xref: /openbmc/linux/net/ipv4/ipmr.c (revision 002dff36)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	IP multicast routing support for mrouted 3.6/3.8
4  *
5  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6  *	  Linux Consultancy and Custom Driver Development
7  *
8  *	Fixes:
9  *	Michael Chastain	:	Incorrect size of copying.
10  *	Alan Cox		:	Added the cache manager code
11  *	Alan Cox		:	Fixed the clone/copy bug and device race.
12  *	Mike McLagan		:	Routing by source
13  *	Malcolm Beattie		:	Buffer handling fixes.
14  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
15  *	SVR Anand		:	Fixed several multicast bugs and problems.
16  *	Alexey Kuznetsov	:	Status, optimisations and more.
17  *	Brad Parker		:	Better behaviour on mrouted upcall
18  *					overflow.
19  *      Carlos Picoto           :       PIMv1 Support
20  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
21  *					Relax this requirement to work with older peers.
22  */
23 
24 #include <linux/uaccess.h>
25 #include <linux/types.h>
26 #include <linux/cache.h>
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/kernel.h>
31 #include <linux/fcntl.h>
32 #include <linux/stat.h>
33 #include <linux/socket.h>
34 #include <linux/in.h>
35 #include <linux/inet.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/igmp.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mroute.h>
42 #include <linux/init.h>
43 #include <linux/if_ether.h>
44 #include <linux/slab.h>
45 #include <net/net_namespace.h>
46 #include <net/ip.h>
47 #include <net/protocol.h>
48 #include <linux/skbuff.h>
49 #include <net/route.h>
50 #include <net/icmp.h>
51 #include <net/udp.h>
52 #include <net/raw.h>
53 #include <linux/notifier.h>
54 #include <linux/if_arp.h>
55 #include <linux/netfilter_ipv4.h>
56 #include <linux/compat.h>
57 #include <linux/export.h>
58 #include <linux/rhashtable.h>
59 #include <net/ip_tunnels.h>
60 #include <net/checksum.h>
61 #include <net/netlink.h>
62 #include <net/fib_rules.h>
63 #include <linux/netconf.h>
64 #include <net/rtnh.h>
65 
66 #include <linux/nospec.h>
67 
68 struct ipmr_rule {
69 	struct fib_rule		common;
70 };
71 
72 struct ipmr_result {
73 	struct mr_table		*mrt;
74 };
75 
76 /* Big lock, protecting vif table, mrt cache and mroute socket state.
77  * Note that the changes are semaphored via rtnl_lock.
78  */
79 
80 static DEFINE_RWLOCK(mrt_lock);
81 
82 /* Multicast router control variables */
83 
84 /* Special spinlock for queue of unresolved entries */
85 static DEFINE_SPINLOCK(mfc_unres_lock);
86 
87 /* We return to original Alan's scheme. Hash table of resolved
88  * entries is changed only in process context and protected
89  * with weak lock mrt_lock. Queue of unresolved entries is protected
90  * with strong spinlock mfc_unres_lock.
91  *
92  * In this case data path is free of exclusive locks at all.
93  */
94 
95 static struct kmem_cache *mrt_cachep __ro_after_init;
96 
97 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
98 static void ipmr_free_table(struct mr_table *mrt);
99 
100 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
101 			  struct net_device *dev, struct sk_buff *skb,
102 			  struct mfc_cache *cache, int local);
103 static int ipmr_cache_report(struct mr_table *mrt,
104 			     struct sk_buff *pkt, vifi_t vifi, int assert);
105 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
106 				 int cmd);
107 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
108 static void mroute_clean_tables(struct mr_table *mrt, int flags);
109 static void ipmr_expire_process(struct timer_list *t);
110 
111 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
112 #define ipmr_for_each_table(mrt, net)					\
113 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list,	\
114 				lockdep_rtnl_is_held() ||		\
115 				list_empty(&net->ipv4.mr_tables))
116 
117 static struct mr_table *ipmr_mr_table_iter(struct net *net,
118 					   struct mr_table *mrt)
119 {
120 	struct mr_table *ret;
121 
122 	if (!mrt)
123 		ret = list_entry_rcu(net->ipv4.mr_tables.next,
124 				     struct mr_table, list);
125 	else
126 		ret = list_entry_rcu(mrt->list.next,
127 				     struct mr_table, list);
128 
129 	if (&ret->list == &net->ipv4.mr_tables)
130 		return NULL;
131 	return ret;
132 }
133 
134 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
135 {
136 	struct mr_table *mrt;
137 
138 	ipmr_for_each_table(mrt, net) {
139 		if (mrt->id == id)
140 			return mrt;
141 	}
142 	return NULL;
143 }
144 
145 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
146 			   struct mr_table **mrt)
147 {
148 	int err;
149 	struct ipmr_result res;
150 	struct fib_lookup_arg arg = {
151 		.result = &res,
152 		.flags = FIB_LOOKUP_NOREF,
153 	};
154 
155 	/* update flow if oif or iif point to device enslaved to l3mdev */
156 	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
157 
158 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
159 			       flowi4_to_flowi(flp4), 0, &arg);
160 	if (err < 0)
161 		return err;
162 	*mrt = res.mrt;
163 	return 0;
164 }
165 
166 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
167 			    int flags, struct fib_lookup_arg *arg)
168 {
169 	struct ipmr_result *res = arg->result;
170 	struct mr_table *mrt;
171 
172 	switch (rule->action) {
173 	case FR_ACT_TO_TBL:
174 		break;
175 	case FR_ACT_UNREACHABLE:
176 		return -ENETUNREACH;
177 	case FR_ACT_PROHIBIT:
178 		return -EACCES;
179 	case FR_ACT_BLACKHOLE:
180 	default:
181 		return -EINVAL;
182 	}
183 
184 	arg->table = fib_rule_get_table(rule, arg);
185 
186 	mrt = ipmr_get_table(rule->fr_net, arg->table);
187 	if (!mrt)
188 		return -EAGAIN;
189 	res->mrt = mrt;
190 	return 0;
191 }
192 
193 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
194 {
195 	return 1;
196 }
197 
198 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
199 	FRA_GENERIC_POLICY,
200 };
201 
202 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
203 			       struct fib_rule_hdr *frh, struct nlattr **tb,
204 			       struct netlink_ext_ack *extack)
205 {
206 	return 0;
207 }
208 
209 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
210 			     struct nlattr **tb)
211 {
212 	return 1;
213 }
214 
215 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
216 			  struct fib_rule_hdr *frh)
217 {
218 	frh->dst_len = 0;
219 	frh->src_len = 0;
220 	frh->tos     = 0;
221 	return 0;
222 }
223 
224 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
225 	.family		= RTNL_FAMILY_IPMR,
226 	.rule_size	= sizeof(struct ipmr_rule),
227 	.addr_size	= sizeof(u32),
228 	.action		= ipmr_rule_action,
229 	.match		= ipmr_rule_match,
230 	.configure	= ipmr_rule_configure,
231 	.compare	= ipmr_rule_compare,
232 	.fill		= ipmr_rule_fill,
233 	.nlgroup	= RTNLGRP_IPV4_RULE,
234 	.policy		= ipmr_rule_policy,
235 	.owner		= THIS_MODULE,
236 };
237 
238 static int __net_init ipmr_rules_init(struct net *net)
239 {
240 	struct fib_rules_ops *ops;
241 	struct mr_table *mrt;
242 	int err;
243 
244 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
245 	if (IS_ERR(ops))
246 		return PTR_ERR(ops);
247 
248 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
249 
250 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
251 	if (IS_ERR(mrt)) {
252 		err = PTR_ERR(mrt);
253 		goto err1;
254 	}
255 
256 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
257 	if (err < 0)
258 		goto err2;
259 
260 	net->ipv4.mr_rules_ops = ops;
261 	return 0;
262 
263 err2:
264 	ipmr_free_table(mrt);
265 err1:
266 	fib_rules_unregister(ops);
267 	return err;
268 }
269 
270 static void __net_exit ipmr_rules_exit(struct net *net)
271 {
272 	struct mr_table *mrt, *next;
273 
274 	rtnl_lock();
275 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
276 		list_del(&mrt->list);
277 		ipmr_free_table(mrt);
278 	}
279 	fib_rules_unregister(net->ipv4.mr_rules_ops);
280 	rtnl_unlock();
281 }
282 
283 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
284 			   struct netlink_ext_ack *extack)
285 {
286 	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
287 }
288 
289 static unsigned int ipmr_rules_seq_read(struct net *net)
290 {
291 	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
292 }
293 
294 bool ipmr_rule_default(const struct fib_rule *rule)
295 {
296 	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
297 }
298 EXPORT_SYMBOL(ipmr_rule_default);
299 #else
300 #define ipmr_for_each_table(mrt, net) \
301 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
302 
303 static struct mr_table *ipmr_mr_table_iter(struct net *net,
304 					   struct mr_table *mrt)
305 {
306 	if (!mrt)
307 		return net->ipv4.mrt;
308 	return NULL;
309 }
310 
311 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
312 {
313 	return net->ipv4.mrt;
314 }
315 
316 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
317 			   struct mr_table **mrt)
318 {
319 	*mrt = net->ipv4.mrt;
320 	return 0;
321 }
322 
323 static int __net_init ipmr_rules_init(struct net *net)
324 {
325 	struct mr_table *mrt;
326 
327 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
328 	if (IS_ERR(mrt))
329 		return PTR_ERR(mrt);
330 	net->ipv4.mrt = mrt;
331 	return 0;
332 }
333 
334 static void __net_exit ipmr_rules_exit(struct net *net)
335 {
336 	rtnl_lock();
337 	ipmr_free_table(net->ipv4.mrt);
338 	net->ipv4.mrt = NULL;
339 	rtnl_unlock();
340 }
341 
342 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
343 			   struct netlink_ext_ack *extack)
344 {
345 	return 0;
346 }
347 
348 static unsigned int ipmr_rules_seq_read(struct net *net)
349 {
350 	return 0;
351 }
352 
353 bool ipmr_rule_default(const struct fib_rule *rule)
354 {
355 	return true;
356 }
