1 /* 2 * IP multicast routing support for mrouted 3.6/3.8 3 * 4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 5 * Linux Consultancy and Custom Driver Development 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 * 12 * Fixes: 13 * Michael Chastain : Incorrect size of copying. 14 * Alan Cox : Added the cache manager code 15 * Alan Cox : Fixed the clone/copy bug and device race. 16 * Mike McLagan : Routing by source 17 * Malcolm Beattie : Buffer handling fixes. 18 * Alexey Kuznetsov : Double buffer free and other fixes. 19 * SVR Anand : Fixed several multicast bugs and problems. 20 * Alexey Kuznetsov : Status, optimisations and more. 21 * Brad Parker : Better behaviour on mrouted upcall 22 * overflow. 23 * Carlos Picoto : PIMv1 Support 24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 25 * Relax this requirement to work with older peers. 26 * 27 */ 28 29 #include <asm/uaccess.h> 30 #include <linux/types.h> 31 #include <linux/capability.h> 32 #include <linux/errno.h> 33 #include <linux/timer.h> 34 #include <linux/mm.h> 35 #include <linux/kernel.h> 36 #include <linux/fcntl.h> 37 #include <linux/stat.h> 38 #include <linux/socket.h> 39 #include <linux/in.h> 40 #include <linux/inet.h> 41 #include <linux/netdevice.h> 42 #include <linux/inetdevice.h> 43 #include <linux/igmp.h> 44 #include <linux/proc_fs.h> 45 #include <linux/seq_file.h> 46 #include <linux/mroute.h> 47 #include <linux/init.h> 48 #include <linux/if_ether.h> 49 #include <linux/slab.h> 50 #include <net/net_namespace.h> 51 #include <net/ip.h> 52 #include <net/protocol.h> 53 #include <linux/skbuff.h> 54 #include <net/route.h> 55 #include <net/sock.h> 56 #include <net/icmp.h> 57 #include <net/udp.h> 58 #include <net/raw.h> 59 #include <linux/notifier.h> 60 #include <linux/if_arp.h> 61 #include <linux/netfilter_ipv4.h> 62 #include <linux/compat.h> 63 #include <linux/export.h> 64 #include <net/ip_tunnels.h> 65 #include <net/checksum.h> 66 #include <net/netlink.h> 67 #include <net/fib_rules.h> 68 #include <linux/netconf.h> 69 70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 71 #define CONFIG_IP_PIMSM 1 72 #endif 73 74 struct mr_table { 75 struct list_head list; 76 possible_net_t net; 77 u32 id; 78 struct sock __rcu *mroute_sk; 79 struct timer_list ipmr_expire_timer; 80 struct list_head mfc_unres_queue; 81 struct list_head mfc_cache_array[MFC_LINES]; 82 struct vif_device vif_table[MAXVIFS]; 83 int maxvif; 84 atomic_t cache_resolve_queue_len; 85 bool mroute_do_assert; 86 bool mroute_do_pim; 87 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 88 int mroute_reg_vif_num; 89 #endif 90 }; 91 92 struct ipmr_rule { 93 struct fib_rule common; 94 }; 95 96 struct ipmr_result { 97 struct mr_table *mrt; 98 }; 99 100 /* Big lock, protecting vif table, mrt cache and mroute socket state. 101 * Note that the changes are semaphored via rtnl_lock. 102 */ 103 104 static DEFINE_RWLOCK(mrt_lock); 105 106 /* 107 * Multicast router control variables 108 */ 109 110 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL) 111 112 /* Special spinlock for queue of unresolved entries */ 113 static DEFINE_SPINLOCK(mfc_unres_lock); 114 115 /* We return to original Alan's scheme. Hash table of resolved 116 * entries is changed only in process context and protected 117 * with weak lock mrt_lock. Queue of unresolved entries is protected 118 * with strong spinlock mfc_unres_lock. 119 * 120 * In this case data path is free of exclusive locks at all. 121 */ 122 123 static struct kmem_cache *mrt_cachep __read_mostly; 124 125 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 126 static void ipmr_free_table(struct mr_table *mrt); 127 128 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 129 struct sk_buff *skb, struct mfc_cache *cache, 130 int local); 131 static int ipmr_cache_report(struct mr_table *mrt, 132 struct sk_buff *pkt, vifi_t vifi, int assert); 133 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 134 struct mfc_cache *c, struct rtmsg *rtm); 135 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 136 int cmd); 137 static void mroute_clean_tables(struct mr_table *mrt, bool all); 138 static void ipmr_expire_process(unsigned long arg); 139 140 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 141 #define ipmr_for_each_table(mrt, net) \ 142 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list) 143 144 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 145 { 146 struct mr_table *mrt; 147 148 ipmr_for_each_table(mrt, net) { 149 if (mrt->id == id) 150 return mrt; 151 } 152 return NULL; 153 } 154 155 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 156 struct mr_table **mrt) 157 { 158 int err; 159 struct ipmr_result res; 160 struct fib_lookup_arg arg = { 161 .result = &res, 162 .flags = FIB_LOOKUP_NOREF, 163 }; 164 165 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 166 flowi4_to_flowi(flp4), 0, &arg); 167 if (err < 0) 168 return err; 169 *mrt = res.mrt; 170 return 0; 171 } 172 173 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 174 int flags, struct fib_lookup_arg *arg) 175 { 176 struct ipmr_result *res = arg->result; 177 struct mr_table *mrt; 178 179 switch (rule->action) { 180 case FR_ACT_TO_TBL: 181 break; 182 case FR_ACT_UNREACHABLE: 183 return -ENETUNREACH; 184 case FR_ACT_PROHIBIT: 185 return -EACCES; 186 case FR_ACT_BLACKHOLE: 187 default: 188 return -EINVAL; 189 } 190 191 mrt = ipmr_get_table(rule->fr_net, rule->table); 192 if (!mrt) 193 return -EAGAIN; 194 res->mrt = mrt; 195 return 0; 196 } 197 198 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 199 { 200 return 1; 201 } 202 203 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = { 204 FRA_GENERIC_POLICY, 205 }; 206 207 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 208 struct fib_rule_hdr *frh, struct nlattr **tb) 209 { 210 return 0; 211 } 212 213 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 214 struct nlattr **tb) 215 { 216 return 1; 217 } 218 219 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 220 struct fib_rule_hdr *frh) 221 { 222 frh->dst_len = 0; 223 frh->src_len = 0; 224 frh->tos = 0; 225 return 0; 226 } 227 228 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 229 .family = RTNL_FAMILY_IPMR, 230 .rule_size = sizeof(struct ipmr_rule), 231 .addr_size = sizeof(u32), 232 .action = ipmr_rule_action, 233 .match = ipmr_rule_match, 234 .configure = ipmr_rule_configure, 235 .compare = ipmr_rule_compare, 236 .fill = ipmr_rule_fill, 237 .nlgroup = RTNLGRP_IPV4_RULE, 238 .policy = ipmr_rule_policy, 239 .owner = THIS_MODULE, 240 }; 241 242 static int __net_init ipmr_rules_init(struct net *net) 243 { 244 struct fib_rules_ops *ops; 245 struct mr_table *mrt; 246 int err; 247 248 ops = fib_rules_register(&ipmr_rules_ops_template, net); 249 if (IS_ERR(ops)) 250 return PTR_ERR(ops); 251 252 INIT_LIST_HEAD(&net->ipv4.mr_tables); 253 254 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 255 if (!mrt) { 256 err = -ENOMEM; 257 goto err1; 258 } 259 260 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 261 if (err < 0) 262 goto err2; 263 264 net->ipv4.mr_rules_ops = ops; 265 return 0; 266 267 err2: 268 ipmr_free_table(mrt); 269 err1: 270 fib_rules_unregister(ops); 271 return err; 272 } 273 274 static void __net_exit ipmr_rules_exit(struct net *net) 275 { 276 struct mr_table *mrt, *next; 277 278 rtnl_lock(); 279 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 280 list_del(&mrt->list); 281 ipmr_free_table(mrt); 282 } 283 fib_rules_unregister(net->ipv4.mr_rules_ops); 284 rtnl_unlock(); 285 } 286 #else 287 #define ipmr_for_each_table(mrt, net) \ 288 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 289 290 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 291 { 292 return net->ipv4.mrt; 293 } 294 295 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 296 struct mr_table **mrt) 297 { 298 *mrt = net->ipv4.mrt; 299 return 0; 300 } 301 302 static int __net_init ipmr_rules_init(struct net *net) 303 { 304 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 305 return net->ipv4.mrt ? 