extack); 2668 if (ret < 0) 2669 goto out; 2670 rtm = nlmsg_data(nlh); 2671 2672 ret = -EINVAL; 2673 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 || 2674 rtm->rtm_type != RTN_MULTICAST || 2675 rtm->rtm_scope != RT_SCOPE_UNIVERSE || 2676 !ipmr_rtm_validate_proto(rtm->rtm_protocol)) 2677 goto out; 2678 2679 memset(mfcc, 0, sizeof(*mfcc)); 2680 mfcc->mfcc_parent = -1; 2681 ret = 0; 2682 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) { 2683 switch (nla_type(attr)) { 2684 case RTA_SRC: 2685 mfcc->mfcc_origin.s_addr = nla_get_be32(attr); 2686 break; 2687 case RTA_DST: 2688 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr); 2689 break; 2690 case RTA_IIF: 2691 dev = __dev_get_by_index(net, nla_get_u32(attr)); 2692 if (!dev) { 2693 ret = -ENODEV; 2694 goto out; 2695 } 2696 break; 2697 case RTA_MULTIPATH: 2698 if (ipmr_nla_get_ttls(attr, mfcc) < 0) { 2699 ret = -EINVAL; 2700 goto out; 2701 } 2702 break; 2703 case RTA_PREFSRC: 2704 ret = 1; 2705 break; 2706 case RTA_TABLE: 2707 tblid = nla_get_u32(attr); 2708 break; 2709 } 2710 } 2711 mrt = ipmr_get_table(net, tblid); 2712 if (!mrt) { 2713 ret = -ENOENT; 2714 goto out; 2715 } 2716 *mrtret = mrt; 2717 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0; 2718 if (dev) 2719 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev); 2720 2721 out: 2722 return ret; 2723 } 2724 2725 /* takes care of both newroute and delroute */ 2726 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh, 2727 struct netlink_ext_ack *extack) 2728 { 2729 struct net *net = sock_net(skb->sk); 2730 int ret, mrtsock, parent; 2731 struct mr_table *tbl; 2732 struct mfcctl mfcc; 2733 2734 mrtsock = 0; 2735 tbl = NULL; 2736 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack); 2737 if (ret < 0) 2738 return ret; 2739 2740 parent = ret ? mfcc.mfcc_parent : -1; 2741 if (nlh->nlmsg_type == RTM_NEWROUTE) 2742 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent); 2743 else 2744 return ipmr_mfc_delete(tbl, &mfcc, parent); 2745 } 2746 2747 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb) 2748 { 2749 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len); 2750 2751 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) || 2752 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) || 2753 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM, 2754 mrt->mroute_reg_vif_num) || 2755 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT, 2756 mrt->mroute_do_assert) || 2757 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) || 2758 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE, 2759 mrt->mroute_do_wrvifwhole)) 2760 return false; 2761 2762 return true; 2763 } 2764 2765 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb) 2766 { 2767 struct net_device *vif_dev; 2768 struct nlattr *vif_nest; 2769 struct vif_device *vif; 2770 2771 vif = &mrt->vif_table[vifid]; 2772 vif_dev = rtnl_dereference(vif->dev); 2773 /* if the VIF doesn't exist just continue */ 2774 if (!vif_dev) 2775 return true; 2776 2777 vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF); 2778 if (!vif_nest) 2779 return false; 2780 2781 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) || 2782 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) || 2783 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) || 2784 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in, 2785 IPMRA_VIFA_PAD) || 2786 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out, 