357 EXPORT_SYMBOL(ipmr_rule_default);
358 #endif
359 
360 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
361 				const void *ptr)
362 {
363 	const struct mfc_cache_cmp_arg *cmparg = arg->key;
364 	struct mfc_cache *c = (struct mfc_cache *)ptr;
365 
366 	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
367 	       cmparg->mfc_origin != c->mfc_origin;
368 }
369 
370 static const struct rhashtable_params ipmr_rht_params = {
371 	.head_offset = offsetof(struct mr_mfc, mnode),
372 	.key_offset = offsetof(struct mfc_cache, cmparg),
373 	.key_len = sizeof(struct mfc_cache_cmp_arg),
374 	.nelem_hint = 3,
375 	.obj_cmpfn = ipmr_hash_cmp,
376 	.automatic_shrinking = true,
377 };
378 
379 static void ipmr_new_table_set(struct mr_table *mrt,
380 			       struct net *net)
381 {
382 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
383 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
384 #endif
385 }
386 
387 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
388 	.mfc_mcastgrp = htonl(INADDR_ANY),
389 	.mfc_origin = htonl(INADDR_ANY),
390 };
391 
392 static struct mr_table_ops ipmr_mr_table_ops = {
393 	.rht_params = &ipmr_rht_params,
394 	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
395 };
396 
397 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
398 {
399 	struct mr_table *mrt;
400 
401 	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
402 	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
403 		return ERR_PTR(-EINVAL);
404 
405 	mrt = ipmr_get_table(net, id);
406 	if (mrt)
407 		return mrt;
408 
409 	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
410 			      ipmr_expire_process, ipmr_new_table_set);
411 }
412 
413 static void ipmr_free_table(struct mr_table *mrt)
414 {
415 	del_timer_sync(&mrt->ipmr_expire_timer);
416 	mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
417 				 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
418 	rhltable_destroy(&mrt->mfc_hash);
419 	kfree(mrt);
420 }
421 
422 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
423 
424 /* Initialize ipmr pimreg/tunnel in_device */
425 static bool ipmr_init_vif_indev(const struct net_device *dev)
426 {
427 	struct in_device *in_dev;
428 
429 	ASSERT_RTNL();
430 
431 	in_dev = __in_dev_get_rtnl(dev);
432 	if (!in_dev)
433 		return false;
434 	ipv4_devconf_setall(in_dev);
435 	neigh_parms_data_state_setall(in_dev->arp_parms);
436 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
437 
438 	return true;
439 }
440 
441 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
442 {
443 	struct net_device *tunnel_dev, *new_dev;
444 	struct ip_tunnel_parm p = { };
445 	int err;
446 
447 	tunnel_dev = __dev_get_by_name(net, "tunl0");
448 	if (!tunnel_dev)
449 		goto out;
450 
451 	p.iph.daddr = v->vifc_rmt_addr.s_addr;
452 	p.iph.saddr = v->vifc_lcl_addr.s_addr;
453 	p.iph.version = 4;
454 	p.iph.ihl = 5;
455 	p.iph.protocol = IPPROTO_IPIP;
456 	sprintf(p.name, "dvmrp%d", v->vifc_vifi);
457 
458 	if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
459 		goto out;
460 	err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
461 			SIOCADDTUNNEL);
462 	if (err)
463 		goto out;
464 
465 	new_dev = __dev_get_by_name(net, p.name);
466 	if (!new_dev)
467 		goto out;
468 
469 	new_dev->flags |= IFF_MULTICAST;
470 	if (!ipmr_init_vif_indev(new_dev))
471 		goto out_unregister;
472 	if (dev_open(new_dev, NULL))
473 		goto out_unregister;
474 	dev_hold(new_dev);
475 	err = dev_set_allmulti(new_dev, 1);
476 	if (err) {
477 		dev_close(new_dev);
478 		tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
479 				SIOCDELTUNNEL);
480 		dev_put(new_dev);
481 		new_dev = ERR_PTR(err);
482 	}
483 	return new_dev;
484 
485 out_unregister:
486 	unregister_netdevice(new_dev);
487 out:
488 	return ERR_PTR(-ENOBUFS);
489 }
490 
491 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
492 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
493 {
494 	struct net *net = dev_net(dev);
495 	struct mr_table *mrt;
496 	struct flowi4 fl4 = {
497 		.flowi4_oif	= dev->ifindex,
498 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
499 		.flowi4_mark	= skb->mark,
500 	};
501 	int err;
502 
503 	err = ipmr_fib_lookup(net, &fl4, &mrt);
504 	if (err < 0) {
505 		kfree_skb(skb);
506 		return err;
507 	}
508 
509 	read_lock(&mrt_lock);
510 	dev->stats.tx_bytes += skb->len;
511 	dev->stats.tx_packets++;
512 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
513 	read_unlock(&mrt_lock);
514 	kfree_skb(skb);
515 	return NETDEV_TX_OK;
516 }
517 
518 static int reg_vif_get_iflink(const struct net_device *dev)
519 {
520 	return 0;
521 }
522 
523 static const struct net_device_ops reg_vif_netdev_ops = {
524 	.ndo_start_xmit	= reg_vif_xmit,
525 	.ndo_get_iflink = reg_vif_get_iflink,
526 };
527 
528 static void reg_vif_setup(struct net_device *dev)
529 {
530 	dev->type		= ARPHRD_PIMREG;
531 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
532 	dev->flags		= IFF_NOARP;
533 	dev->netdev_ops		= &reg_vif_netdev_ops;
534 	dev->needs_free_netdev	= true;
535 	dev->features		|= NETIF_F_NETNS_LOCAL;
536 }
537 
538 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
539 {
540 	struct net_device *dev;
541 	char name[IFNAMSIZ];
542 
543 	if (mrt->id == RT_TABLE_DEFAULT)
544 		sprintf(name, "pimreg");
545 	else
546 		sprintf(name, "pimreg%u", mrt->id);
547 
548 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
549 
550 	if (!dev)
551 		return NULL;
552 
553 	dev_net_set(dev, net);
554 
555 	if (register_netdevice(dev)) {
556 		free_netdev(dev);
557 		return NULL;
558 	}
559 
560 	if (!ipmr_init_vif_indev(dev))
561 		goto failure;
562 	if (dev_open(dev, NULL))
563 		goto failure;
564 
565 	dev_hold(dev);
566 
567 	return dev;
568 
569 failure:
570 	unregister_netdevice(dev);
571 	return NULL;
572 }
573 
574 /* called with rcu_read_lock() */
575 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
576 		     unsigned int pimlen)
577 {
578 	struct net_device *reg_dev = NULL;
579 	struct iphdr *encap;
580 
581 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
582 	/* Check that:
583 	 * a. packet is really sent to a multicast group
584 	 * b. packet is not a NULL-REGISTER
585 	 * c. packet is not truncated
586 	 */
587 	if (!ipv4_is_multicast(encap->daddr) ||
588 	    encap->tot_len == 0 ||
589 	    ntohs(encap->tot_len) + pimlen > skb->len)
590 		return 1;
591 
592 	read_lock(&mrt_lock);
593 	if (mrt->mroute_reg_vif_num >= 0)
594 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
595 	read_unlock(&mrt_lock);
596 
597 	if (!reg_dev)
598 		return 1;
599 
600 	skb->mac_header = skb->network_header;
601 	skb_pull(skb, (u8 *)encap - skb->data);
602 	skb_reset_network_header(skb);
603 	skb->protocol = htons(ETH_P_IP);
604 	skb->ip_summed = CHECKSUM_NONE;
605 
606 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
607 
608 	netif_rx(skb);
609 
610 	return NET_RX_SUCCESS;
611 }
612 #else
613 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
614 {
615 	return NULL;
616 }
617 #endif
618 
619 static int call_ipmr_vif_entry_notifiers(struct net *net,
620 					 enum fib_event_type event_type,
621 					 struct vif_device *vif,
622 					 vifi_t vif_index, u32 tb_id)
623 {
624 	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
625 				     vif, vif_index, tb_id,
626 				     &net->ipv4.ipmr_seq);
627 }
628 
629 static int call_ipmr_mfc_entry_notifiers(struct net *net,
630 					 enum fib_event_type event_type,
631 					 struct mfc_cache *mfc, u32 tb_id)
632 {
633 	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
634 				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
635 }
636 
637 /**
638  *	vif_delete - Delete a VIF entry
639  *	@notify: Set to 1, if the caller is a notifier_call
640  */
641 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
642 		      struct list_head *head)
643 {
644 	struct net *net = read_pnet(&mrt->net);
645 	struct vif_device *v;
646 	struct net_device *dev;
647 	struct in_device *in_dev;
648 
649 	if (vifi < 0 || vifi >= mrt->maxvif)
650 		return -EADDRNOTAVAIL;
651 
652 	v = &mrt->vif_table[vifi];
653 
654 	if (VIF_EXISTS(mrt, vifi))
655 		call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
656 					      mrt->id);
657 
658 	write_lock_bh(&mrt_lock);
659 	dev = v->dev;
660 	v->dev = NULL;
661 
662 	if (!dev) {
663 		write_unlock_bh(&mrt_lock);
664 		return -EADDRNOTAVAIL;
665 	}
666 
667 	if (vifi == mrt->mroute_reg_vif_num)
668 		mrt->mroute_reg_vif_num = -1;
669 
670 	if (vifi + 1 == mrt->maxvif) {
671 		int tmp;
672 
673 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
674 			if (VIF_EXISTS(mrt, tmp))
675 				break;
676 		}
677 		mrt->maxvif = tmp+1;
678 	}
679 
680 	write_unlock_bh(&mrt_lock);
681 
682 	dev_set_allmulti(dev, -1);
683 
684 	in_dev = __in_dev_get_rtnl(dev);
685 	if (in_dev) {
686 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
687 		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
688 					    NETCONFA_MC_FORWARDING,
689 					    dev->ifindex, &in_dev->cnf);
690 		ip_rt_multicast_event(in_dev);
691 	}
692 
693 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
694 		unregister_netdevice_queue(dev, head);
695 
696 	dev_put(dev);
697 	return 0;
698 }
699 
700 static void ipmr_cache_free_rcu(struct rcu_head *head)
701 {
702 	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
703 
704 	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
705 }
706 
707 static void ipmr_cache_free(struct mfc_cache *c)
708 {
709 	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
710 }
711 
712 /* Destroy an unresolved cache entry, killing queued skbs
713  * and reporting error to netlink readers.
