1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * IP multicast routing support for mrouted 3.6/3.8
4 *
5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6 * Linux Consultancy and Custom Driver Development
7 *
8 * Fixes:
9 * Michael Chastain : Incorrect size of copying.
10 * Alan Cox : Added the cache manager code
11 * Alan Cox : Fixed the clone/copy bug and device race.
12 * Mike McLagan : Routing by source
13 * Malcolm Beattie : Buffer handling fixes.
14 * Alexey Kuznetsov : Double buffer free and other fixes.
15 * SVR Anand : Fixed several multicast bugs and problems.
16 * Alexey Kuznetsov : Status, optimisations and more.
17 * Brad Parker : Better behaviour on mrouted upcall
18 * overflow.
19 * Carlos Picoto : PIMv1 Support
20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
21 * Relax this requirement to work with older peers.
22 */
23
24 #include <linux/uaccess.h>
25 #include <linux/types.h>
26 #include <linux/cache.h>
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/kernel.h>
31 #include <linux/fcntl.h>
32 #include <linux/stat.h>
33 #include <linux/socket.h>
34 #include <linux/in.h>
35 #include <linux/inet.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/igmp.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mroute.h>
42 #include <linux/init.h>
43 #include <linux/if_ether.h>
44 #include <linux/slab.h>
45 #include <net/net_namespace.h>
46 #include <net/ip.h>
47 #include <net/protocol.h>
48 #include <linux/skbuff.h>
49 #include <net/route.h>
50 #include <net/icmp.h>
51 #include <net/udp.h>
52 #include <net/raw.h>
53 #include <linux/notifier.h>
54 #include <linux/if_arp.h>
55 #include <linux/netfilter_ipv4.h>
56 #include <linux/compat.h>
57 #include <linux/export.h>
58 #include <linux/rhashtable.h>
59 #include <net/ip_tunnels.h>
60 #include <net/checksum.h>
61 #include <net/netlink.h>
62 #include <net/fib_rules.h>
63 #include <linux/netconf.h>
64 #include <net/rtnh.h>
65
66 #include <linux/nospec.h>
67
68 struct ipmr_rule {
69 struct fib_rule common;
70 };
71
72 struct ipmr_result {
73 struct mr_table *mrt;
74 };
75
76 /* Big lock, protecting vif table, mrt cache and mroute socket state.
77 * Note that the changes are semaphored via rtnl_lock.
78 */
79
80 static DEFINE_SPINLOCK(mrt_lock);
81
vif_dev_read(const struct vif_device * vif)82 static struct net_device *vif_dev_read(const struct vif_device *vif)
83 {
84 return rcu_dereference(vif->dev);
85 }
86
87 /* Multicast router control variables */
88
89 /* Special spinlock for queue of unresolved entries */
90 static DEFINE_SPINLOCK(mfc_unres_lock);
91
92 /* We return to original Alan's scheme. Hash table of resolved
93 * entries is changed only in process context and protected
94 * with weak lock mrt_lock. Queue of unresolved entries is protected
95 * with strong spinlock mfc_unres_lock.
96 *
97 * In this case data path is free of exclusive locks at all.
