1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * IP multicast routing support for mrouted 3.6/3.8 4 * 5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * Linux Consultancy and Custom Driver Development 7 * 8 * Fixes: 9 * Michael Chastain : Incorrect size of copying. 10 * Alan Cox : Added the cache manager code 11 * Alan Cox : Fixed the clone/copy bug and device race. 12 * Mike McLagan : Routing by source 13 * Malcolm Beattie : Buffer handling fixes. 14 * Alexey Kuznetsov : Double buffer free and other fixes. 15 * SVR Anand : Fixed several multicast bugs and problems. 16 * Alexey Kuznetsov : Status, optimisations and more. 17 * Brad Parker : Better behaviour on mrouted upcall 18 * overflow. 19 * Carlos Picoto : PIMv1 Support 20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 21 * Relax this requirement to work with older peers. 22 */ 23 24 #include <linux/uaccess.h> 25 #include <linux/types.h> 26 #include <linux/cache.h> 27 #include <linux/capability.h> 28 #include <linux/errno.h> 29 #include <linux/mm.h> 30 #include <linux/kernel.h> 31 #include <linux/fcntl.h> 32 #include <linux/stat.h> 33 #include <linux/socket.h> 34 #include <linux/in.h> 35 #include <linux/inet.h> 36 #include <linux/netdevice.h> 37 #include <linux/inetdevice.h> 38 #include <linux/igmp.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <linux/mroute.h> 42 #include <linux/init.h> 43 #include <linux/if_ether.h> 44 #include <linux/slab.h> 45 #include <net/net_namespace.h> 46 #include <net/ip.h> 47 #include <net/protocol.h> 48 #include <linux/skbuff.h> 49 #include <net/route.h> 50 #include <net/icmp.h> 51 #include <net/udp.h> 52 #include <net/raw.h> 53 #include <linux/notifier.h> 54 #include <linux/if_arp.h> 55 #include <linux/netfilter_ipv4.h> 56 #include <linux/compat.h> 57 #include <linux/export.h> 58 #include <linux/rhashtable.h> 59 #include <net/ip_tunnels.h> 60 #include <net/checksum.h> 61 #include <net/netlink.h> 62 #include <net/fib_rules.h> 63 #include <linux/netconf.h> 64 #include <net/rtnh.h> 65 66 #include <linux/nospec.h> 67 68 struct ipmr_rule { 69 struct fib_rule common; 70 }; 71 72 struct ipmr_result { 73 struct mr_table *mrt; 74 }; 75 76 /* Big lock, protecting vif table, mrt cache and mroute socket state. 77 * Note that the changes are semaphored via rtnl_lock. 78 */ 79 80 static DEFINE_RWLOCK(mrt_lock); 81 82 /* Multicast router control variables */ 83 84 /* Special spinlock for queue of unresolved entries */ 85 static DEFINE_SPINLOCK(mfc_unres_lock); 86 87 /* We return to original Alan's scheme. Hash table of resolved 88 * entries is changed only in process context and protected 89 * with weak lock mrt_lock. Queue of unresolved entries is protected 90 * with strong spinlock mfc_unres_lock. 91 * 92 * In this case data path is free of exclusive locks at all. 93 */ 94 95 static struct kmem_cache *mrt_cachep __ro_after_init; 96 97 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 98 static void ipmr_free_table(struct mr_table *mrt); 99 100 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 101 struct net_device *dev, struct sk_buff *skb, 102 struct mfc_cache *cache, int local); 103 static int ipmr_cache_report(struct mr_table *mrt, 104 struct sk_buff *pkt, vifi_t vifi, int assert); 105 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 106 int cmd); 107 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt); 108 static void mroute_clean_tables(struct mr_table *mrt, int flags); 109 static void ipmr_expire_process(struct timer_list *t); 110 111 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 112 #define ipmr_for_each_table(mrt, net) \ 113 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list) 114 115 static struct mr_table *ipmr_mr_table_iter(struct net *net, 116 struct mr_table *mrt) 117 { 118 struct mr_table *ret; 119 120 if (!mrt) 121 ret = list_entry_rcu(net->ipv4.mr_tables.next, 122 struct mr_table, list); 123 else 124 ret = list_entry_rcu(mrt->list.next, 125 struct mr_table, list); 126 127 if (&ret->list == &net->ipv4.mr_tables) 128 return NULL; 129 return ret; 130 } 131 132 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 133 { 134 struct mr_table *mrt; 135 136 ipmr_for_each_table(mrt, net) { 137 if (mrt->id == id) 138 return mrt; 139 } 140 return NULL; 141 } 142 143 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 144 struct mr_table **mrt) 145 { 146 int err; 147 struct ipmr_result res; 148 struct fib_lookup_arg arg = { 149 .result = &res, 150 .flags = FIB_LOOKUP_NOREF, 151 }; 152 153 /* update flow if oif or iif point to device enslaved to l3mdev */ 154 l3mdev_update_flow(net, flowi4_to_flowi(flp4)); 155 156 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 157 flowi4_to_flowi(flp4), 0, &arg); 158 if (err < 0) 159 return err; 160 *mrt = res.mrt; 161 return 0; 162 } 163 164 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 165 int flags, struct fib_lookup_arg *arg) 166 { 167 struct ipmr_result *res = arg->result; 168 struct mr_table *mrt; 169 170 switch (rule->action) { 171 case FR_ACT_TO_TBL: 172 break; 173 case FR_ACT_UNREACHABLE: 174 return -ENETUNREACH; 175 case FR_ACT_PROHIBIT: 176 return -EACCES; 177 case FR_ACT_BLACKHOLE: 178 default: 179 return -EINVAL; 180 } 181 182 arg->table = fib_rule_get_table(rule, arg); 183 184 mrt = ipmr_get_table(rule->fr_net, arg->table); 185 if (!mrt) 186 return -EAGAIN; 187 res->mrt = mrt; 188 return 0; 189 } 190 191 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 192 { 193 return 1; 194 } 195 196 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = { 197 FRA_GENERIC_POLICY, 198 }; 199 200 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 201 struct fib_rule_hdr *frh, struct nlattr **tb, 202 struct netlink_ext_ack *extack) 203 { 204 return 0; 205 } 206 207 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 208 struct nlattr **tb) 209 { 210 return 1; 211 } 212 213 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 214 struct fib_rule_hdr *frh) 215 { 216 frh->dst_len = 0; 217 frh->src_len = 0; 218 frh->tos = 0; 219 return 0; 220 } 221 222 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 223 .family = RTNL_FAMILY_IPMR, 224 .rule_size = sizeof(struct ipmr_rule), 225 .addr_size = sizeof(u32), 226 .action = ipmr_rule_action, 227 .match = ipmr_rule_match, 228 .configure = ipmr_rule_configure, 229 .compare = ipmr_rule_compare, 230 .fill = ipmr_rule_fill, 231 .nlgroup = RTNLGRP_IPV4_RULE, 232 .policy = ipmr_rule_policy, 233 .owner = THIS_MODULE, 234 }; 235 236 static int __net_init ipmr_rules_init(struct net *net) 237 { 238 struct fib_rules_ops *ops; 239 struct mr_table *mrt; 240 int err; 241 242 ops = fib_rules_register(&ipmr_rules_ops_template, net); 243 if (IS_ERR(ops)) 244 return PTR_ERR(ops); 245 246 INIT_LIST_HEAD(&net->ipv4.mr_tables); 247 248 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 249 if (IS_ERR(mrt)) { 250 err = PTR_ERR(mrt); 251 goto err1; 252 } 253 254 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 255 if (err < 0) 256 goto err2; 257 258 net->ipv4.mr_rules_ops = ops; 259 return 0; 260 261 err2: 262 ipmr_free_table(mrt); 263 err1: 264 fib_rules_unregister(ops); 265 return err; 266 } 267 268 static void __net_exit ipmr_rules_exit(struct net *net) 269 { 270 struct mr_table *mrt, *next; 271 272 rtnl_lock(); 273 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 274 list_del(&mrt->list); 275 ipmr_free_table(mrt); 276 } 277 fib_rules_unregister(net->ipv4.mr_rules_ops); 278 rtnl_unlock(); 279 } 280 281 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, 282 struct netlink_ext_ack *extack) 283 { 284 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack); 285 } 286 287 static unsigned int ipmr_rules_seq_read(struct net *net) 288 { 289 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR); 290 } 291 292 bool ipmr_rule_default(const struct fib_rule *rule) 293 { 294 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT; 295 } 296 EXPORT_SYMBOL(ipmr_rule_default); 297 #else 298 #define ipmr_for_each_table(mrt, net) \ 299 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 300 301 static struct mr_table *ipmr_mr_table_iter(struct net *net, 302 struct mr_table *mrt) 303 { 304 if (!mrt) 305 return net->ipv4.mrt; 306 return NULL; 307 } 308 309 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 310 { 311 return net->ipv4.mrt; 312 } 313 314 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 315 struct mr_table **mrt) 316 { 317 *mrt = net->ipv4.mrt; 318 return 0; 319 } 320 321 static int __net_init ipmr_rules_init(struct net *net) 322 { 323 struct mr_table *mrt; 324 325 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 326 if (IS_ERR(mrt)) 327 return PTR_ERR(mrt); 328 net->ipv4.mrt = mrt; 329 return 0; 330 } 331 332 static void __net_exit ipmr_rules_exit(struct net *net) 333 { 334 rtnl_lock(); 335 ipmr_free_table(net->ipv4.mrt); 336 net->ipv4.mrt = NULL; 337 rtnl_unlock(); 338 } 339 340 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, 341 struct netlink_ext_ack *extack) 342 { 343 return 0; 344 } 345 346 static unsigned int ipmr_rules_seq_read(struct net *net) 347 { 348 return 0; 349 } 350 351 bool ipmr_rule_default(const struct fib_rule *rule) 352 { 353 return true; 354 } 355 EXPORT_SYMBOL(ipmr_rule_default); 356 #endif 357 358 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg, 359 const void *ptr) 360 { 361 const struct mfc_cache_cmp_arg *cmparg = arg->key; 362 struct mfc_cache *c = (struct mfc_cache *)ptr; 363 364 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp || 365 cmparg->mfc_origin != c->mfc_origin; 366 } 367 368 static const struct rhashtable_params ipmr_rht_params = { 369 .head_offset = offsetof(struct mr_mfc, mnode), 370 .key_offset = offsetof(struct mfc_cache, cmparg), 371 .key_len = sizeof(struct mfc_cache_cmp_arg), 372 .nelem_hint = 3, 373 .obj_cmpfn = ipmr_hash_cmp, 374 .automatic_shrinking = true, 375 }; 376 377 static void ipmr_new_table_set(struct mr_table *mrt, 378 struct net *net) 379 { 380 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 381 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 382 #endif 383 } 384 385 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = { 386 .mfc_mcastgrp = htonl(INADDR_ANY), 387 .mfc_origin = htonl(INADDR_ANY), 388 }; 389 390 static struct mr_table_ops ipmr_mr_table_ops = { 391 .rht_params = &ipmr_rht_params, 392 .cmparg_any = &ipmr_mr_table_ops_cmparg_any, 393 }; 394 395 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 396 { 397 struct mr_table *mrt; 398 399 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 400 if (id != RT_TABLE_DEFAULT && id >= 1000000000) 401 return ERR_PTR(-EINVAL); 402 403 mrt = ipmr_get_table(net, id); 404 if (mrt) 405 return mrt; 406 407 return mr_table_alloc(net, id, &ipmr_mr_table_ops, 408 