714  */
715 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
716 {
717 	struct net *net = read_pnet(&mrt->net);
718 	struct sk_buff *skb;
719 	struct nlmsgerr *e;
720 
721 	atomic_dec(&mrt->cache_resolve_queue_len);
722 
723 	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
724 		if (ip_hdr(skb)->version == 0) {
725 			struct nlmsghdr *nlh = skb_pull(skb,
726 							sizeof(struct iphdr));
727 			nlh->nlmsg_type = NLMSG_ERROR;
728 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
729 			skb_trim(skb, nlh->nlmsg_len);
730 			e = nlmsg_data(nlh);
731 			e->error = -ETIMEDOUT;
732 			memset(&e->msg, 0, sizeof(e->msg));
733 
734 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
735 		} else {
736 			kfree_skb(skb);
737 		}
738 	}
739 
740 	ipmr_cache_free(c);
741 }
742 
743 /* Timer process for the unresolved queue. */
744 static void ipmr_expire_process(struct timer_list *t)
745 {
746 	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
747 	struct mr_mfc *c, *next;
748 	unsigned long expires;
749 	unsigned long now;
750 
751 	if (!spin_trylock(&mfc_unres_lock)) {
752 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
753 		return;
754 	}
755 
756 	if (list_empty(&mrt->mfc_unres_queue))
757 		goto out;
758 
759 	now = jiffies;
760 	expires = 10*HZ;
761 
762 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
763 		if (time_after(c->mfc_un.unres.expires, now)) {
764 			unsigned long interval = c->mfc_un.unres.expires - now;
765 			if (interval < expires)
766 				expires = interval;
767 			continue;
768 		}
769 
770 		list_del(&c->list);
771 		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
772 		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
773 	}
774 
775 	if (!list_empty(&mrt->mfc_unres_queue))
776 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
777 
778 out:
779 	spin_unlock(&mfc_unres_lock);
780 }
781 
782 /* Fill oifs list. It is called under write locked mrt_lock. */
783 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
784 				   unsigned char *ttls)
785 {
786 	int vifi;
787 
788 	cache->mfc_un.res.minvif = MAXVIFS;
789 	cache->mfc_un.res.maxvif = 0;
790 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
791 
792 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
793 		if (VIF_EXISTS(mrt, vifi) &&
794 		    ttls[vifi] && ttls[vifi] < 255) {
795 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
796 			if (cache->mfc_un.res.minvif > vifi)
797 				cache->mfc_un.res.minvif = vifi;
798 			if (cache->mfc_un.res.maxvif <= vifi)
799 				cache->mfc_un.res.maxvif = vifi + 1;
800 		}
801 	}
802 	cache->mfc_un.res.lastuse = jiffies;
803 }
804 
805 static int vif_add(struct net *net, struct mr_table *mrt,
806 		   struct vifctl *vifc, int mrtsock)
807 {
808 	struct netdev_phys_item_id ppid = { };
809 	int vifi = vifc->vifc_vifi;
810 	struct vif_device *v = &mrt->vif_table[vifi];
811 	struct net_device *dev;
812 	struct in_device *in_dev;
813 	int err;
814 
815 	/* Is vif busy ? */
816 	if (VIF_EXISTS(mrt, vifi))
817 		return -EADDRINUSE;
818 
819 	switch (vifc->vifc_flags) {
820 	case VIFF_REGISTER:
821 		if (!ipmr_pimsm_enabled())
822 			return -EINVAL;
823 		/* Special Purpose VIF in PIM
824 		 * All the packets will be sent to the daemon
825 		 */
826 		if (mrt->mroute_reg_vif_num >= 0)
827 			return -EADDRINUSE;
828 		dev = ipmr_reg_vif(net, mrt);
829 		if (!dev)
830 			return -ENOBUFS;
831 		err = dev_set_allmulti(dev, 1);
832 		if (err) {
833 			unregister_netdevice(dev);
834 			dev_put(dev);
835 			return err;
836 		}
837 		break;
838 	case VIFF_TUNNEL:
839 		dev = ipmr_new_tunnel(net, vifc);
840 		if (IS_ERR(dev))
841 			return PTR_ERR(dev);
842 		break;
843 	case VIFF_USE_IFINDEX:
844 	case 0:
845 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
846 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
847 			if (dev && !__in_dev_get_rtnl(dev)) {
848 				dev_put(dev);
849 				return -EADDRNOTAVAIL;
850 			}
851 		} else {
852 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
853 		}
854 		if (!dev)
855 			return -EADDRNOTAVAIL;
856 		err = dev_set_allmulti(dev, 1);
857 		if (err) {
858 			dev_put(dev);
859 			return err;
860 		}
861 		break;
862 	default:
863 		return -EINVAL;
864 	}
865 
866 	in_dev = __in_dev_get_rtnl(dev);
867 	if (!in_dev) {
868 		dev_put(dev);
869 		return -EADDRNOTAVAIL;
870 	}
871 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
872 	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
873 				    dev->ifindex, &in_dev->cnf);
874 	ip_rt_multicast_event(in_dev);
875 
876 	/* Fill in the VIF structures */
877 	vif_device_init(v, dev, vifc->vifc_rate_limit,
878 			vifc->vifc_threshold,
879 			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
880 			(VIFF_TUNNEL | VIFF_REGISTER));
881 
882 	err = dev_get_port_parent_id(dev, &ppid, true);
883 	if (err == 0) {
884 		memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
885 		v->dev_parent_id.id_len = ppid.id_len;
886 	} else {
887 		v->dev_parent_id.id_len = 0;
888 	}
889 
890 	v->local = vifc->vifc_lcl_addr.s_addr;
891 	v->remote = vifc->vifc_rmt_addr.s_addr;
892 
893 	/* And finish update writing critical data */
894 	write_lock_bh(&mrt_lock);
895 	v->dev = dev;
896 	if (v->flags & VIFF_REGISTER)
897 		mrt->mroute_reg_vif_num = vifi;
898 	if (vifi+1 > mrt->maxvif)
899 		mrt->maxvif = vifi+1;
900 	write_unlock_bh(&mrt_lock);
901 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
902 	return 0;
903 }
904 
905 /* called with rcu_read_lock() */
906 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
907 					 __be32 origin,
908 					 __be32 mcastgrp)
909 {
910 	struct mfc_cache_cmp_arg arg = {
911 			.mfc_mcastgrp = mcastgrp,
912 			.mfc_origin = origin
913 	};
914 
915 	return mr_mfc_find(mrt, &arg);
916 }
917 
918 /* Look for a (*,G) entry */
919 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
920 					     __be32 mcastgrp, int vifi)
921 {
922 	struct mfc_cache_cmp_arg arg = {
923 			.mfc_mcastgrp = mcastgrp,
924 			.mfc_origin = htonl(INADDR_ANY)
925 	};
926 
927 	if (mcastgrp == htonl(INADDR_ANY))
928 		return mr_mfc_find_any_parent(mrt, vifi);
929 	return mr_mfc_find_any(mrt, vifi, &arg);
930 }
931 
932 /* Look for a (S,G,iif) entry if parent != -1 */
933 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
934 						__be32 origin, __be32 mcastgrp,
935 						int parent)
936 {
937 	struct mfc_cache_cmp_arg arg = {
938 			.mfc_mcastgrp = mcastgrp,
939 			.mfc_origin = origin,
940 	};
941 
942 	return mr_mfc_find_parent(mrt, &arg, parent);
943 }
944 
945 /* Allocate a multicast cache entry */
946 static struct mfc_cache *ipmr_cache_alloc(void)
947 {
948 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
949 
950 	if (c) {
951 		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
952 		c->_c.mfc_un.res.minvif = MAXVIFS;
953 		c->_c.free = ipmr_cache_free_rcu;
954 		refcount_set(&c->_c.mfc_un.res.refcount, 1);
955 	}
956 	return c;
957 }
958 
959 static struct mfc_cache *ipmr_cache_alloc_unres(void)
960 {
961 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
962 
963 	if (c) {
964 		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
965 		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
966 	}
967 	return c;
968 }
969 
970 /* A cache entry has gone into a resolved state from queued */
971 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
972 			       struct mfc_cache *uc, struct mfc_cache *c)
973 {
974 	struct sk_buff *skb;
975 	struct nlmsgerr *e;
976 
977 	/* Play the pending entries through our router */
978 	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
979 		if (ip_hdr(skb)->version == 0) {
980 			struct nlmsghdr *nlh = skb_pull(skb,
981 							sizeof(struct iphdr));
982 
983 			if (mr_fill_mroute(mrt, skb, &c->_c,
984 					   nlmsg_data(nlh)) > 0) {
985 				nlh->nlmsg_len = skb_tail_pointer(skb) -
986 						 (u8 *)nlh;
987 			} else {
988 				nlh->nlmsg_type = NLMSG_ERROR;
989 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
990 				skb_trim(skb, nlh->nlmsg_len);
991 				e = nlmsg_data(nlh);
992 				e->error = -EMSGSIZE;
993 				memset(&e->msg, 0, sizeof(e->msg));
994 			}
995 
996 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
997 		} else {
998 			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
999 		}
1000 	}
1001 }
1002 
1003 /* Bounce a cache query up to mrouted and netlink.
1004  *
1005  * Called under mrt_lock.
1006  */
1007 static int ipmr_cache_report(struct mr_table *mrt,
1008 			     struct sk_buff *pkt, vifi_t vifi, int assert)
1009 {
1010 	const int ihl = ip_hdrlen(pkt);
1011 	struct sock *mroute_sk;
1012 	struct igmphdr *igmp;
1013 	struct igmpmsg *msg;
1014 	struct sk_buff *skb;
1015 	int ret;
1016 
1017 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1018 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1019 	else
1020 		skb = alloc_skb(128, GFP_ATOMIC);
1021 
1022 	if (!skb)
1023 		return -ENOBUFS;
1024 
1025 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1026 		/* Ugly, but we have no choice with this interface.
1027 		 * Duplicate old header, fix ihl, length etc.
1028 		 * And all this only to mangle msg->im_msgtype and
1029 		 * to set msg->im_mbz to "mbz" :-)
1030 		 */
1031 		skb_push(skb, sizeof(struct iphdr));
1032 		skb_reset_network_header(skb);
1033 		skb_reset_transport_header(skb);
1034 		msg = (struct igmpmsg *)skb_network_header(skb);
1035 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1036 		msg->im_msgtype = assert;
1037 		msg->im_mbz = 0;
1038 		if (assert == IGMPMSG_WRVIFWHOLE)
1039 			msg->im_vif = vifi;
1040 		else
1041 			msg->im_vif = mrt->mroute_reg_vif_num;
1042 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1043 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1044 					     sizeof(struct iphdr));
1045 	} else {
1046 		/* Copy the IP header */
1047 		skb_set_network_header(skb, skb->len);
1048 		skb_put(skb, ihl);
1049 		skb_copy_to_linear_data(skb, pkt->data, ihl);
1050 		/* Flag to the kernel this is a route add */
1051 		ip_hdr(skb)->protocol = 0;
1052 		msg = (struct igmpmsg *)skb_network_header(skb);
1053 		msg->im_vif = vifi;
1054 		skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1055 		/* Add our header */
1056 		igmp = skb_put(skb, sizeof(struct igmphdr));
1057 		igmp->type = assert;
1058 		msg->im_msgtype = assert;
1059 		igmp->code = 0;
1060 		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1061 		skb->transport_header = skb->network_header;
1062 	}
1063 
1064 	rcu_read_lock();
1065 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1066 	if (!mroute_sk) {
1067 		rcu_read_unlock();
1068 		kfree_skb(skb);
1069 		return -EINVAL;
1070 	}
1071 
1072 	igmpmsg_netlink_event(mrt, skb);
1073 
1074 	/* Deliver to mrouted */
1075 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1076 	rcu_read_unlock();
1077 	if (ret < 0) {
1078 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1079 		kfree_skb(skb);
1080 	}
1081 
1082 	return ret;
1083 }
1084 
1085 /* Queue a packet for resolution. It gets locked cache entry! */
1086 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1087 				 struct sk_buff *skb, struct net_device *dev)
1088 {
1089 	const struct iphdr *iph = ip_hdr(skb);
1090 	struct mfc_cache *c;
1091 	bool found = false;
1092 	int err;
1093 
1094 	spin_lock_bh(&mfc_unres_lock);
1095 	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1096 		if (c->mfc_mcastgrp == iph->daddr &&
1097 		    c->mfc_origin == iph->saddr) {
1098 			found = true;
1099 			break;
1100 		}
1101 	}
1102 
1103 	if (!found) {
1104 		/* Create a new entry if allowable */
1105 		c = ipmr_cache_alloc_unres();
1106 		if (!c) {
1107 			spin_unlock_bh(&mfc_unres_lock);
1108 
1109 			kfree_skb(skb);
1110 			return -ENOBUFS;
1111 		}
1112 
1113 		/* Fill in the new cache entry */
1114 		c->_c.mfc_parent = -1;
1115 		c->mfc_origin	= iph->saddr;
1116 		c->mfc_mcastgrp	= iph->daddr;
1117 
1118 		/* Reflect first query at mrouted. */
1119 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1120 
1121 		if (err < 0) {
1122 			/* If the report failed throw the cache entry
1123 			   out - Brad Parker
1124 			 */
1125 			spin_unlock_bh(&mfc_unres_lock);
1126 
1127 			ipmr_cache_free(c);
1128 			kfree_skb(skb);
1129 			return err;
1130 		}
1131 
1132 		atomic_inc(&mrt->cache_resolve_queue_len);
1133 		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1134 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1135 
1136 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1137 			mod_timer(&mrt->ipmr_expire_timer,
1138 				  c->_c.mfc_un.unres.expires);
1139 	}
1140 
1141 	/* See if we can append the packet */
1142 	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1143 		kfree_skb(skb);
1144 		err = -ENOBUFS;
1145 	} else {
1146 		if (dev) {
1147 			skb->dev = dev;
1148 			skb->skb_iif = dev->ifindex;
1149 		}
1150 		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1151 		err = 0;
1152 	}
1153 
1154 	spin_unlock_bh(&mfc_unres_lock);
1155 	return err;
1156 }
1157 
1158 /* MFC cache manipulation by user space mroute daemon */
1159 
1160 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1161 {
1162 	struct net *net = read_pnet(&mrt->net);
1163 	struct mfc_cache *c;
1164 
1165 	/* The entries are added/deleted only under RTNL */
1166 	rcu_read_lock();
1167 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1168 				   mfc->mfcc_mcastgrp.s_addr, parent);
1169 	rcu_read_unlock();
1170 	if (!c)
1171 		return -ENOENT;
1172 	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1173 	list_del_rcu(&c->_c.list);
1174 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1175 	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1176 	mr_cache_put(&c->_c);
1177 
1178 	return 0;
1179 }
1180 
1181 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1182 			struct mfcctl *mfc, int mrtsock, int parent)
1183 {
1184 	struct mfc_cache *uc, *c;
1185 	struct mr_mfc *_uc;
1186 	bool found;
1187 	int ret;
1188 
1189 	if (mfc->mfcc_parent >= MAXVIFS)
1190 		return -ENFILE;
1191 
1192 	/* The entries are added/deleted only under RTNL */
1193 	rcu_read_lock();
1194 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1195 				   mfc->mfcc_mcastgrp.s_addr, parent);
1196 	rcu_read_unlock();
1197 	if (c) {
1198 		write_lock_bh(&mrt_lock);
1199 		c->_c.mfc_parent = mfc->mfcc_parent;
1200 		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1201 		if (!mrtsock)
1202 			c->_c.mfc_flags |= MFC_STATIC;
1203 		write_unlock_bh(&mrt_lock);
1204 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1205 					      mrt->id);
1206 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1207 		return 0;
1208 	}
1209 
1210 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1211 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1212 		return -EINVAL;
1213 
1214 	c = ipmr_cache_alloc();
1215 	if (!c)
1216 		return -ENOMEM;
1217 
1218 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1219 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1220 	c->_c.mfc_parent = mfc->mfcc_parent;
1221 	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1222 	if (!mrtsock)
1223 		c->_c.mfc_flags |= MFC_STATIC;
1224 
1225 	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1226 				  ipmr_rht_params);
1227 	if (ret) {
1228 		pr_err("ipmr: rhtable insert error %d\n", ret);
1229 		ipmr_cache_free(c);
1230 		return ret;
1231 	}
1232 	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1233 	/* Check to see if we resolved a queued list. If so we
1234 	 * need to send on the frames and tidy up.
