xref: /openbmc/linux/net/ipv4/ipmr.c (revision 1ab142d4)
1 /*
2  *	IP multicast routing support for mrouted 3.6/3.8
3  *
4  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *	  Linux Consultancy and Custom Driver Development
6  *
7  *	This program is free software; you can redistribute it and/or
8  *	modify it under the terms of the GNU General Public License
9  *	as published by the Free Software Foundation; either version
10  *	2 of the License, or (at your option) any later version.
11  *
12  *	Fixes:
13  *	Michael Chastain	:	Incorrect size of copying.
14  *	Alan Cox		:	Added the cache manager code
15  *	Alan Cox		:	Fixed the clone/copy bug and device race.
16  *	Mike McLagan		:	Routing by source
17  *	Malcolm Beattie		:	Buffer handling fixes.
18  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
19  *	SVR Anand		:	Fixed several multicast bugs and problems.
20  *	Alexey Kuznetsov	:	Status, optimisations and more.
21  *	Brad Parker		:	Better behaviour on mrouted upcall
22  *					overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
25  *					Relax this requirement to work with older peers.
26  *
27  */
28 
29 #include <asm/system.h>
30 #include <asm/uaccess.h>
31 #include <linux/types.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/timer.h>
35 #include <linux/mm.h>
36 #include <linux/kernel.h>
37 #include <linux/fcntl.h>
38 #include <linux/stat.h>
39 #include <linux/socket.h>
40 #include <linux/in.h>
41 #include <linux/inet.h>
42 #include <linux/netdevice.h>
43 #include <linux/inetdevice.h>
44 #include <linux/igmp.h>
45 #include <linux/proc_fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/mroute.h>
48 #include <linux/init.h>
49 #include <linux/if_ether.h>
50 #include <linux/slab.h>
51 #include <net/net_namespace.h>
52 #include <net/ip.h>
53 #include <net/protocol.h>
54 #include <linux/skbuff.h>
55 #include <net/route.h>
56 #include <net/sock.h>
57 #include <net/icmp.h>
58 #include <net/udp.h>
59 #include <net/raw.h>
60 #include <linux/notifier.h>
61 #include <linux/if_arp.h>
62 #include <linux/netfilter_ipv4.h>
63 #include <linux/compat.h>
64 #include <linux/export.h>
65 #include <net/ipip.h>
66 #include <net/checksum.h>
67 #include <net/netlink.h>
68 #include <net/fib_rules.h>
69 
70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
71 #define CONFIG_IP_PIMSM	1
72 #endif
73 
74 struct mr_table {
75 	struct list_head	list;
76 #ifdef CONFIG_NET_NS
77 	struct net		*net;
78 #endif
79 	u32			id;
80 	struct sock __rcu	*mroute_sk;
81 	struct timer_list	ipmr_expire_timer;
82 	struct list_head	mfc_unres_queue;
83 	struct list_head	mfc_cache_array[MFC_LINES];
84 	struct vif_device	vif_table[MAXVIFS];
85 	int			maxvif;
86 	atomic_t		cache_resolve_queue_len;
87 	int			mroute_do_assert;
88 	int			mroute_do_pim;
89 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
90 	int			mroute_reg_vif_num;
91 #endif
92 };
93 
94 struct ipmr_rule {
95 	struct fib_rule		common;
96 };
97 
98 struct ipmr_result {
99 	struct mr_table		*mrt;
100 };
101 
102 /* Big lock, protecting vif table, mrt cache and mroute socket state.
103  * Note that the changes are semaphored via rtnl_lock.
104  */
105 
106 static DEFINE_RWLOCK(mrt_lock);
107 
108 /*
109  *	Multicast router control variables
110  */
111 
112 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
113 
114 /* Special spinlock for queue of unresolved entries */
115 static DEFINE_SPINLOCK(mfc_unres_lock);
116 
117 /* We return to original Alan's scheme. Hash table of resolved
118  * entries is changed only in process context and protected
119  * with weak lock mrt_lock. Queue of unresolved entries is protected
120  * with strong spinlock mfc_unres_lock.
121  *
122  * In this case data path is free of exclusive locks at all.
123  */
124 
125 static struct kmem_cache *mrt_cachep __read_mostly;
126 
127 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
128 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
129 			 struct sk_buff *skb, struct mfc_cache *cache,
130 			 int local);
131 static int ipmr_cache_report(struct mr_table *mrt,
132 			     struct sk_buff *pkt, vifi_t vifi, int assert);
133 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
134 			      struct mfc_cache *c, struct rtmsg *rtm);
135 static void ipmr_expire_process(unsigned long arg);
136 
137 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
138 #define ipmr_for_each_table(mrt, net) \
139 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
140 
141 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
142 {
143 	struct mr_table *mrt;
144 
145 	ipmr_for_each_table(mrt, net) {
146 		if (mrt->id == id)
147 			return mrt;
148 	}
149 	return NULL;
150 }
151 
152 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
153 			   struct mr_table **mrt)
154 {
155 	struct ipmr_result res;
156 	struct fib_lookup_arg arg = { .result = &res, };
157 	int err;
158 
159 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
160 			       flowi4_to_flowi(flp4), 0, &arg);
161 	if (err < 0)
162 		return err;
163 	*mrt = res.mrt;
164 	return 0;
165 }
166 
167 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
168 			    int flags, struct fib_lookup_arg *arg)
169 {
170 	struct ipmr_result *res = arg->result;
171 	struct mr_table *mrt;
172 
173 	switch (rule->action) {
174 	case FR_ACT_TO_TBL:
175 		break;
176 	case FR_ACT_UNREACHABLE:
177 		return -ENETUNREACH;
178 	case FR_ACT_PROHIBIT:
179 		return -EACCES;
180 	case FR_ACT_BLACKHOLE:
181 	default:
182 		return -EINVAL;
183 	}
184 
185 	mrt = ipmr_get_table(rule->fr_net, rule->table);
186 	if (mrt == NULL)
187 		return -EAGAIN;
188 	res->mrt = mrt;
189 	return 0;
190 }
191 
192 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
193 {
194 	return 1;
195 }
196 
197 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
198 	FRA_GENERIC_POLICY,
199 };
200 
201 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
202 			       struct fib_rule_hdr *frh, struct nlattr **tb)
203 {
204 	return 0;
205 }
206 
207 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
208 			     struct nlattr **tb)
209 {
210 	return 1;
211 }
212 
213 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
214 			  struct fib_rule_hdr *frh)
215 {
216 	frh->dst_len = 0;
217 	frh->src_len = 0;
218 	frh->tos     = 0;
219 	return 0;
220 }
221 
222 static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
223 	.family		= RTNL_FAMILY_IPMR,
224 	.rule_size	= sizeof(struct ipmr_rule),
225 	.addr_size	= sizeof(u32),
226 	.action		= ipmr_rule_action,
227 	.match		= ipmr_rule_match,
228 	.configure	= ipmr_rule_configure,
229 	.compare	= ipmr_rule_compare,
230 	.default_pref	= fib_default_rule_pref,
231 	.fill		= ipmr_rule_fill,
232 	.nlgroup	= RTNLGRP_IPV4_RULE,
233 	.policy		= ipmr_rule_policy,
234 	.owner		= THIS_MODULE,
235 };
236 
237 static int __net_init ipmr_rules_init(struct net *net)
238 {
239 	struct fib_rules_ops *ops;
240 	struct mr_table *mrt;
241 	int err;
242 
243 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
244 	if (IS_ERR(ops))
245 		return PTR_ERR(ops);
246 
247 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
248 
249 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
250 	if (mrt == NULL) {
251 		err = -ENOMEM;
252 		goto err1;
253 	}
254 
255 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
256 	if (err < 0)
257 		goto err2;
258 
259 	net->ipv4.mr_rules_ops = ops;
260 	return 0;
261 
262 err2:
263 	kfree(mrt);
264 err1:
265 	fib_rules_unregister(ops);
266 	return err;
267 }
268 
269 static void __net_exit ipmr_rules_exit(struct net *net)
270 {
271 	struct mr_table *mrt, *next;
272 
273 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
274 		list_del(&mrt->list);
275 		kfree(mrt);
276 	}
277 	fib_rules_unregister(net->ipv4.mr_rules_ops);
278 }
279 #else
280 #define ipmr_for_each_table(mrt, net) \
281 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
282 
283 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
284 {
285 	return net->ipv4.mrt;
286 }
287 
288 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
289 			   struct mr_table **mrt)
290 {
291 	*mrt = net->ipv4.mrt;
292 	return 0;
293 }
294 
295 static int __net_init ipmr_rules_init(struct net *net)
296 {
297 	net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
298 	return net->ipv4.mrt ? 0 : -ENOMEM;
299 }
300 
301 static void __net_exit ipmr_rules_exit(struct net *net)
302 {
303 	kfree(net->ipv4.mrt);
304 }
305 #endif
306 
307 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
308 {
309 	struct mr_table *mrt;
310 	unsigned int i;