98 */
99
100 static struct kmem_cache *mrt_cachep __ro_after_init;
101
102 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
103 static void ipmr_free_table(struct mr_table *mrt);
104
105 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
106 struct net_device *dev, struct sk_buff *skb,
107 struct mfc_cache *cache, int local);
108 static int ipmr_cache_report(const struct mr_table *mrt,
109 struct sk_buff *pkt, vifi_t vifi, int assert);
110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
111 int cmd);
112 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
113 static void mroute_clean_tables(struct mr_table *mrt, int flags);
114 static void ipmr_expire_process(struct timer_list *t);
115
116 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
117 #define ipmr_for_each_table(mrt, net) \
118 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \
119 lockdep_rtnl_is_held() || \
120 list_empty(&net->ipv4.mr_tables))
121
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)122 static struct mr_table *ipmr_mr_table_iter(struct net *net,
123 struct mr_table *mrt)
124 {
125 struct mr_table *ret;
126
127 if (!mrt)
128 ret = list_entry_rcu(net->ipv4.mr_tables.next,
129 struct mr_table, list);
130 else
131 ret = list_entry_rcu(mrt->list.next,
132 struct mr_table, list);
133
134 if (&ret->list == &net->ipv4.mr_tables)
135 return NULL;
136 return ret;
137 }
138
ipmr_get_table(struct net * net,u32 id)139 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
140 {
141 struct mr_table *mrt;
142
143 ipmr_for_each_table(mrt, net) {
144 if (mrt->id == id)
145 return mrt;
146 }
147 return NULL;
148 }
149
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)150 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
151 struct mr_table **mrt)
152 {
153 int err;
154 struct ipmr_result res;
155 struct fib_lookup_arg arg = {
156 .result = &res,
157 .flags = FIB_LOOKUP_NOREF,
158 };
159
160 /* update flow if oif or iif point to device enslaved to l3mdev */
161 l3mdev_update_flow(net, flowi4_to_flowi(flp4));
162
163 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
164 flowi4_to_flowi(flp4), 0, &arg);
165 if (err < 0)
166 return err;
167 *mrt = res.mrt;
168 return 0;
169 }
170
ipmr_rule_action(struct fib_rule * rule,struct flowi * flp,int flags,struct fib_lookup_arg * arg)171 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
172 int flags, struct fib_lookup_arg *arg)
173 {
174 struct ipmr_result *res = arg->result;
175 struct mr_table *mrt;
176
177 switch (rule->action) {
178 case FR_ACT_TO_TBL:
179 break;
180 case FR_ACT_UNREACHABLE:
181 return -ENETUNREACH;
182 case FR_ACT_PROHIBIT:
183 return -EACCES;
184 case FR_ACT_BLACKHOLE:
185 default:
186 return -EINVAL;
187 }
188
189 arg->table = fib_rule_get_table(rule, arg);
190
191 mrt = ipmr_get_table(rule->fr_net, arg->table);
192 if (!mrt)
193 return -EAGAIN;
194 res->mrt = mrt;
195 return 0;
196 }
197
ipmr_rule_match(struct fib_rule * rule,struct flowi * fl,int flags)198 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
199 {
200 return 1;
201 }
202
ipmr_rule_configure(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh,struct nlattr ** tb,struct netlink_ext_ack * extack)203 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
204 struct fib_rule_hdr *frh, struct nlattr **tb,
205 struct netlink_ext_ack *extack)
206 {
207 return 0;
208 }
209
ipmr_rule_compare(struct fib_rule * rule,struct fib_rule_hdr * frh,struct nlattr ** tb)210 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
211 struct nlattr **tb)
212 {
213 return 1;
214 }
215