1235 	 */
1236 	found = false;
1237 	spin_lock_bh(&mfc_unres_lock);
1238 	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1239 		uc = (struct mfc_cache *)_uc;
1240 		if (uc->mfc_origin == c->mfc_origin &&
1241 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1242 			list_del(&_uc->list);
1243 			atomic_dec(&mrt->cache_resolve_queue_len);
1244 			found = true;
1245 			break;
1246 		}
1247 	}
1248 	if (list_empty(&mrt->mfc_unres_queue))
1249 		del_timer(&mrt->ipmr_expire_timer);
1250 	spin_unlock_bh(&mfc_unres_lock);
1251 
1252 	if (found) {
1253 		ipmr_cache_resolve(net, mrt, uc, c);
1254 		ipmr_cache_free(uc);
1255 	}
1256 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1257 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1258 	return 0;
1259 }
1260 
1261 /* Close the multicast socket, and clear the vif tables etc */
1262 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1263 {
1264 	struct net *net = read_pnet(&mrt->net);
1265 	struct mr_mfc *c, *tmp;
1266 	struct mfc_cache *cache;
1267 	LIST_HEAD(list);
1268 	int i;
1269 
1270 	/* Shut down all active vif entries */
1271 	if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1272 		for (i = 0; i < mrt->maxvif; i++) {
1273 			if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1274 			     !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1275 			    (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1276 				continue;
1277 			vif_delete(mrt, i, 0, &list);
1278 		}
1279 		unregister_netdevice_many(&list);
1280 	}
1281 
1282 	/* Wipe the cache */
1283 	if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1284 		list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1285 			if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1286 			    (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1287 				continue;
1288 			rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1289 			list_del_rcu(&c->list);
1290 			cache = (struct mfc_cache *)c;
1291 			call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1292 						      mrt->id);
1293 			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1294 			mr_cache_put(c);
1295 		}
1296 	}
1297 
1298 	if (flags & MRT_FLUSH_MFC) {
1299 		if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1300 			spin_lock_bh(&mfc_unres_lock);
1301 			list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1302 				list_del(&c->list);
1303 				cache = (struct mfc_cache *)c;
1304 				mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1305 				ipmr_destroy_unres(mrt, cache);
1306 			}
1307 			spin_unlock_bh(&mfc_unres_lock);
1308 		}
1309 	}
1310 }
1311 
1312 /* called from ip_ra_control(), before an RCU grace period,
1313  * we dont need to call synchronize_rcu() here
1314  */
1315 static void mrtsock_destruct(struct sock *sk)
1316 {
1317 	struct net *net = sock_net(sk);
1318 	struct mr_table *mrt;
1319 
1320 	rtnl_lock();
1321 	ipmr_for_each_table(mrt, net) {
1322 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1323 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1324 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1325 						    NETCONFA_MC_FORWARDING,
1326 						    NETCONFA_IFINDEX_ALL,
1327 						    net->ipv4.devconf_all);
1328 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1329 			mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1330 		}
1331 	}
1332 	rtnl_unlock();
1333 }
1334 
1335 /* Socket options and virtual interface manipulation. The whole
1336  * virtual interface system is a complete heap, but unfortunately
1337  * that's how BSD mrouted happens to think. Maybe one day with a proper
1338  * MOSPF/PIM router set up we can clean this up.
1339  */
1340 
1341 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1342 			 unsigned int optlen)
1343 {
1344 	struct net *net = sock_net(sk);
1345 	int val, ret = 0, parent = 0;
1346 	struct mr_table *mrt;
1347 	struct vifctl vif;
1348 	struct mfcctl mfc;
1349 	bool do_wrvifwhole;
1350 	u32 uval;
1351 
1352 	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1353 	rtnl_lock();
1354 	if (sk->sk_type != SOCK_RAW ||
1355 	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1356 		ret = -EOPNOTSUPP;
1357 		goto out_unlock;
1358 	}
1359 
1360 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1361 	if (!mrt) {
1362 		ret = -ENOENT;
1363 		goto out_unlock;
1364 	}
1365 	if (optname != MRT_INIT) {
1366 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1367 		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1368 			ret = -EACCES;
1369 			goto out_unlock;
1370 		}
1371 	}
1372 
1373 	switch (optname) {
1374 	case MRT_INIT:
1375 		if (optlen != sizeof(int)) {
1376 			ret = -EINVAL;
1377 			break;
1378 		}
1379 		if (rtnl_dereference(mrt->mroute_sk)) {
1380 			ret = -EADDRINUSE;
1381 			break;
1382 		}
1383 
1384 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1385 		if (ret == 0) {
1386 			rcu_assign_pointer(mrt->mroute_sk, sk);
1387 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1388 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1389 						    NETCONFA_MC_FORWARDING,
1390 						    NETCONFA_IFINDEX_ALL,
1391 						    net->ipv4.devconf_all);
1392 		}
1393 		break;
1394 	case MRT_DONE:
1395 		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1396 			ret = -EACCES;
1397 		} else {
1398 			/* We need to unlock here because mrtsock_destruct takes
1399 			 * care of rtnl itself and we can't change that due to
1400 			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1401 			 */
1402 			rtnl_unlock();
1403 			ret = ip_ra_control(sk, 0, NULL);
1404 			goto out;
1405 		}
1406 		break;
1407 	case MRT_ADD_VIF:
1408 	case MRT_DEL_VIF:
1409 		if (optlen != sizeof(vif)) {
1410 			ret = -EINVAL;
1411 			break;
1412 		}
1413 		if (copy_from_user(&vif, optval, sizeof(vif))) {
1414 			ret = -EFAULT;
1415 			break;
1416 		}
1417 		if (vif.vifc_vifi >= MAXVIFS) {
1418 			ret = -ENFILE;
1419 			break;
1420 		}
1421 		if (optname == MRT_ADD_VIF) {
1422 			ret = vif_add(net, mrt, &vif,
1423 				      sk == rtnl_dereference(mrt->mroute_sk));
1424 		} else {
1425 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1426 		}
1427 		break;
1428 	/* Manipulate the forwarding caches. These live
1429 	 * in a sort of kernel/user symbiosis.
1430 	 */
1431 	case MRT_ADD_MFC:
1432 	case MRT_DEL_MFC:
1433 		parent = -1;
1434 		fallthrough;
1435 	case MRT_ADD_MFC_PROXY:
1436 	case MRT_DEL_MFC_PROXY:
1437 		if (optlen != sizeof(mfc)) {
1438 			ret = -EINVAL;
1439 			break;
1440 		}
1441 		if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1442 			ret = -EFAULT;
1443 			break;
1444 		}
1445 		if (parent == 0)
1446 			parent = mfc.mfcc_parent;
1447 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1448 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1449 		else
1450 			ret = ipmr_mfc_add(net, mrt, &mfc,
1451 					   sk == rtnl_dereference(mrt->mroute_sk),
1452 					   parent);
1453 		break;
1454 	case MRT_FLUSH:
1455 		if (optlen != sizeof(val)) {
1456 			ret = -EINVAL;
1457 			break;
1458 		}
1459 		if (get_user(val, (int __user *)optval)) {
1460 			ret = -EFAULT;
1461 			break;
1462 		}
1463 		mroute_clean_tables(mrt, val);
1464 		break;
1465 	/* Control PIM assert. */
1466 	case MRT_ASSERT:
1467 		if (optlen != sizeof(val)) {
1468 			ret = -EINVAL;
1469 			break;
1470 		}
1471 		if (get_user(val, (int __user *)optval)) {
1472 			ret = -EFAULT;
1473 			break;
1474 		}
1475 		mrt->mroute_do_assert = val;
1476 		break;
1477 	case MRT_PIM:
1478 		if (!ipmr_pimsm_enabled()) {
1479 			ret = -ENOPROTOOPT;
1480 			break;
1481 		}
1482 		if (optlen != sizeof(val)) {
1483 			ret = -EINVAL;
1484 			break;
1485 		}
1486 		if (get_user(val, (int __user *)optval)) {
1487 			ret = -EFAULT;
1488 			break;
1489 		}
1490 
1491 		do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1492 		val = !!val;
1493 		if (val != mrt->mroute_do_pim) {
1494 			mrt->mroute_do_pim = val;
1495 			mrt->mroute_do_assert = val;
1496 			mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1497 		}
1498 		break;
1499 	case MRT_TABLE:
1500 		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1501 			ret = -ENOPROTOOPT;
1502 			break;
1503 		}
1504 		if (optlen != sizeof(uval)) {
1505 			ret = -EINVAL;
1506 			break;
1507 		}
1508 		if (get_user(uval, (u32 __user *)optval)) {
1509 			ret = -EFAULT;
1510 			break;
1511 		}
1512 
1513 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1514 			ret = -EBUSY;
1515 		} else {
1516 			mrt = ipmr_new_table(net, uval);
1517 			if (IS_ERR(mrt))
1518 				ret = PTR_ERR(mrt);
1519 			else
1520 				raw_sk(sk)->ipmr_table = uval;
1521 		}
1522 		break;
1523 	/* Spurious command, or MRT_VERSION which you cannot set. */
1524 	default:
1525 		ret = -ENOPROTOOPT;
1526 	}
1527 out_unlock:
1528 	rtnl_unlock();
1529 out:
1530 	return ret;
1531 }
1532 
1533 /* Getsock opt support for the multicast routing system. */
1534 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1535 {
1536 	int olr;
1537 	int val;
1538 	struct net *net = sock_net(sk);
1539 	struct mr_table *mrt;
1540 
1541 	if (sk->sk_type != SOCK_RAW ||
1542 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1543 		return -EOPNOTSUPP;
1544 
1545 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1546 	if (!mrt)
1547 		return -ENOENT;
1548 
1549 	switch (optname) {
1550 	case MRT_VERSION:
1551 		val = 0x0305;
1552 		break;
1553 	case MRT_PIM:
1554 		if (!ipmr_pimsm_enabled())
1555 			return -ENOPROTOOPT;
1556 		val = mrt->mroute_do_pim;
1557 		break;
1558 	case MRT_ASSERT:
1559 		val = mrt->mroute_do_assert;
1560 		break;
1561 	default:
1562 		return -ENOPROTOOPT;
1563 	}
1564 
1565 	if (get_user(olr, optlen))
1566 		return -EFAULT;
1567 	olr = min_t(unsigned int, olr, sizeof(int));
1568 	if (olr < 0)
1569 		return -EINVAL;
1570 	if (put_user(olr, optlen))
1571 		return -EFAULT;
1572 	if (copy_to_user(optval, &val, olr))
1573 		return -EFAULT;
1574 	return 0;
1575 }
1576 
1577 /* The IP multicast ioctl support routines. */
1578 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1579 {
1580 	struct sioc_sg_req sr;
1581 	struct sioc_vif_req vr;
1582 	struct vif_device *vif;
1583 	struct mfc_cache *c;
1584 	struct net *net = sock_net(sk);
1585 	struct mr_table *mrt;
1586 
1587 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1588 	if (!mrt)
