1 /* 2 * IP multicast routing support for mrouted 3.6/3.8 3 * 4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 5 * Linux Consultancy and Custom Driver Development 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 * 12 * Fixes: 13 * Michael Chastain : Incorrect size of copying. 14 * Alan Cox : Added the cache manager code 15 * Alan Cox : Fixed the clone/copy bug and device race. 16 * Mike McLagan : Routing by source 17 * Malcolm Beattie : Buffer handling fixes. 18 * Alexey Kuznetsov : Double buffer free and other fixes. 19 * SVR Anand : Fixed several multicast bugs and problems. 20 * Alexey Kuznetsov : Status, optimisations and more. 21 * Brad Parker : Better behaviour on mrouted upcall 22 * overflow. 23 * Carlos Picoto : PIMv1 Support 24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 25 * Relax this requirement to work with older peers. 26 * 27 */ 28 29 #include <asm/uaccess.h> 30 #include <linux/types.h> 31 #include <linux/capability.h> 32 #include <linux/errno.h> 33 #include <linux/timer.h> 34 #include <linux/mm.h> 35 #include <linux/kernel.h> 36 #include <linux/fcntl.h> 37 #include <linux/stat.h> 38 #include <linux/socket.h> 39 #include <linux/in.h> 40 #include <linux/inet.h> 41 #include <linux/netdevice.h> 42 #include <linux/inetdevice.h> 43 #include <linux/igmp.h> 44 #include <linux/proc_fs.h> 45 #include <linux/seq_file.h> 46 #include <linux/mroute.h> 47 #include <linux/init.h> 48 #include <linux/if_ether.h> 49 #include <linux/slab.h> 50 #include <net/net_namespace.h> 51 #include <net/ip.h> 52 #include <net/protocol.h> 53 #include <linux/skbuff.h> 54 #include <net/route.h> 55 #include <net/sock.h> 56 #include <net/icmp.h> 57 #include <net/udp.h> 58 #include <net/raw.h> 59 #include <linux/notifier.h> 60 #include <linux/if_arp.h> 61 #include <linux/netfilter_ipv4.h> 62 #include <linux/compat.h> 63 #include <linux/export.h> 64 #include <net/ip_tunnels.h> 65 #include <net/checksum.h> 66 #include <net/netlink.h> 67 #include <net/fib_rules.h> 68 #include <linux/netconf.h> 69 #include <net/nexthop.h> 70 71 struct ipmr_rule { 72 struct fib_rule common; 73 }; 74 75 struct ipmr_result { 76 struct mr_table *mrt; 77 }; 78 79 /* Big lock, protecting vif table, mrt cache and mroute socket state. 80 * Note that the changes are semaphored via rtnl_lock. 81 */ 82 83 static DEFINE_RWLOCK(mrt_lock); 84 85 /* Multicast router control variables */ 86 87 /* Special spinlock for queue of unresolved entries */ 88 static DEFINE_SPINLOCK(mfc_unres_lock); 89 90 /* We return to original Alan's scheme. Hash table of resolved 91 * entries is changed only in process context and protected 92 * with weak lock mrt_lock. Queue of unresolved entries is protected 93 * with strong spinlock mfc_unres_lock. 94 * 95 * In this case data path is free of exclusive locks at all. 96 */ 97 98 static struct kmem_cache *mrt_cachep __read_mostly; 99 100 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 101 static void ipmr_free_table(struct mr_table *mrt); 102 103 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 104 struct sk_buff *skb, struct mfc_cache *cache, 105 int local); 106 static int ipmr_cache_report(struct mr_table *mrt, 107 struct sk_buff *pkt, vifi_t vifi, int assert); 108 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 109 struct mfc_cache *c, struct rtmsg *rtm); 110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 111 int cmd); 112 static void mroute_clean_tables(struct mr_table *mrt, bool all); 113 static void ipmr_expire_process(unsigned long arg); 114 115 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 116 #define ipmr_for_each_table(mrt, net) \ 117 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list) 118 119 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 120 { 121 struct mr_table *mrt; 122 123 ipmr_for_each_table(mrt, net) { 124 if (mrt->id == id) 125 return mrt; 126 } 127 return NULL; 128 } 129 130 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 131 struct mr_table **mrt) 132 { 133 int err; 134 struct ipmr_result res; 135 struct fib_lookup_arg arg = { 136 .result = &res, 137 .flags = FIB_LOOKUP_NOREF, 138 }; 139 140 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 141 flowi4_to_flowi(flp4), 0, &arg); 142 if (err < 0) 143 return err; 144 *mrt = res.mrt; 145 return 0; 146 } 147 148 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 149 int flags, struct fib_lookup_arg *arg) 150 { 151 struct ipmr_result *res = arg->result; 152 struct mr_table *mrt; 153 154 switch (rule->action) { 155 case FR_ACT_TO_TBL: 156 break; 157 case FR_ACT_UNREACHABLE: 158 return -ENETUNREACH; 159 case FR_ACT_PROHIBIT: 160 return -EACCES; 161 case FR_ACT_BLACKHOLE: 162 default: 163 return -EINVAL; 164 } 165 166 mrt = ipmr_get_table(rule->fr_net, rule->table); 167 if (!mrt) 168 return -EAGAIN; 169 res->mrt = mrt; 170 return 0; 171 } 172 173 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 174 { 175 return 1; 176 } 177 178 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = { 179 FRA_GENERIC_POLICY, 180 }; 181 182 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 183 struct fib_rule_hdr *frh, struct nlattr **tb) 184 { 185 return 0; 186 } 187 188 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 189 struct nlattr **tb) 190 { 191 return 1; 192 } 193 194 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 195 struct fib_rule_hdr *frh) 196 { 197 frh->dst_len = 0; 198 frh->src_len = 0; 199 frh->tos = 0; 200 return 0; 201 } 202 203 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 204 .family = RTNL_FAMILY_IPMR, 205 .rule_size = sizeof(struct ipmr_rule), 206 .addr_size = sizeof(u32), 207 .action = ipmr_rule_action, 208 .match = ipmr_rule_match, 209 .configure = ipmr_rule_configure, 210 .compare = ipmr_rule_compare, 211 .fill = ipmr_rule_fill, 212 .nlgroup = RTNLGRP_IPV4_RULE, 213 .policy = ipmr_rule_policy, 214 .owner = THIS_MODULE, 215 }; 216 217 static int __net_init ipmr_rules_init(struct net *net) 218 { 219 struct fib_rules_ops *ops; 220 struct mr_table *mrt; 221 int err; 222 223 ops = fib_rules_register(&ipmr_rules_ops_template, net); 224 if (IS_ERR(ops)) 225 return PTR_ERR(ops); 226 227 INIT_LIST_HEAD(&net->ipv4.mr_tables); 228 229 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 230 if (IS_ERR(mrt)) { 231 err = PTR_ERR(mrt); 232 goto err1; 233 } 234 235 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 236 if (err < 0) 237 goto err2; 238 239 net->ipv4.mr_rules_ops = ops; 240 return 0; 241 242 err2: 243 ipmr_free_table(mrt); 244 err1: 245 fib_rules_unregister(ops); 246 return err; 247 } 248 249 static void __net_exit ipmr_rules_exit(struct net *net) 250 { 251 struct mr_table *mrt, *next; 252 253 rtnl_lock(); 254 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 255 list_del(&mrt->list); 256 ipmr_free_table(mrt); 257 } 258 fib_rules_unregister(net->ipv4.mr_rules_ops); 259 rtnl_unlock(); 260 } 261 #else 262 #define ipmr_for_each_table(mrt, net) \ 263 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 264 265 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 266 { 267 return net->ipv4.mrt; 268 } 269 270 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 271 struct mr_table **mrt) 272 { 273 *mrt = net->ipv4.mrt; 274 return 0; 275 } 276 277 static int __net_init ipmr_rules_init(struct net *net) 278 { 279 struct mr_table *mrt; 280 281 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 282 if (IS_ERR(mrt)) 283 return PTR_ERR(mrt); 284 net->ipv4.mrt = mrt; 285 return 0; 286 } 287 288 static void __net_exit ipmr_rules_exit(struct net *net) 289 { 290 rtnl_lock(); 291 ipmr_free_table(net->ipv4.mrt); 292 net->ipv4.mrt = NULL; 293 rtnl_unlock(); 294 } 295 #endif 296 297 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 298 { 299 struct mr_table *mrt; 300 unsigned int i; 301 302 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 303 if (id != RT_TABLE_DEFAULT && id >= 1000000000) 304 return ERR_PTR(-EINVAL); 305 306 mrt = ipmr_get_table(net, id); 307 if (mrt) 308 return mrt; 309 310 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL); 311 if (!mrt) 312 return ERR_PTR(-ENOMEM); 313 write_pnet(&mrt->net, net); 314 mrt->id = id; 315 316 /* Forwarding cache */ 317 for (i = 0; i < MFC_LINES; i++) 318 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]); 319 320 INIT_LIST_HEAD(&mrt->mfc_unres_queue); 321 322 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process, 323 (unsigned long)mrt); 324 325 mrt->mroute_reg_vif_num = -1; 326 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 327 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 328 #endif 329 return mrt; 330 } 331 332 static void ipmr_free_table(struct mr_table *mrt) 333 { 334 del_timer_sync(&mrt->ipmr_expire_timer); 335 mroute_clean_tables(mrt, true); 336 kfree(mrt); 337 } 338 339 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 340 341 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v) 342 { 343 struct net *net = dev_net(dev); 344 345 dev_close(dev); 346 347 dev = __dev_get_by_name(net, "tunl0"); 348 if (dev) { 349 const struct net_device_ops *ops = dev->netdev_ops; 350 struct ifreq ifr; 351 struct ip_tunnel_parm p; 352 353 memset(&p, 0, sizeof(p)); 354 p.iph.daddr = v->vifc_rmt_addr.s_addr; 355 p.iph.saddr = v->vifc_lcl_addr.s_addr; 356 p.iph.version = 4; 357 p.iph.ihl = 5; 358 p.iph.protocol = IPPROTO_IPIP; 359 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 360 