ipmr_expire_process, ipmr_new_table_set); 409 } 410 411 static void ipmr_free_table(struct mr_table *mrt) 412 { 413 del_timer_sync(&mrt->ipmr_expire_timer); 414 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC | 415 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC); 416 rhltable_destroy(&mrt->mfc_hash); 417 kfree(mrt); 418 } 419 420 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 421 422 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v) 423 { 424 struct net *net = dev_net(dev); 425 426 dev_close(dev); 427 428 dev = __dev_get_by_name(net, "tunl0"); 429 if (dev) { 430 const struct net_device_ops *ops = dev->netdev_ops; 431 struct ifreq ifr; 432 struct ip_tunnel_parm p; 433 434 memset(&p, 0, sizeof(p)); 435 p.iph.daddr = v->vifc_rmt_addr.s_addr; 436 p.iph.saddr = v->vifc_lcl_addr.s_addr; 437 p.iph.version = 4; 438 p.iph.ihl = 5; 439 p.iph.protocol = IPPROTO_IPIP; 440 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 441 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 442 443 if (ops->ndo_do_ioctl) { 444 mm_segment_t oldfs = get_fs(); 445 446 set_fs(KERNEL_DS); 447 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL); 448 set_fs(oldfs); 449 } 450 } 451 } 452 453 /* Initialize ipmr pimreg/tunnel in_device */ 454 static bool ipmr_init_vif_indev(const struct net_device *dev) 455 { 456 struct in_device *in_dev; 457 458 ASSERT_RTNL(); 459 460 in_dev = __in_dev_get_rtnl(dev); 461 if (!in_dev) 462 return false; 463 ipv4_devconf_setall(in_dev); 464 neigh_parms_data_state_setall(in_dev->arp_parms); 465 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 466 467 return true; 468 } 469 470 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 471 { 472 struct net_device *dev; 473 474 dev = __dev_get_by_name(net, "tunl0"); 475 476 if (dev) { 477 const struct net_device_ops *ops = dev->netdev_ops; 478 int err; 479 struct ifreq ifr; 480 struct ip_tunnel_parm p; 481 482 memset(&p, 0, sizeof(p)); 483 p.iph.daddr = v->vifc_rmt_addr.s_addr; 484 p.iph.saddr = v->vifc_lcl_addr.s_addr; 485 p.iph.version = 4; 486 p.iph.ihl = 5; 487 p.iph.protocol = IPPROTO_IPIP; 488 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 489 ifr.ifr_ifru.ifru_data = (__force void __user *)&p; 490 491 if (ops->ndo_do_ioctl) { 492 mm_segment_t oldfs = get_fs(); 493 494 set_fs(KERNEL_DS); 495 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL); 496 set_fs(oldfs); 497 } else { 498 err = -EOPNOTSUPP; 499 } 500 dev = NULL; 501 502 if (err == 0 && 503 (dev = __dev_get_by_name(net, p.name)) != NULL) { 504 dev->flags |= IFF_MULTICAST; 505 if (!ipmr_init_vif_indev(dev)) 506 goto failure; 507 if (dev_open(dev, NULL)) 508 goto failure; 509 dev_hold(dev); 510 } 511 } 512 return dev; 513 514 failure: 515 unregister_netdevice(dev); 516 return NULL; 517 } 518 519 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 520 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 521 { 522 struct net *net = dev_net(dev); 523 struct mr_table *mrt; 524 struct flowi4 fl4 = { 525 .flowi4_oif = dev->ifindex, 526 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 527 .flowi4_mark = skb->mark, 528 }; 529 int err; 530 531 err = ipmr_fib_lookup(net, &fl4, &mrt); 532 if (err < 0) { 533 kfree_skb(skb); 534 return err; 535 } 536 537 read_lock(&mrt_lock); 538 dev->stats.tx_bytes += skb->len; 539 dev->stats.tx_packets++; 540 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT); 541 read_unlock(&mrt_lock); 542 kfree_skb(skb); 543 return NETDEV_TX_OK; 544 } 545 546 static int reg_vif_get_iflink(const struct net_device *dev) 547 { 548 return 0; 549 } 550 551 static const struct net_device_ops reg_vif_netdev_ops = { 552 .ndo_start_xmit = reg_vif_xmit, 553 .ndo_get_iflink = reg_vif_get_iflink, 554 }; 555 556 static void reg_vif_setup(struct net_device *dev) 557 { 558 dev->type = ARPHRD_PIMREG; 559 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 560 dev->flags = IFF_NOARP; 561 dev->netdev_ops = ®_vif_netdev_ops; 562 dev->needs_free_netdev = true; 563 dev->features |= NETIF_F_NETNS_LOCAL; 564 } 565 566 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 567 { 568 struct net_device *dev; 569 char name[IFNAMSIZ]; 570 571 if (mrt->id == RT_TABLE_DEFAULT) 572 sprintf(name, "pimreg"); 573 else 574 sprintf(name, "pimreg%u", mrt->id); 575 576 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 577 578 if (!dev) 579 return NULL; 580 581 dev_net_set(dev, net); 582 583 if (register_netdevice(dev)) { 584 free_netdev(dev); 585 return NULL; 586 } 587 588 if (!ipmr_init_vif_indev(dev)) 589 goto failure; 590 if (dev_open(dev, NULL)) 591 goto failure; 592 593 dev_hold(dev); 594 595 return dev; 596 597 failure: 598 unregister_netdevice(dev); 599 return NULL; 600 } 601 602 /* called with rcu_read_lock() */ 603 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 604 unsigned int pimlen) 605 { 606 struct net_device *reg_dev = NULL; 607 struct iphdr *encap; 608 609 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 610 /* Check that: 611 * a. packet is really sent to a multicast group 612 * b. packet is not a NULL-REGISTER 613 * c. packet is not truncated 614 */ 615 if (!ipv4_is_multicast(encap->daddr) || 616 encap->tot_len == 0 || 617 ntohs(encap->tot_len) + pimlen > skb->len) 618 return 1; 619 620 read_lock(&mrt_lock); 621 if (mrt->mroute_reg_vif_num >= 0) 622 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev; 623 read_unlock(&mrt_lock); 624 625 if (!reg_dev) 626 return 1; 627 628 skb->mac_header = skb->network_header; 629 skb_pull(skb, (u8 *)encap - skb->data); 630 skb_reset_network_header(skb); 631 skb->protocol = htons(ETH_P_IP); 632 skb->ip_summed = CHECKSUM_NONE; 633 634 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 635 636 netif_rx(skb); 637 638 return NET_RX_SUCCESS; 639 } 640 #else 641 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 642 { 643 return NULL; 644 } 645 #endif 646 647 static int call_ipmr_vif_entry_notifiers(struct net *net, 648 enum fib_event_type event_type, 649 struct vif_device *vif, 650 vifi_t vif_index, u32 tb_id) 651 { 652 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type, 653 vif, vif_index, tb_id, 654 &net->ipv4.ipmr_seq); 655 } 656 657 static int call_ipmr_mfc_entry_notifiers(struct net *net, 658 enum fib_event_type event_type, 659 struct mfc_cache *mfc, u32 tb_id) 660 { 661 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type, 662 &mfc->_c, tb_id, &net->ipv4.ipmr_seq); 663 } 664 665 /** 666 * vif_delete - Delete a VIF entry 667 * @notify: Set to 1, if the caller is a notifier_call 668 */ 669 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 670 struct list_head *head) 671 { 672 struct net *net = read_pnet(&mrt->net); 673 struct vif_device *v; 674 struct net_device *dev; 675 struct in_device *in_dev; 676 677 if (vifi < 0 || vifi >= mrt->maxvif) 678 return -EADDRNOTAVAIL; 679 680 v = &mrt->vif_table[vifi]; 681 682 if (VIF_EXISTS(mrt, vifi)) 683 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi, 684 mrt->id); 685 686 write_lock_bh(&mrt_lock); 687 dev = v->dev; 688 v->dev = NULL; 689 690 if (!dev) { 691 write_unlock_bh(&mrt_lock); 692 return -EADDRNOTAVAIL; 693 } 694 695 if (vifi == mrt->mroute_reg_vif_num) 696 mrt->mroute_reg_vif_num = -1; 697 698 if (vifi + 1 == mrt->maxvif) { 699 int tmp; 700 701 for (tmp = vifi - 1; tmp >= 0; tmp--) { 702 if (VIF_EXISTS(mrt, tmp)) 703 break; 704 } 705 mrt->maxvif = tmp+1; 706 } 707 708 write_unlock_bh(&mrt_lock); 709 710 dev_set_allmulti(dev, -1); 711 712 in_dev = __in_dev_get_rtnl(dev); 713 if (in_dev) { 714 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 715 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, 716 NETCONFA_MC_FORWARDING, 717 dev->ifindex, &in_dev->cnf); 718 ip_rt_multicast_event(in_dev); 719 } 720 721 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 722 unregister_netdevice_queue(dev, head); 723 724 dev_put(dev); 725 return 0; 726 } 727 728 static void ipmr_cache_free_rcu(struct rcu_head *head) 729 { 730 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu); 731 732 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c); 733 } 734 735 static void ipmr_cache_free(struct mfc_cache *c) 736 { 737 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu); 738 } 739 740 /* Destroy an unresolved cache entry, killing queued skbs 741 * and reporting error to netlink readers. 742 */ 743 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 744 { 745 struct net *net = read_pnet(&mrt->net); 746 struct sk_buff *skb; 747 struct nlmsgerr *e; 748 749 atomic_dec(&mrt->cache_resolve_queue_len); 750 751 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) { 752 if (ip_hdr(skb)->version == 0) { 753 struct nlmsghdr *nlh = skb_pull(skb, 754 sizeof(struct iphdr)); 755 nlh->nlmsg_type = NLMSG_ERROR; 756 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 757 skb_trim(skb, nlh->nlmsg_len); 758 e = nlmsg_data(nlh); 759 e->error = -ETIMEDOUT; 760 memset(&e->msg, 0, sizeof(e->msg)); 761 762 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 763 } else { 764 kfree_skb(skb); 765 } 766 } 767 768 ipmr_cache_free(c); 769 } 770 771 /* Timer process for the unresolved queue. */ 772 static void ipmr_expire_process(struct timer_list *t) 773 { 774 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer); 775 struct mr_mfc *c, *next; 776 unsigned long expires; 777 unsigned long now; 778 779 if (!spin_trylock(&mfc_unres_lock)) { 780 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 781 return; 782 } 783 784 if (list_empty(&mrt->mfc_unres_queue)) 785 goto out; 786 787 now = jiffies; 788 expires = 10*HZ; 789 790 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 791 if (time_after(c->mfc_un.unres.expires, now)) { 792 unsigned long interval = c->mfc_un.unres.expires - now; 793 if (interval < expires) 794 expires = interval; 795 continue; 796 } 797 798 list_del(&c->list); 799 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE); 800 ipmr_destroy_unres(mrt, (struct mfc_cache *)c); 801 } 802 803 if (!list_empty(&mrt->mfc_unres_queue)) 804 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 805 806 out: 807 spin_unlock(&mfc_unres_lock); 808 } 809 810 /* Fill oifs list. It is called under write locked mrt_lock. */ 811 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache, 812 unsigned char *ttls) 813 { 814 int vifi; 815 816 cache->mfc_un.res.minvif = MAXVIFS; 817 cache->mfc_un.res.maxvif = 0; 818 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 819 820 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 821 if (VIF_EXISTS(mrt, vifi) && 822 ttls[vifi] && ttls[vifi] < 255) { 823 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 824 if (cache->mfc_un.res.minvif > vifi) 825 cache->mfc_un.res.minvif = vifi; 826 if (cache->mfc_un.res.maxvif <= vifi) 827 cache->mfc_un.res.maxvif = vifi + 1; 828 } 829 } 830 cache->mfc_un.res.lastuse = jiffies; 831 } 832 833 static int vif_add(struct net *net, struct mr_table *mrt, 834 struct vifctl *vifc, int mrtsock) 835 { 836 struct netdev_phys_item_id ppid = { }; 837 int vifi = vifc->vifc_vifi; 838 struct vif_device *v = &mrt->vif_table[vifi]; 839 struct net_device *dev; 840 struct in_device *in_dev; 841 int err; 842 843 /* Is vif busy ? */ 844 if (VIF_EXISTS(mrt, vifi)) 845 return -EADDRINUSE; 846 847 switch (vifc->vifc_flags) { 848 case VIFF_REGISTER: 849 if (!ipmr_pimsm_enabled()) 850 return -EINVAL; 851 /* Special Purpose VIF in PIM 852 * All the packets will be sent to the daemon 853 */ 854 if (mrt->mroute_reg_vif_num >= 0) 855 return -EADDRINUSE; 856 dev = ipmr_reg_vif(net, mrt); 857 if (!dev) 858 return -ENOBUFS; 859 err = dev_set_allmulti(dev, 1); 860 if (err) { 861 unregister_netdevice(dev); 862 dev_put(dev); 863 return err; 864 } 865 break; 866 case VIFF_TUNNEL: 867 dev = ipmr_new_tunnel(net, vifc); 868 if (!dev) 869 return -ENOBUFS; 870 err = dev_set_allmulti(dev, 1); 871 if (err) { 872 ipmr_del_tunnel(dev, vifc); 873 dev_put(dev); 874 return err; 875 } 876 break; 877 case VIFF_USE_IFINDEX: 878 case 0: 879 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 880 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 881 if (dev && !