311 
312 	mrt = ipmr_get_table(net, id);
313 	if (mrt != NULL)
314 		return mrt;
315 
316 	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
317 	if (mrt == NULL)
318 		return NULL;
319 	write_pnet(&mrt->net, net);
320 	mrt->id = id;
321 
322 	/* Forwarding cache */
323 	for (i = 0; i < MFC_LINES; i++)
324 		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
325 
326 	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
327 
328 	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
329 		    (unsigned long)mrt);
330 
331 #ifdef CONFIG_IP_PIMSM
332 	mrt->mroute_reg_vif_num = -1;
333 #endif
334 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
335 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
336 #endif
337 	return mrt;
338 }
339 
340 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
341 
342 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
343 {
344 	struct net *net = dev_net(dev);
345 
346 	dev_close(dev);
347 
348 	dev = __dev_get_by_name(net, "tunl0");
349 	if (dev) {
350 		const struct net_device_ops *ops = dev->netdev_ops;
351 		struct ifreq ifr;
352 		struct ip_tunnel_parm p;
353 
354 		memset(&p, 0, sizeof(p));
355 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
356 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
357 		p.iph.version = 4;
358 		p.iph.ihl = 5;
359 		p.iph.protocol = IPPROTO_IPIP;
360 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
361 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
362 
363 		if (ops->ndo_do_ioctl) {
364 			mm_segment_t oldfs = get_fs();
365 
366 			set_fs(KERNEL_DS);
367 			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
368 			set_fs(oldfs);
369 		}
370 	}
371 }
372 
373 static
374 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
375 {
376 	struct net_device  *dev;
377 
378 	dev = __dev_get_by_name(net, "tunl0");
379 
380 	if (dev) {
381 		const struct net_device_ops *ops = dev->netdev_ops;
382 		int err;
383 		struct ifreq ifr;
384 		struct ip_tunnel_parm p;
385 		struct in_device  *in_dev;
386 
387 		memset(&p, 0, sizeof(p));
388 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
389 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
390 		p.iph.version = 4;
391 		p.iph.ihl = 5;
392 		p.iph.protocol = IPPROTO_IPIP;
393 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
394 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
395 
396 		if (ops->ndo_do_ioctl) {
397 			mm_segment_t oldfs = get_fs();
398 
399 			set_fs(KERNEL_DS);
400 			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
401 			set_fs(oldfs);
402 		} else {
403 			err = -EOPNOTSUPP;
404 		}
405 		dev = NULL;
406 
407 		if (err == 0 &&
408 		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
409 			dev->flags |= IFF_MULTICAST;
410 
411 			in_dev = __in_dev_get_rtnl(dev);
412 			if (in_dev == NULL)
413 				goto failure;
414 
415 			ipv4_devconf_setall(in_dev);
416 			IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
417 
418 			if (dev_open(dev))
419 				goto failure;
420 			dev_hold(dev);
421 		}
422 	}
423 	return dev;
424 
425 failure:
426 	/* allow the register to be completed before unregistering. */
427 	rtnl_unlock();
428 	rtnl_lock();
429 
430 	unregister_netdevice(dev);
431 	return NULL;
432 }
433 
434 #ifdef CONFIG_IP_PIMSM
435 
436 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
437 {
438 	struct net *net = dev_net(dev);
439 	struct mr_table *mrt;
440 	struct flowi4 fl4 = {
441 		.flowi4_oif	= dev->ifindex,
442 		.flowi4_iif	= skb->skb_iif,
443 		.flowi4_mark	= skb->mark,
444 	};
445 	int err;
446 
447 	err = ipmr_fib_lookup(net, &fl4, &mrt);
448 	if (err < 0) {
449 		kfree_skb(skb);
450 		return err;
451 	}
452 
453 	read_lock(&mrt_lock);
454 	dev->stats.tx_bytes += skb->len;
455 	dev->stats.tx_packets++;
456 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
457 	read_unlock(&mrt_lock);
458 	kfree_skb(skb);
459 	return NETDEV_TX_OK;
460 }
461 
462 static const struct net_device_ops reg_vif_netdev_ops = {
463 	.ndo_start_xmit	= reg_vif_xmit,
464 };
465 
466 static void reg_vif_setup(struct net_device *dev)
467 {
468 	dev->type		= ARPHRD_PIMREG;
469 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
470 	dev->flags		= IFF_NOARP;
471 	dev->netdev_ops		= &reg_vif_netdev_ops,
472 	dev->destructor		= free_netdev;
473 	dev->features		|= NETIF_F_NETNS_LOCAL;
474 }
475 
476 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
477 {
478 	struct net_device *dev;
479 	struct in_device *in_dev;
480 	char name[IFNAMSIZ];
481 
482 	if (mrt->id == RT_TABLE_DEFAULT)
483 		sprintf(name, "pimreg");
484 	else
485 		sprintf(name, "pimreg%u", mrt->id);
486 
487 	dev = alloc_netdev(0, name, reg_vif_setup);
488 
489 	if (dev == NULL)
490 		return NULL;
491 
492 	dev_net_set(dev, net);
493 
494 	if (register_netdevice(dev)) {
495 		free_netdev(dev);
496 		return NULL;
497 	}
498 	dev->iflink = 0;
499 
500 	rcu_read_lock();
501 	in_dev = __in_dev_get_rcu(dev);
502 	if (!in_dev) {
503 		rcu_read_unlock();
504 		goto failure;
505 	}
506 
507 	ipv4_devconf_setall(in_dev);
508 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
509 	rcu_read_unlock();
510 
511 	if (dev_open(dev))
512 		goto failure;
513 
514 	dev_hold(dev);
515 
516 	return dev;
517 
518 failure:
519 	/* allow the register to be completed before unregistering. */
520 	rtnl_unlock();
521 	rtnl_lock();
522 
523 	unregister_netdevice(dev);
524 	return NULL;
525 }
526 #endif
527 
528 /*
529  *	Delete a VIF entry
530  *	@notify: Set to 1, if the caller is a notifier_call
531  */
532 
533 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
534 		      struct list_head *head)
535 {
536 	struct vif_device *v;
537 	struct net_device *dev;
538 	struct in_device *in_dev;
539 
540 	if (vifi < 0 || vifi >= mrt->maxvif)
541 		return -EADDRNOTAVAIL;
542 
543 	v = &mrt->vif_table[vifi];
544 
545 	write_lock_bh(&mrt_lock);
546 	dev = v->dev;
547 	v->dev = NULL;
548 
549 	if (!dev) {
550 		write_unlock_bh(&mrt_lock);
551 		return -EADDRNOTAVAIL;
552 	}
553 
554 #ifdef CONFIG_IP_PIMSM
555 	if (vifi == mrt->mroute_reg_vif_num)
556 		mrt->mroute_reg_vif_num = -1;
557 #endif
558 
559 	if (vifi + 1 == mrt->maxvif) {
560 		int tmp;
561 
562 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
563 			if (VIF_EXISTS(mrt, tmp))
564 				break;
565 		}
566 		mrt->maxvif = tmp+1;
567 	}
568 
569 	write_unlock_bh(&mrt_lock);
570 
571 	dev_set_allmulti(dev, -1);
572 
573 	in_dev = __in_dev_get_rtnl(dev);
574 	if (in_dev) {
575 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
576 		ip_rt_multicast_event(in_dev);
577 	}
578 
579 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
580 		unregister_netdevice_queue(dev, head);
581 
582 	dev_put(dev);
583 	return 0;
584 }
585 
586 static void ipmr_cache_free_rcu(struct rcu_head *head)
587 {
588 	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
589 
590 	kmem_cache_free(mrt_cachep, c);
591 }
592 
593 static inline void ipmr_cache_free(struct mfc_cache *c)
594 {
595 	call_rcu(&c->rcu, ipmr_cache_free_rcu);
596 }
597 
598 /* Destroy an unresolved cache entry, killing queued skbs
599  * and reporting error to netlink readers.
600  */
601 
602 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
603 {
604 	struct net *net = read_pnet(&mrt->net);
605 	struct sk_buff *skb;
606 	struct nlmsgerr *e;
607 
608 	atomic_dec(&mrt->cache_resolve_queue_len);
609 
610 	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
611 		if (ip_hdr(skb)->version == 0) {
612 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
613 			nlh->nlmsg_type = NLMSG_ERROR;
614 			nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
615 			skb_trim(skb, nlh->nlmsg_len);
616 			e = NLMSG_DATA(nlh);
617 			e->error = -ETIMEDOUT;
618 			memset(&e->msg, 0, sizeof(e->msg));
619 
620 			rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
621 		} else {
622 			kfree_skb(skb);
623 		}
624 	}
625 
626 	ipmr_cache_free(c);
627 }
628 
629 
630 /* Timer process for the unresolved queue. */
631 
632 static void ipmr_expire_process(unsigned long arg)
633 {
634 	struct mr_table *mrt = (struct mr_table *)arg;
635 	unsigned long now;
636 	unsigned long expires;
637 	struct mfc_cache *c, *next;
638 
639 	if (!spin_trylock(&mfc_unres_lock)) {
640 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
641 		return;
642 	}
643 
644 	if (list_empty(&mrt->mfc_unres_queue))
645 		goto out;
646 
647 	now = jiffies;
648 	expires = 10*HZ;
649 
650 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
651 		if (time_after(c->mfc_un.unres.expires, now)) {