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 361 362 if (ops->ndo_do_ioctl) { 363 mm_segment_t oldfs = get_fs(); 364 365 set_fs(KERNEL_DS); 366 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL); 367 set_fs(oldfs); 368 } 369 } 370 } 371 372 /* Initialize ipmr pimreg/tunnel in_device */ 373 static bool ipmr_init_vif_indev(const struct net_device *dev) 374 { 375 struct in_device *in_dev; 376 377 ASSERT_RTNL(); 378 379 in_dev = __in_dev_get_rtnl(dev); 380 if (!in_dev) 381 return false; 382 ipv4_devconf_setall(in_dev); 383 neigh_parms_data_state_setall(in_dev->arp_parms); 384 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 385 386 return true; 387 } 388 389 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 390 { 391 struct net_device *dev; 392 393 dev = __dev_get_by_name(net, "tunl0"); 394 395 if (dev) { 396 const struct net_device_ops *ops = dev->netdev_ops; 397 int err; 398 struct ifreq ifr; 399 struct ip_tunnel_parm p; 400 401 memset(&p, 0, sizeof(p)); 402 p.iph.daddr = v->vifc_rmt_addr.s_addr; 403 p.iph.saddr = v->vifc_lcl_addr.s_addr; 404 p.iph.version = 4; 405 p.iph.ihl = 5; 406 p.iph.protocol = IPPROTO_IPIP; 407 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 408 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 409 410 if (ops->ndo_do_ioctl) { 411 mm_segment_t oldfs = get_fs(); 412 413 set_fs(KERNEL_DS); 414 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL); 415 set_fs(oldfs); 416 } else { 417 err = -EOPNOTSUPP; 418 } 419 dev = NULL; 420 421 if (err == 0 && 422 (dev = __dev_get_by_name(net, p.name)) != NULL) { 423 dev->flags |= IFF_MULTICAST; 424 if (!ipmr_init_vif_indev(dev)) 425 goto failure; 426 if (dev_open(dev)) 427 goto failure; 428 dev_hold(dev); 429 } 430 } 431 return dev; 432 433 failure: 434 unregister_netdevice(dev); 435 return NULL; 436 } 437 438 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 439 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 440 { 441 struct net *net = dev_net(dev); 442 struct mr_table *mrt; 443 struct flowi4 fl4 = { 444 .flowi4_oif = dev->ifindex, 445 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 446 .flowi4_mark = skb->mark, 447 }; 448 int err; 449 450 err = ipmr_fib_lookup(net, &fl4, &mrt); 451 if (err < 0) { 452 kfree_skb(skb); 453 return err; 454 } 455 456 read_lock(&mrt_lock); 457 dev->stats.tx_bytes += skb->len; 458 dev->stats.tx_packets++; 459 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT); 460 read_unlock(&mrt_lock); 461 kfree_skb(skb); 462 return NETDEV_TX_OK; 463 } 464 465 static int reg_vif_get_iflink(const struct net_device *dev) 466 { 467 return 0; 468 } 469 470 static const struct net_device_ops reg_vif_netdev_ops = { 471 .ndo_start_xmit = reg_vif_xmit, 472 .ndo_get_iflink = reg_vif_get_iflink, 473 }; 474 475 static void reg_vif_setup(struct net_device *dev) 476 { 477 dev->type = ARPHRD_PIMREG; 478 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 479 dev->flags = IFF_NOARP; 480 dev->netdev_ops = ®_vif_netdev_ops; 481 dev->destructor = free_netdev; 482 dev->features |= NETIF_F_NETNS_LOCAL; 483 } 484 485 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 486 { 487 struct net_device *dev; 488 char name[IFNAMSIZ]; 489 490 if (mrt->id == RT_TABLE_DEFAULT) 491 sprintf(name, "pimreg"); 492 else 493 sprintf(name, "pimreg%u", mrt->id); 494 495 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 496 497 if (!dev) 498 return NULL; 499 500 dev_net_set(dev, net); 501 502 if (register_netdevice(dev)) { 503 free_netdev(dev); 504 return NULL; 505 } 506 507 if (!ipmr_init_vif_indev(dev)) 508 goto failure; 509 if (dev_open(dev)) 510 goto failure; 511 512 dev_hold(dev); 513 514 return dev; 515 516 failure: 517 unregister_netdevice(dev); 518 return NULL; 519 } 520 521 /* called with rcu_read_lock() */ 522 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 523 unsigned int pimlen) 524 { 525 struct net_device *reg_dev = NULL; 526 struct iphdr *encap; 527 528 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 529 /* Check that: 530 * a. packet is really sent to a multicast group 531 * b. packet is not a NULL-REGISTER 532 * c. packet is not truncated 533 */ 534 if (!ipv4_is_multicast(encap->daddr) || 535 encap->tot_len == 0 || 536 ntohs(encap->tot_len) + pimlen > skb->len) 537 return 1; 538 539 read_lock(&mrt_lock); 540 if (mrt->mroute_reg_vif_num >= 0) 541 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev; 542 read_unlock(&mrt_lock); 543 544 if (!reg_dev) 545 return 1; 546 547 skb->mac_header = skb->network_header; 548 skb_pull(skb, (u8 *)encap - skb->data); 549 skb_reset_network_header(skb); 550 skb->protocol = htons(ETH_P_IP); 551 skb->ip_summed = CHECKSUM_NONE; 552 553 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 554 555 netif_rx(skb); 556 557 return NET_RX_SUCCESS; 558 } 559 #else 560 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 561 { 562 return NULL; 563 } 564 #endif 565 566 /** 567 * vif_delete - Delete a VIF entry 568 * @notify: Set to 1, if the caller is a notifier_call 569 */ 570 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 571 struct list_head *head) 572 { 573 struct vif_device *v; 574 struct net_device *dev; 575 struct in_device *in_dev; 576 577 if (vifi < 0 || vifi >= mrt->maxvif) 578 return -EADDRNOTAVAIL; 579 580 v = &mrt->vif_table[vifi]; 581 582 write_lock_bh(&mrt_lock); 583 dev = v->dev; 584 v->dev = NULL; 585 586 if (!dev) { 587 write_unlock_bh(&mrt_lock); 588 return -EADDRNOTAVAIL; 589 } 590 591 if (vifi == mrt->mroute_reg_vif_num) 592 mrt->mroute_reg_vif_num = -1; 593 594 if (vifi + 1 == mrt->maxvif) { 595 int tmp; 596 597 for (tmp = vifi - 1; tmp >= 0; tmp--) { 598 if (VIF_EXISTS(mrt, tmp)) 599 break; 600 } 601 mrt->maxvif = tmp+1; 602 } 603 604 write_unlock_bh(&mrt_lock); 605 606 dev_set_allmulti(dev, -1); 607 608 in_dev = __in_dev_get_rtnl(dev); 609 if (in_dev) { 610 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 611 inet_netconf_notify_devconf(dev_net(dev), 612 NETCONFA_MC_FORWARDING, 613 dev->ifindex, &in_dev->cnf); 614 ip_rt_multicast_event(in_dev); 615 } 616 617 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 618 unregister_netdevice_queue(dev, head); 619 620 dev_put(dev); 621 return 0; 622 } 623 624 static void ipmr_cache_free_rcu(struct rcu_head *head) 625 { 626 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu); 627 628 kmem_cache_free(mrt_cachep, c); 629 } 630 631 static inline void ipmr_cache_free(struct mfc_cache *c) 632 { 633 call_rcu(&c->rcu, ipmr_cache_free_rcu); 634 } 635 636 /* Destroy an unresolved cache entry, killing queued skbs 637 * and reporting error to netlink readers. 638 */ 639 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 640 { 641 struct net *net = read_pnet(&mrt->net); 642 struct sk_buff *skb; 643 struct nlmsgerr *e; 644 645 atomic_dec(&mrt->cache_resolve_queue_len); 646 647 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) { 648 if (ip_hdr(skb)->version == 0) { 649 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 650 nlh->nlmsg_type = NLMSG_ERROR; 651 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 652 skb_trim(skb, nlh->nlmsg_len); 653 e = nlmsg_data(nlh); 654 e->error = -ETIMEDOUT; 655 memset(&e->msg, 0, sizeof(e->msg)); 656 657 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 658 } else { 659 kfree_skb(skb); 660 } 661 } 662 663 ipmr_cache_free(c); 664 } 665 666 /* Timer process for the unresolved queue. */ 667 static void ipmr_expire_process(unsigned long arg) 668 { 669 struct mr_table *mrt = (struct mr_table *)arg; 670 unsigned long now; 671 unsigned long expires; 672 struct mfc_cache *c, *next; 673 674 if (!spin_trylock(&mfc_unres_lock)) { 675 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 676 return; 677 } 678 679 if (list_empty(&mrt->mfc_unres_queue)) 680 goto out; 681 682 now = jiffies; 683 expires = 10*HZ; 684 685 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 686 if (time_after(c->mfc_un.unres.expires, now)) { 687 unsigned long interval = c->mfc_un.unres.expires - now; 688 if (interval < expires) 689 expires = interval; 690 continue; 691 } 692 693 list_del(&c->list); 694 mroute_netlink_event(mrt, c, RTM_DELROUTE); 695 ipmr_destroy_unres(mrt, c); 696 } 697 698 if (!list_empty(&mrt->mfc_unres_queue)) 699 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 700 701 out: 702 spin_unlock(&mfc_unres_lock); 703 } 704 705 /* Fill oifs list. It is called under write locked mrt_lock. */ 706 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache, 707 unsigned char *ttls) 708 { 709 int vifi; 710 711 cache->mfc_un.res.minvif = MAXVIFS; 712 cache->mfc_un.res.maxvif = 0; 713 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 714 715 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 716 if (VIF_EXISTS(mrt, vifi) && 717 ttls[vifi] && ttls[vifi] < 255) { 718 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 719 if (cache->mfc_un.res.minvif > vifi) 720 cache->mfc_un.res.minvif = vifi; 721 if (cache->mfc_un.res.maxvif <= vifi) 722 cache->mfc_un.res.maxvif = vifi + 1; 723 } 724 } 725 } 726 727 static int vif_add(struct net *net, struct mr_table *mrt, 728 struct vifctl *vifc, int mrtsock) 729 { 730 int vifi = vifc->vifc_vifi; 731 struct vif_device *v = &mrt->vif_table[vifi]; 732 struct net_device *dev; 733 struct in_device *in_dev; 734 int err; 735 736 /* Is vif busy ? */ 737 if (VIF_EXISTS(mrt, vifi)) 738 return -EADDRINUSE; 739 740 switch (vifc->vifc_flags) { 741 case VIFF_REGISTER: 742 if (!ipmr_pimsm_enabled()) 743 return -EINVAL; 744 /* Special Purpose VIF in PIM 745 * All the packets will be sent to the daemon 746 */ 747 if (mrt->mroute_reg_vif_num >= 0) 748 return -EADDRINUSE; 749 dev = ipmr_reg_vif(net, mrt); 750 if (!dev) 751 return -ENOBUFS; 752 err = dev_set_allmulti(dev, 1); 753 if (err) { 754 unregister_netdevice(dev); 755 dev_put(dev); 756 return err; 757 } 758 break; 759 case VIFF_TUNNEL: 760 dev = ipmr_new_tunnel(net, vifc); 761 if (!dev) 762 return -ENOBUFS; 763 err = dev_set_allmulti(dev, 1); 764 if (err) { 765 ipmr_del_tunnel(dev, vifc); 766 dev_put(dev); 767 return err; 768 } 769 break; 770 case VIFF_USE_IFINDEX: 771 case 0: 772 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 773 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 774 if (dev && !