0 : -ENOMEM; 306 } 307 308 static void __net_exit ipmr_rules_exit(struct net *net) 309 { 310 rtnl_lock(); 311 ipmr_free_table(net->ipv4.mrt); 312 net->ipv4.mrt = NULL; 313 rtnl_unlock(); 314 } 315 #endif 316 317 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 318 { 319 struct mr_table *mrt; 320 unsigned int i; 321 322 mrt = ipmr_get_table(net, id); 323 if (mrt) 324 return mrt; 325 326 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL); 327 if (!mrt) 328 return NULL; 329 write_pnet(&mrt->net, net); 330 mrt->id = id; 331 332 /* Forwarding cache */ 333 for (i = 0; i < MFC_LINES; i++) 334 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]); 335 336 INIT_LIST_HEAD(&mrt->mfc_unres_queue); 337 338 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process, 339 (unsigned long)mrt); 340 341 #ifdef CONFIG_IP_PIMSM 342 mrt->mroute_reg_vif_num = -1; 343 #endif 344 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 345 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 346 #endif 347 return mrt; 348 } 349 350 static void ipmr_free_table(struct mr_table *mrt) 351 { 352 del_timer_sync(&mrt->ipmr_expire_timer); 353 mroute_clean_tables(mrt, true); 354 kfree(mrt); 355 } 356 357 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 358 359 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v) 360 { 361 struct net *net = dev_net(dev); 362 363 dev_close(dev); 364 365 dev = __dev_get_by_name(net, "tunl0"); 366 if (dev) { 367 const struct net_device_ops *ops = dev->netdev_ops; 368 struct ifreq ifr; 369 struct ip_tunnel_parm p; 370 371 memset(&p, 0, sizeof(p)); 372 p.iph.daddr = v->vifc_rmt_addr.s_addr; 373 p.iph.saddr = v->vifc_lcl_addr.s_addr; 374 p.iph.version = 4; 375 p.iph.ihl = 5; 376 p.iph.protocol = IPPROTO_IPIP; 377 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 378 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 379 380 if (ops->ndo_do_ioctl) { 381 mm_segment_t oldfs = get_fs(); 382 383 set_fs(KERNEL_DS); 384 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL); 385 set_fs(oldfs); 386 } 387 } 388 } 389 390 static 391 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 392 { 393 struct net_device *dev; 394 395 dev = __dev_get_by_name(net, "tunl0"); 396 397 if (dev) { 398 const struct net_device_ops *ops = dev->netdev_ops; 399 int err; 400 struct ifreq ifr; 401 struct ip_tunnel_parm p; 402 struct in_device *in_dev; 403 404 memset(&p, 0, sizeof(p)); 405 p.iph.daddr = v->vifc_rmt_addr.s_addr; 406 p.iph.saddr = v->vifc_lcl_addr.s_addr; 407 p.iph.version = 4; 408 p.iph.ihl = 5; 409 p.iph.protocol = IPPROTO_IPIP; 410 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 411 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 412 413 if (ops->ndo_do_ioctl) { 414 mm_segment_t oldfs = get_fs(); 415 416 set_fs(KERNEL_DS); 417 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL); 418 set_fs(oldfs); 419 } else { 420 err = -EOPNOTSUPP; 421 } 422 dev = NULL; 423 424 if (err == 0 && 425 (dev = __dev_get_by_name(net, p.name)) != NULL) { 426 dev->flags |= IFF_MULTICAST; 427 428 in_dev = __in_dev_get_rtnl(dev); 429 if (!in_dev) 430 goto failure; 431 432 ipv4_devconf_setall(in_dev); 433 neigh_parms_data_state_setall(in_dev->arp_parms); 434 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 435 436 if (dev_open(dev)) 437 goto failure; 438 dev_hold(dev); 439 } 440 } 441 return dev; 442 443 failure: 444 unregister_netdevice(dev); 445 return NULL; 446 } 447 448 #ifdef CONFIG_IP_PIMSM 449 450 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 451 { 452 struct net *net = dev_net(dev); 453 struct mr_table *mrt; 454 struct flowi4 fl4 = { 455 .flowi4_oif = dev->ifindex, 456 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 457 .flowi4_mark = skb->mark, 458 }; 459 int err; 460 461 err = ipmr_fib_lookup(net, &fl4, &mrt); 462 if (err < 0) { 463 kfree_skb(skb); 464 return err; 465 } 466 467 read_lock(&mrt_lock); 468 dev->stats.tx_bytes += skb->len; 469 dev->stats.tx_packets++; 470 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT); 471 read_unlock(&mrt_lock); 472 kfree_skb(skb); 473 return NETDEV_TX_OK; 474 } 475 476 static int reg_vif_get_iflink(const struct net_device *dev) 477 { 478 return 0; 479 } 480 481 static const struct net_device_ops reg_vif_netdev_ops = { 482 .ndo_start_xmit = reg_vif_xmit, 483 .ndo_get_iflink = reg_vif_get_iflink, 484 }; 485 486 static void reg_vif_setup(struct net_device *dev) 487 { 488 dev->type = ARPHRD_PIMREG; 489 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 490 dev->flags = IFF_NOARP; 491 dev->netdev_ops = ®_vif_netdev_ops; 492 dev->destructor = free_netdev; 493 dev->features |= NETIF_F_NETNS_LOCAL; 494 } 495 496 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 497 { 498 struct net_device *dev; 499 struct in_device *in_dev; 500 char name[IFNAMSIZ]; 501 502 if (mrt->id == RT_TABLE_DEFAULT) 503 sprintf(name, "pimreg"); 504 else 505 sprintf(name, "pimreg%u", mrt->id); 506 507 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 508 509 if (!dev) 510 return NULL; 511 512 dev_net_set(dev, net); 513 514 if (register_netdevice(dev)) { 515 free_netdev(dev); 516 return NULL; 517 } 518 519 rcu_read_lock(); 520 in_dev = __in_dev_get_rcu(dev); 521 if (!in_dev) { 522 rcu_read_unlock(); 523 goto failure; 524 } 525 526 ipv4_devconf_setall(in_dev); 527 neigh_parms_data_state_setall(in_dev->arp_parms); 528 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 529 rcu_read_unlock(); 530 531 if (dev_open(dev)) 532 goto failure; 533 534 dev_hold(dev); 535 536 return dev; 537 538 failure: 539 unregister_netdevice(dev); 540 return NULL; 541 } 542 #endif 543 544 /** 545 * vif_delete - Delete a VIF entry 546 * @notify: Set to 1, if the caller is a notifier_call 547 */ 548 549 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 550 struct list_head *head) 551 { 552 struct vif_device *v; 553 struct net_device *dev; 554 struct in_device *in_dev; 555 556 if (vifi < 0 || vifi >= mrt->maxvif) 557 return -EADDRNOTAVAIL; 558 559 v = &mrt->vif_table[vifi]; 560 561 write_lock_bh(&mrt_lock); 562 dev = v->dev; 563 v->dev = NULL; 564 565 if (!dev) { 566 write_unlock_bh(&mrt_lock); 567 return -EADDRNOTAVAIL; 568 } 569 570 #ifdef CONFIG_IP_PIMSM 571 if (vifi == mrt->mroute_reg_vif_num) 572 mrt->mroute_reg_vif_num = -1; 573 #endif 574 575 if (vifi + 1 == mrt->maxvif) { 576 int tmp; 577 578 for (tmp = vifi - 1; tmp >= 0; tmp--) { 579 if (VIF_EXISTS(mrt, tmp)) 580 break; 581 } 582 mrt->maxvif = tmp+1; 583 } 584 585 write_unlock_bh(&mrt_lock); 586 587 dev_set_allmulti(dev, -1); 588 589 in_dev = __in_dev_get_rtnl(dev); 590 if (in_dev) { 591 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 592 inet_netconf_notify_devconf(dev_net(dev), 593 NETCONFA_MC_FORWARDING, 594 dev->ifindex, &in_dev->cnf); 595 ip_rt_multicast_event(in_dev); 596 } 597 598 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 599 unregister_netdevice_queue(dev, head); 600 601 dev_put(dev); 602 return 0; 603 } 604 605 static void ipmr_cache_free_rcu(struct rcu_head *head) 606 { 607 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu); 608 609 kmem_cache_free(mrt_cachep, c); 610 } 611 612 static inline void ipmr_cache_free(struct mfc_cache *c) 613 { 614 call_rcu(&c->rcu, ipmr_cache_free_rcu); 615 } 616 617 /* Destroy an unresolved cache entry, killing queued skbs 618 * and reporting error to netlink readers. 619 */ 620 621 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 622 { 623 struct net *net = read_pnet(&mrt->net); 624 struct sk_buff *skb; 625 struct nlmsgerr *e; 626 627 atomic_dec(&mrt->cache_resolve_queue_len); 628 629 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) { 630 if (ip_hdr(skb)->version == 0) { 631 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 632 nlh->nlmsg_type = NLMSG_ERROR; 633 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 634 skb_trim(skb, nlh->nlmsg_len); 635 e = nlmsg_data(nlh); 636 e->error = -ETIMEDOUT; 637 memset(&e->msg, 0, sizeof(e->msg)); 638 639 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 640 } else { 641 kfree_skb(skb); 642 } 643 } 644 645 ipmr_cache_free(c); 646 } 647 648 649 /* Timer process for the unresolved queue. */ 650 651 static void ipmr_expire_process(unsigned long arg) 652 { 653 struct mr_table *mrt = (struct mr_table *)arg; 654 unsigned long now; 655 unsigned long expires; 656 struct mfc_cache *c, *next; 657 658 if (!spin_trylock(&mfc_unres_lock)) { 659 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 660 return; 661 } 662 663 if (list_empty(&mrt->mfc_unres_queue)) 664 goto out; 665 666 now = jiffies; 667 expires = 10*HZ; 668 669 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 670 if (time_after(c->mfc_un.unres.expires, now)) { 671 unsigned long interval = c->mfc_un.unres.expires - now; 672 if (interval < expires) 673 expires = interval; 674 continue; 675 } 676 677 list_del(&c->list); 678 mroute_netlink_event(mrt, c, RTM_DELROUTE); 679 ipmr_destroy_unres(mrt, c); 680 } 681 682 if (!list_empty(&mrt->mfc_unres_queue)) 683 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 684 685 out: 686 spin_unlock(&mfc_unres_lock); 687 } 688 689 /* Fill oifs list. It is called under write locked mrt_lock. */ 690 691 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache, 692 unsigned char *ttls) 693 { 694 int vifi; 695 696 cache->mfc_un.res.minvif = MAXVIFS; 697 cache->mfc_un.res.maxvif = 0; 698 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 699 700 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 701 if (VIF_EXISTS(mrt, vifi) && 702 ttls[vifi] && ttls[vifi] < 255) { 703 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 704 if (cache->mfc_un.res.minvif > vifi) 705 cache->mfc_un.res.minvif = vifi; 706 if (cache->mfc_un.res.maxvif <= vifi) 707 cache->mfc_un.res.maxvif = vifi + 1; 708 } 709 } 710 } 711 712 static int vif_add(struct net *net, struct mr_table *mrt, 713 struct vifctl *vifc, int mrtsock) 714 { 715 int vifi = vifc->vifc_vifi; 716 struct vif_device *v = &mrt->vif_table[vifi]; 717 struct net_device *dev; 718 struct in_device *in_dev; 719 int err; 720 721 /* Is vif busy ? */ 722 if (VIF_EXISTS(mrt, vifi)) 723 return -EADDRINUSE; 724 725 switch (vifc->vifc_flags) { 726 #ifdef CONFIG_IP_PIMSM 727 case VIFF_REGISTER: 728 /* 729 * Special Purpose VIF in PIM 730 * All the packets will be sent to the daemon 731 */ 732 if (mrt->mroute_reg_vif_num >= 0) 733 return -EADDRINUSE; 734 dev = ipmr_reg_vif(net, mrt); 735 if (!dev) 736 return -ENOBUFS; 737 err = dev_set_allmulti(dev, 1); 738 if (err) { 739 unregister_netdevice(dev); 740 dev_put(dev); 741 return err; 742 } 743 break; 744 #endif 745 case VIFF_TUNNEL: 746 dev = ipmr_new_tunnel(net, vifc); 747 if (!dev) 748 return -ENOBUFS; 749 err = dev_set_allmulti(dev, 1); 750 if (err) { 751 ipmr_del_tunnel(dev, vifc); 752 dev_put(dev); 753 return err; 754 } 755 break; 756 757 case VIFF_USE_IFINDEX: 758 case 0: 759 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 760 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 761 if (dev && !