1589 		return -ENOENT;
1590 
1591 	switch (cmd) {
1592 	case SIOCGETVIFCNT:
1593 		if (copy_from_user(&vr, arg, sizeof(vr)))
1594 			return -EFAULT;
1595 		if (vr.vifi >= mrt->maxvif)
1596 			return -EINVAL;
1597 		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1598 		read_lock(&mrt_lock);
1599 		vif = &mrt->vif_table[vr.vifi];
1600 		if (VIF_EXISTS(mrt, vr.vifi)) {
1601 			vr.icount = vif->pkt_in;
1602 			vr.ocount = vif->pkt_out;
1603 			vr.ibytes = vif->bytes_in;
1604 			vr.obytes = vif->bytes_out;
1605 			read_unlock(&mrt_lock);
1606 
1607 			if (copy_to_user(arg, &vr, sizeof(vr)))
1608 				return -EFAULT;
1609 			return 0;
1610 		}
1611 		read_unlock(&mrt_lock);
1612 		return -EADDRNOTAVAIL;
1613 	case SIOCGETSGCNT:
1614 		if (copy_from_user(&sr, arg, sizeof(sr)))
1615 			return -EFAULT;
1616 
1617 		rcu_read_lock();
1618 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1619 		if (c) {
1620 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1621 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1622 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1623 			rcu_read_unlock();
1624 
1625 			if (copy_to_user(arg, &sr, sizeof(sr)))
1626 				return -EFAULT;
1627 			return 0;
1628 		}
1629 		rcu_read_unlock();
1630 		return -EADDRNOTAVAIL;
1631 	default:
1632 		return -ENOIOCTLCMD;
1633 	}
1634 }
1635 
1636 #ifdef CONFIG_COMPAT
1637 struct compat_sioc_sg_req {
1638 	struct in_addr src;
1639 	struct in_addr grp;
1640 	compat_ulong_t pktcnt;
1641 	compat_ulong_t bytecnt;
1642 	compat_ulong_t wrong_if;
1643 };
1644 
1645 struct compat_sioc_vif_req {
1646 	vifi_t	vifi;		/* Which iface */
1647 	compat_ulong_t icount;
1648 	compat_ulong_t ocount;
1649 	compat_ulong_t ibytes;
1650 	compat_ulong_t obytes;
1651 };
1652 
1653 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1654 {
1655 	struct compat_sioc_sg_req sr;
1656 	struct compat_sioc_vif_req vr;
1657 	struct vif_device *vif;
1658 	struct mfc_cache *c;
1659 	struct net *net = sock_net(sk);
1660 	struct mr_table *mrt;
1661 
1662 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1663 	if (!mrt)
1664 		return -ENOENT;
1665 
1666 	switch (cmd) {
1667 	case SIOCGETVIFCNT:
1668 		if (copy_from_user(&vr, arg, sizeof(vr)))
1669 			return -EFAULT;
1670 		if (vr.vifi >= mrt->maxvif)
1671 			return -EINVAL;
1672 		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1673 		read_lock(&mrt_lock);
1674 		vif = &mrt->vif_table[vr.vifi];
1675 		if (VIF_EXISTS(mrt, vr.vifi)) {
1676 			vr.icount = vif->pkt_in;
1677 			vr.ocount = vif->pkt_out;
1678 			vr.ibytes = vif->bytes_in;
1679 			vr.obytes = vif->bytes_out;
1680 			read_unlock(&mrt_lock);
1681 
1682 			if (copy_to_user(arg, &vr, sizeof(vr)))
1683 				return -EFAULT;
1684 			return 0;
1685 		}
1686 		read_unlock(&mrt_lock);
1687 		return -EADDRNOTAVAIL;
1688 	case SIOCGETSGCNT:
1689 		if (copy_from_user(&sr, arg, sizeof(sr)))
1690 			return -EFAULT;
1691 
1692 		rcu_read_lock();
1693 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1694 		if (c) {
1695 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1696 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1697 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1698 			rcu_read_unlock();
1699 
1700 			if (copy_to_user(arg, &sr, sizeof(sr)))
1701 				return -EFAULT;
1702 			return 0;
1703 		}
1704 		rcu_read_unlock();
1705 		return -EADDRNOTAVAIL;
1706 	default:
1707 		return -ENOIOCTLCMD;
1708 	}
1709 }
1710 #endif
1711 
1712 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1713 {
1714 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1715 	struct net *net = dev_net(dev);
1716 	struct mr_table *mrt;
1717 	struct vif_device *v;
1718 	int ct;
1719 
1720 	if (event != NETDEV_UNREGISTER)
1721 		return NOTIFY_DONE;
1722 
1723 	ipmr_for_each_table(mrt, net) {
1724 		v = &mrt->vif_table[0];
1725 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1726 			if (v->dev == dev)
1727 				vif_delete(mrt, ct, 1, NULL);
1728 		}
1729 	}
1730 	return NOTIFY_DONE;
1731 }
1732 
1733 static struct notifier_block ip_mr_notifier = {
1734 	.notifier_call = ipmr_device_event,
1735 };
1736 
1737 /* Encapsulate a packet by attaching a valid IPIP header to it.
1738  * This avoids tunnel drivers and other mess and gives us the speed so
1739  * important for multicast video.
1740  */
1741 static void ip_encap(struct net *net, struct sk_buff *skb,
1742 		     __be32 saddr, __be32 daddr)
1743 {
1744 	struct iphdr *iph;
1745 	const struct iphdr *old_iph = ip_hdr(skb);
1746 
1747 	skb_push(skb, sizeof(struct iphdr));
1748 	skb->transport_header = skb->network_header;
1749 	skb_reset_network_header(skb);
1750 	iph = ip_hdr(skb);
1751 
1752 	iph->version	=	4;
1753 	iph->tos	=	old_iph->tos;
1754 	iph->ttl	=	old_iph->ttl;
1755 	iph->frag_off	=	0;
1756 	iph->daddr	=	daddr;
1757 	iph->saddr	=	saddr;
1758 	iph->protocol	=	IPPROTO_IPIP;
1759 	iph->ihl	=	5;
1760 	iph->tot_len	=	htons(skb->len);
1761 	ip_select_ident(net, skb, NULL);
1762 	ip_send_check(iph);
1763 
1764 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1765 	nf_reset_ct(skb);
1766 }
1767 
1768 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1769 				      struct sk_buff *skb)
1770 {
1771 	struct ip_options *opt = &(IPCB(skb)->opt);
1772 
1773 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1774 	IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1775 
1776 	if (unlikely(opt->optlen))
1777 		ip_forward_options(skb);
1778 
1779 	return dst_output(net, sk, skb);
1780 }
1781 
1782 #ifdef CONFIG_NET_SWITCHDEV
1783 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1784 				   int in_vifi, int out_vifi)
1785 {
1786 	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1787 	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1788 
1789 	if (!skb->offload_l3_fwd_mark)
1790 		return false;
1791 	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1792 		return false;
1793 	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1794 					&in_vif->dev_parent_id);
1795 }
1796 #else
1797 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1798 				   int in_vifi, int out_vifi)
1799 {
1800 	return false;
1801 }
1802 #endif
1803 
1804 /* Processing handlers for ipmr_forward */
1805 
1806 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1807 			    int in_vifi, struct sk_buff *skb, int vifi)
1808 {
1809 	const struct iphdr *iph = ip_hdr(skb);
1810 	struct vif_device *vif = &mrt->vif_table[vifi];
1811 	struct net_device *dev;
1812 	struct rtable *rt;
1813 	struct flowi4 fl4;
1814 	int    encap = 0;
1815 
1816 	if (!vif->dev)
1817 		goto out_free;
1818 
1819 	if (vif->flags & VIFF_REGISTER) {
1820 		vif->pkt_out++;
1821 		vif->bytes_out += skb->len;
1822 		vif->dev->stats.tx_bytes += skb->len;
1823 		vif->dev->stats.tx_packets++;
1824 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1825 		goto out_free;
1826 	}
1827 
1828 	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1829 		goto out_free;
1830 
1831 	if (vif->flags & VIFF_TUNNEL) {
1832 		rt = ip_route_output_ports(net, &fl4, NULL,
1833 					   vif->remote, vif->local,
1834 					   0, 0,
1835 					   IPPROTO_IPIP,
1836 					   RT_TOS(iph->tos), vif->link);
1837 		if (IS_ERR(rt))
1838 			goto out_free;
1839 		encap = sizeof(struct iphdr);
1840 	} else {
1841 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1842 					   0, 0,
1843 					   IPPROTO_IPIP,
1844 					   RT_TOS(iph->tos), vif->link);
1845 		if (IS_ERR(rt))
1846 			goto out_free;
1847 	}
1848 
1849 	dev = rt->dst.dev;
1850 
1851 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1852 		/* Do not fragment multicasts. Alas, IPv4 does not
1853 		 * allow to send ICMP, so that packets will disappear
1854 		 * to blackhole.
1855 		 */
1856 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1857 		ip_rt_put(rt);
1858 		goto out_free;
1859 	}
1860 
1861 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1862 
1863 	if (skb_cow(skb, encap)) {
1864 		ip_rt_put(rt);
1865 		goto out_free;
1866 	}
1867 
1868 	vif->pkt_out++;
1869 	vif->bytes_out += skb->len;
1870 
1871 	skb_dst_drop(skb);
1872 	skb_dst_set(skb, &rt->dst);
1873 	ip_decrease_ttl(ip_hdr(skb));
1874 
1875 	/* FIXME: forward and output firewalls used to be called here.
1876 	 * What do we do with netfilter? -- RR
1877 	 */
1878 	if (vif->flags & VIFF_TUNNEL) {
1879 		ip_encap(net, skb, vif->local, vif->remote);
1880 		/* FIXME: extra output firewall step used to be here. --RR */
1881 		vif->dev->stats.tx_packets++;
1882 		vif->dev->stats.tx_bytes += skb->len;
1883 	}
1884 
1885 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1886 
1887 	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1888 	 * not only before forwarding, but after forwarding on all output
1889 	 * interfaces. It is clear, if mrouter runs a multicasting
1890 	 * program, it should receive packets not depending to what interface
1891 	 * program is joined.
1892 	 * If we will not make it, the program will have to join on all
1893 	 * interfaces. On the other hand, multihoming host (or router, but
1894 	 * not mrouter) cannot join to more than one interface - it will
1895 	 * result in receiving multiple packets.
1896 	 */
1897 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1898 		net, NULL, skb, skb->dev, dev,
1899 		ipmr_forward_finish);
1900 	return;
1901 
1902 out_free:
1903 	kfree_skb(skb);
1904 }
1905 
1906 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1907 {
1908 	int ct;
1909 
1910 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1911 		if (mrt->vif_table[ct].dev == dev)
1912 			break;
1913 	}
1914 	return ct;
1915 }
1916 
1917 /* "local" means that we should preserve one skb (for local delivery) */
1918 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1919 			  struct net_device *dev, struct sk_buff *skb,
1920 			  struct mfc_cache *c, int local)
1921 {
1922 	int true_vifi = ipmr_find_vif(mrt, dev);
1923 	int psend = -1;
1924 	int vif, ct;
1925 
1926 	vif = c->_c.mfc_parent;
1927 	c->_c.mfc_un.res.pkt++;
1928 	c->_c.mfc_un.res.bytes += skb->len;
1929 	c->_c.mfc_un.res.lastuse = jiffies;
1930 
1931 	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1932 		struct mfc_cache *cache_proxy;
1933 
1934 		/* For an (*,G) entry, we only check that the incomming
1935 		 * interface is part of the static tree.