ipmr_rule_fill(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh)216 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
217 struct fib_rule_hdr *frh)
218 {
219 frh->dst_len = 0;
220 frh->src_len = 0;
221 frh->tos = 0;
222 return 0;
223 }
224
225 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
226 .family = RTNL_FAMILY_IPMR,
227 .rule_size = sizeof(struct ipmr_rule),
228 .addr_size = sizeof(u32),
229 .action = ipmr_rule_action,
230 .match = ipmr_rule_match,
231 .configure = ipmr_rule_configure,
232 .compare = ipmr_rule_compare,
233 .fill = ipmr_rule_fill,
234 .nlgroup = RTNLGRP_IPV4_RULE,
235 .owner = THIS_MODULE,
236 };
237
ipmr_rules_init(struct net * net)238 static int __net_init ipmr_rules_init(struct net *net)
239 {
240 struct fib_rules_ops *ops;
241 struct mr_table *mrt;
242 int err;
243
244 ops = fib_rules_register(&ipmr_rules_ops_template, net);
245 if (IS_ERR(ops))
246 return PTR_ERR(ops);
247
248 INIT_LIST_HEAD(&net->ipv4.mr_tables);
249
250 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
251 if (IS_ERR(mrt)) {
252 err = PTR_ERR(mrt);
253 goto err1;
254 }
255
256 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
257 if (err < 0)
258 goto err2;
259
260 net->ipv4.mr_rules_ops = ops;
261 return 0;
262
263 err2:
264 rtnl_lock();
265 ipmr_free_table(mrt);
266 rtnl_unlock();
267 err1:
268 fib_rules_unregister(ops);
269 return err;
270 }
271
ipmr_rules_exit(struct net * net)272 static void __net_exit ipmr_rules_exit(struct net *net)
273 {
274 struct mr_table *mrt, *next;
275
276 ASSERT_RTNL();
277 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
278 list_del(&mrt->list);
279 ipmr_free_table(mrt);
280 }
281 fib_rules_unregister(net->ipv4.mr_rules_ops);
282 }
283
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)284 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
285 struct netlink_ext_ack *extack)
286 {
287 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
288 }
289
ipmr_rules_seq_read(struct net * net)290 static unsigned int ipmr_rules_seq_read(struct net *net)
291 {
292 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
293 }
294
ipmr_rule_default(const struct fib_rule * rule)295 bool ipmr_rule_default(const struct fib_rule *rule)
296 {
297 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
298 }
299 EXPORT_SYMBOL(ipmr_rule_default);
300 #else
301 #define ipmr_for_each_table(mrt, net) \
302 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
303
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)304 static struct mr_table *ipmr_mr_table_iter(struct net *net,
305 struct mr_table *mrt)
306 {
307 if (!mrt)
308 return net->ipv4.mrt;
309 return NULL;
310 }
311
ipmr_get_table(struct net * net,u32 id)312 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
313 {
314 return net->ipv4.mrt;
315 }
316
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)317 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
318 struct mr_table **mrt)
319 {
320 *mrt = net->ipv4.mrt;
321 return 0;
322 }
323
ipmr_rules_init(struct net * net)324 static int __net_init ipmr_rules_init(struct net *net)
325 {
326 struct mr_table *mrt;
327
328 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
329 if (IS_ERR(mrt))
330 return PTR_ERR(mrt);
331 net->ipv4.mrt = mrt;
332 return 0;
333 }
334
ipmr_rules_exit(struct net * net)335 static void __net_exit ipmr_rules_exit(struct net *net)
336 {
337 ASSERT_RTNL();
338 ipmr_free_table(net->ipv4.mrt);
339 net->ipv4.mrt = NULL;
340 }
341
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)342 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
343 struct netlink_ext_ack *extack)
344 {
345 return 0;
346 }
347