__in_dev_get_rtnl(dev)) { 775 dev_put(dev); 776 return -EADDRNOTAVAIL; 777 } 778 } else { 779 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 780 } 781 if (!dev) 782 return -EADDRNOTAVAIL; 783 err = dev_set_allmulti(dev, 1); 784 if (err) { 785 dev_put(dev); 786 return err; 787 } 788 break; 789 default: 790 return -EINVAL; 791 } 792 793 in_dev = __in_dev_get_rtnl(dev); 794 if (!in_dev) { 795 dev_put(dev); 796 return -EADDRNOTAVAIL; 797 } 798 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 799 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex, 800 &in_dev->cnf); 801 ip_rt_multicast_event(in_dev); 802 803 /* Fill in the VIF structures */ 804 805 v->rate_limit = vifc->vifc_rate_limit; 806 v->local = vifc->vifc_lcl_addr.s_addr; 807 v->remote = vifc->vifc_rmt_addr.s_addr; 808 v->flags = vifc->vifc_flags; 809 if (!mrtsock) 810 v->flags |= VIFF_STATIC; 811 v->threshold = vifc->vifc_threshold; 812 v->bytes_in = 0; 813 v->bytes_out = 0; 814 v->pkt_in = 0; 815 v->pkt_out = 0; 816 v->link = dev->ifindex; 817 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER)) 818 v->link = dev_get_iflink(dev); 819 820 /* And finish update writing critical data */ 821 write_lock_bh(&mrt_lock); 822 v->dev = dev; 823 if (v->flags & VIFF_REGISTER) 824 mrt->mroute_reg_vif_num = vifi; 825 if (vifi+1 > mrt->maxvif) 826 mrt->maxvif = vifi+1; 827 write_unlock_bh(&mrt_lock); 828 return 0; 829 } 830 831 /* called with rcu_read_lock() */ 832 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 833 __be32 origin, 834 __be32 mcastgrp) 835 { 836 int line = MFC_HASH(mcastgrp, origin); 837 struct mfc_cache *c; 838 839 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) { 840 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp) 841 return c; 842 } 843 return NULL; 844 } 845 846 /* Look for a (*,*,oif) entry */ 847 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt, 848 int vifi) 849 { 850 int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY)); 851 struct mfc_cache *c; 852 853 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) 854 if (c->mfc_origin == htonl(INADDR_ANY) && 855 c->mfc_mcastgrp == htonl(INADDR_ANY) && 856 c->mfc_un.res.ttls[vifi] < 255) 857 return c; 858 859 return NULL; 860 } 861 862 /* Look for a (*,G) entry */ 863 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 864 __be32 mcastgrp, int vifi) 865 { 866 int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY)); 867 struct mfc_cache *c, *proxy; 868 869 if (mcastgrp == htonl(INADDR_ANY)) 870 goto skip; 871 872 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) 873 if (c->mfc_origin == htonl(INADDR_ANY) && 874 c->mfc_mcastgrp == mcastgrp) { 875 if (c->mfc_un.res.ttls[vifi] < 255) 876 return c; 877 878 /* It's ok if the vifi is part of the static tree */ 879 proxy = ipmr_cache_find_any_parent(mrt, 880 c->mfc_parent); 881 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255) 882 return c; 883 } 884 885 skip: 886 return ipmr_cache_find_any_parent(mrt, vifi); 887 } 888 889 /* Allocate a multicast cache entry */ 890 static struct mfc_cache *ipmr_cache_alloc(void) 891 { 892 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 893 894 if (c) 895 c->mfc_un.res.minvif = MAXVIFS; 896 return c; 897 } 898 899 static struct mfc_cache *ipmr_cache_alloc_unres(void) 900 { 901 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 902 903 if (c) { 904 skb_queue_head_init(&c->mfc_un.unres.unresolved); 905 c->mfc_un.unres.expires = jiffies + 10*HZ; 906 } 907 return c; 908 } 909 910 /* A cache entry has gone into a resolved state from queued */ 911 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 912 struct mfc_cache *uc, struct mfc_cache *c) 913 { 914 struct sk_buff *skb; 915 struct nlmsgerr *e; 916 917 /* Play the pending entries through our router */ 918 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) { 919 if (ip_hdr(skb)->version == 0) { 920 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 921 922 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) { 923 nlh->nlmsg_len = skb_tail_pointer(skb) - 924 (u8 *)nlh; 925 } else { 926 nlh->nlmsg_type = NLMSG_ERROR; 927 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 928 skb_trim(skb, nlh->nlmsg_len); 929 e = nlmsg_data(nlh); 930 e->error = -EMSGSIZE; 931 memset(&e->msg, 0, sizeof(e->msg)); 932 } 933 934 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 935 } else { 936 ip_mr_forward(net, mrt, skb, c, 0); 937 } 938 } 939 } 940 941 /* Bounce a cache query up to mrouted. We could use netlink for this but mrouted 942 * expects the following bizarre scheme. 943 * 944 * Called under mrt_lock. 945 */ 946 static int ipmr_cache_report(struct mr_table *mrt, 947 struct sk_buff *pkt, vifi_t vifi, int assert) 948 { 949 const int ihl = ip_hdrlen(pkt); 950 struct sock *mroute_sk; 951 struct igmphdr *igmp; 952 struct igmpmsg *msg; 953 struct sk_buff *skb; 954 int ret; 955 956 if (assert == IGMPMSG_WHOLEPKT) 957 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 958 else 959 skb = alloc_skb(128, GFP_ATOMIC); 960 961 if (!skb) 962 return -ENOBUFS; 963 964 if (assert == IGMPMSG_WHOLEPKT) { 965 /* Ugly, but we have no choice with this interface. 966 * Duplicate old header, fix ihl, length etc. 967 * And all this only to mangle msg->im_msgtype and 968 * to set msg->im_mbz to "mbz" :-) 969 */ 970 skb_push(skb, sizeof(struct iphdr)); 971 skb_reset_network_header(skb); 972 skb_reset_transport_header(skb); 973 msg = (struct igmpmsg *)skb_network_header(skb); 974 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 975 msg->im_msgtype = IGMPMSG_WHOLEPKT; 976 msg->im_mbz = 0; 977 msg->im_vif = mrt->mroute_reg_vif_num; 978 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 979 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 980 sizeof(struct iphdr)); 981 } else { 982 /* Copy the IP header */ 983 skb_set_network_header(skb, skb->len); 984 skb_put(skb, ihl); 985 skb_copy_to_linear_data(skb, pkt->data, ihl); 986 /* Flag to the kernel this is a route add */ 987 ip_hdr(skb)->protocol = 0; 988 msg = (struct igmpmsg *)skb_network_header(skb); 989 msg->im_vif = vifi; 990 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 991 /* Add our header */ 992 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr)); 993 igmp->type = assert; 994 msg->im_msgtype = assert; 995 igmp->code = 0; 996 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 997 skb->transport_header = skb->network_header; 998 } 999 1000 rcu_read_lock(); 1001 mroute_sk = rcu_dereference(mrt->mroute_sk); 1002 if (!mroute_sk) { 1003 rcu_read_unlock(); 1004 kfree_skb(skb); 1005 return -EINVAL; 1006 } 1007 1008 /* Deliver to mrouted */ 1009 ret = sock_queue_rcv_skb(mroute_sk, skb); 1010 rcu_read_unlock(); 1011 if (ret < 0) { 1012 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1013 kfree_skb(skb); 1014 } 1015 1016 return ret; 1017 } 1018 1019 /* Queue a packet for resolution. It gets locked cache entry! */ 1020 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, 1021 struct sk_buff *skb) 1022 { 1023 bool found = false; 1024 int err; 1025 struct mfc_cache *c; 1026 const struct iphdr *iph = ip_hdr(skb); 1027 1028 spin_lock_bh(&mfc_unres_lock); 1029 list_for_each_entry(c, &mrt->mfc_unres_queue, list) { 1030 if (c->mfc_mcastgrp == iph->daddr && 1031 c->mfc_origin == iph->saddr) { 1032 found = true; 1033 break; 1034 } 1035 } 1036 1037 if (!found) { 1038 /* Create a new entry if allowable */ 1039 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 1040 (c = ipmr_cache_alloc_unres()) == NULL) { 1041 spin_unlock_bh(&mfc_unres_lock); 1042 1043 kfree_skb(skb); 1044 return -ENOBUFS; 1045 } 1046 1047 /* Fill in the new cache entry */ 1048 c->mfc_parent = -1; 1049 c->mfc_origin = iph->saddr; 1050 c->mfc_mcastgrp = iph->daddr; 1051 1052 /* Reflect first query at mrouted. */ 1053 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1054 if (err < 0) { 1055 /* If the report failed throw the cache entry 1056 out - Brad Parker 1057 */ 1058 spin_unlock_bh(&mfc_unres_lock); 1059 1060 ipmr_cache_free(c); 1061 kfree_skb(skb); 1062 return err; 1063 } 1064 1065 atomic_inc(&mrt->cache_resolve_queue_len); 1066 list_add(&c->list, &mrt->mfc_unres_queue); 1067 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1068 1069 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1070 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires); 1071 } 1072 1073 /* See if we can append the packet */ 1074 if (c->mfc_un.unres.unresolved.qlen > 3) { 1075 kfree_skb(skb); 1076 err = -ENOBUFS; 1077 } else { 1078 skb_queue_tail(&c->mfc_un.unres.unresolved, skb); 