1936 		 */
1937 		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1938 		if (cache_proxy &&
1939 		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1940 			goto forward;
1941 	}
1942 
1943 	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1944 	if (mrt->vif_table[vif].dev != dev) {
1945 		if (rt_is_output_route(skb_rtable(skb))) {
1946 			/* It is our own packet, looped back.
1947 			 * Very complicated situation...
1948 			 *
1949 			 * The best workaround until routing daemons will be
1950 			 * fixed is not to redistribute packet, if it was
1951 			 * send through wrong interface. It means, that
1952 			 * multicast applications WILL NOT work for
1953 			 * (S,G), which have default multicast route pointing
1954 			 * to wrong oif. In any case, it is not a good
1955 			 * idea to use multicasting applications on router.
1956 			 */
1957 			goto dont_forward;
1958 		}
1959 
1960 		c->_c.mfc_un.res.wrong_if++;
1961 
1962 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1963 		    /* pimsm uses asserts, when switching from RPT to SPT,
1964 		     * so that we cannot check that packet arrived on an oif.
1965 		     * It is bad, but otherwise we would need to move pretty
1966 		     * large chunk of pimd to kernel. Ough... --ANK
1967 		     */
1968 		    (mrt->mroute_do_pim ||
1969 		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
1970 		    time_after(jiffies,
1971 			       c->_c.mfc_un.res.last_assert +
1972 			       MFC_ASSERT_THRESH)) {
1973 			c->_c.mfc_un.res.last_assert = jiffies;
1974 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1975 			if (mrt->mroute_do_wrvifwhole)
1976 				ipmr_cache_report(mrt, skb, true_vifi,
1977 						  IGMPMSG_WRVIFWHOLE);
1978 		}
1979 		goto dont_forward;
1980 	}
1981 
1982 forward:
1983 	mrt->vif_table[vif].pkt_in++;
1984 	mrt->vif_table[vif].bytes_in += skb->len;
1985 
1986 	/* Forward the frame */
1987 	if (c->mfc_origin == htonl(INADDR_ANY) &&
1988 	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
1989 		if (true_vifi >= 0 &&
1990 		    true_vifi != c->_c.mfc_parent &&
1991 		    ip_hdr(skb)->ttl >
1992 				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
1993 			/* It's an (*,*) entry and the packet is not coming from
1994 			 * the upstream: forward the packet to the upstream
1995 			 * only.
1996 			 */
1997 			psend = c->_c.mfc_parent;
1998 			goto last_forward;
1999 		}
2000 		goto dont_forward;
2001 	}
2002 	for (ct = c->_c.mfc_un.res.maxvif - 1;
2003 	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2004 		/* For (*,G) entry, don't forward to the incoming interface */
2005 		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2006 		     ct != true_vifi) &&
2007 		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2008 			if (psend != -1) {
2009 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2010 
2011 				if (skb2)
2012 					ipmr_queue_xmit(net, mrt, true_vifi,
2013 							skb2, psend);
2014 			}
2015 			psend = ct;
2016 		}
2017 	}
2018 last_forward:
2019 	if (psend != -1) {
2020 		if (local) {
2021 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2022 
2023 			if (skb2)
2024 				ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2025 						psend);
2026 		} else {
2027 			ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2028 			return;
2029 		}
2030 	}
2031 
2032 dont_forward:
2033 	if (!local)
2034 		kfree_skb(skb);
2035 }
2036 
2037 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2038 {
2039 	struct rtable *rt = skb_rtable(skb);
2040 	struct iphdr *iph = ip_hdr(skb);
2041 	struct flowi4 fl4 = {
2042 		.daddr = iph->daddr,
2043 		.saddr = iph->saddr,
2044 		.flowi4_tos = RT_TOS(iph->tos),
2045 		.flowi4_oif = (rt_is_output_route(rt) ?
2046 			       skb->dev->ifindex : 0),
2047 		.flowi4_iif = (rt_is_output_route(rt) ?
2048 			       LOOPBACK_IFINDEX :
2049 			       skb->dev->ifindex),
2050 		.flowi4_mark = skb->mark,
2051 	};
2052 	struct mr_table *mrt;
2053 	int err;
2054 
2055 	err = ipmr_fib_lookup(net, &fl4, &mrt);
2056 	if (err)
2057 		return ERR_PTR(err);
2058 	return mrt;
2059 }
2060 
2061 /* Multicast packets for forwarding arrive here
2062  * Called with rcu_read_lock();
2063  */
2064 int ip_mr_input(struct sk_buff *skb)
2065 {
2066 	struct mfc_cache *cache;
2067 	struct net *net = dev_net(skb->dev);
2068 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2069 	struct mr_table *mrt;
2070 	struct net_device *dev;
2071 
2072 	/* skb->dev passed in is the loX master dev for vrfs.
2073 	 * As there are no vifs associated with loopback devices,
2074 	 * get the proper interface that does have a vif associated with it.
2075 	 */
2076 	dev = skb->dev;
2077 	if (netif_is_l3_master(skb->dev)) {
2078 		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2079 		if (!dev) {
2080 			kfree_skb(skb);
2081 			return -ENODEV;
2082 		}
2083 	}
2084 
2085 	/* Packet is looped back after forward, it should not be
2086 	 * forwarded second time, but still can be delivered locally.
2087 	 */
2088 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2089 		goto dont_forward;
2090 
2091 	mrt = ipmr_rt_fib_lookup(net, skb);
2092 	if (IS_ERR(mrt)) {
2093 		kfree_skb(skb);
2094 		return PTR_ERR(mrt);
2095 	}
2096 	if (!local) {
2097 		if (IPCB(skb)->opt.router_alert) {
2098 			if (ip_call_ra_chain(skb))
2099 				return 0;
2100 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2101 			/* IGMPv1 (and broken IGMPv2 implementations sort of
2102 			 * Cisco IOS <= 11.2(8)) do not put router alert
2103 			 * option to IGMP packets destined to routable
2104 			 * groups. It is very bad, because it means
2105 			 * that we can forward NO IGMP messages.
2106 			 */
2107 			struct sock *mroute_sk;
2108 
2109 			mroute_sk = rcu_dereference(mrt->mroute_sk);
2110 			if (mroute_sk) {
2111 				nf_reset_ct(skb);
2112 				raw_rcv(mroute_sk, skb);
2113 				return 0;
2114 			}
2115 		    }
2116 	}
2117 
2118 	/* already under rcu_read_lock() */
2119 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2120 	if (!cache) {
2121 		int vif = ipmr_find_vif(mrt, dev);
2122 
2123 		if (vif >= 0)
2124 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2125 						    vif);
2126 	}
2127 
2128 	/* No usable cache entry */
2129 	if (!cache) {
2130 		int vif;
2131 
2132 		if (local) {
2133 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2134 			ip_local_deliver(skb);
2135 			if (!skb2)
2136 				return -ENOBUFS;
2137 			skb = skb2;
2138 		}
2139 
2140 		read_lock(&mrt_lock);
2141 		vif = ipmr_find_vif(mrt, dev);
2142 		if (vif >= 0) {
2143 			int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2144 			read_unlock(&mrt_lock);
2145 
2146 			return err2;
2147 		}
2148 		read_unlock(&mrt_lock);
2149 		kfree_skb(skb);
2150 		return -ENODEV;
2151 	}
2152 
2153 	read_lock(&mrt_lock);
2154 	ip_mr_forward(net, mrt, dev, skb, cache, local);
2155 	read_unlock(&mrt_lock);
2156 
2157 	if (local)
2158 		return ip_local_deliver(skb);
2159 
2160 	return 0;
2161 
2162 dont_forward:
2163 	if (local)
2164 		return ip_local_deliver(skb);
2165 	kfree_skb(skb);
2166 	return 0;
2167 }
2168 
2169 #ifdef CONFIG_IP_PIMSM_V1
2170 /* Handle IGMP messages of PIMv1 */
2171 int pim_rcv_v1(struct sk_buff *skb)
2172 {
2173 	struct igmphdr *pim;
2174 	struct net *net = dev_net(skb->dev);
2175 	struct mr_table *mrt;
2176 
2177 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2178 		goto drop;
2179 
2180 	pim = igmp_hdr(skb);
2181 
2182 	mrt = ipmr_rt_fib_lookup(net, skb);
2183 	if (IS_ERR(mrt))
2184 		goto drop;
2185 	if (!mrt->mroute_do_pim ||
2186 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2187 		goto drop;
2188 
2189 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2190 drop:
2191 		kfree_skb(skb);
2192 	}
2193 	return 0;
2194 }
2195 #endif
2196 
2197 #ifdef CONFIG_IP_PIMSM_V2
2198 static int pim_rcv(struct sk_buff *skb)
2199 {
2200 	struct pimreghdr *pim;
2201 	struct net *net = dev_net(skb->dev);
2202 	struct mr_table *mrt;
2203 
2204 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2205 		goto drop;
2206 
2207 	pim = (struct pimreghdr *)skb_transport_header(skb);
2208 	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2209 	    (pim->flags & PIM_NULL_REGISTER) ||
2210 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2211 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2212 		goto drop;
2213 
2214 	mrt = ipmr_rt_fib_lookup(net, skb);
2215 	if (IS_ERR(mrt))
2216 		goto drop;
2217 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2218 drop:
2219 		kfree_skb(skb);
2220 	}
2221 	return 0;
2222 }
2223 #endif
2224 
2225 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2226 		   __be32 saddr, __be32 daddr,
2227 		   struct rtmsg *rtm, u32 portid)
2228 {
2229 	struct mfc_cache *cache;
2230 	struct mr_table *mrt;
2231 	int err;
2232 
2233 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2234 	if (!mrt)
2235 		return -ENOENT;
2236 
2237 	rcu_read_lock();
2238 	cache = ipmr_cache_find(mrt, saddr, daddr);
2239 	if (!cache && skb->dev) {
2240 		int vif = ipmr_find_vif(mrt, skb->dev);
2241 
2242 		if (vif >= 0)
2243 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2244 	}
2245 	if (!cache) {
2246 		struct sk_buff *skb2;
2247 		struct iphdr *iph;
2248 		struct net_device *dev;
2249 		int vif = -1;
2250 
2251 		dev = skb->dev;
2252 		read_lock(&mrt_lock);
2253 		if (dev)
2254 			vif = ipmr_find_vif(mrt, dev);
2255 		if (vif < 0) {
2256 			read_unlock(&mrt_lock);
2257 			rcu_read_unlock();
2258 			return -ENODEV;
2259 		}
2260 
2261 		skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2262 		if (!skb2) {
2263 			read_unlock(&mrt_lock);
2264 			rcu_read_unlock();
2265 			return -ENOMEM;
2266 		}
2267 
2268 		NETLINK_CB(skb2).portid = portid;
2269 		skb_push(skb2, sizeof(struct iphdr));
2270 		skb_reset_network_header(skb2);
2271 		iph = ip_hdr(skb2);
2272 		iph->ihl = sizeof(struct iphdr) >> 2;
2273 		iph->saddr = saddr;
2274 		iph->daddr = daddr;
2275 		iph->version = 0;
2276 		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2277 		read_unlock(&mrt_lock);
2278 		rcu_read_unlock();
2279 		return err;
2280 	}
2281 
2282 	read_lock(&mrt_lock);
2283 	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2284 	read_unlock(&mrt_lock);
2285 	rcu_read_unlock();
2286 	return err;
2287 }
2288 
2289 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2290 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2291 			    int flags)
2292 {
2293 	struct nlmsghdr *nlh;
2294 	struct rtmsg *rtm;
2295 	int err;
2296 
2297 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2298 	if (!nlh)
2299 		return -EMSGSIZE;
2300 
2301 	rtm = nlmsg_data(nlh);
2302 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2303 	rtm->rtm_dst_len  = 32;
2304 	rtm->rtm_src_len  = 32;
2305 	rtm->rtm_tos      = 0;
2306 	rtm->rtm_table    = mrt->id;
2307 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2308 		goto nla_put_failure;
2309 	rtm->rtm_type     = RTN_MULTICAST;
2310 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2311 	if (c->_c.mfc_flags & MFC_STATIC)
2312 		rtm->rtm_protocol = RTPROT_STATIC;
2313 	else
2314 		rtm->rtm_protocol = RTPROT_MROUTED;
2315 	rtm->rtm_flags    = 0;
2316 
2317 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2318 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2319 		goto nla_put_failure;
2320 	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2321 	/* do not break the dump if cache is unresolved */
2322 	if (err < 0 && err != -ENOENT)
2323 		goto nla_put_failure;
2324 
2325 	nlmsg_end(skb, nlh);
2326 	return 0;
2327 
2328 nla_put_failure:
2329 	nlmsg_cancel(skb, nlh);
2330 	return -EMSGSIZE;
2331 }
2332 
2333 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2334 			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2335 			     int flags)
2336 {
2337 	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2338 				cmd, flags);
2339 }
2340 
2341 static size_t mroute_msgsize(bool unresolved, int maxvif)
2342 {
2343 	size_t len =
2344 		NLMSG_ALIGN(sizeof(struct rtmsg))
2345 		+ nla_total_size(4)	/* RTA_TABLE */
2346 		+ nla_total_size(4)	/* RTA_SRC */
2347 		+ nla_total_size(4)	/* RTA_DST */
2348 		;
2349 
2350 	if (!unresolved)
2351 		len = len
2352 		      + nla_total_size(4)	/* RTA_IIF */
2353 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2354 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2355 						/* RTA_MFC_STATS */
2356 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2357 		;
2358 
2359 	return len;
2360 }
2361 
2362 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2363 				 int cmd)
2364 {
2365 	struct net *net = read_pnet(&mrt->net);
2366 	struct sk_buff *skb;
2367 	int err = -ENOBUFS;
2368 
2369 	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2370 				       mrt->maxvif),
2371 			GFP_ATOMIC);
2372 	if (!skb)
2373 		goto errout;
2374 
2375 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2376 	if (err < 0)
2377 		goto errout;
2378 
2379 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2380 	return;
2381 
2382 errout:
2383 	kfree_skb(skb);
2384 	if (err < 0)
2385 		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2386 }
2387 
2388 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2389 {
2390 	size_t len =
2391 		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2392 		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2393 		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2394 		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2395 		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2396 					/* IPMRA_CREPORT_PKT */
2397 		+ nla_total_size(payloadlen)
2398 		;
2399 
2400 	return len;
2401 }
2402 
2403 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2404 {
2405 	struct net *net = read_pnet(&mrt->net);
2406 	struct nlmsghdr *nlh;
2407 	struct rtgenmsg *rtgenm;
2408 	struct igmpmsg *msg;
2409 	struct sk_buff *skb;
2410 	struct nlattr *nla;
2411 	int payloadlen;
2412 
2413 	payloadlen = pkt->len - sizeof(struct igmpmsg);
2414 	msg = (struct igmpmsg *)skb_network_header(pkt);
2415 
2416 	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2417 	if (!skb)
2418 		goto errout;
2419 
2420 	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2421 			sizeof(struct rtgenmsg), 0);
2422 	if (!nlh)
2423 		goto errout;
2424 	rtgenm = nlmsg_data(nlh);
2425 	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2426 	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2427 	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
2428 	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2429 			    msg->im_src.s_addr) ||
2430 	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2431 			    msg->im_dst.s_addr))
2432 		goto nla_put_failure;
2433 
2434 	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2435 	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2436 				  nla_data(nla), payloadlen))
2437 		goto nla_put_failure;
2438 
2439 	nlmsg_end(skb, nlh);
2440 
2441 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2442 	return;
2443 
2444 nla_put_failure:
2445 	nlmsg_cancel(skb, nlh);
2446 errout:
2447 	kfree_skb(skb);
2448 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2449 }
2450 
2451 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2452 				       const struct nlmsghdr *nlh,
2453 				       struct nlattr **tb,
2454 				       struct netlink_ext_ack *extack)
2455 {
2456 	struct rtmsg *rtm;
2457 	int i, err;
2458 
2459 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2460 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2461 		return -EINVAL;
2462 	}
2463 
2464 	if (!netlink_strict_get_check(skb))
2465 		return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2466 					      rtm_ipv4_policy, extack);
2467 
2468 	rtm = nlmsg_data(nlh);
2469 	if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2470 	    (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2471 	    rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2472 	    rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2473 		NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2474 		return -EINVAL;
2475 	}
2476 
2477 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2478 					    rtm_ipv4_policy, extack);
2479 	if (err)
2480 		return err;
2481 
2482 	if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2483 	    (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2484 		NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2485 		return -EINVAL;
2486 	}
2487 
2488 	for (i = 0; i <= RTA_MAX; i++) {
2489 		if (!tb[i])
2490 			continue;
2491 
2492 		switch (i) {
2493 		case RTA_SRC:
2494 		case RTA_DST:
2495 		case RTA_TABLE:
2496 			break;
2497 		default:
2498 			NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2499 			return -EINVAL;
2500 		}
2501 	}
2502 
2503 	return 0;
2504 }
2505 
2506 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2507 			     struct netlink_ext_ack *extack)
2508 {
2509 	struct net *net = sock_net(in_skb->sk);
2510 	struct nlattr *tb[RTA_MAX + 1];
2511 	struct sk_buff *skb = NULL;
2512 	struct mfc_cache *cache;
2513 	struct mr_table *mrt;
2514 	__be32 src, grp;
2515 	u32 tableid;
2516 	int err;
2517 
2518 	err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2519 	if (err < 0)
2520 		goto errout;
2521 
2522 	src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2523 	grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2524 	tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2525 
2526 	mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2527 	if (!mrt) {
2528 		err = -ENOENT;
2529 		goto errout_free;
2530 	}
2531 
2532 	/* entries are added/deleted only under RTNL */
2533 	rcu_read_lock();
2534 	cache = ipmr_cache_find(mrt, src, grp);
2535 	rcu_read_unlock();
2536 	if (!cache) {
2537 		err = -ENOENT;
2538 		goto errout_free;
2539 	}
2540 
2541 	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2542 	if (!skb) {
2543 		err = -ENOBUFS;
2544 		goto errout_free;
2545 	}
2546 
2547 	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2548 			       nlh->nlmsg_seq, cache,
2549 			       RTM_NEWROUTE, 0);
2550 	if (err < 0)
2551 		goto errout_free;
2552 
2553 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2554 
2555 errout:
2556 	return err;
2557 
2558 errout_free:
2559 	kfree_skb(skb);
2560 	goto errout;
2561 }
2562 
2563 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2564 {
2565 	struct fib_dump_filter filter = {};
2566 	int err;
2567 
2568 	if (cb->strict_check) {
2569 		err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2570 					    &filter, cb);
2571 		if (err < 0)
2572 			return err;
2573 	}
2574 
2575 	if (filter.table_id) {
2576 		struct mr_table *mrt;
2577 
2578 		mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id);
2579 		if (!mrt) {
2580 			if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2581 				return skb->len;
2582 
2583 			NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2584 			return -ENOENT;
2585 		}
2586 		err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2587 				    &mfc_unres_lock, &filter);
2588 		return skb->len ? : err;
2589 	}
2590 
2591 	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2592 				_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2593 }
2594 
2595 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2596 	[RTA_SRC]	= { .type = NLA_U32 },
2597 	[RTA_DST]	= { .type = NLA_U32 },
2598 	[RTA_IIF]	= { .type = NLA_U32 },
2599 	[RTA_TABLE]	= { .type = NLA_U32 },
2600 	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2601 };
2602 
2603 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2604 {
2605 	switch (rtm_protocol) {
2606 	case RTPROT_STATIC:
2607 	case RTPROT_MROUTED:
2608 		return true;
2609 	}
2610 	return false;
2611 }
2612 
2613 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2614 {
2615 	struct rtnexthop *rtnh = nla_data(nla);
2616 	int remaining = nla_len(nla), vifi = 0;
2617 
2618 	while (rtnh_ok(rtnh, remaining)) {
2619 		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2620 		if (++vifi == MAXVIFS)
2621 			break;
2622 		rtnh = rtnh_next(rtnh, &remaining);
2623 	}
2624 
2625 	return remaining > 0 ? -EINVAL : vifi;
2626 }
2627 
2628 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2629 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2630 			    struct mfcctl *mfcc, int *mrtsock,
2631 			    struct mr_table **mrtret,
2632 			    struct netlink_ext_ack *extack)
2633 {
2634 	struct net_device *dev = NULL;
2635 	u32 tblid = RT_TABLE_DEFAULT;
2636 	struct mr_table *mrt;
2637 	struct nlattr *attr;
2638 	struct rtmsg *rtm;
2639 	int ret, rem;
2640 
2641 	ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2642 					rtm_ipmr_policy, extack);
2643 	if (ret < 0)
2644 		goto out;
2645 	rtm = nlmsg_data(nlh);
2646 
2647 	ret = -EINVAL;
2648 	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2649 	    rtm->rtm_type != RTN_MULTICAST ||
2650 	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2651 	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2652 		goto out;
2653 
2654 	memset(mfcc, 0, sizeof(*mfcc));
2655 	mfcc->mfcc_parent = -1;
2656 	ret = 0;
2657 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2658 		switch (nla_type(attr)) {
2659 		case RTA_SRC:
2660 			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2661 			break;
2662 		case RTA_DST:
2663 			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2664 			break;
2665 		case RTA_IIF:
2666 			dev = __dev_get_by_index(net, nla_get_u32(attr));
2667 			if (!dev) {
2668 				ret = -ENODEV;
2669 				goto out;
2670 			}
2671 			break;
2672 		case RTA_MULTIPATH:
2673 			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2674 				ret = -EINVAL;
2675 				goto out;
2676 			}
2677 			break;
2678 		case RTA_PREFSRC:
2679 			ret = 1;
2680 			break;
2681 		case RTA_TABLE:
2682 			tblid = nla_get_u32(attr);
2683 			break;
2684 		}
2685 	}
2686 	mrt = ipmr_get_table(net, tblid);
2687 	if (!mrt) {
2688 		ret = -ENOENT;
2689 		goto out;
2690 	}
2691 	*mrtret = mrt;
2692 	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2693 	if (dev)
2694 		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2695 
2696 out:
2697 	return ret;
2698 }
2699 
2700 /* takes care of both newroute and delroute */
2701 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2702 			  struct netlink_ext_ack *extack)
2703 {
2704 	struct net *net = sock_net(skb->sk);
2705 	int ret, mrtsock, parent;
2706 	struct mr_table *tbl;
2707 	struct mfcctl mfcc;
2708 
2709 	mrtsock = 0;
2710 	tbl = NULL;
2711 	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2712 	if (ret < 0)
2713 		return ret;
2714 
2715 	parent = ret ? mfcc.mfcc_parent : -1;
2716 	if (nlh->nlmsg_type == RTM_NEWROUTE)
2717 		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2718 	else
2719 		return ipmr_mfc_delete(tbl, &mfcc, parent);
2720 }
2721 
2722 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2723 {
2724 	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2725 
2726 	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2727 	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2728 	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2729 			mrt->mroute_reg_vif_num) ||