__in_dev_get_rtnl(dev)) { 882 dev_put(dev); 883 return -EADDRNOTAVAIL; 884 } 885 } else { 886 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 887 } 888 if (!dev) 889 return -EADDRNOTAVAIL; 890 err = dev_set_allmulti(dev, 1); 891 if (err) { 892 dev_put(dev); 893 return err; 894 } 895 break; 896 default: 897 return -EINVAL; 898 } 899 900 in_dev = __in_dev_get_rtnl(dev); 901 if (!in_dev) { 902 dev_put(dev); 903 return -EADDRNOTAVAIL; 904 } 905 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 906 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, 907 dev->ifindex, &in_dev->cnf); 908 ip_rt_multicast_event(in_dev); 909 910 /* Fill in the VIF structures */ 911 vif_device_init(v, dev, vifc->vifc_rate_limit, 912 vifc->vifc_threshold, 913 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0), 914 (VIFF_TUNNEL | VIFF_REGISTER)); 915 916 err = dev_get_port_parent_id(dev, &ppid, true); 917 if (err == 0) { 918 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len); 919 v->dev_parent_id.id_len = ppid.id_len; 920 } else { 921 v->dev_parent_id.id_len = 0; 922 } 923 924 v->local = vifc->vifc_lcl_addr.s_addr; 925 v->remote = vifc->vifc_rmt_addr.s_addr; 926 927 /* And finish update writing critical data */ 928 write_lock_bh(&mrt_lock); 929 v->dev = dev; 930 if (v->flags & VIFF_REGISTER) 931 mrt->mroute_reg_vif_num = vifi; 932 if (vifi+1 > mrt->maxvif) 933 mrt->maxvif = vifi+1; 934 write_unlock_bh(&mrt_lock); 935 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id); 936 return 0; 937 } 938 939 /* called with rcu_read_lock() */ 940 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 941 __be32 origin, 942 __be32 mcastgrp) 943 { 944 struct mfc_cache_cmp_arg arg = { 945 .mfc_mcastgrp = mcastgrp, 946 .mfc_origin = origin 947 }; 948 949 return mr_mfc_find(mrt, &arg); 950 } 951 952 /* Look for a (*,G) entry */ 953 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 954 __be32 mcastgrp, int vifi) 955 { 956 struct mfc_cache_cmp_arg arg = { 957 .mfc_mcastgrp = mcastgrp, 958 .mfc_origin = htonl(INADDR_ANY) 959 }; 960 961 if (mcastgrp == htonl(INADDR_ANY)) 962 return mr_mfc_find_any_parent(mrt, vifi); 963 return mr_mfc_find_any(mrt, vifi, &arg); 964 } 965 966 /* Look for a (S,G,iif) entry if parent != -1 */ 967 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt, 968 __be32 origin, __be32 mcastgrp, 969 int parent) 970 { 971 struct mfc_cache_cmp_arg arg = { 972 .mfc_mcastgrp = mcastgrp, 973 .mfc_origin = origin, 974 }; 975 976 return mr_mfc_find_parent(mrt, &arg, parent); 977 } 978 979 /* Allocate a multicast cache entry */ 980 static struct mfc_cache *ipmr_cache_alloc(void) 981 { 982 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 983 984 if (c) { 985 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; 986 c->_c.mfc_un.res.minvif = MAXVIFS; 987 c->_c.free = ipmr_cache_free_rcu; 988 refcount_set(&c->_c.mfc_un.res.refcount, 1); 989 } 990 return c; 991 } 992 993 static struct mfc_cache *ipmr_cache_alloc_unres(void) 994 { 995 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 996 997 if (c) { 998 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved); 999 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ; 1000 } 1001 return c; 1002 } 1003 1004 /* A cache entry has gone into a resolved state from queued */ 1005 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 1006 struct mfc_cache *uc, struct mfc_cache *c) 1007 { 1008 struct sk_buff *skb; 1009 struct nlmsgerr *e; 1010 1011 /* Play the pending entries through our router */ 1012 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) { 1013 if (ip_hdr(skb)->version == 0) { 1014 struct nlmsghdr *nlh = skb_pull(skb, 1015 sizeof(struct iphdr)); 1016 1017 if (mr_fill_mroute(mrt, skb, &c->_c, 1018 nlmsg_data(nlh)) > 0) { 1019 nlh->nlmsg_len = skb_tail_pointer(skb) - 1020 (u8 *)nlh; 1021 } else { 1022 nlh->nlmsg_type = NLMSG_ERROR; 1023 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 1024 skb_trim(skb, nlh->nlmsg_len); 1025 e = nlmsg_data(nlh); 1026 e->error = -EMSGSIZE; 1027 memset(&e->msg, 0, sizeof(e->msg)); 1028 } 1029 1030 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 1031 } else { 1032 ip_mr_forward(net, mrt, skb->dev, skb, c, 0); 1033 } 1034 } 1035 } 1036 1037 /* Bounce a cache query up to mrouted and netlink. 1038 * 1039 * Called under mrt_lock. 1040 */ 1041 static int ipmr_cache_report(struct mr_table *mrt, 1042 struct sk_buff *pkt, vifi_t vifi, int assert) 1043 { 1044 const int ihl = ip_hdrlen(pkt); 1045 struct sock *mroute_sk; 1046 struct igmphdr *igmp; 1047 struct igmpmsg *msg; 1048 struct sk_buff *skb; 1049 int ret; 1050 1051 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) 1052 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 1053 else 1054 skb = alloc_skb(128, GFP_ATOMIC); 1055 1056 if (!skb) 1057 return -ENOBUFS; 1058 1059 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) { 1060 /* Ugly, but we have no choice with this interface. 1061 * Duplicate old header, fix ihl, length etc. 1062 * And all this only to mangle msg->im_msgtype and 1063 * to set msg->im_mbz to "mbz" :-) 1064 */ 1065 skb_push(skb, sizeof(struct iphdr)); 1066 skb_reset_network_header(skb); 1067 skb_reset_transport_header(skb); 1068 msg = (struct igmpmsg *)skb_network_header(skb); 1069 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 1070 msg->im_msgtype = assert; 1071 msg->im_mbz = 0; 1072 if (assert == IGMPMSG_WRVIFWHOLE) 1073 msg->im_vif = vifi; 1074 else 1075 msg->im_vif = mrt->mroute_reg_vif_num; 1076 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 1077 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 1078 sizeof(struct iphdr)); 1079 } else { 1080 /* Copy the IP header */ 1081 skb_set_network_header(skb, skb->len); 1082 skb_put(skb, ihl); 1083 skb_copy_to_linear_data(skb, pkt->data, ihl); 1084 /* Flag to the kernel this is a route add */ 1085 ip_hdr(skb)->protocol = 0; 1086 msg = (struct igmpmsg *)skb_network_header(skb); 1087 msg->im_vif = vifi; 1088 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 1089 /* Add our header */ 1090 igmp = skb_put(skb, sizeof(struct igmphdr)); 1091 igmp->type = assert; 1092 msg->im_msgtype = assert; 1093 igmp->code = 0; 1094 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 1095 skb->transport_header = skb->network_header; 1096 } 1097 1098 rcu_read_lock(); 1099 mroute_sk = rcu_dereference(mrt->mroute_sk); 1100 if (!mroute_sk) { 1101 rcu_read_unlock(); 1102 kfree_skb(skb); 1103 return -EINVAL; 1104 } 1105 1106 igmpmsg_netlink_event(mrt, skb); 1107 1108 /* Deliver to mrouted */ 1109 ret = sock_queue_rcv_skb(mroute_sk, skb); 1110 rcu_read_unlock(); 1111 if (ret < 0) { 1112 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1113 kfree_skb(skb); 1114 } 1115 1116 return ret; 1117 } 1118 1119 /* Queue a packet for resolution. It gets locked cache entry! */ 1120 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, 1121 struct sk_buff *skb, struct net_device *dev) 1122 { 1123 const struct iphdr *iph = ip_hdr(skb); 1124 struct mfc_cache *c; 1125 bool found = false; 1126 int err; 1127 1128 spin_lock_bh(&mfc_unres_lock); 1129 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) { 1130 if (c->mfc_mcastgrp == iph->daddr && 1131 c->mfc_origin == iph->saddr) { 1132 found = true; 1133 break; 1134 } 1135 } 1136 1137 if (!found) { 1138 /* Create a new entry if allowable */ 1139 c = ipmr_cache_alloc_unres(); 1140 if (!c) { 1141 spin_unlock_bh(&mfc_unres_lock); 1142 1143 kfree_skb(skb); 1144 return -ENOBUFS; 1145 } 1146 1147 /* Fill in the new cache entry */ 1148 c->_c.mfc_parent = -1; 1149 c->mfc_origin = iph->saddr; 1150 c->mfc_mcastgrp = iph->daddr; 1151 1152 /* Reflect first query at mrouted. */ 1153 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1154 1155 if (err < 0) { 1156 /* If the report failed throw the cache entry 1157 out - Brad Parker 1158 */ 1159 spin_unlock_bh(&mfc_unres_lock); 1160 1161 ipmr_cache_free(c); 1162 kfree_skb(skb); 1163 return err; 1164 } 1165 1166 atomic_inc(&mrt->cache_resolve_queue_len); 1167 list_add(&c->_c.list, &mrt->mfc_unres_queue); 1168 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1169 1170 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1171 mod_timer(&mrt->ipmr_expire_timer, 1172 c->_c.mfc_un.unres.expires); 1173 } 1174 1175 /* See if we can append the packet */ 1176 if (c->_c.mfc_un.unres.unresolved.qlen > 3) { 1177 kfree_skb(skb); 1178 err = -ENOBUFS; 1179 } else { 1180 if (dev) { 1181 skb->dev = dev; 1182 skb->skb_iif = dev->ifindex; 1183 } 1184 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb); 1185 err = 0; 1186 } 1187 1188 spin_unlock_bh(&mfc_unres_lock); 1189 return err; 1190 } 1191 1192 /* MFC cache manipulation by user space mroute daemon */ 1193 1194 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1195 { 1196 struct net *net = read_pnet(&mrt->net); 1197 struct mfc_cache *c; 1198 1199 /* The entries are added/deleted only under RTNL */ 1200 rcu_read_lock(); 1201 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1202 mfc->mfcc_mcastgrp.s_addr, parent); 1203 rcu_read_unlock(); 1204 if (!c) 1205 return -ENOENT; 1206 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params); 1207 list_del_rcu(&c->_c.list); 1208 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id); 1209 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1210 mr_cache_put(&c->_c); 1211 1212 return 0; 1213 } 1214 1215 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1216 