1079 err = 0; 1080 } 1081 1082 spin_unlock_bh(&mfc_unres_lock); 1083 return err; 1084 } 1085 1086 /* MFC cache manipulation by user space mroute daemon */ 1087 1088 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1089 { 1090 int line; 1091 struct mfc_cache *c, *next; 1092 1093 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1094 1095 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) { 1096 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1097 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr && 1098 (parent == -1 || parent == c->mfc_parent)) { 1099 list_del_rcu(&c->list); 1100 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1101 ipmr_cache_free(c); 1102 return 0; 1103 } 1104 } 1105 return -ENOENT; 1106 } 1107 1108 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1109 struct mfcctl *mfc, int mrtsock, int parent) 1110 { 1111 bool found = false; 1112 int line; 1113 struct mfc_cache *uc, *c; 1114 1115 if (mfc->mfcc_parent >= MAXVIFS) 1116 return -ENFILE; 1117 1118 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1119 1120 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) { 1121 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1122 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr && 1123 (parent == -1 || parent == c->mfc_parent)) { 1124 found = true; 1125 break; 1126 } 1127 } 1128 1129 if (found) { 1130 write_lock_bh(&mrt_lock); 1131 c->mfc_parent = mfc->mfcc_parent; 1132 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1133 if (!mrtsock) 1134 c->mfc_flags |= MFC_STATIC; 1135 write_unlock_bh(&mrt_lock); 1136 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1137 return 0; 1138 } 1139 1140 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1141 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1142 return -EINVAL; 1143 1144 c = ipmr_cache_alloc(); 1145 if (!c) 1146 return -ENOMEM; 1147 1148 c->mfc_origin = mfc->mfcc_origin.s_addr; 1149 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1150 c->mfc_parent = mfc->mfcc_parent; 1151 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1152 if (!mrtsock) 1153 c->mfc_flags |= MFC_STATIC; 1154 1155 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]); 1156 1157 /* Check to see if we resolved a queued list. If so we 1158 * need to send on the frames and tidy up. 1159 */ 1160 found = false; 1161 spin_lock_bh(&mfc_unres_lock); 1162 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) { 1163 if (uc->mfc_origin == c->mfc_origin && 1164 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1165 list_del(&uc->list); 1166 atomic_dec(&mrt->cache_resolve_queue_len); 1167 found = true; 1168 break; 1169 } 1170 } 1171 if (list_empty(&mrt->mfc_unres_queue)) 1172 del_timer(&mrt->ipmr_expire_timer); 1173 spin_unlock_bh(&mfc_unres_lock); 1174 1175 if (found) { 1176 ipmr_cache_resolve(net, mrt, uc, c); 1177 ipmr_cache_free(uc); 1178 } 1179 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1180 return 0; 1181 } 1182 1183 /* Close the multicast socket, and clear the vif tables etc */ 1184 static void mroute_clean_tables(struct mr_table *mrt, bool all) 1185 { 1186 int i; 1187 LIST_HEAD(list); 1188 struct mfc_cache *c, *next; 1189 1190 /* Shut down all active vif entries */ 1191 for (i = 0; i < mrt->maxvif; i++) { 1192 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC)) 1193 continue; 1194 vif_delete(mrt, i, 0, &list); 1195 } 1196 unregister_netdevice_many(&list); 1197 1198 /* Wipe the cache */ 1199 for (i = 0; i < MFC_LINES; i++) { 1200 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) { 1201 if (!all && (c->mfc_flags & MFC_STATIC)) 1202 continue; 1203 list_del_rcu(&c->list); 1204 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1205 ipmr_cache_free(c); 1206 } 1207 } 1208 1209 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1210 spin_lock_bh(&mfc_unres_lock); 1211 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 1212 list_del(&c->list); 1213 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1214 ipmr_destroy_unres(mrt, c); 1215 } 1216 spin_unlock_bh(&mfc_unres_lock); 1217 } 1218 } 1219 1220 /* called from ip_ra_control(), before an RCU grace period, 1221 * we dont need to call synchronize_rcu() here 1222 */ 1223 static void mrtsock_destruct(struct sock *sk) 1224 { 1225 struct net *net = sock_net(sk); 1226 struct mr_table *mrt; 1227 1228 rtnl_lock(); 1229 ipmr_for_each_table(mrt, net) { 1230 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1231 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1232 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, 1233 NETCONFA_IFINDEX_ALL, 1234 net->ipv4.devconf_all); 1235 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1236 mroute_clean_tables(mrt, false); 1237 } 1238 } 1239 rtnl_unlock(); 1240 } 1241 1242 /* Socket options and virtual interface manipulation. The whole 1243 * virtual interface system is a complete heap, but unfortunately 1244 * that's how BSD mrouted happens to think. Maybe one day with a proper 1245 * MOSPF/PIM router set up we can clean this up. 1246 */ 1247 1248 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, 1249 unsigned int optlen) 1250 { 1251 struct net *net = sock_net(sk); 1252 int val, ret = 0, parent = 0; 1253 struct mr_table *mrt; 1254 struct vifctl vif; 1255 struct mfcctl mfc; 1256 u32 uval; 1257 1258 /* There's one exception to the lock - MRT_DONE which needs to unlock */ 1259 rtnl_lock(); 1260 if (sk->sk_type != SOCK_RAW || 1261 inet_sk(sk)->inet_num != IPPROTO_IGMP) { 1262 ret = -EOPNOTSUPP; 1263 goto out_unlock; 1264 } 1265 1266 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1267 if (!mrt) { 1268 ret = -ENOENT; 1269 goto out_unlock; 1270 } 1271 if (optname != MRT_INIT) { 1272 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1273 !ns_capable(net->user_ns, CAP_NET_ADMIN)) { 1274 ret = -EACCES; 1275 goto out_unlock; 1276 } 1277 } 1278 1279 switch (optname) { 1280 case MRT_INIT: 1281 if (optlen != sizeof(int)) { 1282 ret = -EINVAL; 1283 break; 1284 } 1285 if (rtnl_dereference(mrt->mroute_sk)) { 1286 ret = -EADDRINUSE; 1287 break; 1288 } 1289 1290 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1291 if (ret == 0) { 1292 rcu_assign_pointer(mrt->mroute_sk, sk); 1293 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1294 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, 1295 NETCONFA_IFINDEX_ALL, 1296 net->ipv4.devconf_all); 1297 } 1298 break; 1299 case MRT_DONE: 1300 if (sk != rcu_access_pointer(mrt->mroute_sk)) { 1301 ret = -EACCES; 1302 } else { 1303 /* We need to unlock here because mrtsock_destruct takes 1304 * care of rtnl itself and we can't change that due to 1305 * the IP_ROUTER_ALERT setsockopt which runs without it. 1306 */ 1307 rtnl_unlock(); 1308 ret = ip_ra_control(sk, 0, NULL); 1309 goto out; 1310 } 1311 break; 1312 case MRT_ADD_VIF: 1313 case MRT_DEL_VIF: 1314 if (optlen != sizeof(vif)) { 1315 ret = -EINVAL; 1316 break; 1317 } 1318 if (copy_from_user(&vif, optval, sizeof(vif))) { 1319 ret = -EFAULT; 1320 break; 1321 } 1322 if (vif.vifc_vifi >= MAXVIFS) { 1323 ret = -ENFILE; 1324 break; 1325 } 1326 if (optname == MRT_ADD_VIF) { 1327 ret = vif_add(net, mrt, &vif, 1328 sk == rtnl_dereference(mrt->mroute_sk)); 1329 } else { 1330 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1331 } 1332 break; 1333 /* Manipulate the forwarding caches. These live 1334 * in a sort of kernel/user symbiosis. 1335 */ 1336 case MRT_ADD_MFC: 1337 case MRT_DEL_MFC: 1338 parent = -1; 1339 case MRT_ADD_MFC_PROXY: 1340 case MRT_DEL_MFC_PROXY: 1341 if (optlen != sizeof(mfc)) { 1342 ret = -EINVAL; 1343 break; 1344 } 1345 if (copy_from_user(&mfc, optval, sizeof(mfc))) { 1346 ret = -EFAULT; 1347 break; 1348 } 1349 if (parent == 0) 1350 parent = mfc.mfcc_parent; 1351 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1352 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1353 else 1354 ret = ipmr_mfc_add(net, mrt, &mfc, 1355 sk == rtnl_dereference(mrt->mroute_sk), 1356 parent); 1357 break; 1358 /* Control PIM assert. */ 1359 case MRT_ASSERT: 1360 if (optlen != sizeof(val)) { 1361 ret = -EINVAL; 1362 break; 1363 } 1364 if (get_user(val, (int __user *)optval)) { 1365 ret = -EFAULT; 1366 break; 1367 } 1368 mrt->mroute_do_assert = val; 1369 break; 1370 case MRT_PIM: 1371 if (!ipmr_pimsm_enabled()) { 1372 ret = -ENOPROTOOPT; 1373 break; 1374 } 1375 if (optlen != sizeof(val)) { 1376 ret = -EINVAL; 1377 break; 1378 } 1379 if (get_user(val, (int __user *)optval)) { 1380 ret = -EFAULT; 1381 break; 1382 } 1383 1384 val = !!val; 1385 if (val != mrt->mroute_do_pim) { 1386 mrt->mroute_do_pim = val; 1387 mrt->mroute_do_assert = val; 1388 } 1389 break; 1390 case MRT_TABLE: 1391 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) { 1392 ret = -ENOPROTOOPT; 1393 break; 1394 } 1395 if (optlen != sizeof(uval)) { 1396 ret = -EINVAL; 1397 break; 1398 } 1399 if (get_user(uval, (u32 __user *)optval)) { 1400 ret = -EFAULT; 1401 break; 1402 } 1403 1404 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1405 ret = -EBUSY; 1406 } else { 1407 mrt = ipmr_new_table(net, uval); 1408 if (IS_ERR(mrt)) 1409 ret = PTR_ERR(mrt); 1410 else 1411 raw_sk(sk)->ipmr_table = uval; 1412 } 1413 break; 1414 /* Spurious command, or MRT_VERSION which you cannot set. */ 1415 default: 1416 ret = -ENOPROTOOPT; 1417 } 1418 out_unlock: 1419 rtnl_unlock(); 1420 out: 1421 return ret; 1422 } 1423 1424 /* Getsock opt