652 			unsigned long interval = c->mfc_un.unres.expires - now;
653 			if (interval < expires)
654 				expires = interval;
655 			continue;
656 		}
657 
658 		list_del(&c->list);
659 		ipmr_destroy_unres(mrt, c);
660 	}
661 
662 	if (!list_empty(&mrt->mfc_unres_queue))
663 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
664 
665 out:
666 	spin_unlock(&mfc_unres_lock);
667 }
668 
669 /* Fill oifs list. It is called under write locked mrt_lock. */
670 
671 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
672 				   unsigned char *ttls)
673 {
674 	int vifi;
675 
676 	cache->mfc_un.res.minvif = MAXVIFS;
677 	cache->mfc_un.res.maxvif = 0;
678 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
679 
680 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
681 		if (VIF_EXISTS(mrt, vifi) &&
682 		    ttls[vifi] && ttls[vifi] < 255) {
683 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
684 			if (cache->mfc_un.res.minvif > vifi)
685 				cache->mfc_un.res.minvif = vifi;
686 			if (cache->mfc_un.res.maxvif <= vifi)
687 				cache->mfc_un.res.maxvif = vifi + 1;
688 		}
689 	}
690 }
691 
692 static int vif_add(struct net *net, struct mr_table *mrt,
693 		   struct vifctl *vifc, int mrtsock)
694 {
695 	int vifi = vifc->vifc_vifi;
696 	struct vif_device *v = &mrt->vif_table[vifi];
697 	struct net_device *dev;
698 	struct in_device *in_dev;
699 	int err;
700 
701 	/* Is vif busy ? */
702 	if (VIF_EXISTS(mrt, vifi))
703 		return -EADDRINUSE;
704 
705 	switch (vifc->vifc_flags) {
706 #ifdef CONFIG_IP_PIMSM
707 	case VIFF_REGISTER:
708 		/*
709 		 * Special Purpose VIF in PIM
710 		 * All the packets will be sent to the daemon
711 		 */
712 		if (mrt->mroute_reg_vif_num >= 0)
713 			return -EADDRINUSE;
714 		dev = ipmr_reg_vif(net, mrt);
715 		if (!dev)
716 			return -ENOBUFS;
717 		err = dev_set_allmulti(dev, 1);
718 		if (err) {
719 			unregister_netdevice(dev);
720 			dev_put(dev);
721 			return err;
722 		}
723 		break;
724 #endif
725 	case VIFF_TUNNEL:
726 		dev = ipmr_new_tunnel(net, vifc);
727 		if (!dev)
728 			return -ENOBUFS;
729 		err = dev_set_allmulti(dev, 1);
730 		if (err) {
731 			ipmr_del_tunnel(dev, vifc);
732 			dev_put(dev);
733 			return err;
734 		}
735 		break;
736 
737 	case VIFF_USE_IFINDEX:
738 	case 0:
739 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
740 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
741 			if (dev && __in_dev_get_rtnl(dev) == NULL) {
742 				dev_put(dev);
743 				return -EADDRNOTAVAIL;
744 			}
745 		} else {
746 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
747 		}
748 		if (!dev)
749 			return -EADDRNOTAVAIL;
750 		err = dev_set_allmulti(dev, 1);
751 		if (err) {
752 			dev_put(dev);
753 			return err;
754 		}
755 		break;
756 	default:
757 		return -EINVAL;
758 	}
759 
760 	in_dev = __in_dev_get_rtnl(dev);
761 	if (!in_dev) {
762 		dev_put(dev);
763 		return -EADDRNOTAVAIL;
764 	}
765 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
766 	ip_rt_multicast_event(in_dev);
767 
768 	/* Fill in the VIF structures */
769 
770 	v->rate_limit = vifc->vifc_rate_limit;
771 	v->local = vifc->vifc_lcl_addr.s_addr;
772 	v->remote = vifc->vifc_rmt_addr.s_addr;
773 	v->flags = vifc->vifc_flags;
774 	if (!mrtsock)
775 		v->flags |= VIFF_STATIC;
776 	v->threshold = vifc->vifc_threshold;
777 	v->bytes_in = 0;
778 	v->bytes_out = 0;
779 	v->pkt_in = 0;
780 	v->pkt_out = 0;
781 	v->link = dev->ifindex;
782 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
783 		v->link = dev->iflink;
784 
785 	/* And finish update writing critical data */
786 	write_lock_bh(&mrt_lock);
787 	v->dev = dev;
788 #ifdef CONFIG_IP_PIMSM
789 	if (v->flags & VIFF_REGISTER)
790 		mrt->mroute_reg_vif_num = vifi;
791 #endif
792 	if (vifi+1 > mrt->maxvif)
793 		mrt->maxvif = vifi+1;
794 	write_unlock_bh(&mrt_lock);
795 	return 0;
796 }
797 
798 /* called with rcu_read_lock() */
799 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
800 					 __be32 origin,
801 					 __be32 mcastgrp)
802 {
803 	int line = MFC_HASH(mcastgrp, origin);
804 	struct mfc_cache *c;
805 
806 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
807 		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
808 			return c;
809 	}
810 	return NULL;
811 }
812 
813 /*
814  *	Allocate a multicast cache entry
815  */
816 static struct mfc_cache *ipmr_cache_alloc(void)
817 {
818 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
819 
820 	if (c)
821 		c->mfc_un.res.minvif = MAXVIFS;
822 	return c;
823 }
824 
825 static struct mfc_cache *ipmr_cache_alloc_unres(void)
826 {
827 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
828 
829 	if (c) {
830 		skb_queue_head_init(&c->mfc_un.unres.unresolved);
831 		c->mfc_un.unres.expires = jiffies + 10*HZ;
832 	}
833 	return c;
834 }
835 
836 /*
837  *	A cache entry has gone into a resolved state from queued
838  */
839 
840 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
841 			       struct mfc_cache *uc, struct mfc_cache *c)
842 {
843 	struct sk_buff *skb;
844 	struct nlmsgerr *e;
845 
846 	/* Play the pending entries through our router */
847 
848 	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
849 		if (ip_hdr(skb)->version == 0) {
850 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
851 
852 			if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
853 				nlh->nlmsg_len = skb_tail_pointer(skb) -
854 						 (u8 *)nlh;
855 			} else {
856 				nlh->nlmsg_type = NLMSG_ERROR;
857 				nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
858 				skb_trim(skb, nlh->nlmsg_len);
859 				e = NLMSG_DATA(nlh);
860 				e->error = -EMSGSIZE;
861 				memset(&e->msg, 0, sizeof(e->msg));
862 			}
863 
864 			rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
865 		} else {
866 			ip_mr_forward(net, mrt, skb, c, 0);
867 		}
868 	}
869 }
870 
871 /*
872  *	Bounce a cache query up to mrouted. We could use netlink for this but mrouted
873  *	expects the following bizarre scheme.
874  *
875  *	Called under mrt_lock.
876  */
877 
878 static int ipmr_cache_report(struct mr_table *mrt,
879 			     struct sk_buff *pkt, vifi_t vifi, int assert)
880 {
881 	struct sk_buff *skb;
882 	const int ihl = ip_hdrlen(pkt);
883 	struct igmphdr *igmp;
884 	struct igmpmsg *msg;
885 	struct sock *mroute_sk;
886 	int ret;
887 
888 #ifdef CONFIG_IP_PIMSM
889 	if (assert == IGMPMSG_WHOLEPKT)
890 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
891 	else
892 #endif
893 		skb = alloc_skb(128, GFP_ATOMIC);
894 
895 	if (!skb)
896 		return -ENOBUFS;
897 
898 #ifdef CONFIG_IP_PIMSM
899 	if (assert == IGMPMSG_WHOLEPKT) {
900 		/* Ugly, but we have no choice with this interface.
901 		 * Duplicate old header, fix ihl, length etc.
902 		 * And all this only to mangle msg->im_msgtype and
903 		 * to set msg->im_mbz to "mbz" :-)
904 		 */
905 		skb_push(skb, sizeof(struct iphdr));
906 		skb_reset_network_header(skb);
907 		skb_reset_transport_header(skb);
908 		msg = (struct igmpmsg *)skb_network_header(skb);
909 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
910 		msg->im_msgtype = IGMPMSG_WHOLEPKT;
911 		msg->im_mbz = 0;
912 		msg->im_vif = mrt->mroute_reg_vif_num;
913 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
914 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
915 					     sizeof(struct iphdr));
916 	} else
917 #endif
918 	{
919 
920 	/* Copy the IP header */
921 
922 	skb->network_header = skb->tail;
923 	skb_put(skb, ihl);
924 	skb_copy_to_linear_data(skb, pkt->data, ihl);
925 	ip_hdr(skb)->protocol = 0;	/* Flag to the kernel this is a route add */
926 	msg = (struct igmpmsg *)skb_network_header(skb);
927 	msg->im_vif = vifi;
928 	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
929 
930 	/* Add our header */
931 
932 	igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
933 	igmp->type	=
934 	msg->im_msgtype = assert;
935 	igmp->code	= 0;
936 	ip_hdr(skb)->tot_len = htons(skb->len);		/* Fix the length */
937 	skb->transport_header = skb->network_header;
938 	}
939 
940 	rcu_read_lock();
941 	mroute_sk = rcu_dereference(mrt->mroute_sk);
942 	if (mroute_sk == NULL) {
943 		rcu_read_unlock();
944 		kfree_skb(skb);
945 		return -EINVAL;
946 	}
947 
948 	/* Deliver to mrouted */
949 
950 	ret = sock_queue_rcv_skb(mroute_sk, skb);
951 	rcu_read_unlock();
952 	if (ret < 0) {
953 		if (net_ratelimit())
954 			pr_warn("mroute: pending queue full, dropping entries\n");
955 		kfree_skb(skb);
956 	}
957 
958 	return ret;
959 }
960 
961 /*
962  *	Queue a packet for resolution. It gets locked cache entry!