2787 IPMRA_VIFA_PAD) || 2788 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in, 2789 IPMRA_VIFA_PAD) || 2790 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out, 2791 IPMRA_VIFA_PAD) || 2792 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) || 2793 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) { 2794 nla_nest_cancel(skb, vif_nest); 2795 return false; 2796 } 2797 nla_nest_end(skb, vif_nest); 2798 2799 return true; 2800 } 2801 2802 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh, 2803 struct netlink_ext_ack *extack) 2804 { 2805 struct ifinfomsg *ifm; 2806 2807 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) { 2808 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump"); 2809 return -EINVAL; 2810 } 2811 2812 if (nlmsg_attrlen(nlh, sizeof(*ifm))) { 2813 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump"); 2814 return -EINVAL; 2815 } 2816 2817 ifm = nlmsg_data(nlh); 2818 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags || 2819 ifm->ifi_change || ifm->ifi_index) { 2820 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request"); 2821 return -EINVAL; 2822 } 2823 2824 return 0; 2825 } 2826 2827 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb) 2828 { 2829 struct net *net = sock_net(skb->sk); 2830 struct nlmsghdr *nlh = NULL; 2831 unsigned int t = 0, s_t; 2832 unsigned int e = 0, s_e; 2833 struct mr_table *mrt; 2834 2835 if (cb->strict_check) { 2836 int err = ipmr_valid_dumplink(cb->nlh, cb->extack); 2837 2838 if (err < 0) 2839 return err; 2840 } 2841 2842 s_t = cb->args[0]; 2843 s_e = cb->args[1]; 2844 2845 ipmr_for_each_table(mrt, net) { 2846 struct nlattr *vifs, *af; 2847 struct ifinfomsg *hdr; 2848 u32 i; 2849 2850 if (t < s_t) 2851 goto skip_table; 2852 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, 2853 cb->nlh->nlmsg_seq, RTM_NEWLINK, 2854 sizeof(*hdr), NLM_F_MULTI); 2855 if (!nlh) 2856 break; 2857 2858 hdr = nlmsg_data(nlh); 2859 memset(hdr, 0, sizeof(*hdr)); 2860 hdr->ifi_family = RTNL_FAMILY_IPMR; 2861 2862 af = nla_nest_start_noflag(skb, IFLA_AF_SPEC); 2863 if (!af) { 2864 nlmsg_cancel(skb, nlh); 2865 goto out; 2866 } 2867 2868 if (!ipmr_fill_table(mrt, skb)) { 2869 nlmsg_cancel(skb, nlh); 2870 goto out; 2871 } 2872 2873 vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS); 2874 if (!vifs) { 2875 nla_nest_end(skb, af); 2876 nlmsg_end(skb, nlh); 2877 goto out; 2878 } 2879 for (i = 0; i < mrt->maxvif; i++) { 2880 if (e < s_e) 2881 goto skip_entry; 2882 if (!ipmr_fill_vif(mrt, i, skb)) { 2883 nla_nest_end(skb, vifs); 2884 nla_nest_end(skb, af); 2885 nlmsg_end(skb, nlh); 2886 goto out; 2887 } 2888 skip_entry: 2889 e++; 2890 } 2891 s_e = 0; 2892 e = 0; 2893 nla_nest_end(skb, vifs); 2894 nla_nest_end(skb, af); 2895 nlmsg_end(skb, nlh); 2896 skip_table: 2897 t++; 2898 } 2899 2900 out: 2901 cb->args[1] = e; 2902 cb->args[0] = t; 2903 2904 return skb->len; 2905 } 2906 2907 #ifdef CONFIG_PROC_FS 2908 /* The /proc interfaces to multicast routing : 2909 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2910 */ 2911 2912 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2913 __acquires(RCU) 2914 { 2915 struct mr_vif_iter *iter = seq->private; 2916 struct net *net = seq_file_net(seq); 2917 struct mr_table *mrt; 2918 2919 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2920 if (!mrt) 2921 return ERR_PTR(-ENOENT); 2922 2923 iter->mrt = mrt; 2924 2925 rcu_read_lock(); 2926 return mr_vif_seq_start(seq, pos); 