__in_dev_get_rtnl(dev)) { 762 dev_put(dev); 763 return -EADDRNOTAVAIL; 764 } 765 } else { 766 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 767 } 768 if (!dev) 769 return -EADDRNOTAVAIL; 770 err = dev_set_allmulti(dev, 1); 771 if (err) { 772 dev_put(dev); 773 return err; 774 } 775 break; 776 default: 777 return -EINVAL; 778 } 779 780 in_dev = __in_dev_get_rtnl(dev); 781 if (!in_dev) { 782 dev_put(dev); 783 return -EADDRNOTAVAIL; 784 } 785 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 786 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex, 787 &in_dev->cnf); 788 ip_rt_multicast_event(in_dev); 789 790 /* Fill in the VIF structures */ 791 792 v->rate_limit = vifc->vifc_rate_limit; 793 v->local = vifc->vifc_lcl_addr.s_addr; 794 v->remote = vifc->vifc_rmt_addr.s_addr; 795 v->flags = vifc->vifc_flags; 796 if (!mrtsock) 797 v->flags |= VIFF_STATIC; 798 v->threshold = vifc->vifc_threshold; 799 v->bytes_in = 0; 800 v->bytes_out = 0; 801 v->pkt_in = 0; 802 v->pkt_out = 0; 803 v->link = dev->ifindex; 804 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER)) 805 v->link = dev_get_iflink(dev); 806 807 /* And finish update writing critical data */ 808 write_lock_bh(&mrt_lock); 809 v->dev = dev; 810 #ifdef CONFIG_IP_PIMSM 811 if (v->flags & VIFF_REGISTER) 812 mrt->mroute_reg_vif_num = vifi; 813 #endif 814 if (vifi+1 > mrt->maxvif) 815 mrt->maxvif = vifi+1; 816 write_unlock_bh(&mrt_lock); 817 return 0; 818 } 819 820 /* called with rcu_read_lock() */ 821 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 822 __be32 origin, 823 __be32 mcastgrp) 824 { 825 int line = MFC_HASH(mcastgrp, origin); 826 struct mfc_cache *c; 827 828 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) { 829 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp) 830 return c; 831 } 832 return NULL; 833 } 834 835 /* Look for a (*,*,oif) entry */ 836 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt, 837 int vifi) 838 { 839 int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY)); 840 struct mfc_cache *c; 841 842 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) 843 if (c->mfc_origin == htonl(INADDR_ANY) && 844 c->mfc_mcastgrp == htonl(INADDR_ANY) && 845 c->mfc_un.res.ttls[vifi] < 255) 846 return c; 847 848 return NULL; 849 } 850 851 /* Look for a (*,G) entry */ 852 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 853 __be32 mcastgrp, int vifi) 854 { 855 int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY)); 856 struct mfc_cache *c, *proxy; 857 858 if (mcastgrp == htonl(INADDR_ANY)) 859 goto skip; 860 861 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) 862 if (c->mfc_origin == htonl(INADDR_ANY) && 863 c->mfc_mcastgrp == mcastgrp) { 864 if (c->mfc_un.res.ttls[vifi] < 255) 865 return c; 866 867 /* It's ok if the vifi is part of the static tree */ 868 proxy = ipmr_cache_find_any_parent(mrt, 869 c->mfc_parent); 870 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255) 871 return c; 872 } 873 874 skip: 875 return ipmr_cache_find_any_parent(mrt, vifi); 876 } 877 878 /* 879 * Allocate a multicast cache entry 880 */ 881 static struct mfc_cache *ipmr_cache_alloc(void) 882 { 883 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 884 885 if (c) 886 c->mfc_un.res.minvif = MAXVIFS; 887 return c; 888 } 889 890 static struct mfc_cache *ipmr_cache_alloc_unres(void) 891 { 892 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 893 894 if (c) { 895 skb_queue_head_init(&c->mfc_un.unres.unresolved); 896 c->mfc_un.unres.expires = jiffies + 10*HZ; 897 } 898 return c; 899 } 900 901 /* 902 * A cache entry has gone into a resolved state from queued 903 */ 904 905 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 906 struct mfc_cache *uc, struct mfc_cache *c) 907 { 908 struct sk_buff *skb; 909 struct nlmsgerr *e; 910 911 /* Play the pending entries through our router */ 912 913 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) { 914 if (ip_hdr(skb)->version == 0) { 915 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr)); 916 917 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) { 918 nlh->nlmsg_len = skb_tail_pointer(skb) - 919 (u8 *)nlh; 920 } else { 921 nlh->nlmsg_type = NLMSG_ERROR; 922 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 923 skb_trim(skb, nlh->nlmsg_len); 924 e = nlmsg_data(nlh); 925 e->error = -EMSGSIZE; 926 memset(&e->msg, 0, sizeof(e->msg)); 927 } 928 929 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 930 } else { 931 ip_mr_forward(net, mrt, skb, c, 0); 932 } 933 } 934 } 935 936 /* 937 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted 938 * expects the following bizarre scheme. 939 * 940 * Called under mrt_lock. 941 */ 942 943 static int ipmr_cache_report(struct mr_table *mrt, 944 struct sk_buff *pkt, vifi_t vifi, int assert) 945 { 946 struct sk_buff *skb; 947 const int ihl = ip_hdrlen(pkt); 948 struct igmphdr *igmp; 949 struct igmpmsg *msg; 950 struct sock *mroute_sk; 951 int ret; 952 953 #ifdef CONFIG_IP_PIMSM 954 if (assert == IGMPMSG_WHOLEPKT) 955 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 956 else 957 #endif 958 skb = alloc_skb(128, GFP_ATOMIC); 959 960 if (!skb) 961 return -ENOBUFS; 962 963 #ifdef CONFIG_IP_PIMSM 964 if (assert == IGMPMSG_WHOLEPKT) { 965 /* Ugly, but we have no choice with this interface. 966 * Duplicate old header, fix ihl, length etc. 967 * And all this only to mangle msg->im_msgtype and 968 * to set msg->im_mbz to "mbz" :-) 969 */ 970 skb_push(skb, sizeof(struct iphdr)); 971 skb_reset_network_header(skb); 972 skb_reset_transport_header(skb); 973 msg = (struct igmpmsg *)skb_network_header(skb); 974 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 975 msg->im_msgtype = IGMPMSG_WHOLEPKT; 976 msg->im_mbz = 0; 977 msg->im_vif = mrt->mroute_reg_vif_num; 978 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 979 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 980 sizeof(struct iphdr)); 981 } else 982 #endif 983 { 984 985 /* Copy the IP header */ 986 987 skb_set_network_header(skb, skb->len); 988 skb_put(skb, ihl); 989 skb_copy_to_linear_data(skb, pkt->data, ihl); 990 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */ 991 msg = (struct igmpmsg *)skb_network_header(skb); 992 msg->im_vif = vifi; 993 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 994 995 /* Add our header */ 996 997 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr)); 998 igmp->type = 999 msg->im_msgtype = assert; 1000 igmp->code = 0; 1001 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 1002 skb->transport_header = skb->network_header; 1003 } 1004 1005 rcu_read_lock(); 1006 mroute_sk = rcu_dereference(mrt->mroute_sk); 1007 if (!mroute_sk) { 1008 rcu_read_unlock(); 1009 kfree_skb(skb); 1010 return -EINVAL; 1011 } 1012 1013 /* Deliver to mrouted */ 1014 1015 ret = sock_queue_rcv_skb(mroute_sk, skb); 1016 rcu_read_unlock(); 1017 if (ret < 0) { 1018 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1019 kfree_skb(skb); 1020 } 1021 1022 return ret; 1023 } 1024 1025 /* 1026 * Queue a packet for resolution. It gets locked cache entry! 