963  */
964 
965 static int
966 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
967 {
968 	bool found = false;
969 	int err;
970 	struct mfc_cache *c;
971 	const struct iphdr *iph = ip_hdr(skb);
972 
973 	spin_lock_bh(&mfc_unres_lock);
974 	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
975 		if (c->mfc_mcastgrp == iph->daddr &&
976 		    c->mfc_origin == iph->saddr) {
977 			found = true;
978 			break;
979 		}
980 	}
981 
982 	if (!found) {
983 		/* Create a new entry if allowable */
984 
985 		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
986 		    (c = ipmr_cache_alloc_unres()) == NULL) {
987 			spin_unlock_bh(&mfc_unres_lock);
988 
989 			kfree_skb(skb);
990 			return -ENOBUFS;
991 		}
992 
993 		/* Fill in the new cache entry */
994 
995 		c->mfc_parent	= -1;
996 		c->mfc_origin	= iph->saddr;
997 		c->mfc_mcastgrp	= iph->daddr;
998 
999 		/* Reflect first query at mrouted. */
1000 
1001 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1002 		if (err < 0) {
1003 			/* If the report failed throw the cache entry
1004 			   out - Brad Parker
1005 			 */
1006 			spin_unlock_bh(&mfc_unres_lock);
1007 
1008 			ipmr_cache_free(c);
1009 			kfree_skb(skb);
1010 			return err;
1011 		}
1012 
1013 		atomic_inc(&mrt->cache_resolve_queue_len);
1014 		list_add(&c->list, &mrt->mfc_unres_queue);
1015 
1016 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1017 			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1018 	}
1019 
1020 	/* See if we can append the packet */
1021 
1022 	if (c->mfc_un.unres.unresolved.qlen > 3) {
1023 		kfree_skb(skb);
1024 		err = -ENOBUFS;
1025 	} else {
1026 		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1027 		err = 0;
1028 	}
1029 
1030 	spin_unlock_bh(&mfc_unres_lock);
1031 	return err;
1032 }
1033 
1034 /*
1035  *	MFC cache manipulation by user space mroute daemon
1036  */
1037 
1038 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1039 {
1040 	int line;
1041 	struct mfc_cache *c, *next;
1042 
1043 	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1044 
1045 	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1046 		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1047 		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1048 			list_del_rcu(&c->list);
1049 
1050 			ipmr_cache_free(c);
1051 			return 0;
1052 		}
1053 	}
1054 	return -ENOENT;
1055 }
1056 
1057 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1058 			struct mfcctl *mfc, int mrtsock)
1059 {
1060 	bool found = false;
1061 	int line;
1062 	struct mfc_cache *uc, *c;
1063 
1064 	if (mfc->mfcc_parent >= MAXVIFS)
1065 		return -ENFILE;
1066 
1067 	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1068 
1069 	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1070 		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1071 		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1072 			found = true;
1073 			break;
1074 		}
1075 	}
1076 
1077 	if (found) {
1078 		write_lock_bh(&mrt_lock);
1079 		c->mfc_parent = mfc->mfcc_parent;
1080 		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1081 		if (!mrtsock)
1082 			c->mfc_flags |= MFC_STATIC;
1083 		write_unlock_bh(&mrt_lock);
1084 		return 0;
1085 	}
1086 
1087 	if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1088 		return -EINVAL;
1089 
1090 	c = ipmr_cache_alloc();
1091 	if (c == NULL)
1092 		return -ENOMEM;
1093 
1094 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1095 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1096 	c->mfc_parent = mfc->mfcc_parent;
1097 	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1098 	if (!mrtsock)
1099 		c->mfc_flags |= MFC_STATIC;
1100 
1101 	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1102 
1103 	/*
1104 	 *	Check to see if we resolved a queued list. If so we
1105 	 *	need to send on the frames and tidy up.
1106 	 */
1107 	found = false;
1108 	spin_lock_bh(&mfc_unres_lock);
1109 	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1110 		if (uc->mfc_origin == c->mfc_origin &&
1111 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1112 			list_del(&uc->list);
1113 			atomic_dec(&mrt->cache_resolve_queue_len);
1114 			found = true;
1115 			break;
1116 		}
1117 	}
1118 	if (list_empty(&mrt->mfc_unres_queue))
1119 		del_timer(&mrt->ipmr_expire_timer);
1120 	spin_unlock_bh(&mfc_unres_lock);
1121 
1122 	if (found) {
1123 		ipmr_cache_resolve(net, mrt, uc, c);
1124 		ipmr_cache_free(uc);
1125 	}
1126 	return 0;
1127 }
1128 
1129 /*
1130  *	Close the multicast socket, and clear the vif tables etc
1131  */
1132 
1133 static void mroute_clean_tables(struct mr_table *mrt)
1134 {
1135 	int i;
1136 	LIST_HEAD(list);
1137 	struct mfc_cache *c, *next;
1138 
1139 	/* Shut down all active vif entries */
1140 
1141 	for (i = 0; i < mrt->maxvif; i++) {
1142 		if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1143 			vif_delete(mrt, i, 0, &list);
1144 	}
1145 	unregister_netdevice_many(&list);
1146 
1147 	/* Wipe the cache */
1148 
1149 	for (i = 0; i < MFC_LINES; i++) {
1150 		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1151 			if (c->mfc_flags & MFC_STATIC)
1152 				continue;
1153 			list_del_rcu(&c->list);
1154 			ipmr_cache_free(c);
1155 		}
1156 	}
1157 
1158 	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1159 		spin_lock_bh(&mfc_unres_lock);
1160 		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1161 			list_del(&c->list);
1162 			ipmr_destroy_unres(mrt, c);
1163 		}
1164 		spin_unlock_bh(&mfc_unres_lock);
1165 	}
1166 }
1167 
1168 /* called from ip_ra_control(), before an RCU grace period,
1169  * we dont need to call synchronize_rcu() here
1170  */
1171 static void mrtsock_destruct(struct sock *sk)
1172 {
1173 	struct net *net = sock_net(sk);
1174 	struct mr_table *mrt;
1175 
1176 	rtnl_lock();
1177 	ipmr_for_each_table(mrt, net) {
1178 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1179 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1180 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1181 			mroute_clean_tables(mrt);
1182 		}
1183 	}
1184 	rtnl_unlock();
1185 }
1186 
1187 /*
1188  *	Socket options and virtual interface manipulation. The whole
1189  *	virtual interface system is a complete heap, but unfortunately
1190  *	that's how BSD mrouted happens to think. Maybe one day with a proper
1191  *	MOSPF/PIM router set up we can clean this up.
1192  */
1193 
1194 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1195 {
1196 	int ret;
1197 	struct vifctl vif;
1198 	struct mfcctl mfc;
1199 	struct net *net = sock_net(sk);
1200 	struct mr_table *mrt;
1201 
1202 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1203 	if (mrt == NULL)
1204 		return -ENOENT;
1205 
1206 	if (optname != MRT_INIT) {
1207 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1208 		    !capable(CAP_NET_ADMIN))
1209 			return -EACCES;
1210 	}
1211 
1212 	switch (optname) {
1213 	case MRT_INIT:
1214 		if (sk->sk_type != SOCK_RAW ||
1215 		    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1216 			return -EOPNOTSUPP;
1217 		if (optlen != sizeof(int))
1218 			return -ENOPROTOOPT;
1219 
1220 		rtnl_lock();
1221 		if (rtnl_dereference(mrt->mroute_sk)) {
1222 			rtnl_unlock();
1223 			return -EADDRINUSE;
1224 		}
1225 
1226 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1227 		if (ret == 0) {
1228 			rcu_assign_pointer(mrt->mroute_sk, sk);
1229 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1230 		}
1231 		rtnl_unlock();
1232 		return ret;
1233 	case MRT_DONE:
1234 		if (sk != rcu_access_pointer(mrt->mroute_sk))
1235 			return -EACCES;
1236 		return ip_ra_control(sk, 0, NULL);
1237 	case MRT_ADD_VIF:
1238 	case MRT_DEL_VIF:
1239 		if (optlen != sizeof(vif))
1240 			return -EINVAL;
1241 		if (copy_from_user(&vif, optval, sizeof(vif)))
1242 			return -EFAULT;
1243 		if (vif.vifc_vifi >= MAXVIFS)
1244 			return -ENFILE;
1245 		rtnl_lock();
1246 		if (optname == MRT_ADD_VIF) {
1247 			ret = vif_add(net, mrt, &vif,
1248 				      sk == rtnl_dereference(mrt->mroute_sk));
1249 		} else {
1250 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1251 		}
1252 		rtnl_unlock();
1253 		return ret;
1254 
1255 		/*
1256 		 *	Manipulate the forwarding caches. These live
1257 		 *	in a sort of kernel/user symbiosis.
1258 		 */
1259 	case MRT_ADD_MFC:
1260 	case MRT_DEL_MFC:
1261 		if (optlen != sizeof(mfc))
1262 			return -EINVAL;
1263 		if (copy_from_user(&mfc, optval, sizeof(mfc)))
1264 			return -EFAULT;
1265 		rtnl_lock();
1266 		if (optname == MRT_DEL_MFC)
1267 			ret = ipmr_mfc_delete(mrt, &mfc);
1268 		else
1269 			ret = ipmr_mfc_add(net, mrt, &mfc,
1270 					   sk == rtnl_dereference(mrt->mroute_sk));
1271 		rtnl_unlock();
1272 		return ret;
1273 		/*
1274 		 *	Control PIM assert.
1275 		 */
1276 	case MRT_ASSERT:
1277 	{
1278 		int v;
1279 		if (get_user(v, (int __user *)optval))
1280 			return -EFAULT;
1281 		mrt->mroute_do_assert = (v) ? 1 : 0;
1282 		return 0;
1283 	}
1284 #ifdef CONFIG_IP_PIMSM
1285 	case MRT_PIM:
1286 	{
1287 		int v;
1288 
1289 		if (get_user(v, (int __user *)optval))
1290 			return -EFAULT;
1291 		v = (v) ? 1 : 0;
1292 
1293 		rtnl_lock();
1294 		ret = 0;
1295 		if (v != mrt->mroute_do_pim) {
1296 			mrt->mroute_do_pim = v;
1297 			mrt->mroute_do_assert = v;
1298 		}
1299 		rtnl_unlock();
1300 		return ret;
1301 	}
1302 #endif
1303 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1304 	case MRT_TABLE:
1305 	{
1306 		u32 v;
1307 
1308 		if (optlen != sizeof(u32))
1309 			return -EINVAL;
1310 		if (get_user(v, (u32 __user *)optval))
1311 			return -EFAULT;
1312 
1313 		rtnl_lock();
1314 		ret = 0;
1315 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1316 			ret = -EBUSY;
1317 		} else {
1318 			if (!ipmr_new_table(net, v))
1319 				ret = -ENOMEM;
1320 			raw_sk(sk)->ipmr_table = v;
1321 		}
1322 		rtnl_unlock();
1323 		return ret;
1324 	}
1325 #endif
1326 	/*
1327 	 *	Spurious command, or MRT_VERSION which you cannot
1328 	 *	set.
1329 	 */
1330 	default:
1331 		return -ENOPROTOOPT;
1332 	}
1333 }
1334 
1335 /*
1336  *	Getsock opt support for the multicast routing system.