support for the multicast routing system. */ 1425 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1426 { 1427 int olr; 1428 int val; 1429 struct net *net = sock_net(sk); 1430 struct mr_table *mrt; 1431 1432 if (sk->sk_type != SOCK_RAW || 1433 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1434 return -EOPNOTSUPP; 1435 1436 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1437 if (!mrt) 1438 return -ENOENT; 1439 1440 switch (optname) { 1441 case MRT_VERSION: 1442 val = 0x0305; 1443 break; 1444 case MRT_PIM: 1445 if (!ipmr_pimsm_enabled()) 1446 return -ENOPROTOOPT; 1447 val = mrt->mroute_do_pim; 1448 break; 1449 case MRT_ASSERT: 1450 val = mrt->mroute_do_assert; 1451 break; 1452 default: 1453 return -ENOPROTOOPT; 1454 } 1455 1456 if (get_user(olr, optlen)) 1457 return -EFAULT; 1458 olr = min_t(unsigned int, olr, sizeof(int)); 1459 if (olr < 0) 1460 return -EINVAL; 1461 if (put_user(olr, optlen)) 1462 return -EFAULT; 1463 if (copy_to_user(optval, &val, olr)) 1464 return -EFAULT; 1465 return 0; 1466 } 1467 1468 /* The IP multicast ioctl support routines. */ 1469 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1470 { 1471 struct sioc_sg_req sr; 1472 struct sioc_vif_req vr; 1473 struct vif_device *vif; 1474 struct mfc_cache *c; 1475 struct net *net = sock_net(sk); 1476 struct mr_table *mrt; 1477 1478 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1479 if (!mrt) 1480 return -ENOENT; 1481 1482 switch (cmd) { 1483 case SIOCGETVIFCNT: 1484 if (copy_from_user(&vr, arg, sizeof(vr))) 1485 return -EFAULT; 1486 if (vr.vifi >= mrt->maxvif) 1487 return -EINVAL; 1488 read_lock(&mrt_lock); 1489 vif = &mrt->vif_table[vr.vifi]; 1490 if (VIF_EXISTS(mrt, vr.vifi)) { 1491 vr.icount = vif->pkt_in; 1492 vr.ocount = vif->pkt_out; 1493 vr.ibytes = vif->bytes_in; 1494 vr.obytes = vif->bytes_out; 1495 read_unlock(&mrt_lock); 1496 1497 if (copy_to_user(arg, &vr, sizeof(vr))) 1498 return -EFAULT; 1499 return 0; 1500 } 1501 read_unlock(&mrt_lock); 1502 return -EADDRNOTAVAIL; 1503 case SIOCGETSGCNT: 1504 if (copy_from_user(&sr, arg, sizeof(sr))) 1505 return -EFAULT; 1506 1507 rcu_read_lock(); 1508 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1509 if (c) { 1510 sr.pktcnt = c->mfc_un.res.pkt; 1511 sr.bytecnt = c->mfc_un.res.bytes; 1512 sr.wrong_if = c->mfc_un.res.wrong_if; 1513 rcu_read_unlock(); 1514 1515 if (copy_to_user(arg, &sr, sizeof(sr))) 1516 return -EFAULT; 1517 return 0; 1518 } 1519 rcu_read_unlock(); 1520 return -EADDRNOTAVAIL; 1521 default: 1522 return -ENOIOCTLCMD; 1523 } 1524 } 1525 1526 #ifdef CONFIG_COMPAT 1527 struct compat_sioc_sg_req { 1528 struct in_addr src; 1529 struct in_addr grp; 1530 compat_ulong_t pktcnt; 1531 compat_ulong_t bytecnt; 1532 compat_ulong_t wrong_if; 1533 }; 1534 1535 struct compat_sioc_vif_req { 1536 vifi_t vifi; /* Which iface */ 1537 compat_ulong_t icount; 1538 compat_ulong_t ocount; 1539 compat_ulong_t ibytes; 1540 compat_ulong_t obytes; 1541 }; 1542 1543 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1544 { 1545 struct compat_sioc_sg_req sr; 1546 struct compat_sioc_vif_req vr; 1547 struct vif_device *vif; 1548 struct mfc_cache *c; 1549 struct net *net = sock_net(sk); 1550 struct mr_table *mrt; 1551 1552 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1553 if (!mrt) 1554 return -ENOENT; 1555 1556 switch (cmd) { 1557 case SIOCGETVIFCNT: 1558 if (copy_from_user(&vr, arg, sizeof(vr))) 1559 return -EFAULT; 1560 if (vr.vifi >= mrt->maxvif) 1561 return -EINVAL; 1562 read_lock(&mrt_lock); 1563 vif = &mrt->vif_table[vr.vifi]; 1564 if (VIF_EXISTS(mrt, vr.vifi)) { 1565 vr.icount = vif->pkt_in; 1566 vr.ocount = vif->pkt_out; 1567 vr.ibytes = vif->bytes_in; 1568 vr.obytes = vif->bytes_out; 1569 read_unlock(&mrt_lock); 1570 1571 if (copy_to_user(arg, &vr, sizeof(vr))) 1572 return -EFAULT; 1573 return 0; 1574 } 1575 read_unlock(&mrt_lock); 1576 return -EADDRNOTAVAIL; 1577 case SIOCGETSGCNT: 1578 if (copy_from_user(&sr, arg, sizeof(sr))) 1579 return -EFAULT; 1580 1581 rcu_read_lock(); 1582 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1583 if (c) { 1584 sr.pktcnt = c->mfc_un.res.pkt; 1585 sr.bytecnt = c->mfc_un.res.bytes; 1586 sr.wrong_if = c->mfc_un.res.wrong_if; 1587 rcu_read_unlock(); 1588 1589 if (copy_to_user(arg, &sr, sizeof(sr))) 1590 return -EFAULT; 1591 return 0; 1592 } 1593 rcu_read_unlock(); 1594 return -EADDRNOTAVAIL; 1595 default: 1596 return -ENOIOCTLCMD; 1597 } 1598 } 1599 #endif 1600 1601 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1602 { 1603 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1604 struct net *net = dev_net(dev); 1605 struct mr_table *mrt; 1606 struct vif_device *v; 1607 int ct; 1608 1609 if (event != NETDEV_UNREGISTER) 1610 return NOTIFY_DONE; 1611 1612 ipmr_for_each_table(mrt, net) { 1613 v = &mrt->vif_table[0]; 1614 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1615 if (v->dev == dev) 1616 vif_delete(mrt, ct, 1, NULL); 1617 } 1618 } 1619 return NOTIFY_DONE; 1620 } 1621 1622 static struct notifier_block ip_mr_notifier = { 1623 .notifier_call = ipmr_device_event, 1624 }; 1625 1626 /* Encapsulate a packet by attaching a valid IPIP header to it. 1627 * This avoids tunnel drivers and other mess and gives us the speed so 1628 * important for multicast video. 1629 */ 1630 static void ip_encap(struct net *net, struct sk_buff *skb, 1631 __be32 saddr, __be32 daddr) 1632 { 1633 struct iphdr *iph; 1634 const struct iphdr *old_iph = ip_hdr(skb); 1635 1636 skb_push(skb, sizeof(struct iphdr)); 1637 skb->transport_header = skb->network_header; 1638 skb_reset_network_header(skb); 1639 iph = ip_hdr(skb); 1640 1641 iph->version = 4; 1642 iph->tos = old_iph->tos; 1643 iph->ttl = old_iph->ttl; 1644 iph->frag_off = 0; 1645 iph->daddr = daddr; 1646 iph->saddr = saddr; 1647 iph->protocol = IPPROTO_IPIP; 1648 iph->ihl = 5; 1649 iph->tot_len = htons(skb->len); 1650 ip_select_ident(net, skb, NULL); 1651 ip_send_check(iph); 1652 1653 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1654 nf_reset(skb); 1655 } 1656 1657 static inline int ipmr_forward_finish(struct net *net, struct sock *sk, 1658 struct sk_buff *skb) 1659 { 1660 struct ip_options *opt = &(IPCB(skb)->opt); 1661 1662 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS); 1663 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len); 1664 1665 if (unlikely(opt->optlen)) 1666 ip_forward_options(skb); 1667 1668 return dst_output(net, sk, skb); 1669 } 1670 1671 /* Processing handlers for ipmr_forward */ 1672 1673 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1674 struct sk_buff *skb, struct mfc_cache *c, int vifi) 1675 { 1676 const struct iphdr *iph = ip_hdr(skb); 1677 struct vif_device *vif = &mrt->vif_table[vifi]; 1678 struct net_device *dev; 1679 struct rtable *rt; 1680 struct flowi4 fl4; 1681 int encap = 0; 1682 1683 if (!vif->dev) 1684 goto out_free; 1685 1686 if (vif->flags & VIFF_REGISTER) { 1687 vif->pkt_out++; 1688 vif->bytes_out += skb->len; 1689 vif->dev->stats.tx_bytes += skb->len; 1690 vif->dev->stats.tx_packets++; 1691 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1692 goto out_free; 1693 } 1694 1695 if (vif->flags & VIFF_TUNNEL) { 1696 rt = ip_route_output_ports(net, &fl4, NULL, 1697 vif->remote, vif->local, 1698 0, 0, 1699 IPPROTO_IPIP, 1700 RT_TOS(iph->tos), vif->link); 1701 if (IS_ERR(rt)) 1702 goto out_free; 1703 encap = sizeof(struct iphdr); 1704 } else { 1705 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1706 0, 0, 1707 IPPROTO_IPIP, 1708 RT_TOS(iph->tos), vif->link); 1709 if (IS_ERR(rt)) 1710 goto out_free; 1711 } 1712 1713 dev = rt->dst.dev; 1714 1715 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1716 /* Do not fragment multicasts. Alas, IPv4 does not 1717 * allow to send ICMP, so that packets will disappear 1718 * to blackhole. 1719 */ 1720 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 1721 ip_rt_put(rt); 1722 goto out_free; 1723 } 1724 1725 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1726 1727 if (skb_cow(skb, encap)) { 1728 ip_rt_put(rt); 1729 goto out_free; 1730 } 1731 1732 vif->pkt_out++; 1733 vif->bytes_out += skb->len; 1734 1735 skb_dst_drop(skb); 1736 skb_dst_set(skb, &rt->dst); 1737 ip_decrease_ttl(ip_hdr(skb)); 1738 1739 /* FIXME: forward and output firewalls used to be called here. 1740 * What do we do with netfilter? -- RR 1741 */ 1742 if (vif->flags & VIFF_TUNNEL) { 1743 ip_encap(net, skb, vif->local, vif->remote); 1744 /* FIXME: extra output firewall step used to be here. --RR */ 1745 vif->dev->stats.tx_packets++; 1746 vif->dev->stats.tx_bytes += skb->len; 1747 } 1748 1749 IPCB(skb)->flags |= IPSKB_FORWARDED; 1750 1751 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1752 * not only before forwarding, but after forwarding on all output 1753 * interfaces. It is clear, if mrouter runs a multicasting 1754 * program, it should receive packets not depending to what interface 1755 * program is joined. 1756 * If we will not make it, the program will have to join on all 1757 * interfaces. On the other hand, multihoming host (or router, but 1758 * not mrouter) cannot join to more than one interface - it will 1759 * result in receiving multiple packets. 