ipmr_rules_seq_read(struct net * net)348 static unsigned int ipmr_rules_seq_read(struct net *net)
349 {
350 return 0;
351 }
352
ipmr_rule_default(const struct fib_rule * rule)353 bool ipmr_rule_default(const struct fib_rule *rule)
354 {
355 return true;
356 }
357 EXPORT_SYMBOL(ipmr_rule_default);
358 #endif
359
ipmr_hash_cmp(struct rhashtable_compare_arg * arg,const void * ptr)360 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
361 const void *ptr)
362 {
363 const struct mfc_cache_cmp_arg *cmparg = arg->key;
364 const struct mfc_cache *c = ptr;
365
366 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
367 cmparg->mfc_origin != c->mfc_origin;
368 }
369
370 static const struct rhashtable_params ipmr_rht_params = {
371 .head_offset = offsetof(struct mr_mfc, mnode),
372 .key_offset = offsetof(struct mfc_cache, cmparg),
373 .key_len = sizeof(struct mfc_cache_cmp_arg),
374 .nelem_hint = 3,
375 .obj_cmpfn = ipmr_hash_cmp,
376 .automatic_shrinking = true,
377 };
378
ipmr_new_table_set(struct mr_table * mrt,struct net * net)379 static void ipmr_new_table_set(struct mr_table *mrt,
380 struct net *net)
381 {
382 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
383 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
384 #endif
385 }
386
387 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
388 .mfc_mcastgrp = htonl(INADDR_ANY),
389 .mfc_origin = htonl(INADDR_ANY),
390 };
391
392 static struct mr_table_ops ipmr_mr_table_ops = {
393 .rht_params = &ipmr_rht_params,
394 .cmparg_any = &ipmr_mr_table_ops_cmparg_any,
395 };
396
ipmr_new_table(struct net * net,u32 id)397 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
398 {
399 struct mr_table *mrt;
400
401 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
402 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
403 return ERR_PTR(-EINVAL);
404
405 mrt = ipmr_get_table(net, id);
406 if (mrt)
407 return mrt;
408
409 return mr_table_alloc(net, id, &ipmr_mr_table_ops,
410 ipmr_expire_process, ipmr_new_table_set);
411 }
412
ipmr_free_table(struct mr_table * mrt)413 static void ipmr_free_table(struct mr_table *mrt)
414 {
415 timer_shutdown_sync(&mrt->ipmr_expire_timer);
416 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
417 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
418 rhltable_destroy(&mrt->mfc_hash);
419 kfree(mrt);
420 }
421
422 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
423
424 /* Initialize ipmr pimreg/tunnel in_device */
ipmr_init_vif_indev(const struct net_device * dev)425 static bool ipmr_init_vif_indev(const struct net_device *dev)
426 {
427 struct in_device *in_dev;
428
429 ASSERT_RTNL();
430
431 in_dev = __in_dev_get_rtnl(dev);
432 if (!in_dev)
433 return false;
434 ipv4_devconf_setall(in_dev);
435 neigh_parms_data_state_setall(in_dev->arp_parms);
436 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
437
438 return true;
439 }
440
ipmr_new_tunnel(struct net * net,struct vifctl * v)441 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
442 {
443 struct net_device *tunnel_dev, *new_dev;
444 struct ip_tunnel_parm p = { };
445 int err;
446
447 tunnel_dev = __dev_get_by_name(net, "tunl0");
448 if (!tunnel_dev)
449 goto out;
450
451 p.iph.daddr = v->vifc_rmt_addr.s_addr;
452 p.iph.saddr = v->vifc_lcl_addr.s_addr;
453 p.iph.version = 4;
454 p.iph.ihl = 5;
455 p.iph.protocol = IPPROTO_IPIP;
456 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
457
458 if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
459 goto out;
460 err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
461 SIOCADDTUNNEL);
462 if (err)
463 goto out;
464
465 new_dev = __dev_get_by_name(net, p.name);