1337  */
1338 
1339 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1340 {
1341 	int olr;
1342 	int val;
1343 	struct net *net = sock_net(sk);
1344 	struct mr_table *mrt;
1345 
1346 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1347 	if (mrt == NULL)
1348 		return -ENOENT;
1349 
1350 	if (optname != MRT_VERSION &&
1351 #ifdef CONFIG_IP_PIMSM
1352 	   optname != MRT_PIM &&
1353 #endif
1354 	   optname != MRT_ASSERT)
1355 		return -ENOPROTOOPT;
1356 
1357 	if (get_user(olr, optlen))
1358 		return -EFAULT;
1359 
1360 	olr = min_t(unsigned int, olr, sizeof(int));
1361 	if (olr < 0)
1362 		return -EINVAL;
1363 
1364 	if (put_user(olr, optlen))
1365 		return -EFAULT;
1366 	if (optname == MRT_VERSION)
1367 		val = 0x0305;
1368 #ifdef CONFIG_IP_PIMSM
1369 	else if (optname == MRT_PIM)
1370 		val = mrt->mroute_do_pim;
1371 #endif
1372 	else
1373 		val = mrt->mroute_do_assert;
1374 	if (copy_to_user(optval, &val, olr))
1375 		return -EFAULT;
1376 	return 0;
1377 }
1378 
1379 /*
1380  *	The IP multicast ioctl support routines.
1381  */
1382 
1383 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1384 {
1385 	struct sioc_sg_req sr;
1386 	struct sioc_vif_req vr;
1387 	struct vif_device *vif;
1388 	struct mfc_cache *c;
1389 	struct net *net = sock_net(sk);
1390 	struct mr_table *mrt;
1391 
1392 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1393 	if (mrt == NULL)
1394 		return -ENOENT;
1395 
1396 	switch (cmd) {
1397 	case SIOCGETVIFCNT:
1398 		if (copy_from_user(&vr, arg, sizeof(vr)))
1399 			return -EFAULT;
1400 		if (vr.vifi >= mrt->maxvif)
1401 			return -EINVAL;
1402 		read_lock(&mrt_lock);
1403 		vif = &mrt->vif_table[vr.vifi];
1404 		if (VIF_EXISTS(mrt, vr.vifi)) {
1405 			vr.icount = vif->pkt_in;
1406 			vr.ocount = vif->pkt_out;
1407 			vr.ibytes = vif->bytes_in;
1408 			vr.obytes = vif->bytes_out;
1409 			read_unlock(&mrt_lock);
1410 
1411 			if (copy_to_user(arg, &vr, sizeof(vr)))
1412 				return -EFAULT;
1413 			return 0;
1414 		}
1415 		read_unlock(&mrt_lock);
1416 		return -EADDRNOTAVAIL;
1417 	case SIOCGETSGCNT:
1418 		if (copy_from_user(&sr, arg, sizeof(sr)))
1419 			return -EFAULT;
1420 
1421 		rcu_read_lock();
1422 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1423 		if (c) {
1424 			sr.pktcnt = c->mfc_un.res.pkt;
1425 			sr.bytecnt = c->mfc_un.res.bytes;
1426 			sr.wrong_if = c->mfc_un.res.wrong_if;
1427 			rcu_read_unlock();
1428 
1429 			if (copy_to_user(arg, &sr, sizeof(sr)))
1430 				return -EFAULT;
1431 			return 0;
1432 		}
1433 		rcu_read_unlock();
1434 		return -EADDRNOTAVAIL;
1435 	default:
1436 		return -ENOIOCTLCMD;
1437 	}
1438 }
1439 
1440 #ifdef CONFIG_COMPAT
1441 struct compat_sioc_sg_req {
1442 	struct in_addr src;
1443 	struct in_addr grp;
1444 	compat_ulong_t pktcnt;
1445 	compat_ulong_t bytecnt;
1446 	compat_ulong_t wrong_if;
1447 };
1448 
1449 struct compat_sioc_vif_req {
1450 	vifi_t	vifi;		/* Which iface */
1451 	compat_ulong_t icount;
1452 	compat_ulong_t ocount;
1453 	compat_ulong_t ibytes;
1454 	compat_ulong_t obytes;
1455 };
1456 
1457 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1458 {
1459 	struct compat_sioc_sg_req sr;
1460 	struct compat_sioc_vif_req vr;
1461 	struct vif_device *vif;
1462 	struct mfc_cache *c;
1463 	struct net *net = sock_net(sk);
1464 	struct mr_table *mrt;
1465 
1466 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1467 	if (mrt == NULL)
1468 		return -ENOENT;
1469 
1470 	switch (cmd) {
1471 	case SIOCGETVIFCNT:
1472 		if (copy_from_user(&vr, arg, sizeof(vr)))
1473 			return -EFAULT;
1474 		if (vr.vifi >= mrt->maxvif)
1475 			return -EINVAL;
1476 		read_lock(&mrt_lock);
1477 		vif = &mrt->vif_table[vr.vifi];
1478 		if (VIF_EXISTS(mrt, vr.vifi)) {
1479 			vr.icount = vif->pkt_in;
1480 			vr.ocount = vif->pkt_out;
1481 			vr.ibytes = vif->bytes_in;
1482 			vr.obytes = vif->bytes_out;
1483 			read_unlock(&mrt_lock);
1484 
1485 			if (copy_to_user(arg, &vr, sizeof(vr)))
1486 				return -EFAULT;
1487 			return 0;
1488 		}
1489 		read_unlock(&mrt_lock);
1490 		return -EADDRNOTAVAIL;
1491 	case SIOCGETSGCNT:
1492 		if (copy_from_user(&sr, arg, sizeof(sr)))
1493 			return -EFAULT;
1494 
1495 		rcu_read_lock();
1496 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1497 		if (c) {
1498 			sr.pktcnt = c->mfc_un.res.pkt;
1499 			sr.bytecnt = c->mfc_un.res.bytes;
1500 			sr.wrong_if = c->mfc_un.res.wrong_if;
1501 			rcu_read_unlock();
1502 
1503 			if (copy_to_user(arg, &sr, sizeof(sr)))
1504 				return -EFAULT;
1505 			return 0;
1506 		}
1507 		rcu_read_unlock();
1508 		return -EADDRNOTAVAIL;
1509 	default:
1510 		return -ENOIOCTLCMD;
1511 	}
1512 }
1513 #endif
1514 
1515 
1516 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1517 {
1518 	struct net_device *dev = ptr;
1519 	struct net *net = dev_net(dev);
1520 	struct mr_table *mrt;
1521 	struct vif_device *v;
1522 	int ct;
1523 
1524 	if (event != NETDEV_UNREGISTER)
1525 		return NOTIFY_DONE;
1526 
1527 	ipmr_for_each_table(mrt, net) {
1528 		v = &mrt->vif_table[0];
1529 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1530 			if (v->dev == dev)
1531 				vif_delete(mrt, ct, 1, NULL);
1532 		}
1533 	}
1534 	return NOTIFY_DONE;
1535 }
1536 
1537 
1538 static struct notifier_block ip_mr_notifier = {
1539 	.notifier_call = ipmr_device_event,
1540 };
1541 
1542 /*
1543  *	Encapsulate a packet by attaching a valid IPIP header to it.
1544  *	This avoids tunnel drivers and other mess and gives us the speed so
1545  *	important for multicast video.
1546  */
1547 
1548 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1549 {
1550 	struct iphdr *iph;
1551 	const struct iphdr *old_iph = ip_hdr(skb);
1552 
1553 	skb_push(skb, sizeof(struct iphdr));
1554 	skb->transport_header = skb->network_header;
1555 	skb_reset_network_header(skb);
1556 	iph = ip_hdr(skb);
1557 
1558 	iph->version	=	4;
1559 	iph->tos	=	old_iph->tos;
1560 	iph->ttl	=	old_iph->ttl;
1561 	iph->frag_off	=	0;
1562 	iph->daddr	=	daddr;
1563 	iph->saddr	=	saddr;
1564 	iph->protocol	=	IPPROTO_IPIP;
1565 	iph->ihl	=	5;
1566 	iph->tot_len	=	htons(skb->len);
1567 	ip_select_ident(iph, skb_dst(skb), NULL);
1568 	ip_send_check(iph);
1569 
1570 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1571 	nf_reset(skb);
1572 }
1573 
1574 static inline int ipmr_forward_finish(struct sk_buff *skb)
1575 {
1576 	struct ip_options *opt = &(IPCB(skb)->opt);
1577 
1578 	IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1579 
1580 	if (unlikely(opt->optlen))
1581 		ip_forward_options(skb);
1582 
1583 	return dst_output(skb);
1584 }
1585 
1586 /*
1587  *	Processing handlers for ipmr_forward
1588  */
1589 
1590 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1591 			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1592 {
1593 	const struct iphdr *iph = ip_hdr(skb);
1594 	struct vif_device *vif = &mrt->vif_table[vifi];
1595 	struct net_device *dev;
1596 	struct rtable *rt;
1597 	struct flowi4 fl4;
1598 	int    encap = 0;
1599 
1600 	if (vif->dev == NULL)
1601 		goto out_free;
1602 
1603 #ifdef CONFIG_IP_PIMSM
1604 	if (vif->flags & VIFF_REGISTER) {
1605 		vif->pkt_out++;
1606 		vif->bytes_out += skb->len;
1607 		vif->dev->stats.tx_bytes += skb->len;
1608 		vif->dev->stats.tx_packets++;
1609 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1610 		goto out_free;
1611 	}
1612 #endif
1613 
1614 	if (vif->flags & VIFF_TUNNEL) {
1615 		rt = ip_route_output_ports(net, &fl4, NULL,
1616 					   vif->remote, vif->local,
1617 					   0, 0,
1618 					   IPPROTO_IPIP,
1619 					   RT_TOS(iph->tos), vif->link);
1620 		if (IS_ERR(rt))
1621 			goto out_free;
1622 		encap = sizeof(struct iphdr);
1623 	} else {
1624 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1625 					   0, 0,
1626 					   IPPROTO_IPIP,
1627 					   RT_TOS(iph->tos), vif->link);
1628 		if (IS_ERR(rt))
1629 			goto out_free;
1630 	}
1631 
1632 	dev = rt->dst.dev;
1633 
1634 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1635 		/* Do not fragment multicasts. Alas, IPv4 does not
1636 		 * allow to send ICMP, so that packets will disappear
1637 		 * to blackhole.