1760 */ 1761 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, 1762 net, NULL, skb, skb->dev, dev, 1763 ipmr_forward_finish); 1764 return; 1765 1766 out_free: 1767 kfree_skb(skb); 1768 } 1769 1770 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev) 1771 { 1772 int ct; 1773 1774 for (ct = mrt->maxvif-1; ct >= 0; ct--) { 1775 if (mrt->vif_table[ct].dev == dev) 1776 break; 1777 } 1778 return ct; 1779 } 1780 1781 /* "local" means that we should preserve one skb (for local delivery) */ 1782 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1783 struct sk_buff *skb, struct mfc_cache *cache, 1784 int local) 1785 { 1786 int psend = -1; 1787 int vif, ct; 1788 int true_vifi = ipmr_find_vif(mrt, skb->dev); 1789 1790 vif = cache->mfc_parent; 1791 cache->mfc_un.res.pkt++; 1792 cache->mfc_un.res.bytes += skb->len; 1793 1794 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1795 struct mfc_cache *cache_proxy; 1796 1797 /* For an (*,G) entry, we only check that the incomming 1798 * interface is part of the static tree. 1799 */ 1800 cache_proxy = ipmr_cache_find_any_parent(mrt, vif); 1801 if (cache_proxy && 1802 cache_proxy->mfc_un.res.ttls[true_vifi] < 255) 1803 goto forward; 1804 } 1805 1806 /* Wrong interface: drop packet and (maybe) send PIM assert. */ 1807 if (mrt->vif_table[vif].dev != skb->dev) { 1808 if (rt_is_output_route(skb_rtable(skb))) { 1809 /* It is our own packet, looped back. 1810 * Very complicated situation... 1811 * 1812 * The best workaround until routing daemons will be 1813 * fixed is not to redistribute packet, if it was 1814 * send through wrong interface. It means, that 1815 * multicast applications WILL NOT work for 1816 * (S,G), which have default multicast route pointing 1817 * to wrong oif. In any case, it is not a good 1818 * idea to use multicasting applications on router. 1819 */ 1820 goto dont_forward; 1821 } 1822 1823 cache->mfc_un.res.wrong_if++; 1824 1825 if (true_vifi >= 0 && mrt->mroute_do_assert && 1826 /* pimsm uses asserts, when switching from RPT to SPT, 1827 * so that we cannot check that packet arrived on an oif. 1828 * It is bad, but otherwise we would need to move pretty 1829 * large chunk of pimd to kernel. Ough... --ANK 1830 */ 1831 (mrt->mroute_do_pim || 1832 cache->mfc_un.res.ttls[true_vifi] < 255) && 1833 time_after(jiffies, 1834 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { 1835 cache->mfc_un.res.last_assert = jiffies; 1836 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 1837 } 1838 goto dont_forward; 1839 } 1840 1841 forward: 1842 mrt->vif_table[vif].pkt_in++; 1843 mrt->vif_table[vif].bytes_in += skb->len; 1844 1845 /* Forward the frame */ 1846 if (cache->mfc_origin == htonl(INADDR_ANY) && 1847 cache->mfc_mcastgrp == htonl(INADDR_ANY)) { 1848 if (true_vifi >= 0 && 1849 true_vifi != cache->mfc_parent && 1850 ip_hdr(skb)->ttl > 1851 cache->mfc_un.res.ttls[cache->mfc_parent]) { 1852 /* It's an (*,*) entry and the packet is not coming from 1853 * the upstream: forward the packet to the upstream 1854 * only. 1855 */ 1856 psend = cache->mfc_parent; 1857 goto last_forward; 1858 } 1859 goto dont_forward; 1860 } 1861 for (ct = cache->mfc_un.res.maxvif - 1; 1862 ct >= cache->mfc_un.res.minvif; ct--) { 1863 /* For (*,G) entry, don't forward to the incoming interface */ 1864 if ((cache->mfc_origin != htonl(INADDR_ANY) || 1865 ct != true_vifi) && 1866 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) { 1867 if (psend != -1) { 1868 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1869 1870 if (skb2) 1871 ipmr_queue_xmit(net, mrt, skb2, cache, 1872 psend); 1873 } 1874 psend = ct; 1875 } 1876 } 1877 last_forward: 1878 if (psend != -1) { 1879 if (local) { 1880 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1881 1882 if (skb2) 1883 ipmr_queue_xmit(net, mrt, skb2, cache, psend); 1884 } else { 1885 ipmr_queue_xmit(net, mrt, skb, cache, psend); 1886 return; 1887 } 1888 } 1889 1890 dont_forward: 1891 if (!local) 1892 kfree_skb(skb); 1893 } 1894 1895 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 1896 { 1897 struct rtable *rt = skb_rtable(skb); 1898 struct iphdr *iph = ip_hdr(skb); 1899 struct flowi4 fl4 = { 1900 .daddr = iph->daddr, 1901 .saddr = iph->saddr, 1902 .flowi4_tos = RT_TOS(iph->tos), 1903 .flowi4_oif = (rt_is_output_route(rt) ? 1904 skb->dev->ifindex : 0), 1905 .flowi4_iif = (rt_is_output_route(rt) ? 1906 LOOPBACK_IFINDEX : 1907 skb->dev->ifindex), 1908 .flowi4_mark = skb->mark, 1909 }; 1910 struct mr_table *mrt; 1911 int err; 1912 1913 err = ipmr_fib_lookup(net, &fl4, &mrt); 1914 if (err) 1915 return ERR_PTR(err); 1916 return mrt; 1917 } 1918 1919 /* Multicast packets for forwarding arrive here 1920 * Called with rcu_read_lock(); 1921 */ 1922 int ip_mr_input(struct sk_buff *skb) 1923 { 1924 struct mfc_cache *cache; 1925 struct net *net = dev_net(skb->dev); 1926 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 1927 struct mr_table *mrt; 1928 1929 /* Packet is looped back after forward, it should not be 1930 * forwarded second time, but still can be delivered locally. 1931 */ 1932 if (IPCB(skb)->flags & IPSKB_FORWARDED) 1933 goto dont_forward; 1934 1935 mrt = ipmr_rt_fib_lookup(net, skb); 1936 if (IS_ERR(mrt)) { 1937 kfree_skb(skb); 1938 return PTR_ERR(mrt); 1939 } 1940 if (!local) { 1941 if (IPCB(skb)->opt.router_alert) { 1942 if (ip_call_ra_chain(skb)) 1943 return 0; 1944 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 1945 /* IGMPv1 (and broken IGMPv2 implementations sort of 1946 * Cisco IOS <= 11.2(8)) do not put router alert 1947 * option to IGMP packets destined to routable 1948 * groups. It is very bad, because it means 1949 * that we can forward NO IGMP messages. 1950 */ 1951 struct sock *mroute_sk; 1952 1953 mroute_sk = rcu_dereference(mrt->mroute_sk); 1954 if (mroute_sk) { 1955 nf_reset(skb); 1956 raw_rcv(mroute_sk, skb); 1957 return 0; 1958 } 1959 } 1960 } 1961 1962 /* already under rcu_read_lock() */ 1963 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 1964 if (!cache) { 1965 int vif = ipmr_find_vif(mrt, skb->dev); 1966 1967 if (vif >= 0) 1968 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 1969 vif); 1970 } 1971 1972 /* No usable cache entry */ 1973 if (!cache) { 1974 int vif; 1975 1976 if (local) { 1977 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1978 ip_local_deliver(skb); 1979 if (!skb2) 1980 return -ENOBUFS; 1981 skb = skb2; 1982 } 1983 1984 read_lock(&mrt_lock); 1985 vif = ipmr_find_vif(mrt, skb->dev); 1986 if (vif >= 0) { 1987 int err2 = ipmr_cache_unresolved(mrt, vif, skb); 1988 read_unlock(&mrt_lock); 1989 1990 return err2; 1991 } 1992 read_unlock(&mrt_lock); 1993 kfree_skb(skb); 1994 return -ENODEV; 1995 } 1996 1997 read_lock(&mrt_lock); 1998 ip_mr_forward(net, mrt, skb, cache, local); 1999 read_unlock(&mrt_lock); 2000 2001 if (local) 2002 return ip_local_deliver(skb); 2003 2004 return 0; 2005 2006 dont_forward: 2007 if (local) 2008 return ip_local_deliver(skb); 2009 kfree_skb(skb); 2010 return 0; 2011 } 2012 2013 #ifdef CONFIG_IP_PIMSM_V1 2014 /* Handle IGMP messages of PIMv1 */ 2015 int pim_rcv_v1(struct sk_buff *skb) 2016 { 2017 struct igmphdr *pim; 2018 struct net *net = dev_net(skb->dev); 2019 struct mr_table *mrt; 2020 2021 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2022 goto drop; 2023 2024 pim = igmp_hdr(skb); 2025 2026 mrt = ipmr_rt_fib_lookup(net, skb); 2027 if (IS_ERR(mrt)) 2028 goto drop; 2029 if (!mrt->mroute_do_pim || 2030 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2031 goto drop; 2032 2033 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2034 drop: 2035 kfree_skb(skb); 2036 } 2037 return 0; 2038 } 2039 #endif 2040 2041 #ifdef CONFIG_IP_PIMSM_V2 2042 static int pim_rcv(struct sk_buff *skb) 2043 { 2044 struct pimreghdr *pim; 2045 struct net *net = dev_net(skb->dev); 2046 struct mr_table *mrt; 2047 2048 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2049 goto drop; 2050 2051 pim = (struct pimreghdr *)skb_transport_header(skb); 2052 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) || 2053 (pim->flags & PIM_NULL_REGISTER) || 2054 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2055 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2056 goto drop; 2057 2058 mrt = ipmr_rt_fib_lookup(net, skb); 2059 if (IS_ERR(mrt)) 2060 goto drop; 2061 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2062 drop: 2063 kfree_skb(skb); 2064 } 2065 return 0; 2066 } 2067 #endif 2068 2069 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2070 struct mfc_cache *c, struct rtmsg *rtm) 2071 { 2072 int ct; 2073 struct rtnexthop *nhp; 2074 struct nlattr *mp_attr; 2075 struct rta_mfc_stats mfcs; 2076 2077 /* If cache is unresolved, don't try to parse IIF and OIF */ 2078 if (c->mfc_parent >= MAXVIFS) 2079 return -ENOENT; 2080 2081 if (VIF_EXISTS(mrt, c->mfc_parent) && 2082 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0) 2083 return -EMSGSIZE; 2084 2085 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH))) 2086 return -EMSGSIZE; 2087 2088 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { 2089 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) { 2090 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) { 2091 nla_nest_cancel(skb, mp_attr); 2092 return -EMSGSIZE; 2093 } 2094 2095 nhp->rtnh_flags = 0; 2096 nhp->rtnh_hops = c->mfc_un.res.ttls[ct]; 2097 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex; 2098 nhp->rtnh_len = sizeof(*nhp); 2099 } 2100 } 2101 2102 nla_nest_end(skb, mp_attr); 2103 2104 mfcs.mfcs_packets = c->mfc_un.res.pkt; 2105 mfcs.mfcs_bytes = c->mfc_un.res.bytes; 2106 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if; 2107 