466 if (!new_dev)
467 goto out;
468
469 new_dev->flags |= IFF_MULTICAST;
470 if (!ipmr_init_vif_indev(new_dev))
471 goto out_unregister;
472 if (dev_open(new_dev, NULL))
473 goto out_unregister;
474 dev_hold(new_dev);
475 err = dev_set_allmulti(new_dev, 1);
476 if (err) {
477 dev_close(new_dev);
478 tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
479 SIOCDELTUNNEL);
480 dev_put(new_dev);
481 new_dev = ERR_PTR(err);
482 }
483 return new_dev;
484
485 out_unregister:
486 unregister_netdevice(new_dev);
487 out:
488 return ERR_PTR(-ENOBUFS);
489 }
490
491 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
reg_vif_xmit(struct sk_buff * skb,struct net_device * dev)492 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
493 {
494 struct net *net = dev_net(dev);
495 struct mr_table *mrt;
496 struct flowi4 fl4 = {
497 .flowi4_oif = dev->ifindex,
498 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
499 .flowi4_mark = skb->mark,
500 };
501 int err;
502
503 err = ipmr_fib_lookup(net, &fl4, &mrt);
504 if (err < 0) {
505 kfree_skb(skb);
506 return err;
507 }
508
509 DEV_STATS_ADD(dev, tx_bytes, skb->len);
510 DEV_STATS_INC(dev, tx_packets);
511 rcu_read_lock();
512
513 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
514 ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num),
515 IGMPMSG_WHOLEPKT);
516
517 rcu_read_unlock();
518 kfree_skb(skb);
519 return NETDEV_TX_OK;
520 }
521
reg_vif_get_iflink(const struct net_device * dev)522 static int reg_vif_get_iflink(const struct net_device *dev)
523 {
524 return 0;
525 }
526
527 static const struct net_device_ops reg_vif_netdev_ops = {
528 .ndo_start_xmit = reg_vif_xmit,
529 .ndo_get_iflink = reg_vif_get_iflink,
530 };
531
reg_vif_setup(struct net_device * dev)532 static void reg_vif_setup(struct net_device *dev)
533 {
534 dev->type = ARPHRD_PIMREG;
535 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
536 dev->flags = IFF_NOARP;
537 dev->netdev_ops = ®_vif_netdev_ops;
538 dev->needs_free_netdev = true;
539 dev->features |= NETIF_F_NETNS_LOCAL;
540 }
541
ipmr_reg_vif(struct net * net,struct mr_table * mrt)542 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
543 {
544 struct net_device *dev;
545 char name[IFNAMSIZ];
546
547 if (mrt->id == RT_TABLE_DEFAULT)
548 sprintf(name, "pimreg");
549 else
550 sprintf(name, "pimreg%u", mrt->id);
551
552 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
553
554 if (!dev)
555 return NULL;
556
557 dev_net_set(dev, net);
558
559 if (register_netdevice(dev)) {
560 free_netdev(dev);
561 return NULL;
562 }
563
564 if (!ipmr_init_vif_indev(dev))
565 goto failure;
566 if (dev_open(dev, NULL))
567 goto failure;
568
569 dev_hold(dev);
570
571 return dev;
572
573 failure:
574 unregister_netdevice(dev);
575 return NULL;
576 }
577
578 /* called with rcu_read_lock() */
__pim_rcv(struct mr_table * mrt,struct sk_buff * skb,unsigned int pimlen)579 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
580 unsigned int pimlen)
581 {
582 struct net_device *reg_dev = NULL;
583 struct iphdr *encap;
584 int vif_num;
585
586 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
587 /* Check that:
588 * a. packet is really sent to a multicast group
589 * b. packet is not a NULL-REGISTER
590 * c. packet is not truncated
591 */
592 if (!ipv4_is_multicast(encap->daddr) ||
593 encap->tot_len == 0 ||
594 ntohs(encap->tot_len) + pimlen > skb->len)
595 return 1;
596
597 /* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
598 vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
599 if (vif_num >= 0)
600 reg_dev = vif_dev_read(&mrt->vif_table[vif_num]);
601 if (!reg_dev)