1027 */ 1028 1029 static int 1030 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb) 1031 { 1032 bool found = false; 1033 int err; 1034 struct mfc_cache *c; 1035 const struct iphdr *iph = ip_hdr(skb); 1036 1037 spin_lock_bh(&mfc_unres_lock); 1038 list_for_each_entry(c, &mrt->mfc_unres_queue, list) { 1039 if (c->mfc_mcastgrp == iph->daddr && 1040 c->mfc_origin == iph->saddr) { 1041 found = true; 1042 break; 1043 } 1044 } 1045 1046 if (!found) { 1047 /* Create a new entry if allowable */ 1048 1049 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 1050 (c = ipmr_cache_alloc_unres()) == NULL) { 1051 spin_unlock_bh(&mfc_unres_lock); 1052 1053 kfree_skb(skb); 1054 return -ENOBUFS; 1055 } 1056 1057 /* Fill in the new cache entry */ 1058 1059 c->mfc_parent = -1; 1060 c->mfc_origin = iph->saddr; 1061 c->mfc_mcastgrp = iph->daddr; 1062 1063 /* Reflect first query at mrouted. */ 1064 1065 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1066 if (err < 0) { 1067 /* If the report failed throw the cache entry 1068 out - Brad Parker 1069 */ 1070 spin_unlock_bh(&mfc_unres_lock); 1071 1072 ipmr_cache_free(c); 1073 kfree_skb(skb); 1074 return err; 1075 } 1076 1077 atomic_inc(&mrt->cache_resolve_queue_len); 1078 list_add(&c->list, &mrt->mfc_unres_queue); 1079 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1080 1081 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1082 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires); 1083 } 1084 1085 /* See if we can append the packet */ 1086 1087 if (c->mfc_un.unres.unresolved.qlen > 3) { 1088 kfree_skb(skb); 1089 err = -ENOBUFS; 1090 } else { 1091 skb_queue_tail(&c->mfc_un.unres.unresolved, skb); 1092 err = 0; 1093 } 1094 1095 spin_unlock_bh(&mfc_unres_lock); 1096 return err; 1097 } 1098 1099 /* 1100 * MFC cache manipulation by user space mroute daemon 1101 */ 1102 1103 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1104 { 1105 int line; 1106 struct mfc_cache *c, *next; 1107 1108 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1109 1110 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) { 1111 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1112 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr && 1113 (parent == -1 || parent == c->mfc_parent)) { 1114 list_del_rcu(&c->list); 1115 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1116 ipmr_cache_free(c); 1117 return 0; 1118 } 1119 } 1120 return -ENOENT; 1121 } 1122 1123 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1124 struct mfcctl *mfc, int mrtsock, int parent) 1125 { 1126 bool found = false; 1127 int line; 1128 struct mfc_cache *uc, *c; 1129 1130 if (mfc->mfcc_parent >= MAXVIFS) 1131 return -ENFILE; 1132 1133 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr); 1134 1135 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) { 1136 if (c->mfc_origin == mfc->mfcc_origin.s_addr && 1137 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr && 1138 (parent == -1 || parent == c->mfc_parent)) { 1139 found = true; 1140 break; 1141 } 1142 } 1143 1144 if (found) { 1145 write_lock_bh(&mrt_lock); 1146 c->mfc_parent = mfc->mfcc_parent; 1147 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1148 if (!mrtsock) 1149 c->mfc_flags |= MFC_STATIC; 1150 write_unlock_bh(&mrt_lock); 1151 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1152 return 0; 1153 } 1154 1155 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1156 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1157 return -EINVAL; 1158 1159 c = ipmr_cache_alloc(); 1160 if (!c) 1161 return -ENOMEM; 1162 1163 c->mfc_origin = mfc->mfcc_origin.s_addr; 1164 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1165 c->mfc_parent = mfc->mfcc_parent; 1166 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls); 1167 if (!mrtsock) 1168 c->mfc_flags |= MFC_STATIC; 1169 1170 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]); 1171 1172 /* 1173 * Check to see if we resolved a queued list. If so we 1174 * need to send on the frames and tidy up. 1175 */ 1176 found = false; 1177 spin_lock_bh(&mfc_unres_lock); 1178 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) { 1179 if (uc->mfc_origin == c->mfc_origin && 1180 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1181 list_del(&uc->list); 1182 atomic_dec(&mrt->cache_resolve_queue_len); 1183 found = true; 1184 break; 1185 } 1186 } 1187 if (list_empty(&mrt->mfc_unres_queue)) 1188 del_timer(&mrt->ipmr_expire_timer); 1189 spin_unlock_bh(&mfc_unres_lock); 1190 1191 if (found) { 1192 ipmr_cache_resolve(net, mrt, uc, c); 1193 ipmr_cache_free(uc); 1194 } 1195 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1196 return 0; 1197 } 1198 1199 /* 1200 * Close the multicast socket, and clear the vif tables etc 1201 */ 1202 1203 static void mroute_clean_tables(struct mr_table *mrt, bool all) 1204 { 1205 int i; 1206 LIST_HEAD(list); 1207 struct mfc_cache *c, *next; 1208 1209 /* Shut down all active vif entries */ 1210 1211 for (i = 0; i < mrt->maxvif; i++) { 1212 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC)) 1213 continue; 1214 vif_delete(mrt, i, 0, &list); 1215 } 1216 unregister_netdevice_many(&list); 1217 1218 /* Wipe the cache */ 1219 1220 for (i = 0; i < MFC_LINES; i++) { 1221 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) { 1222 if (!all && (c->mfc_flags & MFC_STATIC)) 1223 continue; 1224 list_del_rcu(&c->list); 1225 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1226 ipmr_cache_free(c); 1227 } 1228 } 1229 1230 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1231 spin_lock_bh(&mfc_unres_lock); 1232 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 1233 list_del(&c->list); 1234 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1235 ipmr_destroy_unres(mrt, c); 1236 } 1237 spin_unlock_bh(&mfc_unres_lock); 1238 } 1239 } 1240 1241 /* called from ip_ra_control(), before an RCU grace period, 1242 * we dont need to call synchronize_rcu() here 1243 */ 1244 static void mrtsock_destruct(struct sock *sk) 1245 { 1246 struct net *net = sock_net(sk); 1247 struct mr_table *mrt; 1248 1249 rtnl_lock(); 1250 ipmr_for_each_table(mrt, net) { 1251 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1252 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1253 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, 1254 NETCONFA_IFINDEX_ALL, 1255 net->ipv4.devconf_all); 1256 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1257 mroute_clean_tables(mrt, false); 1258 } 1259 } 1260 rtnl_unlock(); 1261 } 1262 1263 /* 1264 * Socket options and virtual interface manipulation. The whole 1265 * virtual interface system is a complete heap, but unfortunately 1266 * that's how BSD mrouted happens to think. Maybe one day with a proper 1267 * MOSPF/PIM router set up we can clean this up. 1268 */ 1269 1270 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen) 1271 { 1272 int ret, parent = 0; 1273 struct vifctl vif; 1274 struct mfcctl mfc; 1275 struct net *net = sock_net(sk); 1276 struct mr_table *mrt; 1277 1278 if (sk->sk_type != SOCK_RAW || 1279 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1280 return -EOPNOTSUPP; 1281 1282 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1283 if (!mrt) 1284 return -ENOENT; 1285 1286 if (optname != MRT_INIT) { 1287 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1288 !ns_capable(net->user_ns, CAP_NET_ADMIN)) 1289 return -EACCES; 1290 } 1291 1292 switch (optname) { 1293 case MRT_INIT: 1294 if (optlen != sizeof(int)) 1295 return -EINVAL; 1296 1297 rtnl_lock(); 1298 if (rtnl_dereference(mrt->mroute_sk)) { 1299 rtnl_unlock(); 1300 return -EADDRINUSE; 1301 } 1302 1303 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1304 if (ret == 0) { 1305 rcu_assign_pointer(mrt->mroute_sk, sk); 1306 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1307 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, 1308 NETCONFA_IFINDEX_ALL, 1309 net->ipv4.devconf_all); 1310 } 1311 rtnl_unlock(); 1312 return ret; 1313 case MRT_DONE: 1314 if (sk != rcu_access_pointer(mrt->mroute_sk)) 1315 return -EACCES; 1316 return ip_ra_control(sk, 0, NULL); 1317 case MRT_ADD_VIF: 1318 case MRT_DEL_VIF: 1319 if (optlen != sizeof(vif)) 1320 return -EINVAL; 1321 if (copy_from_user(&vif, optval, sizeof(vif))) 1322 return -EFAULT; 1323 if (vif.vifc_vifi >= MAXVIFS) 1324 return -ENFILE; 1325 rtnl_lock(); 1326 if (optname == MRT_ADD_VIF) { 1327 ret = vif_add(net, mrt, &vif, 1328 sk == rtnl_dereference(mrt->mroute_sk)); 1329 } else { 1330 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1331 } 1332 rtnl_unlock(); 1333 return ret; 1334 1335 /* 1336 * Manipulate the forwarding caches. These live 1337 * in a sort of kernel/user symbiosis. 1338 */ 1339 case MRT_ADD_MFC: 1340 case MRT_DEL_MFC: 1341 parent = -1; 1342 case MRT_ADD_MFC_PROXY: 1343 case MRT_DEL_MFC_PROXY: 1344 if (optlen != sizeof(mfc)) 1345 return -EINVAL; 1346 if (copy_from_user(&mfc, optval, sizeof(mfc))) 1347 return -EFAULT; 1348 if (parent == 0) 1349 parent = mfc.mfcc_parent; 1350 rtnl_lock(); 1351 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1352 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1353 else 1354 ret = ipmr_mfc_add(net, mrt, &mfc, 1355 sk == rtnl_dereference(mrt->mroute_sk), 1356 parent); 1357 rtnl_unlock(); 1358 return ret; 1359 /* 1360 * Control PIM assert. 1361 */ 1362 case MRT_ASSERT: 1363 { 1364 int v; 1365 if (optlen != sizeof(v)) 1366 return -EINVAL; 1367 if (get_user(v, (int __user *)optval)) 1368 return -EFAULT; 1369 mrt->mroute_do_assert = v; 1370 return 0; 1371 } 1372 #ifdef CONFIG_IP_PIMSM 1373 case MRT_PIM: 1374 { 1375 int v; 1376 1377 if (optlen != sizeof(v)) 1378 return -EINVAL; 1379 if (get_user(v, (int __user *)optval)) 1380 return -EFAULT; 1381 v = !!v; 1382 1383 rtnl_lock(); 1384 ret = 0; 1385 if (v != mrt->mroute_do_pim) { 1386 mrt->mroute_do_pim = v; 1387 mrt->mroute_do_assert = v; 1388 } 1389 rtnl_unlock(); 1390 return ret; 1391 } 1392 #endif 1393 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 1394 case MRT_TABLE: 1395 { 1396 u32 v; 1397 1398 if (optlen != sizeof(u32)) 1399 return -EINVAL; 1400 if (get_user(v, (u32 __user *)optval)) 1401 return -EFAULT; 1402 1403 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 1404 if (v != RT_TABLE_DEFAULT && v >= 1000000000) 1405 return -EINVAL; 1406 1407 rtnl_lock(); 1408 ret = 0; 1409 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1410 ret = -EBUSY; 1411 } else { 1412 if (!ipmr_new_table(net, v)) 1413 ret = -ENOMEM; 1414 else 1415 raw_sk(sk)->ipmr_table = v; 1416 } 1417 rtnl_unlock(); 1418 return ret; 1419 } 1420 #endif 1421 /* 1422 * Spurious command, or MRT_VERSION which you cannot 1423 * set. 1424 */ 1425 default: 1426 return -ENOPROTOOPT; 1427 } 1428 } 1429 1430 /* 1431 * Getsock opt support for the multicast routing system. 