if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) < 0) 2108 return -EMSGSIZE; 2109 2110 rtm->rtm_type = RTN_MULTICAST; 2111 return 1; 2112 } 2113 2114 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2115 __be32 saddr, __be32 daddr, 2116 struct rtmsg *rtm, int nowait) 2117 { 2118 struct mfc_cache *cache; 2119 struct mr_table *mrt; 2120 int err; 2121 2122 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2123 if (!mrt) 2124 return -ENOENT; 2125 2126 rcu_read_lock(); 2127 cache = ipmr_cache_find(mrt, saddr, daddr); 2128 if (!cache && skb->dev) { 2129 int vif = ipmr_find_vif(mrt, skb->dev); 2130 2131 if (vif >= 0) 2132 cache = ipmr_cache_find_any(mrt, daddr, vif); 2133 } 2134 if (!cache) { 2135 struct sk_buff *skb2; 2136 struct iphdr *iph; 2137 struct net_device *dev; 2138 int vif = -1; 2139 2140 if (nowait) { 2141 rcu_read_unlock(); 2142 return -EAGAIN; 2143 } 2144 2145 dev = skb->dev; 2146 read_lock(&mrt_lock); 2147 if (dev) 2148 vif = ipmr_find_vif(mrt, dev); 2149 if (vif < 0) { 2150 read_unlock(&mrt_lock); 2151 rcu_read_unlock(); 2152 return -ENODEV; 2153 } 2154 skb2 = skb_clone(skb, GFP_ATOMIC); 2155 if (!skb2) { 2156 read_unlock(&mrt_lock); 2157 rcu_read_unlock(); 2158 return -ENOMEM; 2159 } 2160 2161 skb_push(skb2, sizeof(struct iphdr)); 2162 skb_reset_network_header(skb2); 2163 iph = ip_hdr(skb2); 2164 iph->ihl = sizeof(struct iphdr) >> 2; 2165 iph->saddr = saddr; 2166 iph->daddr = daddr; 2167 iph->version = 0; 2168 err = ipmr_cache_unresolved(mrt, vif, skb2); 2169 read_unlock(&mrt_lock); 2170 rcu_read_unlock(); 2171 return err; 2172 } 2173 2174 read_lock(&mrt_lock); 2175 err = __ipmr_fill_mroute(mrt, skb, cache, rtm); 2176 read_unlock(&mrt_lock); 2177 rcu_read_unlock(); 2178 return err; 2179 } 2180 2181 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2182 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2183 int flags) 2184 { 2185 struct nlmsghdr *nlh; 2186 struct rtmsg *rtm; 2187 int err; 2188 2189 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2190 if (!nlh) 2191 return -EMSGSIZE; 2192 2193 rtm = nlmsg_data(nlh); 2194 rtm->rtm_family = RTNL_FAMILY_IPMR; 2195 rtm->rtm_dst_len = 32; 2196 rtm->rtm_src_len = 32; 2197 rtm->rtm_tos = 0; 2198 rtm->rtm_table = mrt->id; 2199 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2200 goto nla_put_failure; 2201 rtm->rtm_type = RTN_MULTICAST; 2202 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2203 if (c->mfc_flags & MFC_STATIC) 2204 rtm->rtm_protocol = RTPROT_STATIC; 2205 else 2206 rtm->rtm_protocol = RTPROT_MROUTED; 2207 rtm->rtm_flags = 0; 2208 2209 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || 2210 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) 2211 goto nla_put_failure; 2212 err = __ipmr_fill_mroute(mrt, skb, c, rtm); 2213 /* do not break the dump if cache is unresolved */ 2214 if (err < 0 && err != -ENOENT) 2215 goto nla_put_failure; 2216 2217 nlmsg_end(skb, nlh); 2218 return 0; 2219 2220 nla_put_failure: 2221 nlmsg_cancel(skb, nlh); 2222 return -EMSGSIZE; 2223 } 2224 2225 static size_t mroute_msgsize(bool unresolved, int maxvif) 2226 { 2227 size_t len = 2228 NLMSG_ALIGN(sizeof(struct rtmsg)) 2229 + nla_total_size(4) /* RTA_TABLE */ 2230 + nla_total_size(4) /* RTA_SRC */ 2231 + nla_total_size(4) /* RTA_DST */ 2232 ; 2233 2234 if (!unresolved) 2235 len = len 2236 + nla_total_size(4) /* RTA_IIF */ 2237 + nla_total_size(0) /* RTA_MULTIPATH */ 2238 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2239 /* RTA_MFC_STATS */ 2240 + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) 2241 ; 2242 2243 return len; 2244 } 2245 2246 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2247 int cmd) 2248 { 2249 struct net *net = read_pnet(&mrt->net); 2250 struct sk_buff *skb; 2251 int err = -ENOBUFS; 2252 2253 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif), 2254 GFP_ATOMIC); 2255 if (!skb) 2256 goto errout; 2257 2258 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2259 if (err < 0) 2260 goto errout; 2261 2262 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2263 return; 2264 2265 errout: 2266 kfree_skb(skb); 2267 if (err < 0) 2268 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2269 } 2270 2271 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2272 { 2273 struct net *net = sock_net(skb->sk); 2274 struct mr_table *mrt; 2275 struct mfc_cache *mfc; 2276 unsigned int t = 0, s_t; 2277 unsigned int h = 0, s_h; 2278 unsigned int e = 0, s_e; 2279 2280 s_t = cb->args[0]; 2281 s_h = cb->args[1]; 2282 s_e = cb->args[2]; 2283 2284 rcu_read_lock(); 2285 ipmr_for_each_table(mrt, net) { 2286 if (t < s_t) 2287 goto next_table; 2288 if (t > s_t) 2289 s_h = 0; 2290 for (h = s_h; h < MFC_LINES; h++) { 2291 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) { 2292 if (e < s_e) 2293 goto next_entry; 2294 if (ipmr_fill_mroute(mrt, skb, 2295 NETLINK_CB(cb->skb).portid, 2296 cb->nlh->nlmsg_seq, 2297 mfc, RTM_NEWROUTE, 2298 NLM_F_MULTI) < 0) 2299 goto done; 2300 next_entry: 2301 e++; 2302 } 2303 e = s_e = 0; 2304 } 2305 spin_lock_bh(&mfc_unres_lock); 2306 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) { 2307 if (e < s_e) 2308 goto next_entry2; 2309 if (ipmr_fill_mroute(mrt, skb, 2310 NETLINK_CB(cb->skb).portid, 2311 cb->nlh->nlmsg_seq, 2312 mfc, RTM_NEWROUTE, 2313 NLM_F_MULTI) < 0) { 2314 spin_unlock_bh(&mfc_unres_lock); 2315 goto done; 2316 } 2317 next_entry2: 2318 e++; 2319 } 2320 spin_unlock_bh(&mfc_unres_lock); 2321 e = s_e = 0; 2322 s_h = 0; 2323 next_table: 2324 t++; 2325 } 2326 done: 2327 rcu_read_unlock(); 2328 2329 cb->args[2] = e; 2330 cb->args[1] = h; 2331 cb->args[0] = t; 2332 2333 return skb->len; 2334 } 2335 2336 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = { 2337 [RTA_SRC] = { .type = NLA_U32 }, 2338 [RTA_DST] = { .type = NLA_U32 }, 2339 [RTA_IIF] = { .type = NLA_U32 }, 2340 [RTA_TABLE] = { .type = NLA_U32 }, 2341 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 2342 }; 2343 2344 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol) 2345 { 2346 switch (rtm_protocol) { 2347 case RTPROT_STATIC: 2348 case RTPROT_MROUTED: 2349 return true; 2350 } 2351 return false; 2352 } 2353 2354 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc) 2355 { 2356 struct rtnexthop *rtnh = nla_data(nla); 2357 int remaining = nla_len(nla), vifi = 0; 2358 2359 while (rtnh_ok(rtnh, remaining)) { 2360 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops; 2361 if (++vifi == MAXVIFS) 2362 break; 2363 rtnh = rtnh_next(rtnh, &remaining); 2364 } 2365 2366 return remaining > 0 ? -EINVAL : vifi; 2367 } 2368 2369 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */ 2370 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh, 2371 struct mfcctl *mfcc, int *mrtsock, 2372 struct mr_table **mrtret) 2373 { 2374 struct net_device *dev = NULL; 2375 u32 tblid = RT_TABLE_DEFAULT; 2376 struct mr_table *mrt; 2377 struct nlattr *attr; 2378 struct rtmsg *rtm; 2379 int ret, rem; 2380 2381 ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy); 2382 if (ret < 0) 2383 goto out; 2384 rtm = nlmsg_data(nlh); 2385 2386 ret = -EINVAL; 2387 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 || 2388 rtm->rtm_type != RTN_MULTICAST || 2389 rtm->rtm_scope != RT_SCOPE_UNIVERSE || 2390 !ipmr_rtm_validate_proto(rtm->rtm_protocol)) 2391 goto out; 2392 2393 memset(mfcc, 0, sizeof(*mfcc)); 2394 mfcc->mfcc_parent = -1; 2395 ret = 0; 2396 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) { 2397 switch (nla_type(attr)) { 2398 case RTA_SRC: 2399 mfcc->mfcc_origin.s_addr = nla_get_be32(attr); 2400 break; 2401 case RTA_DST: 2402 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr); 2403 break; 2404 case RTA_IIF: 2405 dev = __dev_get_by_index(net, nla_get_u32(attr)); 2406 if (!dev) { 2407 ret = -ENODEV; 2408 goto out; 2409 } 2410 break; 2411 case RTA_MULTIPATH: 2412 if (ipmr_nla_get_ttls(attr, mfcc) < 0) { 2413 ret = -EINVAL; 2414 goto out; 2415 } 2416 break; 2417 case RTA_PREFSRC: 2418 ret = 1; 2419 break; 2420 case RTA_TABLE: 2421 tblid = nla_get_u32(attr); 2422 break; 2423 } 2424 } 2425 mrt = ipmr_get_table(net, tblid); 2426 if (!mrt) { 2427 ret = -ENOENT; 2428 goto out; 2429 } 2430 *mrtret = mrt; 2431 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0; 2432 if (dev) 2433 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev); 2434 2435 out: 2436 return ret; 2437 } 2438 2439 /* takes care of both newroute and delroute */ 2440 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh) 2441 { 2442 struct net *net = sock_net(skb->sk); 2443 int ret, mrtsock, parent; 2444 struct mr_table *tbl; 2445 struct mfcctl mfcc; 2446 2447 mrtsock = 0; 2448 tbl = NULL; 2449 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl); 2450 if (ret < 0) 2451 return ret; 2452 2453 parent = ret ? mfcc.mfcc_parent : -1; 2454 if (nlh->nlmsg_type == RTM_NEWROUTE) 2455 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent); 2456 else 2457 return ipmr_mfc_delete(tbl, &mfcc, parent); 2458 } 2459 2460 #ifdef CONFIG_PROC_FS 2461 /* The /proc interfaces to multicast routing : 2462 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2463 */ 2464 struct ipmr_vif_iter { 2465 struct seq_net_private p; 2466 struct mr_table *mrt; 2467 int ct; 2468 }; 2469 2470 static struct vif_device *ipmr_vif_seq_idx(struct net *net, 2471 struct ipmr_vif_iter *iter, 2472 loff_t pos) 2473 { 2474 struct mr_table *mrt = iter->mrt; 2475 2476 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) { 