struct mfcctl *mfc, int mrtsock, int parent) 1217 { 1218 struct mfc_cache *uc, *c; 1219 struct mr_mfc *_uc; 1220 bool found; 1221 int ret; 1222 1223 if (mfc->mfcc_parent >= MAXVIFS) 1224 return -ENFILE; 1225 1226 /* The entries are added/deleted only under RTNL */ 1227 rcu_read_lock(); 1228 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1229 mfc->mfcc_mcastgrp.s_addr, parent); 1230 rcu_read_unlock(); 1231 if (c) { 1232 write_lock_bh(&mrt_lock); 1233 c->_c.mfc_parent = mfc->mfcc_parent; 1234 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1235 if (!mrtsock) 1236 c->_c.mfc_flags |= MFC_STATIC; 1237 write_unlock_bh(&mrt_lock); 1238 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c, 1239 mrt->id); 1240 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1241 return 0; 1242 } 1243 1244 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1245 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1246 return -EINVAL; 1247 1248 c = ipmr_cache_alloc(); 1249 if (!c) 1250 return -ENOMEM; 1251 1252 c->mfc_origin = mfc->mfcc_origin.s_addr; 1253 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1254 c->_c.mfc_parent = mfc->mfcc_parent; 1255 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1256 if (!mrtsock) 1257 c->_c.mfc_flags |= MFC_STATIC; 1258 1259 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode, 1260 ipmr_rht_params); 1261 if (ret) { 1262 pr_err("ipmr: rhtable insert error %d\n", ret); 1263 ipmr_cache_free(c); 1264 return ret; 1265 } 1266 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list); 1267 /* Check to see if we resolved a queued list. If so we 1268 * need to send on the frames and tidy up. 1269 */ 1270 found = false; 1271 spin_lock_bh(&mfc_unres_lock); 1272 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) { 1273 uc = (struct mfc_cache *)_uc; 1274 if (uc->mfc_origin == c->mfc_origin && 1275 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1276 list_del(&_uc->list); 1277 atomic_dec(&mrt->cache_resolve_queue_len); 1278 found = true; 1279 break; 1280 } 1281 } 1282 if (list_empty(&mrt->mfc_unres_queue)) 1283 del_timer(&mrt->ipmr_expire_timer); 1284 spin_unlock_bh(&mfc_unres_lock); 1285 1286 if (found) { 1287 ipmr_cache_resolve(net, mrt, uc, c); 1288 ipmr_cache_free(uc); 1289 } 1290 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id); 1291 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1292 return 0; 1293 } 1294 1295 /* Close the multicast socket, and clear the vif tables etc */ 1296 static void mroute_clean_tables(struct mr_table *mrt, int flags) 1297 { 1298 struct net *net = read_pnet(&mrt->net); 1299 struct mr_mfc *c, *tmp; 1300 struct mfc_cache *cache; 1301 LIST_HEAD(list); 1302 int i; 1303 1304 /* Shut down all active vif entries */ 1305 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) { 1306 for (i = 0; i < mrt->maxvif; i++) { 1307 if (((mrt->vif_table[i].flags & VIFF_STATIC) && 1308 !(flags & MRT_FLUSH_VIFS_STATIC)) || 1309 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS))) 1310 continue; 1311 vif_delete(mrt, i, 0, &list); 1312 } 1313 unregister_netdevice_many(&list); 1314 } 1315 1316 /* Wipe the cache */ 1317 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) { 1318 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) { 1319 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) || 1320 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC))) 1321 continue; 1322 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params); 1323 list_del_rcu(&c->list); 1324 cache = (struct mfc_cache *)c; 1325 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache, 1326 mrt->id); 1327 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1328 mr_cache_put(c); 1329 } 1330 } 1331 1332 if (flags & MRT_FLUSH_MFC) { 1333 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1334 spin_lock_bh(&mfc_unres_lock); 1335 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) { 1336 list_del(&c->list); 1337 cache = (struct mfc_cache *)c; 1338 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1339 ipmr_destroy_unres(mrt, cache); 1340 } 1341 spin_unlock_bh(&mfc_unres_lock); 1342 } 1343 } 1344 } 1345 1346 /* called from ip_ra_control(), before an RCU grace period, 1347 * we dont need to call synchronize_rcu() here 1348 */ 1349 static void mrtsock_destruct(struct sock *sk) 1350 { 1351 struct net *net = sock_net(sk); 1352 struct mr_table *mrt; 1353 1354 rtnl_lock(); 1355 ipmr_for_each_table(mrt, net) { 1356 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1357 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1358 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1359 NETCONFA_MC_FORWARDING, 1360 NETCONFA_IFINDEX_ALL, 1361 net->ipv4.devconf_all); 1362 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1363 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC); 1364 } 1365 } 1366 rtnl_unlock(); 1367 } 1368 1369 /* Socket options and virtual interface manipulation. The whole 1370 * virtual interface system is a complete heap, but unfortunately 1371 * that's how BSD mrouted happens to think. Maybe one day with a proper 1372 * MOSPF/PIM router set up we can clean this up. 1373 */ 1374 1375 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, 1376 unsigned int optlen) 1377 { 1378 struct net *net = sock_net(sk); 1379 int val, ret = 0, parent = 0; 1380 struct mr_table *mrt; 1381 struct vifctl vif; 1382 struct mfcctl mfc; 1383 bool do_wrvifwhole; 1384 u32 uval; 1385 1386 /* There's one exception to the lock - MRT_DONE which needs to unlock */ 1387 rtnl_lock(); 1388 if (sk->sk_type != SOCK_RAW || 1389 inet_sk(sk)->inet_num != IPPROTO_IGMP) { 1390 ret = -EOPNOTSUPP; 1391 goto out_unlock; 1392 } 1393 1394 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1395 if (!mrt) { 1396 ret = -ENOENT; 1397 goto out_unlock; 1398 } 1399 if (optname != MRT_INIT) { 1400 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1401 !ns_capable(net->user_ns, CAP_NET_ADMIN)) { 1402 ret = -EACCES; 1403 goto out_unlock; 1404 } 1405 } 1406 1407 switch (optname) { 1408 case MRT_INIT: 1409 if (optlen != sizeof(int)) { 1410 ret = -EINVAL; 1411 break; 1412 } 1413 if (rtnl_dereference(mrt->mroute_sk)) { 1414 ret = -EADDRINUSE; 1415 break; 1416 } 1417 1418 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1419 if (ret == 0) { 1420 rcu_assign_pointer(mrt->mroute_sk, sk); 1421 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1422 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1423 NETCONFA_MC_FORWARDING, 1424 NETCONFA_IFINDEX_ALL, 1425 net->ipv4.devconf_all); 1426 } 1427 break; 1428 case MRT_DONE: 1429 if (sk != rcu_access_pointer(mrt->mroute_sk)) { 1430 ret = -EACCES; 1431 } else { 1432 /* We need to unlock here because mrtsock_destruct takes 1433 * care of rtnl itself and we can't change that due to 1434 * the IP_ROUTER_ALERT setsockopt which runs without it. 1435 */ 1436 rtnl_unlock(); 1437 ret = ip_ra_control(sk, 0, NULL); 1438 goto out; 1439 } 1440 break; 1441 case MRT_ADD_VIF: 1442 case MRT_DEL_VIF: 1443 if (optlen != sizeof(vif)) { 1444 ret = -EINVAL; 1445 break; 1446 } 1447 if (copy_from_user(&vif, optval, sizeof(vif))) { 1448 ret = -EFAULT; 1449 break; 1450 } 1451 if (vif.vifc_vifi >= MAXVIFS) { 1452 ret = -ENFILE; 1453 break; 1454 } 1455 if (optname == MRT_ADD_VIF) { 1456 ret = vif_add(net, mrt, &vif, 1457 sk == rtnl_dereference(mrt->mroute_sk)); 1458 } else { 1459 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1460 } 1461 break; 1462 /* Manipulate the forwarding caches. These live 1463 * in a sort of kernel/user symbiosis. 1464 */ 1465 case MRT_ADD_MFC: 1466 case MRT_DEL_MFC: 1467 parent = -1; 1468 fallthrough; 1469 case MRT_ADD_MFC_PROXY: 1470 case MRT_DEL_MFC_PROXY: 1471 if (optlen != sizeof(mfc)) { 1472 ret = -EINVAL; 1473 break; 1474 } 1475 if (copy_from_user(&mfc, optval, sizeof(mfc))) { 1476 ret = -EFAULT; 1477 break; 1478 } 1479 if (parent == 0) 1480 parent = mfc.mfcc_parent; 1481 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1482 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1483 else 1484 ret = ipmr_mfc_add(net, mrt, &mfc, 1485 sk == rtnl_dereference(mrt->mroute_sk), 1486 parent); 1487 break; 1488 case MRT_FLUSH: 1489 if (optlen != sizeof(val)) { 1490 ret = -EINVAL; 1491 break; 1492 } 1493 if (get_user(val, (int __user *)optval)) { 1494 ret = -EFAULT; 1495 break; 1496 } 1497 mroute_clean_tables(mrt, val); 1498 break; 1499 /* Control PIM assert. */ 1500 case MRT_ASSERT: 1501 if (optlen != sizeof(val)) { 1502 ret = -EINVAL; 1503 break; 1504 } 1505 if (get_user(val, (int __user *)optval)) { 1506 ret = -EFAULT; 1507 break; 1508 } 1509 mrt->mroute_do_assert = val; 1510 break; 1511 case MRT_PIM: 1512 if (!ipmr_pimsm_enabled()) { 1513 ret = -ENOPROTOOPT; 1514 break; 1515 } 1516 if (optlen != sizeof(val)) { 1517 ret = -EINVAL; 1518 break; 1519 } 1520 if (get_user(val, (int __user *)optval)) { 1521 ret = -EFAULT; 1522 break; 1523 } 1524 1525 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE); 1526 val = !!val; 1527 if (val != mrt->mroute_do_pim) { 1528 mrt->mroute_do_pim = val; 1529 mrt->mroute_do_assert = val; 1530 mrt->mroute_do_wrvifwhole = do_wrvifwhole; 1531 } 1532 break; 1533 case MRT_TABLE: 1534 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) { 1535 ret = -ENOPROTOOPT; 1536 break; 1537 } 1538 if (optlen != sizeof(uval)) { 1539 ret = -EINVAL; 1540 break; 1541 } 1542 if (get_user(uval, (u32 __user *)optval)) { 1543 ret = -EFAULT; 1544 break; 1545 } 1546 1547 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1548 ret = -EBUSY; 1549 } else { 1550 mrt = ipmr_new_table(net, uval); 1551 if (IS_ERR(mrt)) 1552 ret = PTR_ERR(mrt); 1553 else 1554 raw_sk(sk)->ipmr_table = uval; 1555 } 1556 break; 1557 /* Spurious command, or MRT_VERSION which you cannot set. */ 1558 default: 1559 ret = -ENOPROTOOPT; 1560 } 1561 out_unlock: 1562 rtnl_unlock(); 1563 out: 1564 return ret; 1565 } 1566 1567 /* Getsock opt support for the multicast routing system. */ 1568 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1569 { 1570 int olr; 1571 int val; 1572 struct net *net = sock_net(sk); 1573 struct mr_table *mrt; 1574 1575 if (sk->sk_type != SOCK_RAW || 1576 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1577 return -EOPNOTSUPP; 1578 1579 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1580 if (!mrt) 1581 return -ENOENT; 1582 1583 switch (optname) { 1584 case MRT_VERSION: 1585 val = 0x0305; 1586 break; 1587 case MRT_PIM: 1588 if (!ipmr_pimsm_enabled()) 1589 return -ENOPROTOOPT; 1590 val = mrt->mroute_do_pim; 1591 break; 1592 case MRT_ASSERT: 1593 val = mrt->mroute_do_assert; 1594 break; 1595 default: 1596 return -ENOPROTOOPT; 1597 } 1598 1599 if (get_user(olr, optlen)) 1600 return -EFAULT; 1601 olr = min_t(unsigned int, olr, sizeof(int)); 1602 if (olr < 0) 1603 return -EINVAL; 1604 if (put_user(olr, optlen)) 1605 return -EFAULT; 1606 if (copy_to_user(optval, &val, olr)) 1607 return -EFAULT; 1608 return 0; 1609 } 1610 1611 /* The IP multicast ioctl support routines. */ 1612 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1613 { 1614 struct sioc_sg_req sr; 1615 struct sioc_vif_req vr; 1616 struct vif_device *vif; 1617 struct mfc_cache *c; 1618 struct net *net = sock_net(sk); 1619 struct mr_table *mrt; 1620 1621 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1622 if (!mrt) 1623 return -ENOENT; 1624 1625 switch (cmd) { 1626 case SIOCGETVIFCNT: 1627 if (copy_from_user(&vr, arg, sizeof(vr))) 1628 return -EFAULT; 1629 if (vr.vifi >= mrt->maxvif) 1630 return -EINVAL; 1631 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif); 1632 read_lock(&mrt_lock); 1633 vif = &mrt->vif_table[vr.vifi]; 1634 if (VIF_EXISTS(mrt, vr.vifi)) { 1635 vr.icount = vif->pkt_in; 1636 vr.ocount = vif->pkt_out; 1637 vr.ibytes = vif->bytes_in; 1638 vr.obytes = vif->bytes_out; 1639 read_unlock(&mrt_lock); 1640 1641 if (copy_to_user(arg, &vr, sizeof(vr))) 1642 return -EFAULT; 1643 return 0; 1644 } 1645 read_unlock(&mrt_lock); 1646 return -EADDRNOTAVAIL; 1647 case SIOCGETSGCNT: 1648 if (copy_from_user(&sr, arg, sizeof(sr))) 1649 return -EFAULT; 1650 1651 rcu_read_lock(); 1652 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1653 if (c) { 1654 sr.pktcnt = c->_c.mfc_un.res.pkt; 1655 sr.bytecnt = c->_c.mfc_un.res.bytes; 1656 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1657 rcu_read_unlock(); 1658 1659 if (copy_to_user(arg, &sr, sizeof(sr))) 1660 return -EFAULT; 1661 return 0; 1662 } 1663 rcu_read_unlock(); 1664 return -EADDRNOTAVAIL; 1665 default: 1666 return -ENOIOCTLCMD; 1667 } 1668 } 1669 1670 #ifdef CONFIG_COMPAT 1671 struct compat_sioc_sg_req { 1672 struct in_addr src; 1673 struct in_addr grp; 1674 compat_ulong_t pktcnt; 1675 compat_ulong_t bytecnt; 1676 compat_ulong_t wrong_if; 1677 }; 1678 1679 struct compat_sioc_vif_req { 1680 vifi_t vifi; /* Which iface */ 1681 compat_ulong_t icount; 1682 compat_ulong_t ocount; 1683 compat_ulong_t ibytes; 1684 compat_ulong_t obytes; 1685 }; 1686 1687 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1688 { 1689 struct compat_sioc_sg_req sr; 1690 struct compat_sioc_vif_req vr; 1691 struct vif_device *vif; 1692 struct mfc_cache *c; 1693 struct net *net = sock_net(sk); 1694 struct mr_table *mrt; 1695 1696 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1697 if (!mrt) 1698 return -ENOENT; 1699 1700 switch (cmd) { 1701 case SIOCGETVIFCNT: 1702 if (copy_from_user(&vr, arg, sizeof(vr))) 1703 return -EFAULT; 1704 if (vr.vifi >= mrt->maxvif) 1705 return -EINVAL; 1706 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif); 1707 read_lock(&mrt_lock); 1708 vif = &mrt->vif_table[vr.vifi]; 1709 if (VIF_EXISTS(mrt, vr.vifi)) { 1710 vr.icount = vif->pkt_in; 1711 vr.ocount = vif->pkt_out; 1712 vr.ibytes = vif->bytes_in; 1713 vr.obytes = vif->bytes_out; 1714 read_unlock(&mrt_lock); 1715 1716 if (copy_to_user(arg, &vr, sizeof(vr))) 1717 return -EFAULT; 1718 return 0; 1719 } 1720 read_unlock(&mrt_lock); 1721 return -EADDRNOTAVAIL; 1722 case SIOCGETSGCNT: 1723 if (copy_from_user(&sr, arg, sizeof(sr))) 1724 return -EFAULT; 1725 1726 rcu_read_lock(); 1727 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1728 if (c) { 1729 sr.pktcnt = c->_c.mfc_un.res.pkt; 1730 sr.bytecnt = c->_c.mfc_un.res.bytes; 1731 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1732 rcu_read_unlock(); 1733 1734 if (copy_to_user(arg, &sr, sizeof(sr))) 1735 return -EFAULT; 1736 return 0; 1737 } 1738 rcu_read_unlock(); 1739 return -EADDRNOTAVAIL; 1740 default: 1741 return -ENOIOCTLCMD; 1742 } 1743 } 1744 #endif 1745 1746 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1747 { 1748 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1749 struct net *net = dev_net(dev); 1750 struct mr_table *mrt; 1751 struct vif_device *v; 1752 int ct; 1753 1754 if (event != NETDEV_UNREGISTER) 1755 return NOTIFY_DONE; 1756 1757 ipmr_for_each_table(mrt, net) { 1758 v = &mrt->vif_table[0]; 1759 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1760 if (v->dev == dev) 1761 vif_delete(mrt, ct, 1, NULL); 1762 } 1763 } 1764 return NOTIFY_DONE; 1765 } 1766 1767 static struct notifier_block ip_mr_notifier = { 1768 .notifier_call = ipmr_device_event, 1769 }; 1770 1771 /* Encapsulate a packet by attaching a valid IPIP header to it. 1772 * This avoids tunnel drivers and other mess and gives us the speed so 1773 * important for multicast video. 1774 */ 1775 static void ip_encap(struct net *net, struct sk_buff *skb, 1776 __be32 saddr, __be32 daddr) 1777 { 1778 struct iphdr *iph; 1779 const struct iphdr *old_iph = ip_hdr(skb); 1780 1781 skb_push(skb, sizeof(struct iphdr)); 1782 skb->transport_header = skb->network_header; 1783 skb_reset_network_header(skb); 1784 iph = ip_hdr(skb); 1785 1786 iph->version = 4; 1787 iph->tos = old_iph->tos; 1788 iph->ttl = old_iph->ttl; 1789 iph->frag_off = 0; 1790 iph->daddr = daddr; 1791 iph->saddr = saddr; 1792 iph->protocol = IPPROTO_IPIP; 1793 iph->ihl = 5; 1794 iph->tot_len = htons(skb->len); 1795 ip_select_ident(net, skb, NULL); 1796 ip_send_check(iph); 1797 1798 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1799 nf_reset_ct(skb); 1800 } 1801 1802 static inline int ipmr_forward_finish(struct net *net, struct sock *sk, 1803 struct sk_buff *skb) 1804 { 1805 struct ip_options *opt = &(IPCB(skb)->opt); 1806 1807 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS); 1808 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len); 1809 1810 if (unlikely(opt->optlen)) 1811 ip_forward_options(skb); 1812 1813 return dst_output(net, sk, skb); 1814 } 1815 1816 #ifdef CONFIG_NET_SWITCHDEV 1817 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1818 int in_vifi, int out_vifi) 1819 { 1820 struct vif_device *out_vif = &mrt->vif_table[out_vifi]; 1821 struct vif_device *in_vif = &mrt->vif_table[in_vifi]; 1822 1823 if (!skb->offload_l3_fwd_mark) 1824 return false; 1825 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len) 1826 return false; 1827 return netdev_phys_item_id_same(&out_vif->dev_parent_id, 1828 &in_vif->dev_parent_id); 1829 } 1830 #else 1831 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1832 int in_vifi, int out_vifi) 1833 { 1834 return false; 1835 } 1836 #endif 1837 1838 /* Processing handlers for ipmr_forward */ 1839 1840 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1841 int in_vifi, struct sk_buff *skb, int vifi) 1842 { 1843 const struct iphdr *iph = ip_hdr(skb); 1844 struct vif_device *vif = &mrt->vif_table[vifi]; 1845 struct net_device *dev; 1846 struct rtable *rt; 1847 struct flowi4 fl4; 1848 int encap = 0; 1849 1850 if (!vif->dev) 1851 goto out_free; 1852 1853 if (vif->flags & VIFF_REGISTER) { 1854 vif->pkt_out++; 1855 vif->bytes_out += skb->len; 1856 vif->dev->stats.tx_bytes += skb->len; 1857 vif->dev->stats.tx_packets++; 1858 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1859 goto out_free; 1860 } 1861 1862 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi)) 1863 goto out_free; 1864 1865 if (vif->flags & VIFF_TUNNEL) { 1866 rt = ip_route_output_ports(net, &fl4, NULL, 1867 vif->remote, vif->local, 1868 0, 0, 1869 IPPROTO_IPIP, 1870 RT_TOS(iph->tos), vif->link); 1871 if (IS_ERR(rt)) 1872 goto out_free; 1873 encap = sizeof(struct iphdr); 1874 } else { 1875 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1876 0, 0, 1877 IPPROTO_IPIP, 1878 RT_TOS(iph->tos), vif->link); 1879 if (IS_ERR(rt)) 1880 goto out_free; 1881 } 1882 1883 dev = rt->dst.dev; 1884 1885 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1886 /* Do not fragment multicasts. Alas, IPv4 does not 1887 * allow to send ICMP, so that packets will disappear 1888 * to blackhole. 1889 */ 1890 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 1891 ip_rt_put(rt); 1892 goto out_free; 1893 } 1894 1895 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1896 1897 if (skb_cow(skb, encap)) { 1898 ip_rt_put(rt); 1899 goto out_free; 1900 } 1901 1902 vif->pkt_out++; 1903 vif->bytes_out += skb->len; 1904 1905 skb_dst_drop(skb); 1906 skb_dst_set(skb, &rt->dst); 1907 ip_decrease_ttl(ip_hdr(skb)); 1908 1909 /* FIXME: forward and output firewalls used to be called here. 1910 * What do we do with netfilter? -- RR 1911 */ 1912 if (vif->flags & VIFF_TUNNEL) { 1913 ip_encap(net, skb, vif->local, vif->remote); 1914 /* FIXME: extra output firewall step used to be here. --RR */ 1915 vif->dev->stats.tx_packets++; 1916 vif->dev->stats.tx_bytes += skb->len; 1917 } 1918 1919 IPCB(skb)->flags |= IPSKB_FORWARDED; 1920 1921 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1922 * not only before forwarding, but after forwarding on all output 1923 * interfaces. It is clear, if mrouter runs a multicasting 1924 * program, it should receive packets not depending to what interface 1925 * program is joined. 1926 * If we will not make it, the program will have to join on all 1927 * interfaces. On the other hand, multihoming host (or router, but 1928 * not mrouter) cannot join to more than one interface - it will 1929 * result in receiving multiple packets. 1930 */ 1931 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, 1932 net, NULL, skb, skb->dev, dev, 1933 ipmr_forward_finish); 1934 return; 1935 1936 out_free: 1937 kfree_skb(skb); 1938 } 1939 1940 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev) 1941 { 1942 int ct; 1943 1944 for (ct = mrt->maxvif-1; ct >= 0; ct--) { 1945 if (mrt->vif_table[ct].dev == dev) 1946 break; 1947 } 1948 return ct; 1949 } 1950 1951 /* "local" means that we should preserve one skb (for local delivery) */ 1952 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1953 struct net_device *dev, struct sk_buff *skb, 1954 struct mfc_cache *c, int local) 1955 { 1956 int true_vifi = ipmr_find_vif(mrt, dev); 1957 int psend = -1; 1958 int vif, ct; 1959 1960 vif = c->_c.mfc_parent; 1961 c->_c.mfc_un.res.pkt++; 1962 c->_c.mfc_un.res.bytes += skb->len; 1963 c->_c.mfc_un.res.lastuse = jiffies; 1964 1965 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1966 struct mfc_cache *cache_proxy; 1967 1968 /* For an (*,G) entry, we only check that the incomming 1969 * interface is part of the static tree. 1970 */ 1971 cache_proxy = mr_mfc_find_any_parent(mrt, vif); 1972 if (cache_proxy && 1973 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255) 1974 goto forward; 1975 } 1976 1977 /* Wrong interface: drop packet and (maybe) send PIM assert. */ 1978 if (mrt->vif_table[vif].dev != dev) { 1979 if (rt_is_output_route(skb_rtable(skb))) { 1980 /* It is our own packet, looped back. 1981 * Very complicated situation... 