1638 		 */
1639 
1640 		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1641 		ip_rt_put(rt);
1642 		goto out_free;
1643 	}
1644 
1645 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1646 
1647 	if (skb_cow(skb, encap)) {
1648 		ip_rt_put(rt);
1649 		goto out_free;
1650 	}
1651 
1652 	vif->pkt_out++;
1653 	vif->bytes_out += skb->len;
1654 
1655 	skb_dst_drop(skb);
1656 	skb_dst_set(skb, &rt->dst);
1657 	ip_decrease_ttl(ip_hdr(skb));
1658 
1659 	/* FIXME: forward and output firewalls used to be called here.
1660 	 * What do we do with netfilter? -- RR
1661 	 */
1662 	if (vif->flags & VIFF_TUNNEL) {
1663 		ip_encap(skb, vif->local, vif->remote);
1664 		/* FIXME: extra output firewall step used to be here. --RR */
1665 		vif->dev->stats.tx_packets++;
1666 		vif->dev->stats.tx_bytes += skb->len;
1667 	}
1668 
1669 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1670 
1671 	/*
1672 	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1673 	 * not only before forwarding, but after forwarding on all output
1674 	 * interfaces. It is clear, if mrouter runs a multicasting
1675 	 * program, it should receive packets not depending to what interface
1676 	 * program is joined.
1677 	 * If we will not make it, the program will have to join on all
1678 	 * interfaces. On the other hand, multihoming host (or router, but
1679 	 * not mrouter) cannot join to more than one interface - it will
1680 	 * result in receiving multiple packets.
1681 	 */
1682 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1683 		ipmr_forward_finish);
1684 	return;
1685 
1686 out_free:
1687 	kfree_skb(skb);
1688 }
1689 
1690 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1691 {
1692 	int ct;
1693 
1694 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1695 		if (mrt->vif_table[ct].dev == dev)
1696 			break;
1697 	}
1698 	return ct;
1699 }
1700 
1701 /* "local" means that we should preserve one skb (for local delivery) */
1702 
1703 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1704 			 struct sk_buff *skb, struct mfc_cache *cache,
1705 			 int local)
1706 {
1707 	int psend = -1;
1708 	int vif, ct;
1709 
1710 	vif = cache->mfc_parent;
1711 	cache->mfc_un.res.pkt++;
1712 	cache->mfc_un.res.bytes += skb->len;
1713 
1714 	/*
1715 	 * Wrong interface: drop packet and (maybe) send PIM assert.
1716 	 */
1717 	if (mrt->vif_table[vif].dev != skb->dev) {
1718 		int true_vifi;
1719 
1720 		if (rt_is_output_route(skb_rtable(skb))) {
1721 			/* It is our own packet, looped back.
1722 			 * Very complicated situation...
1723 			 *
1724 			 * The best workaround until routing daemons will be
1725 			 * fixed is not to redistribute packet, if it was
1726 			 * send through wrong interface. It means, that
1727 			 * multicast applications WILL NOT work for
1728 			 * (S,G), which have default multicast route pointing
1729 			 * to wrong oif. In any case, it is not a good
1730 			 * idea to use multicasting applications on router.
1731 			 */
1732 			goto dont_forward;
1733 		}
1734 
1735 		cache->mfc_un.res.wrong_if++;
1736 		true_vifi = ipmr_find_vif(mrt, skb->dev);
1737 
1738 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1739 		    /* pimsm uses asserts, when switching from RPT to SPT,
1740 		     * so that we cannot check that packet arrived on an oif.
1741 		     * It is bad, but otherwise we would need to move pretty
1742 		     * large chunk of pimd to kernel. Ough... --ANK
1743 		     */
1744 		    (mrt->mroute_do_pim ||
1745 		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1746 		    time_after(jiffies,
1747 			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1748 			cache->mfc_un.res.last_assert = jiffies;
1749 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1750 		}
1751 		goto dont_forward;
1752 	}
1753 
1754 	mrt->vif_table[vif].pkt_in++;
1755 	mrt->vif_table[vif].bytes_in += skb->len;
1756 
1757 	/*
1758 	 *	Forward the frame
1759 	 */
1760 	for (ct = cache->mfc_un.res.maxvif - 1;
1761 	     ct >= cache->mfc_un.res.minvif; ct--) {
1762 		if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1763 			if (psend != -1) {
1764 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1765 
1766 				if (skb2)
1767 					ipmr_queue_xmit(net, mrt, skb2, cache,
1768 							psend);
1769 			}
1770 			psend = ct;
1771 		}
1772 	}
1773 	if (psend != -1) {
1774 		if (local) {
1775 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1776 
1777 			if (skb2)
1778 				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1779 		} else {
1780 			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1781 			return 0;
1782 		}
1783 	}
1784 
1785 dont_forward:
1786 	if (!local)
1787 		kfree_skb(skb);
1788 	return 0;
1789 }
1790 
1791 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1792 {
1793 	struct rtable *rt = skb_rtable(skb);
1794 	struct iphdr *iph = ip_hdr(skb);
1795 	struct flowi4 fl4 = {
1796 		.daddr = iph->daddr,
1797 		.saddr = iph->saddr,
1798 		.flowi4_tos = RT_TOS(iph->tos),
1799 		.flowi4_oif = rt->rt_oif,
1800 		.flowi4_iif = rt->rt_iif,
1801 		.flowi4_mark = rt->rt_mark,
1802 	};
1803 	struct mr_table *mrt;
1804 	int err;
1805 
1806 	err = ipmr_fib_lookup(net, &fl4, &mrt);
1807 	if (err)
1808 		return ERR_PTR(err);
1809 	return mrt;
1810 }
1811 
1812 /*
1813  *	Multicast packets for forwarding arrive here
1814  *	Called with rcu_read_lock();
1815  */
1816 
1817 int ip_mr_input(struct sk_buff *skb)
1818 {
1819 	struct mfc_cache *cache;
1820 	struct net *net = dev_net(skb->dev);
1821 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1822 	struct mr_table *mrt;
1823 
1824 	/* Packet is looped back after forward, it should not be
1825 	 * forwarded second time, but still can be delivered locally.
1826 	 */
1827 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1828 		goto dont_forward;
1829 
1830 	mrt = ipmr_rt_fib_lookup(net, skb);
1831 	if (IS_ERR(mrt)) {
1832 		kfree_skb(skb);
1833 		return PTR_ERR(mrt);
1834 	}
1835 	if (!local) {
1836 		if (IPCB(skb)->opt.router_alert) {
1837 			if (ip_call_ra_chain(skb))
1838 				return 0;
1839 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1840 			/* IGMPv1 (and broken IGMPv2 implementations sort of
1841 			 * Cisco IOS <= 11.2(8)) do not put router alert
1842 			 * option to IGMP packets destined to routable
1843 			 * groups. It is very bad, because it means
1844 			 * that we can forward NO IGMP messages.
1845 			 */
1846 			struct sock *mroute_sk;
1847 
1848 			mroute_sk = rcu_dereference(mrt->mroute_sk);
1849 			if (mroute_sk) {
1850 				nf_reset(skb);
1851 				raw_rcv(mroute_sk, skb);
1852 				return 0;
1853 			}
1854 		    }
1855 	}
1856 
1857 	/* already under rcu_read_lock() */
1858 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1859 
1860 	/*
1861 	 *	No usable cache entry
1862 	 */
1863 	if (cache == NULL) {
1864 		int vif;
1865 
1866 		if (local) {
1867 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1868 			ip_local_deliver(skb);
1869 			if (skb2 == NULL)
1870 				return -ENOBUFS;
1871 			skb = skb2;
1872 		}
1873 
1874 		read_lock(&mrt_lock);
1875 		vif = ipmr_find_vif(mrt, skb->dev);
1876 		if (vif >= 0) {
1877 			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1878 			read_unlock(&mrt_lock);
1879 
1880 			return err2;
1881 		}
1882 		read_unlock(&mrt_lock);
1883 		kfree_skb(skb);
1884 		return -ENODEV;
1885 	}
1886 
1887 	read_lock(&mrt_lock);
1888 	ip_mr_forward(net, mrt, skb, cache, local);
1889 	read_unlock(&mrt_lock);
1890 
1891 	if (local)
1892 		return ip_local_deliver(skb);
1893 
1894 	return 0;
1895 
1896 dont_forward:
1897 	if (local)
1898 		return ip_local_deliver(skb);
1899 	kfree_skb(skb);
1900 	return 0;
1901 }
1902 
1903 #ifdef CONFIG_IP_PIMSM
1904 /* called with rcu_read_lock() */
1905 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1906 		     unsigned int pimlen)
1907 {
1908 	struct net_device *reg_dev = NULL;
1909 	struct iphdr *encap;
1910 
1911 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1912 	/*
1913 	 * Check that:
1914 	 * a. packet is really sent to a multicast group
1915 	 * b. packet is not a NULL-REGISTER
1916 	 * c. packet is not truncated
1917 	 */
1918 	if (!ipv4_is_multicast(encap->daddr) ||
1919 	    encap->tot_len == 0 ||
1920 	    ntohs(encap->tot_len) + pimlen > skb->len)
1921 		return 1;
1922 
1923 	read_lock(&mrt_lock);
1924 	if (mrt->mroute_reg_vif_num >= 0)
1925 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1926 	read_unlock(&mrt_lock);
1927 
1928 	if (reg_dev == NULL)
1929 		return 1;
1930 
1931 	skb->mac_header = skb->network_header;