1432 */ 1433 1434 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1435 { 1436 int olr; 1437 int val; 1438 struct net *net = sock_net(sk); 1439 struct mr_table *mrt; 1440 1441 if (sk->sk_type != SOCK_RAW || 1442 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1443 return -EOPNOTSUPP; 1444 1445 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1446 if (!mrt) 1447 return -ENOENT; 1448 1449 if (optname != MRT_VERSION && 1450 #ifdef CONFIG_IP_PIMSM 1451 optname != MRT_PIM && 1452 #endif 1453 optname != MRT_ASSERT) 1454 return -ENOPROTOOPT; 1455 1456 if (get_user(olr, optlen)) 1457 return -EFAULT; 1458 1459 olr = min_t(unsigned int, olr, sizeof(int)); 1460 if (olr < 0) 1461 return -EINVAL; 1462 1463 if (put_user(olr, optlen)) 1464 return -EFAULT; 1465 if (optname == MRT_VERSION) 1466 val = 0x0305; 1467 #ifdef CONFIG_IP_PIMSM 1468 else if (optname == MRT_PIM) 1469 val = mrt->mroute_do_pim; 1470 #endif 1471 else 1472 val = mrt->mroute_do_assert; 1473 if (copy_to_user(optval, &val, olr)) 1474 return -EFAULT; 1475 return 0; 1476 } 1477 1478 /* 1479 * The IP multicast ioctl support routines. 1480 */ 1481 1482 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1483 { 1484 struct sioc_sg_req sr; 1485 struct sioc_vif_req vr; 1486 struct vif_device *vif; 1487 struct mfc_cache *c; 1488 struct net *net = sock_net(sk); 1489 struct mr_table *mrt; 1490 1491 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1492 if (!mrt) 1493 return -ENOENT; 1494 1495 switch (cmd) { 1496 case SIOCGETVIFCNT: 1497 if (copy_from_user(&vr, arg, sizeof(vr))) 1498 return -EFAULT; 1499 if (vr.vifi >= mrt->maxvif) 1500 return -EINVAL; 1501 read_lock(&mrt_lock); 1502 vif = &mrt->vif_table[vr.vifi]; 1503 if (VIF_EXISTS(mrt, vr.vifi)) { 1504 vr.icount = vif->pkt_in; 1505 vr.ocount = vif->pkt_out; 1506 vr.ibytes = vif->bytes_in; 1507 vr.obytes = vif->bytes_out; 1508 read_unlock(&mrt_lock); 1509 1510 if (copy_to_user(arg, &vr, sizeof(vr))) 1511 return -EFAULT; 1512 return 0; 1513 } 1514 read_unlock(&mrt_lock); 1515 return -EADDRNOTAVAIL; 1516 case SIOCGETSGCNT: 1517 if (copy_from_user(&sr, arg, sizeof(sr))) 1518 return -EFAULT; 1519 1520 rcu_read_lock(); 1521 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1522 if (c) { 1523 sr.pktcnt = c->mfc_un.res.pkt; 1524 sr.bytecnt = c->mfc_un.res.bytes; 1525 sr.wrong_if = c->mfc_un.res.wrong_if; 1526 rcu_read_unlock(); 1527 1528 if (copy_to_user(arg, &sr, sizeof(sr))) 1529 return -EFAULT; 1530 return 0; 1531 } 1532 rcu_read_unlock(); 1533 return -EADDRNOTAVAIL; 1534 default: 1535 return -ENOIOCTLCMD; 1536 } 1537 } 1538 1539 #ifdef CONFIG_COMPAT 1540 struct compat_sioc_sg_req { 1541 struct in_addr src; 1542 struct in_addr grp; 1543 compat_ulong_t pktcnt; 1544 compat_ulong_t bytecnt; 1545 compat_ulong_t wrong_if; 1546 }; 1547 1548 struct compat_sioc_vif_req { 1549 vifi_t vifi; /* Which iface */ 1550 compat_ulong_t icount; 1551 compat_ulong_t ocount; 1552 compat_ulong_t ibytes; 1553 compat_ulong_t obytes; 1554 }; 1555 1556 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1557 { 1558 struct compat_sioc_sg_req sr; 1559 struct compat_sioc_vif_req vr; 1560 struct vif_device *vif; 1561 struct mfc_cache *c; 1562 struct net *net = sock_net(sk); 1563 struct mr_table *mrt; 1564 1565 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1566 if (!mrt) 1567 return -ENOENT; 1568 1569 switch (cmd) { 1570 case SIOCGETVIFCNT: 1571 if (copy_from_user(&vr, arg, sizeof(vr))) 1572 return -EFAULT; 1573 if (vr.vifi >= mrt->maxvif) 1574 return -EINVAL; 1575 read_lock(&mrt_lock); 1576 vif = &mrt->vif_table[vr.vifi]; 1577 if (VIF_EXISTS(mrt, vr.vifi)) { 1578 vr.icount = vif->pkt_in; 1579 vr.ocount = vif->pkt_out; 1580 vr.ibytes = vif->bytes_in; 1581 vr.obytes = vif->bytes_out; 1582 read_unlock(&mrt_lock); 1583 1584 if (copy_to_user(arg, &vr, sizeof(vr))) 1585 return -EFAULT; 1586 return 0; 1587 } 1588 read_unlock(&mrt_lock); 1589 return -EADDRNOTAVAIL; 1590 case SIOCGETSGCNT: 1591 if (copy_from_user(&sr, arg, sizeof(sr))) 1592 return -EFAULT; 1593 1594 rcu_read_lock(); 1595 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1596 if (c) { 1597 sr.pktcnt = c->mfc_un.res.pkt; 1598 sr.bytecnt = c->mfc_un.res.bytes; 1599 sr.wrong_if = c->mfc_un.res.wrong_if; 1600 rcu_read_unlock(); 1601 1602 if (copy_to_user(arg, &sr, sizeof(sr))) 1603 return -EFAULT; 1604 return 0; 1605 } 1606 rcu_read_unlock(); 1607 return -EADDRNOTAVAIL; 1608 default: 1609 return -ENOIOCTLCMD; 1610 } 1611 } 1612 #endif 1613 1614 1615 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1616 { 1617 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1618 struct net *net = dev_net(dev); 1619 struct mr_table *mrt; 1620 struct vif_device *v; 1621 int ct; 1622 1623 if (event != NETDEV_UNREGISTER) 1624 return NOTIFY_DONE; 1625 1626 ipmr_for_each_table(mrt, net) { 1627 v = &mrt->vif_table[0]; 1628 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1629 if (v->dev == dev) 1630 vif_delete(mrt, ct, 1, NULL); 1631 } 1632 } 1633 return NOTIFY_DONE; 1634 } 1635 1636 1637 static struct notifier_block ip_mr_notifier = { 1638 .notifier_call = ipmr_device_event, 1639 }; 1640 1641 /* 1642 * Encapsulate a packet by attaching a valid IPIP header to it. 1643 * This avoids tunnel drivers and other mess and gives us the speed so 1644 * important for multicast video. 1645 */ 1646 1647 static void ip_encap(struct net *net, struct sk_buff *skb, 1648 __be32 saddr, __be32 daddr) 1649 { 1650 struct iphdr *iph; 1651 const struct iphdr *old_iph = ip_hdr(skb); 1652 1653 skb_push(skb, sizeof(struct iphdr)); 1654 skb->transport_header = skb->network_header; 1655 skb_reset_network_header(skb); 1656 iph = ip_hdr(skb); 1657 1658 iph->version = 4; 1659 iph->tos = old_iph->tos; 1660 iph->ttl = old_iph->ttl; 1661 iph->frag_off = 0; 1662 iph->daddr = daddr; 1663 iph->saddr = saddr; 1664 iph->protocol = IPPROTO_IPIP; 1665 iph->ihl = 5; 1666 iph->tot_len = htons(skb->len); 1667 ip_select_ident(net, skb, NULL); 1668 ip_send_check(iph); 1669 1670 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1671 nf_reset(skb); 1672 } 1673 1674 static inline int ipmr_forward_finish(struct net *net, struct sock *sk, 1675 struct sk_buff *skb) 1676 { 1677 struct ip_options *opt = &(IPCB(skb)->opt); 1678 1679 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS); 1680 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len); 1681 1682 if (unlikely(opt->optlen)) 1683 ip_forward_options(skb); 1684 1685 return dst_output(net, sk, skb); 1686 } 1687 1688 /* 1689 * Processing handlers for ipmr_forward 1690 */ 1691 1692 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1693 struct sk_buff *skb, struct mfc_cache *c, int vifi) 1694 { 1695 const struct iphdr *iph = ip_hdr(skb); 1696 struct vif_device *vif = &mrt->vif_table[vifi]; 1697 struct net_device *dev; 1698 struct rtable *rt; 1699 struct flowi4 fl4; 1700 int encap = 0; 1701 1702 if (!vif->dev) 1703 goto out_free; 1704 1705 #ifdef CONFIG_IP_PIMSM 1706 if (vif->flags & VIFF_REGISTER) { 1707 vif->pkt_out++; 1708 vif->bytes_out += skb->len; 1709 vif->dev->stats.tx_bytes += skb->len; 1710 vif->dev->stats.tx_packets++; 1711 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1712 goto out_free; 1713 } 1714 #endif 1715 1716 if (vif->flags & VIFF_TUNNEL) { 1717 rt = ip_route_output_ports(net, &fl4, NULL, 1718 vif->remote, vif->local, 1719 0, 0, 1720 IPPROTO_IPIP, 1721 RT_TOS(iph->tos), vif->link); 1722 if (IS_ERR(rt)) 1723 goto out_free; 1724 encap = sizeof(struct iphdr); 1725 } else { 1726 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1727 0, 0, 1728 IPPROTO_IPIP, 1729 RT_TOS(iph->tos), vif->link); 1730 if (IS_ERR(rt)) 1731 goto out_free; 1732 } 1733 1734 dev = rt->dst.dev; 1735 1736 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1737 /* Do not fragment multicasts. Alas, IPv4 does not 1738 * allow to send ICMP, so that packets will disappear 1739 * to blackhole. 