2477 if (!VIF_EXISTS(mrt, iter->ct)) 2478 continue; 2479 if (pos-- == 0) 2480 return &mrt->vif_table[iter->ct]; 2481 } 2482 return NULL; 2483 } 2484 2485 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2486 __acquires(mrt_lock) 2487 { 2488 struct ipmr_vif_iter *iter = seq->private; 2489 struct net *net = seq_file_net(seq); 2490 struct mr_table *mrt; 2491 2492 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2493 if (!mrt) 2494 return ERR_PTR(-ENOENT); 2495 2496 iter->mrt = mrt; 2497 2498 read_lock(&mrt_lock); 2499 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1) 2500 : SEQ_START_TOKEN; 2501 } 2502 2503 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2504 { 2505 struct ipmr_vif_iter *iter = seq->private; 2506 struct net *net = seq_file_net(seq); 2507 struct mr_table *mrt = iter->mrt; 2508 2509 ++*pos; 2510 if (v == SEQ_START_TOKEN) 2511 return ipmr_vif_seq_idx(net, iter, 0); 2512 2513 while (++iter->ct < mrt->maxvif) { 2514 if (!VIF_EXISTS(mrt, iter->ct)) 2515 continue; 2516 return &mrt->vif_table[iter->ct]; 2517 } 2518 return NULL; 2519 } 2520 2521 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2522 __releases(mrt_lock) 2523 { 2524 read_unlock(&mrt_lock); 2525 } 2526 2527 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2528 { 2529 struct ipmr_vif_iter *iter = seq->private; 2530 struct mr_table *mrt = iter->mrt; 2531 2532 if (v == SEQ_START_TOKEN) { 2533 seq_puts(seq, 2534 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2535 } else { 2536 const struct vif_device *vif = v; 2537 const char *name = vif->dev ? vif->dev->name : "none"; 2538 2539 seq_printf(seq, 2540 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2541 vif - mrt->vif_table, 2542 name, vif->bytes_in, vif->pkt_in, 2543 vif->bytes_out, vif->pkt_out, 2544 vif->flags, vif->local, vif->remote); 2545 } 2546 return 0; 2547 } 2548 2549 static const struct seq_operations ipmr_vif_seq_ops = { 2550 .start = ipmr_vif_seq_start, 2551 .next = ipmr_vif_seq_next, 2552 .stop = ipmr_vif_seq_stop, 2553 .show = ipmr_vif_seq_show, 2554 }; 2555 2556 static int ipmr_vif_open(struct inode *inode, struct file *file) 2557 { 2558 return seq_open_net(inode, file, &ipmr_vif_seq_ops, 2559 sizeof(struct ipmr_vif_iter)); 2560 } 2561 2562 static const struct file_operations ipmr_vif_fops = { 2563 .owner = THIS_MODULE, 2564 .open = ipmr_vif_open, 2565 .read = seq_read, 2566 .llseek = seq_lseek, 2567 .release = seq_release_net, 2568 }; 2569 2570 struct ipmr_mfc_iter { 2571 struct seq_net_private p; 2572 struct mr_table *mrt; 2573 struct list_head *cache; 2574 int ct; 2575 }; 2576 2577 2578 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net, 2579 struct ipmr_mfc_iter *it, loff_t pos) 2580 { 2581 struct mr_table *mrt = it->mrt; 2582 struct mfc_cache *mfc; 2583 2584 rcu_read_lock(); 2585 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) { 2586 it->cache = &mrt->mfc_cache_array[it->ct]; 2587 list_for_each_entry_rcu(mfc, it->cache, list) 2588 if (pos-- == 0) 2589 return mfc; 2590 } 2591 rcu_read_unlock(); 2592 2593 spin_lock_bh(&mfc_unres_lock); 2594 it->cache = &mrt->mfc_unres_queue; 2595 list_for_each_entry(mfc, it->cache, list) 2596 if (pos-- == 0) 2597 return mfc; 2598 spin_unlock_bh(&mfc_unres_lock); 2599 2600 it->cache = NULL; 2601 return NULL; 2602 } 2603 2604 2605 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2606 { 2607 struct ipmr_mfc_iter *it = seq->private; 2608 struct net *net = seq_file_net(seq); 2609 struct mr_table *mrt; 2610 2611 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2612 if (!mrt) 2613 return ERR_PTR(-ENOENT); 2614 2615 it->mrt = mrt; 2616 it->cache = NULL; 2617 it->ct = 0; 2618 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1) 2619 : SEQ_START_TOKEN; 2620 } 2621 2622 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2623 { 2624 struct mfc_cache *mfc = v; 2625 struct ipmr_mfc_iter *it = seq->private; 2626 struct net *net = seq_file_net(seq); 2627 struct mr_table *mrt = it->mrt; 2628 2629 ++*pos; 2630 2631 if (v == SEQ_START_TOKEN) 2632 return ipmr_mfc_seq_idx(net, seq->private, 0); 2633 2634 if (mfc->list.next != it->cache) 2635 return list_entry(mfc->list.next, struct mfc_cache, list); 2636 2637 if (it->cache == &mrt->mfc_unres_queue) 2638 goto end_of_list; 2639 2640 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]); 2641 2642 while (++it->ct < MFC_LINES) { 2643 it->cache = &mrt->mfc_cache_array[it->ct]; 2644 if (list_empty(it->cache)) 2645 continue; 2646 return list_first_entry(it->cache, struct mfc_cache, list); 2647 } 2648 2649 /* exhausted cache_array, show unresolved */ 2650 rcu_read_unlock(); 2651 it->cache = &mrt->mfc_unres_queue; 2652 it->ct = 0; 2653 2654 spin_lock_bh(&mfc_unres_lock); 2655 if (!list_empty(it->cache)) 2656 return list_first_entry(it->cache, struct mfc_cache, list); 2657 2658 end_of_list: 2659 spin_unlock_bh(&mfc_unres_lock); 2660 it->cache = NULL; 2661 2662 return NULL; 2663 } 2664 2665 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v) 2666 { 2667 struct ipmr_mfc_iter *it = seq->private; 2668 struct mr_table *mrt = it->mrt; 2669 2670 if (it->cache == &mrt->mfc_unres_queue) 2671 spin_unlock_bh(&mfc_unres_lock); 2672 else if (it->cache == &mrt->mfc_cache_array[it->ct]) 2673 rcu_read_unlock(); 2674 } 2675 2676 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2677 { 2678 int n; 2679 2680 if (v == SEQ_START_TOKEN) { 2681 seq_puts(seq, 2682 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2683 } else { 2684 const struct mfc_cache *mfc = v; 2685 const struct ipmr_mfc_iter *it = seq->private; 2686 const struct mr_table *mrt = it->mrt; 2687 2688 seq_printf(seq, "%08X %08X %-3hd", 2689 (__force u32) mfc->mfc_mcastgrp, 2690 (__force u32) mfc->mfc_origin, 2691 mfc->mfc_parent); 2692 2693 if (it->cache != &mrt->mfc_unres_queue) { 2694 seq_printf(seq, " %8lu %8lu %8lu", 2695 mfc->mfc_un.res.pkt, 2696 mfc->mfc_un.res.bytes, 2697 mfc->mfc_un.res.wrong_if); 2698 for (n = mfc->mfc_un.res.minvif; 2699 n < mfc->mfc_un.res.maxvif; n++) { 2700 if (VIF_EXISTS(mrt, n) && 2701 mfc->mfc_un.res.ttls[n] < 255) 2702 seq_printf(seq, 2703 " %2d:%-3d", 2704 n, mfc->mfc_un.res.ttls[n]); 2705 } 2706 } else { 2707 /* unresolved mfc_caches don't contain 2708 * pkt, bytes and wrong_if values 2709 */ 2710 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 2711 } 2712 seq_putc(seq, '\n'); 2713 } 2714 return 0; 2715 } 2716 2717 static const struct seq_operations ipmr_mfc_seq_ops = { 2718 .start = ipmr_mfc_seq_start, 2719 .next = ipmr_mfc_seq_next, 2720 .stop = ipmr_mfc_seq_stop, 2721 .show = ipmr_mfc_seq_show, 2722 }; 2723 2724 static int ipmr_mfc_open(struct inode *inode, struct file *file) 2725 { 2726 return seq_open_net(inode, file, &ipmr_mfc_seq_ops, 2727 sizeof(struct ipmr_mfc_iter)); 2728 } 2729 2730 static const struct file_operations ipmr_mfc_fops = { 2731 .owner = THIS_MODULE, 2732 .open = ipmr_mfc_open, 2733 .read = seq_read, 2734 .llseek = seq_lseek, 2735 .release = seq_release_net, 2736 }; 2737 #endif 2738 2739 #ifdef CONFIG_IP_PIMSM_V2 2740 static const struct net_protocol pim_protocol = { 2741 .handler = pim_rcv, 2742 .netns_ok = 1, 2743 }; 2744 #endif 2745 2746 /* Setup for IP multicast routing */ 2747 static int __net_init ipmr_net_init(struct net *net) 2748 { 2749 int err; 2750 2751 err = ipmr_rules_init(net); 2752 if (err < 0) 2753 goto fail; 2754 2755 #ifdef CONFIG_PROC_FS 2756 err = -ENOMEM; 2757 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops)) 2758 goto proc_vif_fail; 2759 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops)) 2760 goto proc_cache_fail; 2761 #endif 2762 return 0; 2763 2764 #ifdef CONFIG_PROC_FS 2765 proc_cache_fail: 2766 remove_proc_entry("ip_mr_vif", net->proc_net); 2767 proc_vif_fail: 2768 ipmr_rules_exit(net); 2769 #endif 2770 fail: 2771 return err; 2772 } 2773 2774 static void __net_exit ipmr_net_exit(struct net *net) 2775 { 2776 #ifdef CONFIG_PROC_FS 2777 remove_proc_entry("ip_mr_cache", net->proc_net); 2778 remove_proc_entry("ip_mr_vif", net->proc_net); 2779 #endif 2780 ipmr_rules_exit(net); 2781 } 2782 2783 static struct pernet_operations ipmr_net_ops = { 2784 .init = ipmr_net_init, 2785 .exit = ipmr_net_exit, 2786 }; 2787 2788 int __init ip_mr_init(void) 2789 { 2790 int err; 2791 2792 mrt_cachep = kmem_cache_create("ip_mrt_cache", 2793 sizeof(struct mfc_cache), 2794 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 2795 NULL); 2796 2797 err = register_pernet_subsys(&ipmr_net_ops); 2798 if (err) 2799 goto reg_pernet_fail; 2800 2801 err = register_netdevice_notifier(&ip_mr_notifier); 2802 if (err) 2803 goto reg_notif_fail; 2804 #ifdef CONFIG_IP_PIMSM_V2 2805 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 2806 pr_err("%s: can't add PIM protocol\n", __func__); 2807 err = -EAGAIN; 2808 goto add_proto_fail; 2809 } 2810 #endif 2811 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 2812 NULL, ipmr_rtm_dumproute, NULL); 2813 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE, 2814 ipmr_rtm_route, NULL, NULL); 2815 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE, 2816 ipmr_rtm_route, NULL, NULL); 2817 return 0; 2818 2819 #ifdef CONFIG_IP_PIMSM_V2 2820 add_proto_fail: 2821 unregister_netdevice_notifier(&ip_mr_notifier); 2822 #endif 2823 reg_notif_fail: 2824 unregister_pernet_subsys(&ipmr_net_ops); 2825 reg_pernet_fail: 2826 kmem_cache_destroy(mrt_cachep); 2827 return err; 2828 } 2829