1982 * 1983 * The best workaround until routing daemons will be 1984 * fixed is not to redistribute packet, if it was 1985 * send through wrong interface. It means, that 1986 * multicast applications WILL NOT work for 1987 * (S,G), which have default multicast route pointing 1988 * to wrong oif. In any case, it is not a good 1989 * idea to use multicasting applications on router. 1990 */ 1991 goto dont_forward; 1992 } 1993 1994 c->_c.mfc_un.res.wrong_if++; 1995 1996 if (true_vifi >= 0 && mrt->mroute_do_assert && 1997 /* pimsm uses asserts, when switching from RPT to SPT, 1998 * so that we cannot check that packet arrived on an oif. 1999 * It is bad, but otherwise we would need to move pretty 2000 * large chunk of pimd to kernel. Ough... --ANK 2001 */ 2002 (mrt->mroute_do_pim || 2003 c->_c.mfc_un.res.ttls[true_vifi] < 255) && 2004 time_after(jiffies, 2005 c->_c.mfc_un.res.last_assert + 2006 MFC_ASSERT_THRESH)) { 2007 c->_c.mfc_un.res.last_assert = jiffies; 2008 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 2009 if (mrt->mroute_do_wrvifwhole) 2010 ipmr_cache_report(mrt, skb, true_vifi, 2011 IGMPMSG_WRVIFWHOLE); 2012 } 2013 goto dont_forward; 2014 } 2015 2016 forward: 2017 mrt->vif_table[vif].pkt_in++; 2018 mrt->vif_table[vif].bytes_in += skb->len; 2019 2020 /* Forward the frame */ 2021 if (c->mfc_origin == htonl(INADDR_ANY) && 2022 c->mfc_mcastgrp == htonl(INADDR_ANY)) { 2023 if (true_vifi >= 0 && 2024 true_vifi != c->_c.mfc_parent && 2025 ip_hdr(skb)->ttl > 2026 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) { 2027 /* It's an (*,*) entry and the packet is not coming from 2028 * the upstream: forward the packet to the upstream 2029 * only. 2030 */ 2031 psend = c->_c.mfc_parent; 2032 goto last_forward; 2033 } 2034 goto dont_forward; 2035 } 2036 for (ct = c->_c.mfc_un.res.maxvif - 1; 2037 ct >= c->_c.mfc_un.res.minvif; ct--) { 2038 /* For (*,G) entry, don't forward to the incoming interface */ 2039 if ((c->mfc_origin != htonl(INADDR_ANY) || 2040 ct != true_vifi) && 2041 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) { 2042 if (psend != -1) { 2043 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2044 2045 if (skb2) 2046 ipmr_queue_xmit(net, mrt, true_vifi, 2047 skb2, psend); 2048 } 2049 psend = ct; 2050 } 2051 } 2052 last_forward: 2053 if (psend != -1) { 2054 if (local) { 2055 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2056 2057 if (skb2) 2058 ipmr_queue_xmit(net, mrt, true_vifi, skb2, 2059 psend); 2060 } else { 2061 ipmr_queue_xmit(net, mrt, true_vifi, skb, psend); 2062 return; 2063 } 2064 } 2065 2066 dont_forward: 2067 if (!local) 2068 kfree_skb(skb); 2069 } 2070 2071 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 2072 { 2073 struct rtable *rt = skb_rtable(skb); 2074 struct iphdr *iph = ip_hdr(skb); 2075 struct flowi4 fl4 = { 2076 .daddr = iph->daddr, 2077 .saddr = iph->saddr, 2078 .flowi4_tos = RT_TOS(iph->tos), 2079 .flowi4_oif = (rt_is_output_route(rt) ? 2080 skb->dev->ifindex : 0), 2081 .flowi4_iif = (rt_is_output_route(rt) ? 2082 LOOPBACK_IFINDEX : 2083 skb->dev->ifindex), 2084 .flowi4_mark = skb->mark, 2085 }; 2086 struct mr_table *mrt; 2087 int err; 2088 2089 err = ipmr_fib_lookup(net, &fl4, &mrt); 2090 if (err) 2091 return ERR_PTR(err); 2092 return mrt; 2093 } 2094 2095 /* Multicast packets for forwarding arrive here 2096 * Called with rcu_read_lock(); 2097 */ 2098 int ip_mr_input(struct sk_buff *skb) 2099 { 2100 struct mfc_cache *cache; 2101 struct net *net = dev_net(skb->dev); 2102 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 2103 struct mr_table *mrt; 2104 struct net_device *dev; 2105 2106 /* skb->dev passed in is the loX master dev for vrfs. 2107 * As there are no vifs associated with loopback devices, 2108 * get the proper interface that does have a vif associated with it. 2109 */ 2110 dev = skb->dev; 2111 if (netif_is_l3_master(skb->dev)) { 2112 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); 2113 if (!dev) { 2114 kfree_skb(skb); 2115 return -ENODEV; 2116 } 2117 } 2118 2119 /* Packet is looped back after forward, it should not be 2120 * forwarded second time, but still can be delivered locally. 2121 */ 2122 if (IPCB(skb)->flags & IPSKB_FORWARDED) 2123 goto dont_forward; 2124 2125 mrt = ipmr_rt_fib_lookup(net, skb); 2126 if (IS_ERR(mrt)) { 2127 kfree_skb(skb); 2128 return PTR_ERR(mrt); 2129 } 2130 if (!local) { 2131 if (IPCB(skb)->opt.router_alert) { 2132 if (ip_call_ra_chain(skb)) 2133 return 0; 2134 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 2135 /* IGMPv1 (and broken IGMPv2 implementations sort of 2136 * Cisco IOS <= 11.2(8)) do not put router alert 2137 * option to IGMP packets destined to routable 2138 * groups. It is very bad, because it means 2139 * that we can forward NO IGMP messages. 2140 */ 2141 struct sock *mroute_sk; 2142 2143 mroute_sk = rcu_dereference(mrt->mroute_sk); 2144 if (mroute_sk) { 2145 nf_reset_ct(skb); 2146 raw_rcv(mroute_sk, skb); 2147 return 0; 2148 } 2149 } 2150 } 2151 2152 /* already under rcu_read_lock() */ 2153 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 2154 if (!cache) { 2155 int vif = ipmr_find_vif(mrt, dev); 2156 2157 if (vif >= 0) 2158 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 2159 vif); 2160 } 2161 2162 /* No usable cache entry */ 2163 if (!cache) { 2164 int vif; 2165 2166 if (local) { 2167 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2168 ip_local_deliver(skb); 2169 if (!skb2) 2170 return -ENOBUFS; 2171 skb = skb2; 2172 } 2173 2174 read_lock(&mrt_lock); 2175 vif = ipmr_find_vif(mrt, dev); 2176 if (vif >= 0) { 2177 int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev); 2178 read_unlock(&mrt_lock); 2179 2180 return err2; 2181 } 2182 read_unlock(&mrt_lock); 2183 kfree_skb(skb); 2184 return -ENODEV; 2185 } 2186 2187 read_lock(&mrt_lock); 2188 ip_mr_forward(net, mrt, dev, skb, cache, local); 2189 read_unlock(&mrt_lock); 2190 2191 if (local) 2192 return ip_local_deliver(skb); 2193 2194 return 0; 2195 2196 dont_forward: 2197 if (local) 2198 return ip_local_deliver(skb); 2199 kfree_skb(skb); 2200 return 0; 2201 } 2202 2203 #ifdef CONFIG_IP_PIMSM_V1 2204 /* Handle IGMP messages of PIMv1 */ 2205 int pim_rcv_v1(struct sk_buff *skb) 2206 { 2207 struct igmphdr *pim; 2208 struct net *net = dev_net(skb->dev); 2209 struct mr_table *mrt; 2210 2211 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2212 goto drop; 2213 2214 pim = igmp_hdr(skb); 2215 2216 mrt = ipmr_rt_fib_lookup(net, skb); 2217 if (IS_ERR(mrt)) 2218 goto drop; 2219 if (!mrt->mroute_do_pim || 2220 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2221 goto drop; 2222 2223 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2224 drop: 2225 kfree_skb(skb); 2226 } 2227 return 0; 2228 } 2229 #endif 2230 2231 #ifdef CONFIG_IP_PIMSM_V2 2232 static int pim_rcv(struct sk_buff *skb) 2233 { 2234 struct pimreghdr *pim; 2235 struct net *net = dev_net(skb->dev); 2236 struct mr_table *mrt; 2237 2238 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2239 goto drop; 2240 2241 pim = (struct pimreghdr *)skb_transport_header(skb); 2242 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) || 2243 (pim->flags & PIM_NULL_REGISTER) || 2244 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2245 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2246 goto drop; 2247 2248 mrt = ipmr_rt_fib_lookup(net, skb); 2249 if (IS_ERR(mrt)) 2250 goto drop; 2251 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2252 drop: 2253 kfree_skb(skb); 2254 } 2255 return 0; 2256 } 2257 #endif 2258 2259 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2260 __be32 saddr, __be32 daddr, 2261 struct rtmsg *rtm, u32 portid) 2262 { 2263 struct mfc_cache *cache; 2264 struct mr_table *mrt; 2265 int err; 2266 2267 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2268 if (!mrt) 2269 return -ENOENT; 2270 2271 rcu_read_lock(); 2272 cache = ipmr_cache_find(mrt, saddr, daddr); 2273 if (!cache && skb->dev) { 2274 int vif = ipmr_find_vif(mrt, skb->dev); 2275 2276 if (vif >= 0) 2277 cache = ipmr_cache_find_any(mrt, daddr, vif); 2278 } 2279 if (!cache) { 2280 struct sk_buff *skb2; 2281 struct iphdr *iph; 2282 struct net_device *dev; 2283 int vif = -1; 2284 2285 dev = skb->dev; 2286 read_lock(&mrt_lock); 2287 if (dev) 2288 vif = ipmr_find_vif(mrt, dev); 2289 if (vif < 0) { 2290 read_unlock(&mrt_lock); 2291 rcu_read_unlock(); 2292 return -ENODEV; 2293 } 2294 2295 skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr)); 2296 if (!skb2) { 2297 read_unlock(&mrt_lock); 2298 rcu_read_unlock(); 2299 return -ENOMEM; 2300 } 2301 2302 NETLINK_CB(skb2).portid = portid; 2303 skb_push(skb2, sizeof(struct iphdr)); 2304 skb_reset_network_header(skb2); 2305 iph = ip_hdr(skb2); 2306 iph->ihl = sizeof(struct iphdr) >> 2; 2307 iph->saddr = saddr; 2308 iph->daddr = daddr; 2309 iph->version = 0; 2310 err = ipmr_cache_unresolved(mrt, vif, skb2, dev); 2311 read_unlock(&mrt_lock); 2312 rcu_read_unlock(); 2313 return err; 2314 } 2315 2316 read_lock(&mrt_lock); 2317 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm); 2318 read_unlock(&mrt_lock); 2319 rcu_read_unlock(); 2320 return err; 2321 } 2322 2323 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2324 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2325 int flags) 2326 { 2327 struct nlmsghdr *nlh; 2328 struct rtmsg *rtm; 2329 int err; 2330 2331 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2332 if (!nlh) 2333 return -EMSGSIZE; 2334 2335 rtm = nlmsg_data(nlh); 2336 rtm->rtm_family = RTNL_FAMILY_IPMR; 2337 rtm->rtm_dst_len = 32; 2338 rtm->rtm_src_len = 32; 2339 rtm->rtm_tos = 0; 2340 rtm->rtm_table = mrt->id; 2341 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2342 goto nla_put_failure; 2343 rtm->rtm_type = RTN_MULTICAST; 2344 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2345 if (c->_c.mfc_flags & MFC_STATIC) 2346 rtm->rtm_protocol = RTPROT_STATIC; 2347 else 2348 rtm->rtm_protocol = RTPROT_MROUTED; 2349 rtm->rtm_flags = 0; 2350 2351 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || 2352 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) 2353 goto nla_put_failure; 2354 err = mr_fill_mroute(mrt, skb, &c->_c, rtm); 2355 /* do not break the dump if cache is unresolved */ 2356 if (err < 0 && err != -ENOENT) 2357 goto nla_put_failure; 2358 2359 nlmsg_end(skb, nlh); 2360 return 0; 2361 2362 nla_put_failure: 2363 nlmsg_cancel(skb, nlh); 2364 return -EMSGSIZE; 2365 } 2366 2367 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2368 u32 portid, u32 seq, struct mr_mfc *c, int cmd, 2369 int flags) 2370 { 2371 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c, 2372 cmd, flags); 2373 } 2374 2375 static size_t mroute_msgsize(bool unresolved, int maxvif) 2376 { 2377 size_t len = 2378 NLMSG_ALIGN(sizeof(struct rtmsg)) 2379 + nla_total_size(4) /* RTA_TABLE */ 2380 + nla_total_size(4) /* RTA_SRC */ 2381 + nla_total_size(4) /* RTA_DST */ 2382 ; 2383 2384 if (!unresolved) 2385 len = len 2386 + nla_total_size(4) /* RTA_IIF */ 2387 + nla_total_size(0) /* RTA_MULTIPATH */ 2388 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2389 /* RTA_MFC_STATS */ 2390 + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) 2391 ; 2392 2393 return len; 2394 } 2395 2396 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2397 int cmd) 2398 { 2399 struct net *net = read_pnet(&mrt->net); 2400 struct sk_buff *skb; 2401 int err = -ENOBUFS; 2402 2403 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS, 2404 mrt->maxvif), 2405 GFP_ATOMIC); 2406 if (!skb) 2407 goto errout; 2408 2409 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2410 if (err < 0) 2411 goto errout; 2412 2413 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2414 return; 2415 2416 errout: 2417 kfree_skb(skb); 2418 if (err < 0) 2419 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2420 } 2421 2422 static size_t igmpmsg_netlink_msgsize(size_t payloadlen) 2423 { 2424 size_t len = 2425 NLMSG_ALIGN(sizeof(struct rtgenmsg)) 2426 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */ 2427 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */ 2428 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */ 2429 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */ 2430 /* IPMRA_CREPORT_PKT */ 2431 + nla_total_size(payloadlen) 2432 ; 2433 2434 return len; 2435 } 2436 2437 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt) 2438 { 2439 struct net *net = read_pnet(&mrt->net); 2440 struct nlmsghdr *nlh; 2441 struct rtgenmsg *rtgenm; 2442 struct igmpmsg *msg; 2443 struct sk_buff *skb; 2444 struct nlattr *nla; 2445 int payloadlen; 2446 2447 payloadlen = pkt->len - sizeof(struct igmpmsg); 2448 msg = (struct igmpmsg *)skb_network_header(pkt); 2449 2450 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC); 2451 if (!skb) 2452 goto errout; 2453 2454 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT, 2455 sizeof(struct rtgenmsg), 0); 2456 if (!nlh) 2457 goto errout; 2458 rtgenm = nlmsg_data(nlh); 2459 rtgenm->rtgen_family = RTNL_FAMILY_IPMR; 2460 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) || 2461 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) || 2462 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR, 2463 msg->im_src.s_addr) || 2464 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR, 2465 msg->im_dst.s_addr)) 2466 goto nla_put_failure; 2467 2468 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen); 2469 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg), 2470 nla_data(nla), payloadlen)) 2471 goto nla_put_failure; 2472 2473 nlmsg_end(skb, nlh); 2474 2475 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC); 2476 return; 2477 2478 nla_put_failure: 2479 nlmsg_cancel(skb, nlh); 2480 errout: 2481 kfree_skb(skb); 2482 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS); 2483 } 2484 2485 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb, 2486 const struct nlmsghdr *nlh, 2487 struct nlattr **tb, 2488 struct netlink_ext_ack *extack) 2489 { 2490 struct rtmsg *rtm; 2491 int i, err; 2492 2493 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { 2494 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request"); 2495 return -EINVAL; 2496 } 2497 2498 if (!netlink_strict_get_check(skb)) 2499 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 2500 rtm_ipv4_policy, extack); 2501 2502 rtm = nlmsg_data(nlh); 2503 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) || 2504 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) || 2505 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol || 2506 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) { 2507 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request"); 2508 return -EINVAL; 2509 } 2510 2511 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, 2512 rtm_ipv4_policy, extack); 2513 if (err) 2514 return err; 2515 2516 if ((tb[RTA_SRC] && !rtm->rtm_src_len) || 2517 (tb[RTA_DST] && !rtm->rtm_dst_len)) { 2518 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4"); 2519 return -EINVAL; 2520 } 2521 2522 for (i = 0; i <= RTA_MAX; i++) { 2523 if (!tb[i]) 2524 continue; 2525 2526 switch (i) { 2527 case RTA_SRC: 2528 case RTA_DST: 2529 case RTA_TABLE: 2530 break; 2531 default: 2532 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request"); 2533 return -EINVAL; 2534 } 2535 } 2536 2537 return 0; 2538 } 2539 2540 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2541 struct netlink_ext_ack *extack) 2542 { 2543 struct net *net = sock_net(in_skb->sk); 2544 struct nlattr *tb[RTA_MAX + 1]; 2545 struct sk_buff *skb = NULL; 2546 struct mfc_cache *cache; 2547 struct mr_table *mrt; 2548 __be32 src, grp; 2549 u32 tableid; 2550 int err; 2551 2552 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack); 2553 if (err < 0) 2554 goto errout; 2555 2556 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0; 2557 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0; 2558 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0; 2559 2560 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT); 2561 if (!mrt) { 2562 err = -ENOENT; 2563 goto errout_free; 2564 } 2565 2566 /* entries are added/deleted only under RTNL */ 2567 rcu_read_lock(); 2568 cache = ipmr_cache_find(mrt, src, grp); 2569 rcu_read_unlock(); 2570 if (!cache) { 2571 err = -ENOENT; 2572 goto errout_free; 2573 } 2574 2575 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL); 2576 if (!skb) { 2577 err = -ENOBUFS; 2578 goto errout_free; 2579 } 2580 2581 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid, 2582 nlh->nlmsg_seq, cache, 2583 RTM_NEWROUTE, 0); 2584 if (err < 0) 2585 goto errout_free; 2586 2587 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 2588 2589 errout: 2590 return err; 2591 2592 errout_free: 2593 kfree_skb(skb); 2594 goto errout; 2595 } 2596 2597 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2598 { 2599 struct fib_dump_filter filter = {}; 2600 int err; 2601 2602 if (cb->strict_check) { 2603 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh, 2604 &filter, cb); 2605 if (err < 0) 2606 return err; 2607 } 2608 2609 if (filter.table_id) { 2610 struct mr_table *mrt; 2611 2612 mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id); 2613 if (!mrt) { 2614 if (filter.dump_all_families) 2615 return skb->len; 2616 2617 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist"); 2618 return -ENOENT; 2619 } 2620 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute, 2621 &mfc_unres_lock, &filter); 2622 return skb->len ? : err; 2623 } 2624 2625 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter, 2626 _ipmr_fill_mroute, &mfc_unres_lock, &filter); 2627 } 2628 2629 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = { 2630 [RTA_SRC] = { .type = NLA_U32 }, 2631 [RTA_DST] = { .type = NLA_U32 }, 2632 [RTA_IIF] = { .type = NLA_U32 }, 2633 [RTA_TABLE] = { .type = NLA_U32 }, 2634 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 2635 }; 2636 2637 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol) 2638 { 2639 switch (rtm_protocol) { 2640 case RTPROT_STATIC: 2641 case RTPROT_MROUTED: 2642 return true; 2643 } 2644 return false; 2645 } 2646 2647 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc) 2648 { 2649 struct rtnexthop *rtnh = nla_data(nla); 2650 int remaining = nla_len(nla), vifi = 0; 2651 2652 while (rtnh_ok(rtnh, remaining)) { 2653 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops; 2654 if (++vifi == MAXVIFS) 2655 break; 2656 rtnh = rtnh_next(rtnh, &remaining); 2657 } 2658 2659 return remaining > 0 ? -EINVAL : vifi; 2660 } 2661 2662 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */ 2663 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh, 2664 struct mfcctl *mfcc, int *mrtsock, 2665 struct mr_table **mrtret, 2666 struct netlink_ext_ack *extack) 2667 { 2668 struct net_device *dev = NULL; 2669 u32 tblid = RT_TABLE_DEFAULT; 2670 struct mr_table *mrt; 2671 struct nlattr *attr; 2672 struct rtmsg *rtm; 2673 int ret, rem; 2674 2675 ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX, 2676 rtm_ipmr_policy, extack); 2677 if (ret < 0) 2678 goto out; 2679 rtm = nlmsg_data(nlh); 2680 2681 ret = -EINVAL; 2682 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 || 2683 rtm->rtm_type != RTN_MULTICAST || 2684 rtm->rtm_scope != RT_SCOPE_UNIVERSE || 2685 !ipmr_rtm_validate_proto(rtm->rtm_protocol)) 2686 goto out; 2687 2688 memset(mfcc, 0, sizeof(*mfcc)); 2689 mfcc->mfcc_parent = -1; 2690 ret = 0; 2691 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) { 2692 switch (nla_type(attr)) { 2693 case RTA_SRC: 2694 mfcc->mfcc_origin.s_addr = nla_get_be32(attr); 2695 break; 2696 case RTA_DST: 2697 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr); 2698 break; 2699 case RTA_IIF: 2700 dev = __dev_get_by_index(net, nla_get_u32(attr)); 2701 if (!dev) { 2702 ret = -ENODEV; 2703 goto out; 2704 } 2705 break; 2706 case RTA_MULTIPATH: 2707 if (ipmr_nla_get_ttls(attr, mfcc) < 0) { 2708 ret = -EINVAL; 2709 goto out; 2710 } 2711 break; 2712 case RTA_PREFSRC: 2713 ret = 1; 2714 break; 2715 case RTA_TABLE: 2716 tblid = nla_get_u32(attr); 2717 break; 2718 } 2719 } 2720 mrt = ipmr_get_table(net, tblid); 2721 if (!mrt) { 2722 ret = -ENOENT; 2723 goto out; 2724 } 2725 *mrtret = mrt; 2726 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0; 2727 if (dev) 2728 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev); 2729 2730 out: 2731 return ret; 2732 } 2733 2734 /* takes care of both newroute and delroute */ 2735 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh, 2736 struct netlink_ext_ack *extack) 2737 { 2738 struct net *net = sock_net(skb->sk); 2739 int ret, mrtsock, parent; 2740 struct mr_table *tbl; 2741 struct mfcctl mfcc; 2742 2743 mrtsock = 0; 2744 tbl = NULL; 2745 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack); 2746 if (ret < 0) 2747 return ret; 2748 2749 parent = ret ? mfcc.mfcc_parent : -1; 2750 if (nlh->nlmsg_type == RTM_NEWROUTE) 2751 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent); 2752 else 2753 return ipmr_mfc_delete(tbl, &mfcc, parent); 2754 } 2755 2756 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb) 2757 { 2758 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len); 2759 2760 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) || 2761 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) || 2762 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM, 2763 mrt->mroute_reg_vif_num) || 2764 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT, 2765 mrt->mroute_do_assert) || 2766 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) || 2767 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE, 2768 mrt->mroute_do_wrvifwhole)) 2769 return false; 