602 return 1;
603
604 skb->mac_header = skb->network_header;
605 skb_pull(skb, (u8 *)encap - skb->data);
606 skb_reset_network_header(skb);
607 skb->protocol = htons(ETH_P_IP);
608 skb->ip_summed = CHECKSUM_NONE;
609
610 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
611
612 netif_rx(skb);
613
614 return NET_RX_SUCCESS;
615 }
616 #else
ipmr_reg_vif(struct net * net,struct mr_table * mrt)617 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
618 {
619 return NULL;
620 }
621 #endif
622
call_ipmr_vif_entry_notifiers(struct net * net,enum fib_event_type event_type,struct vif_device * vif,struct net_device * vif_dev,vifi_t vif_index,u32 tb_id)623 static int call_ipmr_vif_entry_notifiers(struct net *net,
624 enum fib_event_type event_type,
625 struct vif_device *vif,
626 struct net_device *vif_dev,
627 vifi_t vif_index, u32 tb_id)
628 {
629 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
630 vif, vif_dev, vif_index, tb_id,
631 &net->ipv4.ipmr_seq);
632 }
633
call_ipmr_mfc_entry_notifiers(struct net * net,enum fib_event_type event_type,struct mfc_cache * mfc,u32 tb_id)634 static int call_ipmr_mfc_entry_notifiers(struct net *net,
635 enum fib_event_type event_type,
636 struct mfc_cache *mfc, u32 tb_id)
637 {
638 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
639 &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
640 }
641
642 /**
643 * vif_delete - Delete a VIF entry
644 * @mrt: Table to delete from
645 * @vifi: VIF identifier to delete
646 * @notify: Set to 1, if the caller is a notifier_call
647 * @head: if unregistering the VIF, place it on this queue
648 */
vif_delete(struct mr_table * mrt,int vifi,int notify,struct list_head * head)649 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
650 struct list_head *head)
651 {
652 struct net *net = read_pnet(&mrt->net);
653 struct vif_device *v;
654 struct net_device *dev;
655 struct in_device *in_dev;
656
657 if (vifi < 0 || vifi >= mrt->maxvif)
658 return -EADDRNOTAVAIL;
659
660 v = &mrt->vif_table[vifi];
661
662 dev = rtnl_dereference(v->dev);
663 if (!dev)
664 return -EADDRNOTAVAIL;
665
666 spin_lock(&mrt_lock);
667 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev,
668 vifi, mrt->id);
669 RCU_INIT_POINTER(v->dev, NULL);
670
671 if (vifi == mrt->mroute_reg_vif_num) {
672 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
673 WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
674 }
675 if (vifi + 1 == mrt->maxvif) {
676 int tmp;
677
678 for (tmp = vifi - 1; tmp >= 0; tmp--) {
679 if (VIF_EXISTS(mrt, tmp))
680 break;
681 }
682 WRITE_ONCE(mrt->maxvif, tmp + 1);
683 }
684
685 spin_unlock(&mrt_lock);
686
687 dev_set_allmulti(dev, -1);
688
689 in_dev = __in_dev_get_rtnl(dev);
690 if (in_dev) {
691 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
692 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
693 NETCONFA_MC_FORWARDING,
694 dev->ifindex, &in_dev->cnf);
695 ip_rt_multicast_event(in_dev);
696 }
697
698 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
699 unregister_netdevice_queue(dev, head);
700
701 netdev_put(dev, &v->dev_tracker);
702 return 0;
703 }
704
ipmr_cache_free_rcu(struct rcu_head * head)705 static void ipmr_cache_free_rcu(struct rcu_head *head)
706 {
707 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
708
709 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
710 }
711
ipmr_cache_free(struct mfc_cache * c)712 static void ipmr_cache_free(struct mfc_cache *c)
713 {
714 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
715 }
716
717 /* Destroy an unresolved cache entry, killing queued skbs
718 * and reporting error to netlink readers.