1932 	skb_pull(skb, (u8 *)encap - skb->data);
1933 	skb_reset_network_header(skb);
1934 	skb->protocol = htons(ETH_P_IP);
1935 	skb->ip_summed = CHECKSUM_NONE;
1936 	skb->pkt_type = PACKET_HOST;
1937 
1938 	skb_tunnel_rx(skb, reg_dev);
1939 
1940 	netif_rx(skb);
1941 
1942 	return NET_RX_SUCCESS;
1943 }
1944 #endif
1945 
1946 #ifdef CONFIG_IP_PIMSM_V1
1947 /*
1948  * Handle IGMP messages of PIMv1
1949  */
1950 
1951 int pim_rcv_v1(struct sk_buff *skb)
1952 {
1953 	struct igmphdr *pim;
1954 	struct net *net = dev_net(skb->dev);
1955 	struct mr_table *mrt;
1956 
1957 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1958 		goto drop;
1959 
1960 	pim = igmp_hdr(skb);
1961 
1962 	mrt = ipmr_rt_fib_lookup(net, skb);
1963 	if (IS_ERR(mrt))
1964 		goto drop;
1965 	if (!mrt->mroute_do_pim ||
1966 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1967 		goto drop;
1968 
1969 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1970 drop:
1971 		kfree_skb(skb);
1972 	}
1973 	return 0;
1974 }
1975 #endif
1976 
1977 #ifdef CONFIG_IP_PIMSM_V2
1978 static int pim_rcv(struct sk_buff *skb)
1979 {
1980 	struct pimreghdr *pim;
1981 	struct net *net = dev_net(skb->dev);
1982 	struct mr_table *mrt;
1983 
1984 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1985 		goto drop;
1986 
1987 	pim = (struct pimreghdr *)skb_transport_header(skb);
1988 	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1989 	    (pim->flags & PIM_NULL_REGISTER) ||
1990 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1991 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1992 		goto drop;
1993 
1994 	mrt = ipmr_rt_fib_lookup(net, skb);
1995 	if (IS_ERR(mrt))
1996 		goto drop;
1997 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1998 drop:
1999 		kfree_skb(skb);
2000 	}
2001 	return 0;
2002 }
2003 #endif
2004 
2005 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2006 			      struct mfc_cache *c, struct rtmsg *rtm)
2007 {
2008 	int ct;
2009 	struct rtnexthop *nhp;
2010 	u8 *b = skb_tail_pointer(skb);
2011 	struct rtattr *mp_head;
2012 
2013 	/* If cache is unresolved, don't try to parse IIF and OIF */
2014 	if (c->mfc_parent >= MAXVIFS)
2015 		return -ENOENT;
2016 
2017 	if (VIF_EXISTS(mrt, c->mfc_parent))
2018 		RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
2019 
2020 	mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
2021 
2022 	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2023 		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2024 			if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2025 				goto rtattr_failure;
2026 			nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
2027 			nhp->rtnh_flags = 0;
2028 			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2029 			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2030 			nhp->rtnh_len = sizeof(*nhp);
2031 		}
2032 	}
2033 	mp_head->rta_type = RTA_MULTIPATH;
2034 	mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
2035 	rtm->rtm_type = RTN_MULTICAST;
2036 	return 1;
2037 
2038 rtattr_failure:
2039 	nlmsg_trim(skb, b);
2040 	return -EMSGSIZE;
2041 }
2042 
2043 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2044 		   __be32 saddr, __be32 daddr,
2045 		   struct rtmsg *rtm, int nowait)
2046 {
2047 	struct mfc_cache *cache;
2048 	struct mr_table *mrt;
2049 	int err;
2050 
2051 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2052 	if (mrt == NULL)
2053 		return -ENOENT;
2054 
2055 	rcu_read_lock();
2056 	cache = ipmr_cache_find(mrt, saddr, daddr);
2057 
2058 	if (cache == NULL) {
2059 		struct sk_buff *skb2;
2060 		struct iphdr *iph;
2061 		struct net_device *dev;
2062 		int vif = -1;
2063 
2064 		if (nowait) {
2065 			rcu_read_unlock();
2066 			return -EAGAIN;
2067 		}
2068 
2069 		dev = skb->dev;
2070 		read_lock(&mrt_lock);
2071 		if (dev)
2072 			vif = ipmr_find_vif(mrt, dev);
2073 		if (vif < 0) {
2074 			read_unlock(&mrt_lock);
2075 			rcu_read_unlock();
2076 			return -ENODEV;
2077 		}
2078 		skb2 = skb_clone(skb, GFP_ATOMIC);
2079 		if (!skb2) {
2080 			read_unlock(&mrt_lock);
2081 			rcu_read_unlock();
2082 			return -ENOMEM;
2083 		}
2084 
2085 		skb_push(skb2, sizeof(struct iphdr));
2086 		skb_reset_network_header(skb2);
2087 		iph = ip_hdr(skb2);
2088 		iph->ihl = sizeof(struct iphdr) >> 2;
2089 		iph->saddr = saddr;
2090 		iph->daddr = daddr;
2091 		iph->version = 0;
2092 		err = ipmr_cache_unresolved(mrt, vif, skb2);
2093 		read_unlock(&mrt_lock);
2094 		rcu_read_unlock();
2095 		return err;
2096 	}
2097 
2098 	read_lock(&mrt_lock);
2099 	if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2100 		cache->mfc_flags |= MFC_NOTIFY;
2101 	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2102 	read_unlock(&mrt_lock);
2103 	rcu_read_unlock();
2104 	return err;
2105 }
2106 
2107 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2108 			    u32 pid, u32 seq, struct mfc_cache *c)
2109 {
2110 	struct nlmsghdr *nlh;
2111 	struct rtmsg *rtm;
2112 
2113 	nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2114 	if (nlh == NULL)
2115 		return -EMSGSIZE;
2116 
2117 	rtm = nlmsg_data(nlh);
2118 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2119 	rtm->rtm_dst_len  = 32;
2120 	rtm->rtm_src_len  = 32;
2121 	rtm->rtm_tos      = 0;
2122 	rtm->rtm_table    = mrt->id;
2123 	NLA_PUT_U32(skb, RTA_TABLE, mrt->id);
2124 	rtm->rtm_type     = RTN_MULTICAST;
2125 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2126 	rtm->rtm_protocol = RTPROT_UNSPEC;
2127 	rtm->rtm_flags    = 0;
2128 
2129 	NLA_PUT_BE32(skb, RTA_SRC, c->mfc_origin);
2130 	NLA_PUT_BE32(skb, RTA_DST, c->mfc_mcastgrp);
2131 
2132 	if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
2133 		goto nla_put_failure;
2134 
2135 	return nlmsg_end(skb, nlh);
2136 
2137 nla_put_failure:
2138 	nlmsg_cancel(skb, nlh);
2139 	return -EMSGSIZE;
2140 }
2141 
2142 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2143 {
2144 	struct net *net = sock_net(skb->sk);
2145 	struct mr_table *mrt;
2146 	struct mfc_cache *mfc;
2147 	unsigned int t = 0, s_t;
2148 	unsigned int h = 0, s_h;
2149 	unsigned int e = 0, s_e;
2150 
2151 	s_t = cb->args[0];
2152 	s_h = cb->args[1];
2153 	s_e = cb->args[2];
2154 
2155 	rcu_read_lock();
2156 	ipmr_for_each_table(mrt, net) {
2157 		if (t < s_t)
2158 			goto next_table;
2159 		if (t > s_t)
2160 			s_h = 0;
2161 		for (h = s_h; h < MFC_LINES; h++) {
2162 			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2163 				if (e < s_e)
2164 					goto next_entry;
2165 				if (ipmr_fill_mroute(mrt, skb,
2166 						     NETLINK_CB(cb->skb).pid,
2167 						     cb->nlh->nlmsg_seq,
2168 						     mfc) < 0)
2169 					goto done;
2170 next_entry:
2171 				e++;
2172 			}
2173 			e = s_e = 0;
2174 		}
2175 		s_h = 0;
2176 next_table:
2177 		t++;
2178 	}
2179 done:
2180 	rcu_read_unlock();
2181 
2182 	cb->args[2] = e;
2183 	cb->args[1] = h;
2184 	cb->args[0] = t;
2185 
2186 	return skb->len;
2187 }
2188 
2189 #ifdef CONFIG_PROC_FS
2190 /*
2191  *	The /proc interfaces to multicast routing :
2192  *	/proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2193  */
2194 struct ipmr_vif_iter {
2195 	struct seq_net_private p;
2196 	struct mr_table *mrt;
2197 	int ct;
2198 };
2199 
2200 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2201 					   struct ipmr_vif_iter *iter,
2202 					   loff_t pos)
2203 {
2204 	struct mr_table *mrt = iter->mrt;
2205 
2206 	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2207 		if (!VIF_EXISTS(mrt, iter->ct))
2208 			continue;
2209 		if (pos-- == 0)
2210 			return &mrt->vif_table[iter->ct];
2211 	}
2212 	return NULL;
2213 }
2214 
2215 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2216 	__acquires(mrt_lock)
2217 {
2218 	struct ipmr_vif_iter *iter = seq->private;
2219 	struct net *net = seq_file_net(seq);
2220 	struct mr_table *mrt;
2221 
2222 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2223 	if (mrt == NULL)
2224 		return ERR_PTR(-ENOENT);
2225 
2226 	iter->mrt = mrt;
2227 
2228 	read_lock(&mrt_lock);
2229 	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2230 		: SEQ_START_TOKEN;
2231 }
2232 
2233 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2234 {
2235 	struct ipmr_vif_iter *iter = seq->private;
2236 	struct net *net = seq_file_net(seq);
2237 	struct mr_table *mrt = iter->mrt;
2238 
2239 	++*pos;
2240 	if (v == SEQ_START_TOKEN)
2241 		return ipmr_vif_seq_idx(net, iter, 0);
2242 
2243 	while (++iter->ct < mrt->maxvif) {
2244 		if (!VIF_EXISTS(mrt, iter->ct))
2245 			continue;
2246 		return &mrt->vif_table[iter->ct];
2247 	}
2248 	return NULL;
2249 }