2927 } 2928 2929 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2930 __releases(RCU) 2931 { 2932 rcu_read_unlock(); 2933 } 2934 2935 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2936 { 2937 struct mr_vif_iter *iter = seq->private; 2938 struct mr_table *mrt = iter->mrt; 2939 2940 if (v == SEQ_START_TOKEN) { 2941 seq_puts(seq, 2942 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2943 } else { 2944 const struct vif_device *vif = v; 2945 const struct net_device *vif_dev; 2946 const char *name; 2947 2948 vif_dev = vif_dev_read(vif); 2949 name = vif_dev ? vif_dev->name : "none"; 2950 seq_printf(seq, 2951 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2952 vif - mrt->vif_table, 2953 name, vif->bytes_in, vif->pkt_in, 2954 vif->bytes_out, vif->pkt_out, 2955 vif->flags, vif->local, vif->remote); 2956 } 2957 return 0; 2958 } 2959 2960 static const struct seq_operations ipmr_vif_seq_ops = { 2961 .start = ipmr_vif_seq_start, 2962 .next = mr_vif_seq_next, 2963 .stop = ipmr_vif_seq_stop, 2964 .show = ipmr_vif_seq_show, 2965 }; 2966 2967 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2968 { 2969 struct net *net = seq_file_net(seq); 2970 struct mr_table *mrt; 2971 2972 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2973 if (!mrt) 2974 return ERR_PTR(-ENOENT); 2975 2976 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock); 2977 } 2978 2979 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2980 { 2981 int n; 2982 2983 if (v == SEQ_START_TOKEN) { 2984 seq_puts(seq, 2985 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2986 } else { 2987 const struct mfc_cache *mfc = v; 2988 const struct mr_mfc_iter *it = seq->private; 2989 const struct mr_table *mrt = it->mrt; 2990 2991 seq_printf(seq, "%08X %08X %-3hd", 2992 (__force u32) mfc->mfc_mcastgrp, 2993 (__force u32) mfc->mfc_origin, 2994 mfc->_c.mfc_parent); 2995 2996 if (it->cache != &mrt->mfc_unres_queue) { 2997 seq_printf(seq, " %8lu %8lu %8lu", 2998 mfc->_c.mfc_un.res.pkt, 2999 mfc->_c.mfc_un.res.bytes, 3000 mfc->_c.mfc_un.res.wrong_if); 3001 for (n = mfc->_c.mfc_un.res.minvif; 3002 n < mfc->_c.mfc_un.res.maxvif; n++) { 3003 if (VIF_EXISTS(mrt, n) && 3004 mfc->_c.mfc_un.res.ttls[n] < 255) 3005 seq_printf(seq, 3006 " %2d:%-3d", 3007 n, mfc->_c.mfc_un.res.ttls[n]); 3008 } 3009 } else { 3010 /* unresolved mfc_caches don't contain 3011 * pkt, bytes and wrong_if values 3012 */ 3013 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 3014 } 3015 seq_putc(seq, '\n'); 3016 } 3017 return 0; 3018 } 3019 3020 static const struct seq_operations ipmr_mfc_seq_ops = { 3021 .start = ipmr_mfc_seq_start, 3022 .next = mr_mfc_seq_next, 3023 .stop = mr_mfc_seq_stop, 3024 .show = ipmr_mfc_seq_show, 3025 }; 3026 #endif 3027 3028 #ifdef CONFIG_IP_PIMSM_V2 3029 static const struct net_protocol pim_protocol = { 3030 .handler = pim_rcv, 3031 }; 3032 #endif 3033 3034 static unsigned int ipmr_seq_read(struct net *net) 3035 { 3036 ASSERT_RTNL(); 3037 3038 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net); 3039 } 3040 3041 static int ipmr_dump(struct net *net, struct notifier_block *nb, 3042 struct netlink_ext_ack *extack) 3043 { 3044 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump, 3045 ipmr_mr_table_iter, extack); 3046 } 3047 3048 static const struct fib_notifier_ops ipmr_notifier_ops_template = { 3049 .family = RTNL_FAMILY_IPMR, 3050 .fib_seq_read = ipmr_seq_read, 3051 .fib_dump = ipmr_dump, 