2730 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2731 		       mrt->mroute_do_assert) ||
2732 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2733 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2734 		       mrt->mroute_do_wrvifwhole))
2735 		return false;
2736 
2737 	return true;
2738 }
2739 
2740 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2741 {
2742 	struct nlattr *vif_nest;
2743 	struct vif_device *vif;
2744 
2745 	/* if the VIF doesn't exist just continue */
2746 	if (!VIF_EXISTS(mrt, vifid))
2747 		return true;
2748 
2749 	vif = &mrt->vif_table[vifid];
2750 	vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2751 	if (!vif_nest)
2752 		return false;
2753 	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2754 	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2755 	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2756 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2757 			      IPMRA_VIFA_PAD) ||
2758 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2759 			      IPMRA_VIFA_PAD) ||
2760 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2761 			      IPMRA_VIFA_PAD) ||
2762 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2763 			      IPMRA_VIFA_PAD) ||
2764 	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2765 	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2766 		nla_nest_cancel(skb, vif_nest);
2767 		return false;
2768 	}
2769 	nla_nest_end(skb, vif_nest);
2770 
2771 	return true;
2772 }
2773 
2774 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2775 			       struct netlink_ext_ack *extack)
2776 {
2777 	struct ifinfomsg *ifm;
2778 
2779 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2780 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2781 		return -EINVAL;
2782 	}
2783 
2784 	if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2785 		NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2786 		return -EINVAL;
2787 	}
2788 
2789 	ifm = nlmsg_data(nlh);
2790 	if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2791 	    ifm->ifi_change || ifm->ifi_index) {
2792 		NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2793 		return -EINVAL;
2794 	}
2795 
2796 	return 0;
2797 }
2798 
2799 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2800 {
2801 	struct net *net = sock_net(skb->sk);
2802 	struct nlmsghdr *nlh = NULL;
2803 	unsigned int t = 0, s_t;
2804 	unsigned int e = 0, s_e;
2805 	struct mr_table *mrt;
2806 
2807 	if (cb->strict_check) {
2808 		int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2809 
2810 		if (err < 0)
2811 			return err;
2812 	}
2813 
2814 	s_t = cb->args[0];
2815 	s_e = cb->args[1];
2816 
2817 	ipmr_for_each_table(mrt, net) {
2818 		struct nlattr *vifs, *af;
2819 		struct ifinfomsg *hdr;
2820 		u32 i;
2821 
2822 		if (t < s_t)
2823 			goto skip_table;
2824 		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2825 				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2826 				sizeof(*hdr), NLM_F_MULTI);
2827 		if (!nlh)
2828 			break;
2829 
2830 		hdr = nlmsg_data(nlh);
2831 		memset(hdr, 0, sizeof(*hdr));
2832 		hdr->ifi_family = RTNL_FAMILY_IPMR;
2833 
2834 		af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2835 		if (!af) {
2836 			nlmsg_cancel(skb, nlh);
2837 			goto out;
2838 		}
2839 
2840 		if (!ipmr_fill_table(mrt, skb)) {
2841 			nlmsg_cancel(skb, nlh);
2842 			goto out;
2843 		}
2844 
2845 		vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2846 		if (!vifs) {
2847 			nla_nest_end(skb, af);
2848 			nlmsg_end(skb, nlh);
2849 			goto out;
2850 		}
2851 		for (i = 0; i < mrt->maxvif; i++) {
2852 			if (e < s_e)
2853 				goto skip_entry;
2854 			if (!ipmr_fill_vif(mrt, i, skb)) {
2855 				nla_nest_end(skb, vifs);
2856 				nla_nest_end(skb, af);
2857 				nlmsg_end(skb, nlh);
2858 				goto out;
2859 			}
2860 skip_entry:
2861 			e++;
2862 		}
2863 		s_e = 0;
2864 		e = 0;
2865 		nla_nest_end(skb, vifs);
2866 		nla_nest_end(skb, af);
2867 		nlmsg_end(skb, nlh);
2868 skip_table:
2869 		t++;
2870 	}
2871 
2872 out:
2873 	cb->args[1] = e;
2874 	cb->args[0] = t;
2875 
2876 	return skb->len;
2877 }
2878 
2879 #ifdef CONFIG_PROC_FS
2880 /* The /proc interfaces to multicast routing :
2881  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2882  */
2883 
2884 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2885 	__acquires(mrt_lock)
2886 {
2887 	struct mr_vif_iter *iter = seq->private;
2888 	struct net *net = seq_file_net(seq);
2889 	struct mr_table *mrt;
2890 
2891 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2892 	if (!mrt)
2893 		return ERR_PTR(-ENOENT);
2894 
2895 	iter->mrt = mrt;
2896 
2897 	read_lock(&mrt_lock);
2898 	return mr_vif_seq_start(seq, pos);
2899 }
2900 
2901 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2902 	__releases(mrt_lock)
2903 {
2904 	read_unlock(&mrt_lock);
2905 }
2906 
2907 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2908 {
2909 	struct mr_vif_iter *iter = seq->private;
2910 	struct mr_table *mrt = iter->mrt;
2911 
2912 	if (v == SEQ_START_TOKEN) {
2913 		seq_puts(seq,
2914 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2915 	} else {
2916 		const struct vif_device *vif = v;
2917 		const char *name =  vif->dev ?
2918 				    vif->dev->name : "none";
2919 
2920 		seq_printf(seq,
2921 			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2922 			   vif - mrt->vif_table,
2923 			   name, vif->bytes_in, vif->pkt_in,
2924 			   vif->bytes_out, vif->pkt_out,
2925 			   vif->flags, vif->local, vif->remote);
2926 	}
2927 	return 0;
2928 }
2929 
2930 static const struct seq_operations ipmr_vif_seq_ops = {
2931 	.start = ipmr_vif_seq_start,
2932 	.next  = mr_vif_seq_next,
2933 	.stop  = ipmr_vif_seq_stop,
2934 	.show  = ipmr_vif_seq_show,
2935 };
2936 
2937 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2938 {
2939 	struct net *net = seq_file_net(seq);
2940 	struct mr_table *mrt;
2941 
2942 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2943 	if (!mrt)
2944 		return ERR_PTR(-ENOENT);
2945 
2946 	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2947 }
2948 
2949 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2950 {
2951 	int n;
2952 
2953 	if (v == SEQ_START_TOKEN) {
2954 		seq_puts(seq,
2955 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2956 	} else {
2957 		const struct mfc_cache *mfc = v;
2958 		const struct mr_mfc_iter *it = seq->private;
2959 		const struct mr_table *mrt = it->mrt;
2960 
2961 		seq_printf(seq, "%08X %08X %-3hd",
2962 			   (__force u32) mfc->mfc_mcastgrp,
2963 			   (__force u32) mfc->mfc_origin,
2964 			   mfc->_c.mfc_parent);
2965 
2966 		if (it->cache != &mrt->mfc_unres_queue) {
2967 			seq_printf(seq, " %8lu %8lu %8lu",
2968 				   mfc->_c.mfc_un.res.pkt,
2969 				   mfc->_c.mfc_un.res.bytes,
2970 				   mfc->_c.mfc_un.res.wrong_if);
2971 			for (n = mfc->_c.mfc_un.res.minvif;
2972 			     n < mfc->_c.mfc_un.res.maxvif; n++) {
2973 				if (VIF_EXISTS(mrt, n) &&
2974 				    mfc->_c.mfc_un.res.ttls[n] < 255)
2975 					seq_printf(seq,
2976 					   " %2d:%-3d",
2977 					   n, mfc->_c.mfc_un.res.ttls[n]);
2978 			}
2979 		} else {
2980 			/* unresolved mfc_caches don't contain
2981 			 * pkt, bytes and wrong_if values
2982 			 */
2983 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2984 		}
2985 		seq_putc(seq, '\n');
2986 	}
2987 	return 0;
2988 }
2989 
2990 static const struct seq_operations ipmr_mfc_seq_ops = {
2991 	.start = ipmr_mfc_seq_start,
2992 	.next  = mr_mfc_seq_next,
2993 	.stop  = mr_mfc_seq_stop,
2994 	.show  = ipmr_mfc_seq_show,
2995 };
2996 #endif
2997 
2998 #ifdef CONFIG_IP_PIMSM_V2
2999 static const struct net_protocol pim_protocol = {
3000 	.handler	=	pim_rcv,
3001 	.netns_ok	=	1,
3002 };
3003 #endif
3004 
3005 static unsigned int ipmr_seq_read(struct net *net)
3006 {
3007 	ASSERT_RTNL();
3008 
3009 	return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3010 }
3011 
3012 static int ipmr_dump(struct net *net, struct notifier_block *nb,
3013 		     struct netlink_ext_ack *extack)
3014 {
3015 	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3016 		       ipmr_mr_table_iter, &mrt_lock, extack);
3017 }
3018 
3019 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3020 	.family		= RTNL_FAMILY_IPMR,
3021 	.fib_seq_read	= ipmr_seq_read,
3022 	.fib_dump	= ipmr_dump,
3023 	.owner		= THIS_MODULE,
3024 };
3025 
3026 static int __net_init ipmr_notifier_init(struct net *net)
3027 {
3028 	struct fib_notifier_ops *ops;
3029 
3030 	net->ipv4.ipmr_seq = 0;
3031 
3032 	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3033 	if (IS_ERR(ops))
3034 		return PTR_ERR(ops);
3035 	net->ipv4.ipmr_notifier_ops = ops;
3036 
3037 	return 0;
3038 }
3039 
3040 static void __net_exit ipmr_notifier_exit(struct net *net)
3041 {
3042 	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3043 	net->ipv4.ipmr_notifier_ops = NULL;
3044 }
3045 
3046 /* Setup for IP multicast routing */
3047 static int __net_init ipmr_net_init(struct net *net)
3048 {
3049 	int err;
3050 
3051 	err = ipmr_notifier_init(net);
3052 	if (err)
3053 		goto ipmr_notifier_fail;
3054 
3055 	err = ipmr_rules_init(net);
3056 	if (err < 0)
3057 		goto ipmr_rules_fail;
3058 
3059 #ifdef CONFIG_PROC_FS
3060 	err = -ENOMEM;
3061 	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3062 			sizeof(struct mr_vif_iter)))
3063 		goto proc_vif_fail;
3064 	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3065 			sizeof(struct mr_mfc_iter)))
3066 		goto proc_cache_fail;
3067 #endif
3068 	return 0;
3069 
3070 #ifdef CONFIG_PROC_FS
3071 proc_cache_fail:
3072 	remove_proc_entry("ip_mr_vif", net->proc_net);
3073 proc_vif_fail:
3074 	ipmr_rules_exit(net);
3075 #endif
3076 ipmr_rules_fail:
3077 	ipmr_notifier_exit(net);
3078 ipmr_notifier_fail:
3079 	return err;
3080 }
3081 
3082 static void __net_exit ipmr_net_exit(struct net *net)
3083 {
3084 #ifdef CONFIG_PROC_FS
3085 	remove_proc_entry("ip_mr_cache", net->proc_net);
3086 	remove_proc_entry("ip_mr_vif", net->proc_net);
3087 #endif
3088 	ipmr_notifier_exit(net);
3089 	ipmr_rules_exit(net);
3090 }
3091 
3092 static struct pernet_operations ipmr_net_ops = {
3093 	.init = ipmr_net_init,
3094 	.exit = ipmr_net_exit,
3095 };
3096 
3097 int __init ip_mr_init(void)
3098 {
3099 	int err;
3100 
3101 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
3102 				       sizeof(struct mfc_cache),
3103 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3104 				       NULL);
3105 
3106 	err = register_pernet_subsys(&ipmr_net_ops);
3107 	if (err)
3108 		goto reg_pernet_fail;
3109 
3110 	err = register_netdevice_notifier(&ip_mr_notifier);
3111 	if (err)
3112 		goto reg_notif_fail;
3113 #ifdef CONFIG_IP_PIMSM_V2
3114 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3115 		pr_err("%s: can't add PIM protocol\n", __func__);
3116 		err = -EAGAIN;
3117 		goto add_proto_fail;
3118 	}
3119 #endif
3120 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3121 		      ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3122 	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3123 		      ipmr_rtm_route, NULL, 0);
3124 	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3125 		      ipmr_rtm_route, NULL, 0);
3126 
3127 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3128 		      NULL, ipmr_rtm_dumplink, 0);
3129 	return 0;
3130 
3131 #ifdef CONFIG_IP_PIMSM_V2
3132 add_proto_fail:
3133 	unregister_netdevice_notifier(&ip_mr_notifier);
3134 #endif
3135 reg_notif_fail:
3136 	unregister_pernet_subsys(&ipmr_net_ops);
3137 reg_pernet_fail:
3138 	kmem_cache_destroy(mrt_cachep);
3139 	return err;
3140 }
3141