2250 
2251 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2252 	__releases(mrt_lock)
2253 {
2254 	read_unlock(&mrt_lock);
2255 }
2256 
2257 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2258 {
2259 	struct ipmr_vif_iter *iter = seq->private;
2260 	struct mr_table *mrt = iter->mrt;
2261 
2262 	if (v == SEQ_START_TOKEN) {
2263 		seq_puts(seq,
2264 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2265 	} else {
2266 		const struct vif_device *vif = v;
2267 		const char *name =  vif->dev ? vif->dev->name : "none";
2268 
2269 		seq_printf(seq,
2270 			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2271 			   vif - mrt->vif_table,
2272 			   name, vif->bytes_in, vif->pkt_in,
2273 			   vif->bytes_out, vif->pkt_out,
2274 			   vif->flags, vif->local, vif->remote);
2275 	}
2276 	return 0;
2277 }
2278 
2279 static const struct seq_operations ipmr_vif_seq_ops = {
2280 	.start = ipmr_vif_seq_start,
2281 	.next  = ipmr_vif_seq_next,
2282 	.stop  = ipmr_vif_seq_stop,
2283 	.show  = ipmr_vif_seq_show,
2284 };
2285 
2286 static int ipmr_vif_open(struct inode *inode, struct file *file)
2287 {
2288 	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2289 			    sizeof(struct ipmr_vif_iter));
2290 }
2291 
2292 static const struct file_operations ipmr_vif_fops = {
2293 	.owner	 = THIS_MODULE,
2294 	.open    = ipmr_vif_open,
2295 	.read    = seq_read,
2296 	.llseek  = seq_lseek,
2297 	.release = seq_release_net,
2298 };
2299 
2300 struct ipmr_mfc_iter {
2301 	struct seq_net_private p;
2302 	struct mr_table *mrt;
2303 	struct list_head *cache;
2304 	int ct;
2305 };
2306 
2307 
2308 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2309 					  struct ipmr_mfc_iter *it, loff_t pos)
2310 {
2311 	struct mr_table *mrt = it->mrt;
2312 	struct mfc_cache *mfc;
2313 
2314 	rcu_read_lock();
2315 	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2316 		it->cache = &mrt->mfc_cache_array[it->ct];
2317 		list_for_each_entry_rcu(mfc, it->cache, list)
2318 			if (pos-- == 0)
2319 				return mfc;
2320 	}
2321 	rcu_read_unlock();
2322 
2323 	spin_lock_bh(&mfc_unres_lock);
2324 	it->cache = &mrt->mfc_unres_queue;
2325 	list_for_each_entry(mfc, it->cache, list)
2326 		if (pos-- == 0)
2327 			return mfc;
2328 	spin_unlock_bh(&mfc_unres_lock);
2329 
2330 	it->cache = NULL;
2331 	return NULL;
2332 }
2333 
2334 
2335 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2336 {
2337 	struct ipmr_mfc_iter *it = seq->private;
2338 	struct net *net = seq_file_net(seq);
2339 	struct mr_table *mrt;
2340 
2341 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2342 	if (mrt == NULL)
2343 		return ERR_PTR(-ENOENT);
2344 
2345 	it->mrt = mrt;
2346 	it->cache = NULL;
2347 	it->ct = 0;
2348 	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2349 		: SEQ_START_TOKEN;
2350 }
2351 
2352 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2353 {
2354 	struct mfc_cache *mfc = v;
2355 	struct ipmr_mfc_iter *it = seq->private;
2356 	struct net *net = seq_file_net(seq);
2357 	struct mr_table *mrt = it->mrt;
2358 
2359 	++*pos;
2360 
2361 	if (v == SEQ_START_TOKEN)
2362 		return ipmr_mfc_seq_idx(net, seq->private, 0);
2363 
2364 	if (mfc->list.next != it->cache)
2365 		return list_entry(mfc->list.next, struct mfc_cache, list);
2366 
2367 	if (it->cache == &mrt->mfc_unres_queue)
2368 		goto end_of_list;
2369 
2370 	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2371 
2372 	while (++it->ct < MFC_LINES) {
2373 		it->cache = &mrt->mfc_cache_array[it->ct];
2374 		if (list_empty(it->cache))
2375 			continue;
2376 		return list_first_entry(it->cache, struct mfc_cache, list);
2377 	}
2378 
2379 	/* exhausted cache_array, show unresolved */
2380 	rcu_read_unlock();
2381 	it->cache = &mrt->mfc_unres_queue;
2382 	it->ct = 0;
2383 
2384 	spin_lock_bh(&mfc_unres_lock);
2385 	if (!list_empty(it->cache))
2386 		return list_first_entry(it->cache, struct mfc_cache, list);
2387 
2388 end_of_list:
2389 	spin_unlock_bh(&mfc_unres_lock);
2390 	it->cache = NULL;
2391 
2392 	return NULL;
2393 }
2394 
2395 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2396 {
2397 	struct ipmr_mfc_iter *it = seq->private;
2398 	struct mr_table *mrt = it->mrt;
2399 
2400 	if (it->cache == &mrt->mfc_unres_queue)
2401 		spin_unlock_bh(&mfc_unres_lock);
2402 	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2403 		rcu_read_unlock();
2404 }
2405 
2406 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2407 {
2408 	int n;
2409 
2410 	if (v == SEQ_START_TOKEN) {
2411 		seq_puts(seq,
2412 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2413 	} else {
2414 		const struct mfc_cache *mfc = v;
2415 		const struct ipmr_mfc_iter *it = seq->private;
2416 		const struct mr_table *mrt = it->mrt;
2417 
2418 		seq_printf(seq, "%08X %08X %-3hd",
2419 			   (__force u32) mfc->mfc_mcastgrp,
2420 			   (__force u32) mfc->mfc_origin,
2421 			   mfc->mfc_parent);
2422 
2423 		if (it->cache != &mrt->mfc_unres_queue) {
2424 			seq_printf(seq, " %8lu %8lu %8lu",
2425 				   mfc->mfc_un.res.pkt,
2426 				   mfc->mfc_un.res.bytes,
2427 				   mfc->mfc_un.res.wrong_if);
2428 			for (n = mfc->mfc_un.res.minvif;
2429 			     n < mfc->mfc_un.res.maxvif; n++) {
2430 				if (VIF_EXISTS(mrt, n) &&
2431 				    mfc->mfc_un.res.ttls[n] < 255)
2432 					seq_printf(seq,
2433 					   " %2d:%-3d",
2434 					   n, mfc->mfc_un.res.ttls[n]);
2435 			}
2436 		} else {
2437 			/* unresolved mfc_caches don't contain
2438 			 * pkt, bytes and wrong_if values
2439 			 */
2440 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2441 		}
2442 		seq_putc(seq, '\n');
2443 	}
2444 	return 0;
2445 }
2446 
2447 static const struct seq_operations ipmr_mfc_seq_ops = {
2448 	.start = ipmr_mfc_seq_start,
2449 	.next  = ipmr_mfc_seq_next,
2450 	.stop  = ipmr_mfc_seq_stop,
2451 	.show  = ipmr_mfc_seq_show,
2452 };
2453 
2454 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2455 {
2456 	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2457 			    sizeof(struct ipmr_mfc_iter));
2458 }
2459 
2460 static const struct file_operations ipmr_mfc_fops = {
2461 	.owner	 = THIS_MODULE,
2462 	.open    = ipmr_mfc_open,
2463 	.read    = seq_read,
2464 	.llseek  = seq_lseek,
2465 	.release = seq_release_net,
2466 };
2467 #endif
2468 
2469 #ifdef CONFIG_IP_PIMSM_V2
2470 static const struct net_protocol pim_protocol = {
2471 	.handler	=	pim_rcv,
2472 	.netns_ok	=	1,
2473 };
2474 #endif
2475 
2476 
2477 /*
2478  *	Setup for IP multicast routing
2479  */
2480 static int __net_init ipmr_net_init(struct net *net)
2481 {
2482 	int err;
2483 
2484 	err = ipmr_rules_init(net);
2485 	if (err < 0)
2486 		goto fail;
2487 
2488 #ifdef CONFIG_PROC_FS
2489 	err = -ENOMEM;
2490 	if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2491 		goto proc_vif_fail;
2492 	if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2493 		goto proc_cache_fail;
2494 #endif
2495 	return 0;
2496 
2497 #ifdef CONFIG_PROC_FS
2498 proc_cache_fail:
2499 	proc_net_remove(net, "ip_mr_vif");
2500 proc_vif_fail:
2501 	ipmr_rules_exit(net);
2502 #endif
2503 fail:
2504 	return err;
2505 }
2506 
2507 static void __net_exit ipmr_net_exit(struct net *net)
2508 {
2509 #ifdef CONFIG_PROC_FS
2510 	proc_net_remove(net, "ip_mr_cache");
2511 	proc_net_remove(net, "ip_mr_vif");
2512 #endif
2513 	ipmr_rules_exit(net);
2514 }
2515 
2516 static struct pernet_operations ipmr_net_ops = {
2517 	.init = ipmr_net_init,
2518 	.exit = ipmr_net_exit,
2519 };
2520 
2521 int __init ip_mr_init(void)
2522 {
2523 	int err;
2524 
2525 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2526 				       sizeof(struct mfc_cache),
2527 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2528 				       NULL);
2529 	if (!mrt_cachep)
2530 		return -ENOMEM;
2531 
2532 	err = register_pernet_subsys(&ipmr_net_ops);
2533 	if (err)
2534 		goto reg_pernet_fail;
2535 
2536 	err = register_netdevice_notifier(&ip_mr_notifier);
2537 	if (err)
2538 		goto reg_notif_fail;
2539 #ifdef CONFIG_IP_PIMSM_V2
2540 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2541 		pr_err("%s: can't add PIM protocol\n", __func__);
2542 		err = -EAGAIN;
2543 		goto add_proto_fail;
2544 	}
2545 #endif
2546 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2547 		      NULL, ipmr_rtm_dumproute, NULL);
2548 	return 0;
2549 
2550 #ifdef CONFIG_IP_PIMSM_V2
2551 add_proto_fail:
2552 	unregister_netdevice_notifier(&ip_mr_notifier);
2553 #endif
2554 reg_notif_fail:
2555 	unregister_pernet_subsys(&ipmr_net_ops);
2556 reg_pernet_fail:
2557 	kmem_cache_destroy(mrt_cachep);
2558 	return err;
2559 }
2560