3052 .owner = THIS_MODULE, 3053 }; 3054 3055 static int __net_init ipmr_notifier_init(struct net *net) 3056 { 3057 struct fib_notifier_ops *ops; 3058 3059 net->ipv4.ipmr_seq = 0; 3060 3061 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net); 3062 if (IS_ERR(ops)) 3063 return PTR_ERR(ops); 3064 net->ipv4.ipmr_notifier_ops = ops; 3065 3066 return 0; 3067 } 3068 3069 static void __net_exit ipmr_notifier_exit(struct net *net) 3070 { 3071 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops); 3072 net->ipv4.ipmr_notifier_ops = NULL; 3073 } 3074 3075 /* Setup for IP multicast routing */ 3076 static int __net_init ipmr_net_init(struct net *net) 3077 { 3078 int err; 3079 3080 err = ipmr_notifier_init(net); 3081 if (err) 3082 goto ipmr_notifier_fail; 3083 3084 err = ipmr_rules_init(net); 3085 if (err < 0) 3086 goto ipmr_rules_fail; 3087 3088 #ifdef CONFIG_PROC_FS 3089 err = -ENOMEM; 3090 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops, 3091 sizeof(struct mr_vif_iter))) 3092 goto proc_vif_fail; 3093 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops, 3094 sizeof(struct mr_mfc_iter))) 3095 goto proc_cache_fail; 3096 #endif 3097 return 0; 3098 3099 #ifdef CONFIG_PROC_FS 3100 proc_cache_fail: 3101 remove_proc_entry("ip_mr_vif", net->proc_net); 3102 proc_vif_fail: 3103 rtnl_lock(); 3104 ipmr_rules_exit(net); 3105 rtnl_unlock(); 3106 #endif 3107 ipmr_rules_fail: 3108 ipmr_notifier_exit(net); 3109 ipmr_notifier_fail: 3110 return err; 3111 } 3112 3113 static void __net_exit ipmr_net_exit(struct net *net) 3114 { 3115 #ifdef CONFIG_PROC_FS 3116 remove_proc_entry("ip_mr_cache", net->proc_net); 3117 remove_proc_entry("ip_mr_vif", net->proc_net); 3118 #endif 3119 ipmr_notifier_exit(net); 3120 } 3121 3122 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list) 3123 { 3124 struct net *net; 3125 3126 rtnl_lock(); 3127 list_for_each_entry(net, net_list, exit_list) 3128 ipmr_rules_exit(net); 3129 rtnl_unlock(); 3130 } 3131 3132 static struct pernet_operations ipmr_net_ops = { 3133 .init = ipmr_net_init, 3134 .exit = ipmr_net_exit, 3135 .exit_batch = ipmr_net_exit_batch, 3136 }; 3137 3138 int __init ip_mr_init(void) 3139 { 3140 int err; 3141 3142 mrt_cachep = kmem_cache_create("ip_mrt_cache", 3143 sizeof(struct mfc_cache), 3144 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 3145 NULL); 3146 3147 err = register_pernet_subsys(&ipmr_net_ops); 3148 if (err) 3149 goto reg_pernet_fail; 3150 3151 err = register_netdevice_notifier(&ip_mr_notifier); 3152 if (err) 3153 goto reg_notif_fail; 3154 #ifdef CONFIG_IP_PIMSM_V2 3155 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 3156 pr_err("%s: can't add PIM protocol\n", __func__); 3157 err = -EAGAIN; 3158 goto add_proto_fail; 3159 } 3160 #endif 3161 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 3162 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0); 3163 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE, 3164 ipmr_rtm_route, NULL, 0); 3165 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE, 3166 ipmr_rtm_route, NULL, 0); 3167 3168 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK, 3169 NULL, ipmr_rtm_dumplink, 0); 3170 return 0; 3171 3172 #ifdef CONFIG_IP_PIMSM_V2 3173 add_proto_fail: 3174 unregister_netdevice_notifier(&ip_mr_notifier); 3175 #endif 3176 reg_notif_fail: 3177 unregister_pernet_subsys(&ipmr_net_ops); 3178 reg_pernet_fail: 3179 kmem_cache_destroy(mrt_cachep); 3180 return err; 3181 } 3182