1740 */ 1741 1742 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 1743 ip_rt_put(rt); 1744 goto out_free; 1745 } 1746 1747 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1748 1749 if (skb_cow(skb, encap)) { 1750 ip_rt_put(rt); 1751 goto out_free; 1752 } 1753 1754 vif->pkt_out++; 1755 vif->bytes_out += skb->len; 1756 1757 skb_dst_drop(skb); 1758 skb_dst_set(skb, &rt->dst); 1759 ip_decrease_ttl(ip_hdr(skb)); 1760 1761 /* FIXME: forward and output firewalls used to be called here. 1762 * What do we do with netfilter? -- RR 1763 */ 1764 if (vif->flags & VIFF_TUNNEL) { 1765 ip_encap(net, skb, vif->local, vif->remote); 1766 /* FIXME: extra output firewall step used to be here. --RR */ 1767 vif->dev->stats.tx_packets++; 1768 vif->dev->stats.tx_bytes += skb->len; 1769 } 1770 1771 IPCB(skb)->flags |= IPSKB_FORWARDED; 1772 1773 /* 1774 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1775 * not only before forwarding, but after forwarding on all output 1776 * interfaces. It is clear, if mrouter runs a multicasting 1777 * program, it should receive packets not depending to what interface 1778 * program is joined. 1779 * If we will not make it, the program will have to join on all 1780 * interfaces. On the other hand, multihoming host (or router, but 1781 * not mrouter) cannot join to more than one interface - it will 1782 * result in receiving multiple packets. 1783 */ 1784 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, 1785 net, NULL, skb, skb->dev, dev, 1786 ipmr_forward_finish); 1787 return; 1788 1789 out_free: 1790 kfree_skb(skb); 1791 } 1792 1793 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev) 1794 { 1795 int ct; 1796 1797 for (ct = mrt->maxvif-1; ct >= 0; ct--) { 1798 if (mrt->vif_table[ct].dev == dev) 1799 break; 1800 } 1801 return ct; 1802 } 1803 1804 /* "local" means that we should preserve one skb (for local delivery) */ 1805 1806 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1807 struct sk_buff *skb, struct mfc_cache *cache, 1808 int local) 1809 { 1810 int psend = -1; 1811 int vif, ct; 1812 int true_vifi = ipmr_find_vif(mrt, skb->dev); 1813 1814 vif = cache->mfc_parent; 1815 cache->mfc_un.res.pkt++; 1816 cache->mfc_un.res.bytes += skb->len; 1817 1818 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1819 struct mfc_cache *cache_proxy; 1820 1821 /* For an (*,G) entry, we only check that the incomming 1822 * interface is part of the static tree. 1823 */ 1824 cache_proxy = ipmr_cache_find_any_parent(mrt, vif); 1825 if (cache_proxy && 1826 cache_proxy->mfc_un.res.ttls[true_vifi] < 255) 1827 goto forward; 1828 } 1829 1830 /* 1831 * Wrong interface: drop packet and (maybe) send PIM assert. 1832 */ 1833 if (mrt->vif_table[vif].dev != skb->dev) { 1834 if (rt_is_output_route(skb_rtable(skb))) { 1835 /* It is our own packet, looped back. 1836 * Very complicated situation... 1837 * 1838 * The best workaround until routing daemons will be 1839 * fixed is not to redistribute packet, if it was 1840 * send through wrong interface. It means, that 1841 * multicast applications WILL NOT work for 1842 * (S,G), which have default multicast route pointing 1843 * to wrong oif. In any case, it is not a good 1844 * idea to use multicasting applications on router. 1845 */ 1846 goto dont_forward; 1847 } 1848 1849 cache->mfc_un.res.wrong_if++; 1850 1851 if (true_vifi >= 0 && mrt->mroute_do_assert && 1852 /* pimsm uses asserts, when switching from RPT to SPT, 1853 * so that we cannot check that packet arrived on an oif. 1854 * It is bad, but otherwise we would need to move pretty 1855 * large chunk of pimd to kernel. Ough... --ANK 1856 */ 1857 (mrt->mroute_do_pim || 1858 cache->mfc_un.res.ttls[true_vifi] < 255) && 1859 time_after(jiffies, 1860 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { 1861 cache->mfc_un.res.last_assert = jiffies; 1862 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 1863 } 1864 goto dont_forward; 1865 } 1866 1867 forward: 1868 mrt->vif_table[vif].pkt_in++; 1869 mrt->vif_table[vif].bytes_in += skb->len; 1870 1871 /* 1872 * Forward the frame 1873 */ 1874 if (cache->mfc_origin == htonl(INADDR_ANY) && 1875 cache->mfc_mcastgrp == htonl(INADDR_ANY)) { 1876 if (true_vifi >= 0 && 1877 true_vifi != cache->mfc_parent && 1878 ip_hdr(skb)->ttl > 1879 cache->mfc_un.res.ttls[cache->mfc_parent]) { 1880 /* It's an (*,*) entry and the packet is not coming from 1881 * the upstream: forward the packet to the upstream 1882 * only. 1883 */ 1884 psend = cache->mfc_parent; 1885 goto last_forward; 1886 } 1887 goto dont_forward; 1888 } 1889 for (ct = cache->mfc_un.res.maxvif - 1; 1890 ct >= cache->mfc_un.res.minvif; ct--) { 1891 /* For (*,G) entry, don't forward to the incoming interface */ 1892 if ((cache->mfc_origin != htonl(INADDR_ANY) || 1893 ct != true_vifi) && 1894 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) { 1895 if (psend != -1) { 1896 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1897 1898 if (skb2) 1899 ipmr_queue_xmit(net, mrt, skb2, cache, 1900 psend); 1901 } 1902 psend = ct; 1903 } 1904 } 1905 last_forward: 1906 if (psend != -1) { 1907 if (local) { 1908 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1909 1910 if (skb2) 1911 ipmr_queue_xmit(net, mrt, skb2, cache, psend); 1912 } else { 1913 ipmr_queue_xmit(net, mrt, skb, cache, psend); 1914 return; 1915 } 1916 } 1917 1918 dont_forward: 1919 if (!local) 1920 kfree_skb(skb); 1921 } 1922 1923 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 1924 { 1925 struct rtable *rt = skb_rtable(skb); 1926 struct iphdr *iph = ip_hdr(skb); 1927 struct flowi4 fl4 = { 1928 .daddr = iph->daddr, 1929 .saddr = iph->saddr, 1930 .flowi4_tos = RT_TOS(iph->tos), 1931 .flowi4_oif = (rt_is_output_route(rt) ? 1932 skb->dev->ifindex : 0), 1933 .flowi4_iif = (rt_is_output_route(rt) ? 1934 LOOPBACK_IFINDEX : 1935 skb->dev->ifindex), 1936 .flowi4_mark = skb->mark, 1937 }; 1938 struct mr_table *mrt; 1939 int err; 1940 1941 err = ipmr_fib_lookup(net, &fl4, &mrt); 1942 if (err) 1943 return ERR_PTR(err); 1944 return mrt; 1945 } 1946 1947 /* 1948 * Multicast packets for forwarding arrive here 1949 * Called with rcu_read_lock(); 1950 */ 1951 1952 int ip_mr_input(struct sk_buff *skb) 1953 { 1954 struct mfc_cache *cache; 1955 struct net *net = dev_net(skb->dev); 1956 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 1957 struct mr_table *mrt; 1958 1959 /* Packet is looped back after forward, it should not be 1960 * forwarded second time, but still can be delivered locally. 1961 */ 1962 if (IPCB(skb)->flags & IPSKB_FORWARDED) 1963 goto dont_forward; 1964 1965 mrt = ipmr_rt_fib_lookup(net, skb); 1966 if (IS_ERR(mrt)) { 1967 kfree_skb(skb); 1968 return PTR_ERR(mrt); 1969 } 1970 if (!local) { 1971 if (IPCB(skb)->opt.router_alert) { 1972 if (ip_call_ra_chain(skb)) 1973 return 0; 1974 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 1975 /* IGMPv1 (and broken IGMPv2 implementations sort of 1976 * Cisco IOS <= 11.2(8)) do not put router alert 1977 * option to IGMP packets destined to routable 1978 * groups. It is very bad, because it means 1979 * that we can forward NO IGMP messages. 1980 */ 1981 struct sock *mroute_sk; 1982 1983 mroute_sk = rcu_dereference(mrt->mroute_sk); 1984 if (mroute_sk) { 1985 nf_reset(skb); 1986 raw_rcv(mroute_sk, skb); 1987 return 0; 1988 } 1989 } 1990 } 1991 1992 /* already under rcu_read_lock() */ 1993 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 1994 if (!cache) { 1995 int vif = ipmr_find_vif(mrt, skb->dev); 1996 1997 if (vif >= 0) 1998 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 1999 vif); 2000 } 2001 2002 /* 2003 * No usable cache entry 2004 */ 2005 if (!cache) { 2006 int vif; 2007 2008 if (local) { 2009 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2010 ip_local_deliver(skb); 2011 if (!skb2) 2012 return -ENOBUFS; 2013 skb = skb2; 2014 } 2015 2016 read_lock(&mrt_lock); 2017 vif = ipmr_find_vif(mrt, skb->dev); 2018 if (vif >= 0) { 2019 int err2 = ipmr_cache_unresolved(mrt, vif, skb); 2020 read_unlock(&mrt_lock); 2021 2022 return err2; 2023 } 2024 read_unlock(&mrt_lock); 2025 kfree_skb(skb); 2026 return -ENODEV; 2027 } 2028 2029 read_lock(&mrt_lock); 2030 ip_mr_forward(net, mrt, skb, cache, local); 2031 read_unlock(&mrt_lock); 2032 2033 if (local) 2034 return ip_local_deliver(skb); 2035 2036 return 0; 2037 2038 dont_forward: 2039 if (local) 2040 return ip_local_deliver(skb); 2041 kfree_skb(skb); 2042 return 0; 2043 } 2044 2045 #ifdef CONFIG_IP_PIMSM 2046 /* called with rcu_read_lock() */ 2047 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 2048 unsigned int pimlen) 2049 { 2050 struct net_device *reg_dev = NULL; 2051 struct iphdr *encap; 2052 2053 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 2054 /* 2055 * Check that: 2056 * a. packet is really sent to a multicast group 2057 * b. packet is not a NULL-REGISTER 2058 * c. packet is not truncated 2059 */ 2060 if (!ipv4_is_multicast(encap->daddr) || 2061 encap->tot_len == 0 || 2062 ntohs(encap->tot_len) + pimlen > skb->len) 2063 return 1; 2064 2065 read_lock(&mrt_lock); 2066 if (mrt->mroute_reg_vif_num >= 0) 2067 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev; 2068 read_unlock(&mrt_lock); 2069 2070 if (!reg_dev) 2071 return 1; 2072 2073 skb->mac_header = skb->network_header; 2074 skb_pull(skb, (u8 *)encap - skb->data); 2075 skb_reset_network_header(skb); 2076 skb->protocol = htons(ETH_P_IP); 2077 skb->ip_summed = CHECKSUM_NONE; 2078 2079 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 2080 2081 netif_rx(skb); 2082 2083 return NET_RX_SUCCESS; 2084 } 2085 #endif 2086 2087 #ifdef