2770 2771 return true; 2772 } 2773 2774 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb) 2775 { 2776 struct nlattr *vif_nest; 2777 struct vif_device *vif; 2778 2779 /* if the VIF doesn't exist just continue */ 2780 if (!VIF_EXISTS(mrt, vifid)) 2781 return true; 2782 2783 vif = &mrt->vif_table[vifid]; 2784 vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF); 2785 if (!vif_nest) 2786 return false; 2787 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) || 2788 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) || 2789 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) || 2790 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in, 2791 IPMRA_VIFA_PAD) || 2792 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out, 2793 IPMRA_VIFA_PAD) || 2794 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in, 2795 IPMRA_VIFA_PAD) || 2796 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out, 2797 IPMRA_VIFA_PAD) || 2798 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) || 2799 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) { 2800 nla_nest_cancel(skb, vif_nest); 2801 return false; 2802 } 2803 nla_nest_end(skb, vif_nest); 2804 2805 return true; 2806 } 2807 2808 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh, 2809 struct netlink_ext_ack *extack) 2810 { 2811 struct ifinfomsg *ifm; 2812 2813 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) { 2814 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump"); 2815 return -EINVAL; 2816 } 2817 2818 if (nlmsg_attrlen(nlh, sizeof(*ifm))) { 2819 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump"); 2820 return -EINVAL; 2821 } 2822 2823 ifm = nlmsg_data(nlh); 2824 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags || 2825 ifm->ifi_change || ifm->ifi_index) { 2826 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request"); 2827 return -EINVAL; 2828 } 2829 2830 return 0; 2831 } 2832 2833 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb) 2834 { 2835 struct net *net = sock_net(skb->sk); 2836 struct nlmsghdr *nlh = NULL; 2837 unsigned int t = 0, s_t; 2838 unsigned int e = 0, s_e; 2839 struct mr_table *mrt; 2840 2841 if (cb->strict_check) { 2842 int err = ipmr_valid_dumplink(cb->nlh, cb->extack); 2843 2844 if (err < 0) 2845 return err; 2846 } 2847 2848 s_t = cb->args[0]; 2849 s_e = cb->args[1]; 2850 2851 ipmr_for_each_table(mrt, net) { 2852 struct nlattr *vifs, *af; 2853 struct ifinfomsg *hdr; 2854 u32 i; 2855 2856 if (t < s_t) 2857 goto skip_table; 2858 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, 2859 cb->nlh->nlmsg_seq, RTM_NEWLINK, 2860 sizeof(*hdr), NLM_F_MULTI); 2861 if (!nlh) 2862 break; 2863 2864 hdr = nlmsg_data(nlh); 2865 memset(hdr, 0, sizeof(*hdr)); 2866 hdr->ifi_family = RTNL_FAMILY_IPMR; 2867 2868 af = nla_nest_start_noflag(skb, IFLA_AF_SPEC); 2869 if (!af) { 2870 nlmsg_cancel(skb, nlh); 2871 goto out; 2872 } 2873 2874 if (!ipmr_fill_table(mrt, skb)) { 2875 nlmsg_cancel(skb, nlh); 2876 goto out; 2877 } 2878 2879 vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS); 2880 if (!vifs) { 2881 nla_nest_end(skb, af); 2882 nlmsg_end(skb, nlh); 2883 goto out; 2884 } 2885 for (i = 0; i < mrt->maxvif; i++) { 2886 if (e < s_e) 2887 goto skip_entry; 2888 if (!ipmr_fill_vif(mrt, i, skb)) { 2889 nla_nest_end(skb, vifs); 2890 nla_nest_end(skb, af); 2891 nlmsg_end(skb, nlh); 2892 goto out; 2893 } 2894 skip_entry: 2895 e++; 2896 } 2897 s_e = 0; 2898 e = 0; 2899 nla_nest_end(skb, vifs); 2900 nla_nest_end(skb, af); 2901 nlmsg_end(skb, nlh); 2902 skip_table: 2903 t++; 2904 } 2905 2906 out: 2907 cb->args[1] = e; 2908 cb->args[0] = t; 2909 2910 return skb->len; 2911 } 2912 2913 #ifdef CONFIG_PROC_FS 2914 /* The /proc interfaces to multicast routing : 2915 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2916 */ 2917 2918 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2919 __acquires(mrt_lock) 2920 { 2921 struct mr_vif_iter *iter = seq->private; 2922 struct net *net = seq_file_net(seq); 2923 struct mr_table *mrt; 2924 2925 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2926 if (!mrt) 2927 return ERR_PTR(-ENOENT); 2928 2929 iter->mrt = mrt; 2930 2931 read_lock(&mrt_lock); 2932 return mr_vif_seq_start(seq, pos); 2933 } 2934 2935 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2936 __releases(mrt_lock) 2937 { 2938 read_unlock(&mrt_lock); 2939 } 2940 2941 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2942 { 2943 struct mr_vif_iter *iter = seq->private; 2944 struct mr_table *mrt = iter->mrt; 2945 2946 if (v == SEQ_START_TOKEN) { 2947 seq_puts(seq, 2948 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2949 } else { 2950 const struct vif_device *vif = v; 2951 const char *name = vif->dev ? 2952 vif->dev->name : "none"; 2953 2954 seq_printf(seq, 2955 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2956 vif - mrt->vif_table, 2957 name, vif->bytes_in, vif->pkt_in, 2958 vif->bytes_out, vif->pkt_out, 2959 vif->flags, vif->local, vif->remote); 2960 } 2961 return 0; 2962 } 2963 2964 static const struct seq_operations ipmr_vif_seq_ops = { 2965 .start = ipmr_vif_seq_start, 2966 .next = mr_vif_seq_next, 2967 .stop = ipmr_vif_seq_stop, 2968 .show = ipmr_vif_seq_show, 2969 }; 2970 2971 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2972 { 2973 struct net *net = seq_file_net(seq); 2974 struct mr_table *mrt; 2975 2976 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2977 if (!mrt) 2978 return ERR_PTR(-ENOENT); 2979 2980 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock); 2981 } 2982 2983 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2984 { 2985 int n; 2986 2987 if (v == SEQ_START_TOKEN) { 2988 seq_puts(seq, 2989 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2990 } else { 2991 const struct mfc_cache *mfc = v; 2992 const struct mr_mfc_iter *it = seq->private; 2993 const struct mr_table *mrt = it->mrt; 2994 2995 seq_printf(seq, "%08X %08X %-3hd", 2996 (__force u32) mfc->mfc_mcastgrp, 2997 (__force u32) mfc->mfc_origin, 2998 mfc->_c.mfc_parent); 2999 3000 if (it->cache != &mrt->mfc_unres_queue) { 3001 seq_printf(seq, " %8lu %8lu %8lu", 3002 mfc->_c.mfc_un.res.pkt, 3003 mfc->_c.mfc_un.res.bytes, 3004 mfc->_c.mfc_un.res.wrong_if); 3005 for (n = mfc->_c.mfc_un.res.minvif; 3006 n < mfc->_c.mfc_un.res.maxvif; n++) { 3007 if (VIF_EXISTS(mrt, n) && 3008 mfc->_c.mfc_un.res.ttls[n] < 255) 3009 seq_printf(seq, 3010 " %2d:%-3d", 3011 n, mfc->_c.mfc_un.res.ttls[n]); 3012 } 3013 } else { 3014 /* unresolved mfc_caches don't contain 3015 * pkt, bytes and wrong_if values 3016 */ 3017 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 3018 } 3019 seq_putc(seq, '\n'); 3020 } 3021 return 0; 3022 } 3023 3024 static const struct seq_operations ipmr_mfc_seq_ops = { 3025 .start = ipmr_mfc_seq_start, 3026 .next = mr_mfc_seq_next, 3027 .stop = mr_mfc_seq_stop, 3028 .show = ipmr_mfc_seq_show, 3029 }; 3030 #endif 3031 3032 #ifdef CONFIG_IP_PIMSM_V2 3033 static const struct net_protocol pim_protocol = { 3034 .handler = pim_rcv, 3035 .netns_ok = 1, 3036 }; 3037 #endif 3038 3039 static unsigned int ipmr_seq_read(struct net *net) 3040 { 3041 ASSERT_RTNL(); 3042 3043 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net); 3044 } 3045 3046 static int ipmr_dump(struct net *net, struct notifier_block *nb, 3047 struct netlink_ext_ack *extack) 3048 { 3049 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump, 3050 ipmr_mr_table_iter, &mrt_lock, extack); 3051 } 3052 3053 static const struct fib_notifier_ops ipmr_notifier_ops_template = { 3054 .family = RTNL_FAMILY_IPMR, 3055 .fib_seq_read = ipmr_seq_read, 3056 .fib_dump = ipmr_dump, 3057 .owner = THIS_MODULE, 3058 }; 3059 3060 static int __net_init ipmr_notifier_init(struct net *net) 3061 { 3062 struct fib_notifier_ops *ops; 3063 3064 net->ipv4.ipmr_seq = 0; 3065 3066 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net); 3067 if (IS_ERR(ops)) 3068 return PTR_ERR(ops); 3069 net->ipv4.ipmr_notifier_ops = ops; 3070 3071 return 0; 3072 } 3073 3074 static void __net_exit ipmr_notifier_exit(struct net *net) 3075 { 3076 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops); 3077 net->ipv4.ipmr_notifier_ops = NULL; 3078 } 3079 3080 /* Setup for IP multicast routing */ 3081 static int __net_init ipmr_net_init(struct net *net) 3082 { 3083 int err; 3084 3085 err = ipmr_notifier_init(net); 3086 if (err) 3087 goto ipmr_notifier_fail; 3088 3089 err = ipmr_rules_init(net); 3090 if (err < 0) 3091 goto ipmr_rules_fail; 3092 3093 #ifdef CONFIG_PROC_FS 3094 err = -ENOMEM; 3095 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops, 3096 sizeof(struct mr_vif_iter))) 3097 goto proc_vif_fail; 3098 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops, 3099 sizeof(struct mr_mfc_iter))) 3100 goto proc_cache_fail; 3101 #endif 3102 return 0; 3103 3104 #ifdef CONFIG_PROC_FS 3105 proc_cache_fail: 3106 remove_proc_entry("ip_mr_vif", net->proc_net); 3107 proc_vif_fail: 3108 ipmr_rules_exit(net); 3109 #endif 3110 ipmr_rules_fail: 3111 ipmr_notifier_exit(net); 3112 ipmr_notifier_fail: 3113 return err; 3114 } 3115 3116 static void __net_exit ipmr_net_exit(struct net *net) 3117 { 3118 #ifdef CONFIG_PROC_FS 3119 remove_proc_entry("ip_mr_cache", net->proc_net); 3120 remove_proc_entry("ip_mr_vif", net->proc_net); 3121 #endif 3122 ipmr_notifier_exit(net); 3123 ipmr_rules_exit(net); 3124 } 3125 3126 static struct pernet_operations ipmr_net_ops = { 3127 .init = ipmr_net_init, 3128 .exit = ipmr_net_exit, 3129 }; 3130 3131 int __init ip_mr_init(void) 3132 { 3133 int err; 3134 3135 mrt_cachep = kmem_cache_create("ip_mrt_cache", 3136 sizeof(struct mfc_cache), 3137 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 3138 NULL); 3139 3140 err = register_pernet_subsys(&ipmr_net_ops); 3141 if (err) 3142 goto reg_pernet_fail; 3143 3144 err = register_netdevice_notifier(&ip_mr_notifier); 3145 if (err) 3146 goto reg_notif_fail; 3147 #ifdef CONFIG_IP_PIMSM_V2 3148 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 3149 pr_err("%s: can't add PIM protocol\n", __func__); 3150 err = -EAGAIN; 3151 goto add_proto_fail; 3152 } 3153 #endif 3154 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 3155 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0); 3156 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE, 3157 ipmr_rtm_route, NULL, 0); 3158 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE, 3159 ipmr_rtm_route, NULL, 0); 3160 3161 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK, 3162 NULL, ipmr_rtm_dumplink, 0); 3163 return 0; 3164 3165 #ifdef CONFIG_IP_PIMSM_V2 3166 add_proto_fail: 3167 unregister_netdevice_notifier(&ip_mr_notifier); 3168 #endif 3169 reg_notif_fail: 3170 unregister_pernet_subsys(&ipmr_net_ops); 3171 reg_pernet_fail: 3172 kmem_cache_destroy(mrt_cachep); 3173 return err; 3174 } 3175