CONFIG_IP_PIMSM_V1 2088 /* 2089 * Handle IGMP messages of PIMv1 2090 */ 2091 2092 int pim_rcv_v1(struct sk_buff *skb) 2093 { 2094 struct igmphdr *pim; 2095 struct net *net = dev_net(skb->dev); 2096 struct mr_table *mrt; 2097 2098 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2099 goto drop; 2100 2101 pim = igmp_hdr(skb); 2102 2103 mrt = ipmr_rt_fib_lookup(net, skb); 2104 if (IS_ERR(mrt)) 2105 goto drop; 2106 if (!mrt->mroute_do_pim || 2107 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2108 goto drop; 2109 2110 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2111 drop: 2112 kfree_skb(skb); 2113 } 2114 return 0; 2115 } 2116 #endif 2117 2118 #ifdef CONFIG_IP_PIMSM_V2 2119 static int pim_rcv(struct sk_buff *skb) 2120 { 2121 struct pimreghdr *pim; 2122 struct net *net = dev_net(skb->dev); 2123 struct mr_table *mrt; 2124 2125 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2126 goto drop; 2127 2128 pim = (struct pimreghdr *)skb_transport_header(skb); 2129 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) || 2130 (pim->flags & PIM_NULL_REGISTER) || 2131 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2132 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2133 goto drop; 2134 2135 mrt = ipmr_rt_fib_lookup(net, skb); 2136 if (IS_ERR(mrt)) 2137 goto drop; 2138 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2139 drop: 2140 kfree_skb(skb); 2141 } 2142 return 0; 2143 } 2144 #endif 2145 2146 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2147 struct mfc_cache *c, struct rtmsg *rtm) 2148 { 2149 int ct; 2150 struct rtnexthop *nhp; 2151 struct nlattr *mp_attr; 2152 struct rta_mfc_stats mfcs; 2153 2154 /* If cache is unresolved, don't try to parse IIF and OIF */ 2155 if (c->mfc_parent >= MAXVIFS) 2156 return -ENOENT; 2157 2158 if (VIF_EXISTS(mrt, c->mfc_parent) && 2159 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0) 2160 return -EMSGSIZE; 2161 2162 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH))) 2163 return -EMSGSIZE; 2164 2165 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { 2166 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) { 2167 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) { 2168 nla_nest_cancel(skb, mp_attr); 2169 return -EMSGSIZE; 2170 } 2171 2172 nhp->rtnh_flags = 0; 2173 nhp->rtnh_hops = c->mfc_un.res.ttls[ct]; 2174 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex; 2175 nhp->rtnh_len = sizeof(*nhp); 2176 } 2177 } 2178 2179 nla_nest_end(skb, mp_attr); 2180 2181 mfcs.mfcs_packets = c->mfc_un.res.pkt; 2182 mfcs.mfcs_bytes = c->mfc_un.res.bytes; 2183 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if; 2184 if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0) 2185 return -EMSGSIZE; 2186 2187 rtm->rtm_type = RTN_MULTICAST; 2188 return 1; 2189 } 2190 2191 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2192 __be32 saddr, __be32 daddr, 2193 struct rtmsg *rtm, int nowait) 2194 { 2195 struct mfc_cache *cache; 2196 struct mr_table *mrt; 2197 int err; 2198 2199 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2200 if (!mrt) 2201 return -ENOENT; 2202 2203 rcu_read_lock(); 2204 cache = ipmr_cache_find(mrt, saddr, daddr); 2205 if (!cache && skb->dev) { 2206 int vif = ipmr_find_vif(mrt, skb->dev); 2207 2208 if (vif >= 0) 2209 cache = ipmr_cache_find_any(mrt, daddr, vif); 2210 } 2211 if (!cache) { 2212 struct sk_buff *skb2; 2213 struct iphdr *iph; 2214 struct net_device *dev; 2215 int vif = -1; 2216 2217 if (nowait) { 2218 rcu_read_unlock(); 2219 return -EAGAIN; 2220 } 2221 2222 dev = skb->dev; 2223 read_lock(&mrt_lock); 2224 if (dev) 2225 vif = ipmr_find_vif(mrt, dev); 2226 if (vif < 0) { 2227 read_unlock(&mrt_lock); 2228 rcu_read_unlock(); 2229 return -ENODEV; 2230 } 2231 skb2 = skb_clone(skb, GFP_ATOMIC); 2232 if (!skb2) { 2233 read_unlock(&mrt_lock); 2234 rcu_read_unlock(); 2235 return -ENOMEM; 2236 } 2237 2238 skb_push(skb2, sizeof(struct iphdr)); 2239 skb_reset_network_header(skb2); 2240 iph = ip_hdr(skb2); 2241 iph->ihl = sizeof(struct iphdr) >> 2; 2242 iph->saddr = saddr; 2243 iph->daddr = daddr; 2244 iph->version = 0; 2245 err = ipmr_cache_unresolved(mrt, vif, skb2); 2246 read_unlock(&mrt_lock); 2247 rcu_read_unlock(); 2248 return err; 2249 } 2250 2251 read_lock(&mrt_lock); 2252 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY)) 2253 cache->mfc_flags |= MFC_NOTIFY; 2254 err = __ipmr_fill_mroute(mrt, skb, cache, rtm); 2255 read_unlock(&mrt_lock); 2256 rcu_read_unlock(); 2257 return err; 2258 } 2259 2260 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2261 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2262 int flags) 2263 { 2264 struct nlmsghdr *nlh; 2265 struct rtmsg *rtm; 2266 int err; 2267 2268 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2269 if (!nlh) 2270 return -EMSGSIZE; 2271 2272 rtm = nlmsg_data(nlh); 2273 rtm->rtm_family = RTNL_FAMILY_IPMR; 2274 rtm->rtm_dst_len = 32; 2275 rtm->rtm_src_len = 32; 2276 rtm->rtm_tos = 0; 2277 rtm->rtm_table = mrt->id; 2278 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2279 goto nla_put_failure; 2280 rtm->rtm_type = RTN_MULTICAST; 2281 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2282 if (c->mfc_flags & MFC_STATIC) 2283 rtm->rtm_protocol = RTPROT_STATIC; 2284 else 2285 rtm->rtm_protocol = RTPROT_MROUTED; 2286 rtm->rtm_flags = 0; 2287 2288 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || 2289 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) 2290 goto nla_put_failure; 2291 err = __ipmr_fill_mroute(mrt, skb, c, rtm); 2292 /* do not break the dump if cache is unresolved */ 2293 if (err < 0 && err != -ENOENT) 2294 goto nla_put_failure; 2295 2296 nlmsg_end(skb, nlh); 2297 return 0; 2298 2299 nla_put_failure: 2300 nlmsg_cancel(skb, nlh); 2301 return -EMSGSIZE; 2302 } 2303 2304 static size_t mroute_msgsize(bool unresolved, int maxvif) 2305 { 2306 size_t len = 2307 NLMSG_ALIGN(sizeof(struct rtmsg)) 2308 + nla_total_size(4) /* RTA_TABLE */ 2309 + nla_total_size(4) /* RTA_SRC */ 2310 + nla_total_size(4) /* RTA_DST */ 2311 ; 2312 2313 if (!unresolved) 2314 len = len 2315 + nla_total_size(4) /* RTA_IIF */ 2316 + nla_total_size(0) /* RTA_MULTIPATH */ 2317 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2318 /* RTA_MFC_STATS */ 2319 + nla_total_size(sizeof(struct rta_mfc_stats)) 2320 ; 2321 2322 return len; 2323 } 2324 2325 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2326 int cmd) 2327 { 2328 struct net *net = read_pnet(&mrt->net); 2329 struct sk_buff *skb; 2330 int err = -ENOBUFS; 2331 2332 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif), 2333 GFP_ATOMIC); 2334 if (!skb) 2335 goto errout; 2336 2337 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2338 if (err < 0) 2339 goto errout; 2340 2341 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2342 return; 2343 2344 errout: 2345 kfree_skb(skb); 2346 if (err < 0) 2347 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2348 } 2349 2350 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2351 { 2352 struct net *net = sock_net(skb->sk); 2353 struct mr_table *mrt; 2354 struct mfc_cache *mfc; 2355 unsigned int t = 0, s_t; 2356 unsigned int h = 0, s_h; 2357 unsigned int e = 0, s_e; 2358 2359 s_t = cb->args[0]; 2360 s_h = cb->args[1]; 2361 s_e = cb->args[2]; 2362 2363 rcu_read_lock(); 2364 ipmr_for_each_table(mrt, net) { 2365 if (t < s_t) 2366 goto next_table; 2367 if (t > s_t) 2368 s_h = 0; 2369 for (h = s_h; h < MFC_LINES; h++) { 2370 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) { 2371 if (e < s_e) 2372 goto next_entry; 2373 if (ipmr_fill_mroute(mrt, skb, 2374 NETLINK_CB(cb->skb).portid, 2375 cb->nlh->nlmsg_seq, 2376 mfc, RTM_NEWROUTE, 2377 NLM_F_MULTI) < 0) 2378 goto done; 2379 next_entry: 2380 e++; 2381 } 2382 e = s_e = 0; 2383 } 2384 spin_lock_bh(&mfc_unres_lock); 2385 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) { 2386 if (e < s_e) 2387 goto next_entry2; 2388 if (ipmr_fill_mroute(mrt, skb, 2389 NETLINK_CB(cb->skb).portid, 2390 cb->nlh->nlmsg_seq, 2391 mfc, RTM_NEWROUTE, 2392 NLM_F_MULTI) < 0) { 2393 spin_unlock_bh(&mfc_unres_lock); 2394 goto done; 2395 } 2396 next_entry2: 2397 e++; 2398 } 2399 spin_unlock_bh(&mfc_unres_lock); 2400 e = s_e = 0; 2401 s_h = 0; 2402 next_table: 2403 t++; 2404 } 2405 done: 2406 rcu_read_unlock(); 2407 2408 cb->args[2] = e; 2409 cb->args[1] = h; 2410 cb->args[0] = t; 2411 2412 return skb->len; 2413 } 2414 2415 #ifdef CONFIG_PROC_FS 2416 /* 2417 * The /proc interfaces to multicast routing : 2418 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2419 */ 2420 struct ipmr_vif_iter { 2421 struct seq_net_private p; 2422 struct mr_table *mrt; 2423 int ct; 2424 }; 2425 2426 static struct vif_device *ipmr_vif_seq_idx(struct net *net, 2427 struct ipmr_vif_iter *iter, 2428 loff_t pos) 2429 { 2430 struct mr_table *mrt = iter->mrt; 2431 2432 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) { 2433 if (!VIF_EXISTS(mrt, iter->ct)) 2434 continue; 2435 if (pos-- == 0) 2436 return &mrt->vif_table[iter->ct]; 2437 } 2438 return NULL; 2439 } 2440 2441 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2442 __acquires(mrt_lock) 2443 { 2444 struct ipmr_vif_iter *iter = seq->private; 2445 struct net *net = seq_file_net(seq); 2446 struct mr_table *mrt; 2447 2448 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2449 if (!mrt) 2450 return ERR_PTR(-ENOENT); 2451 2452 iter->mrt = mrt; 2453 2454 read_lock(&mrt_lock); 2455 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1) 2456 : SEQ_START_TOKEN; 2457 } 2458 2459 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2460 { 2461 struct ipmr_vif_iter *iter = seq->private; 2462 struct net *net = seq_file_net(seq); 2463 struct mr_table *mrt = iter->mrt; 2464 2465 ++*pos; 2466 if (v == SEQ_START_TOKEN) 2467 return ipmr_vif_seq_idx(net, iter, 0); 2468 2469 while (++iter->ct < mrt->maxvif) { 2470 if (!VIF_EXISTS(mrt, iter->ct)) 2471 continue; 2472 return &mrt->vif_table[iter->ct]; 2473 } 2474 return NULL; 2475 } 2476 2477 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2478 __releases(mrt_lock) 2479 { 2480 read_unlock(&mrt_lock); 2481 } 2482 2483 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2484 { 2485 struct ipmr_vif_iter *iter = seq->private; 2486 struct mr_table *mrt = iter->mrt; 2487 2488 if (v == SEQ_START_TOKEN) { 2489 seq_puts(seq, 2490 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2491 } else { 2492 const struct vif_device *vif = v; 2493 const char *name = vif->dev ? vif->dev->name : "none"; 2494 2495 seq_printf(seq, 2496 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2497 vif - mrt->vif_table, 2498 name, vif->bytes_in, vif->pkt_in, 2499 vif->bytes_out, vif->pkt_out, 2500 vif->flags, vif->local, vif->remote); 2501 } 2502 return 0; 2503 } 2504 2505 static const struct seq_operations ipmr_vif_seq_ops = { 2506 .start = ipmr_vif_seq_start, 2507 .next = ipmr_vif_seq_next, 2508 .stop = ipmr_vif_seq_stop, 2509 .show = ipmr_vif_seq_show, 2510 }; 2511 2512 static int ipmr_vif_open(struct inode *inode, struct file *file) 2513 { 2514 return seq_open_net(inode, file, &ipmr_vif_seq_ops, 2515 sizeof(struct ipmr_vif_iter)); 2516 } 2517 2518 static const struct file_operations ipmr_vif_fops = { 2519 .owner = THIS_MODULE, 2520 .open = ipmr_vif_open, 2521 .read = seq_read, 2522 .llseek = seq_lseek, 2523 .release = seq_release_net, 2524 }; 2525 2526 struct ipmr_mfc_iter { 2527 struct seq_net_private p; 2528 struct mr_table *mrt; 2529 struct list_head *cache; 2530 int ct; 2531 }; 2532 2533 2534 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net, 2535 struct ipmr_mfc_iter *it, loff_t pos) 2536 { 2537 struct mr_table *mrt = it->mrt; 2538 struct mfc_cache *mfc; 2539 2540 rcu_read_lock(); 2541 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) { 2542 it->cache = &mrt->mfc_cache_array[it->ct]; 2543 list_for_each_entry_rcu(mfc, it->cache, list) 2544 if (pos-- == 0) 2545 return mfc; 2546 } 2547 rcu_read_unlock(); 2548 2549 spin_lock_bh(&mfc_unres_lock); 2550 it->cache = &mrt->mfc_unres_queue; 2551 list_for_each_entry(mfc, it->cache, list) 2552 if (pos-- == 0) 2553 return mfc; 2554 spin_unlock_bh(&mfc_unres_lock); 2555 2556 it->cache = NULL; 2557 return NULL; 2558 } 2559 2560 2561 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2562 { 2563 struct ipmr_mfc_iter *it = seq->private; 2564 struct net *net = seq_file_net(seq); 2565 struct mr_table *mrt; 2566 2567 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2568 if (!mrt) 2569 return ERR_PTR(-ENOENT); 2570 2571 it->mrt = mrt; 2572 it->cache = NULL; 2573 it->ct = 0; 2574 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1) 2575 : SEQ_START_TOKEN; 2576 } 2577 2578 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2579 { 2580 struct mfc_cache *mfc = v; 2581 struct ipmr_mfc_iter *it = seq->private; 2582 struct net *net = seq_file_net(seq); 2583 struct mr_table *mrt = it->mrt; 2584 2585 ++*pos; 2586 2587 if (v == SEQ_START_TOKEN) 2588 return ipmr_mfc_seq_idx(net, seq->private, 0); 2589 2590 if (mfc->list.next != it->cache) 2591 return list_entry(mfc->list.next, struct mfc_cache, list); 2592 2593 if (it->cache == &mrt->mfc_unres_queue) 2594 goto end_of_list; 2595 2596 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]); 2597 2598 while (++it->ct < MFC_LINES) { 2599 it->cache = &mrt->mfc_cache_array[it->ct]; 2600 if (list_empty(it->cache)) 2601 continue; 2602 return list_first_entry(it->cache, struct mfc_cache, list); 2603 } 2604 2605 /* exhausted cache_array, show unresolved */ 2606 rcu_read_unlock(); 2607 it->cache = &mrt->mfc_unres_queue; 2608 it->ct = 0; 2609 2610 spin_lock_bh(&mfc_unres_lock); 2611 if (!list_empty(it->cache)) 2612 return list_first_entry(it->cache, struct mfc_cache, list); 2613 2614 end_of_list: 2615 spin_unlock_bh(&mfc_unres_lock); 2616 it->cache = NULL; 2617 2618 return NULL; 2619 } 2620 2621 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v) 2622 { 2623 struct ipmr_mfc_iter *it = seq->private; 2624 struct mr_table *mrt = it->mrt; 2625 2626 if (it->cache == &mrt->mfc_unres_queue) 2627 spin_unlock_bh(&mfc_unres_lock); 2628 else if (it->cache == &mrt->mfc_cache_array[it->ct]) 2629 rcu_read_unlock(); 2630 } 2631 2632 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2633 { 2634 int n; 2635 2636 if (v == SEQ_START_TOKEN) { 2637 seq_puts(seq, 2638 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2639 } else { 2640 const struct mfc_cache *mfc = v; 2641 const struct ipmr_mfc_iter *it = seq->private; 2642 const struct mr_table *mrt = it->mrt; 2643 2644 seq_printf(seq, "%08X %08X %-3hd", 2645 (__force u32) mfc->mfc_mcastgrp, 2646 (__force u32) mfc->mfc_origin, 2647 mfc->mfc_parent); 2648 2649 if (it->cache != &mrt->mfc_unres_queue) { 2650 seq_printf(seq, " %8lu %8lu %8lu", 2651 mfc->mfc_un.res.pkt, 2652 mfc->mfc_un.res.bytes, 2653 mfc->mfc_un.res.wrong_if); 2654 for (n = mfc->mfc_un.res.minvif; 2655 n < mfc->mfc_un.res.maxvif; n++) { 2656 if (VIF_EXISTS(mrt, n) && 2657 mfc->mfc_un.res.ttls[n] < 255) 2658 seq_printf(seq, 2659 " %2d:%-3d", 2660 n, mfc->mfc_un.res.ttls[n]); 2661 } 2662 } else { 2663 /* unresolved mfc_caches don't contain 2664 * pkt, bytes and wrong_if values 2665 */ 2666 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 2667 } 2668 seq_putc(seq, '\n'); 2669 } 2670 return 0; 2671 } 2672 2673 static const struct seq_operations ipmr_mfc_seq_ops = { 2674 .start = ipmr_mfc_seq_start, 2675 .next = ipmr_mfc_seq_next, 2676 .stop = ipmr_mfc_seq_stop, 2677 .show = ipmr_mfc_seq_show, 2678 }; 2679 2680 static int ipmr_mfc_open(struct inode *inode, struct file *file) 2681 { 2682 return seq_open_net(inode, file, &ipmr_mfc_seq_ops, 2683 sizeof(struct ipmr_mfc_iter)); 2684 } 2685 2686 static const struct file_operations ipmr_mfc_fops = { 2687 .owner = THIS_MODULE, 2688 .open = ipmr_mfc_open, 2689 .read = seq_read, 2690 .llseek = seq_lseek, 2691 .release = seq_release_net, 2692 }; 2693 #endif 2694 2695 #ifdef CONFIG_IP_PIMSM_V2 2696 static const struct net_protocol pim_protocol = { 2697 .handler = pim_rcv, 2698 .netns_ok = 1, 2699 }; 2700 #endif 2701 2702 2703 /* 2704 * Setup for IP multicast routing 2705 */ 2706 static int __net_init ipmr_net_init(struct net *net) 2707 { 2708 int err; 2709 2710 err = ipmr_rules_init(net); 2711 if (err < 0) 2712 goto fail; 2713 2714 #ifdef CONFIG_PROC_FS 2715 err = -ENOMEM; 2716 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops)) 2717 goto proc_vif_fail; 2718 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops)) 2719 goto proc_cache_fail; 2720 #endif 2721 return 0; 2722 2723 #ifdef CONFIG_PROC_FS 2724 proc_cache_fail: 2725 remove_proc_entry("ip_mr_vif", net->proc_net); 2726 proc_vif_fail: 2727 ipmr_rules_exit(net); 2728 #endif 2729 fail: 2730 return err; 2731 } 2732 2733 static void __net_exit ipmr_net_exit(struct net *net) 2734 { 2735 #ifdef CONFIG_PROC_FS 2736 remove_proc_entry("ip_mr_cache", net->proc_net); 2737 remove_proc_entry("ip_mr_vif", net->proc_net); 2738 #endif 2739 ipmr_rules_exit(net); 2740 } 2741 2742 static struct pernet_operations ipmr_net_ops = { 2743 .init = ipmr_net_init, 2744 .exit = ipmr_net_exit, 2745 }; 2746 2747 int __init ip_mr_init(void) 2748 { 2749 int err; 2750 2751 mrt_cachep = kmem_cache_create("ip_mrt_cache", 2752 sizeof(struct mfc_cache), 2753 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 2754 NULL); 2755 if (!mrt_cachep) 2756 return -ENOMEM; 2757 2758 err = register_pernet_subsys(&ipmr_net_ops); 2759 if (err) 2760 goto reg_pernet_fail; 2761 2762 err = register_netdevice_notifier(&ip_mr_notifier); 2763 if (err) 2764 goto reg_notif_fail; 2765 #ifdef CONFIG_IP_PIMSM_V2 2766 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 2767 pr_err("%s: can't add PIM protocol\n", __func__); 2768 err = -EAGAIN; 2769 goto add_proto_fail; 2770 } 2771 #endif 2772 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 2773 NULL, ipmr_rtm_dumproute, NULL); 2774 return 0; 2775 2776 #ifdef CONFIG_IP_PIMSM_V2 2777 add_proto_fail: 2778 unregister_netdevice_notifier(&ip_mr_notifier); 2779 #endif 2780 reg_notif_fail: 2781 unregister_pernet_subsys(&ipmr_net_ops); 2782 reg_pernet_fail: 2783 kmem_cache_destroy(mrt_cachep); 2784 return err; 2785 } 2786