719 */
ipmr_destroy_unres(struct mr_table * mrt,struct mfc_cache * c)720 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
721 {
722 struct net *net = read_pnet(&mrt->net);
723 struct sk_buff *skb;
724 struct nlmsgerr *e;
725
726 atomic_dec(&mrt->cache_resolve_queue_len);
727
728 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
729 if (ip_hdr(skb)->version == 0) {
730 struct nlmsghdr *nlh = skb_pull(skb,
731 sizeof(struct iphdr));
732 nlh->nlmsg_type = NLMSG_ERROR;
733 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
734 skb_trim(skb, nlh->nlmsg_len);
735 e = nlmsg_data(nlh);
736 e->error = -ETIMEDOUT;
737 memset(&e->msg, 0, sizeof(e->msg));
738
739 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
740 } else {
741 kfree_skb(skb);
742 }
743 }
744
745 ipmr_cache_free(c);
746 }
747
748 /* Timer process for the unresolved queue. */
ipmr_expire_process(struct timer_list * t)749 static void ipmr_expire_process(struct timer_list *t)
750 {
751 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
752 struct mr_mfc *c, *next;
753 unsigned long expires;
754 unsigned long now;
755
756 if (!spin_trylock(&mfc_unres_lock)) {
757 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
758 return;
759 }
760
761 if (list_empty(&mrt->mfc_unres_queue))
762 goto out;
763
764 now = jiffies;
765 expires = 10*HZ;
766
767 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
768 if (time_after(c->mfc_un.unres.expires, now)) {
769 unsigned long interval = c->mfc_un.unres.expires - now;
770 if (interval < expires)
771 expires = interval;
772 continue;
773 }
774
775 list_del(&c->list);
776 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
777 ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
778 }
779
780 if (!list_empty(&mrt->mfc_unres_queue))
781 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
782
783 out:
784 spin_unlock(&mfc_unres_lock);
785 }
786
787 /* Fill oifs list. It is called under locked mrt_lock. */
ipmr_update_thresholds(struct mr_table * mrt,struct mr_mfc * cache,unsigned char * ttls)788 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
789 unsigned char *ttls)
790 {
791 int vifi;
792
793 cache->mfc_un.res.minvif = MAXVIFS;
794 cache->mfc_un.res.maxvif = 0;
795 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
796
797 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
798 if (VIF_EXISTS(mrt, vifi) &&
799 ttls[vifi] && ttls[vifi] < 255) {
800 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
801 if (cache->mfc_un.res.minvif > vifi)
802 cache->mfc_un.res.minvif = vifi;
803 if (cache->mfc_un.res.maxvif <= vifi)
804 cache->mfc_un.res.maxvif = vifi + 1;
805 }
806 }
807 cache->mfc_un.res.lastuse = jiffies;
808 }
809
vif_add(struct net * net,struct mr_table * mrt,struct vifctl * vifc,int mrtsock)810 static int vif_add(struct net *net, struct mr_table *mrt,
811 struct vifctl *vifc, int mrtsock)
812 {
813 struct netdev_phys_item_id ppid = { };
814 int vifi = vifc->vifc_vifi;
815 struct vif_device *v = &mrt->vif_table[vifi];
816 struct net_device *dev;
817 struct in_device *in_dev;
818 int err;
819
820 /* Is vif busy ? */
821 if (VIF_EXISTS(mrt, vifi))
822 return -EADDRINUSE;
823
824 switch (vifc->vifc_flags) {
825 case VIFF_REGISTER:
826 if (!ipmr_pimsm_enabled())
827 return -EINVAL;
828 /* Special Purpose VIF in PIM
829 * All the packets will be sent to the daemon
830 */
831 if (mrt->mroute_reg_vif_num >= 0)
832 return -EADDRINUSE;
833 dev = ipmr_reg_vif(net, mrt);
834 if (!dev)
835 return -ENOBUFS;
836 err = dev_set_allmulti(dev, 1);
837 if (err) {
838 unregister_netdevice(dev);
839 dev_put(dev);
840 return err;
841 }
842 break;
843 case VIFF_TUNNEL:
844 dev = ipmr_new_tunnel(net, vifc);
845 if (IS_ERR(dev))
846 return PTR_ERR(dev);
847 break;
848 case VIFF_USE_IFINDEX:
849 case 0:
850 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
851 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
852 if (dev && !__in_dev_get_rtnl(dev)) {
853 dev_put(dev);
854 return -EADDRNOTAVAIL;
855 }
856 } else {
857 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
858 }
859 if (!dev)
860 return -EADDRNOTAVAIL;
861 err = dev_set_allmulti(dev, 1);
862 if (err) {
863 dev_put(dev);
864 return err;
865 }
866 break;
867 default:
868 return -EINVAL;
869 }
870
871 in_dev = __in_dev_get_rtnl(dev);
872 if (!in_dev) {
873 dev_put(dev);
874 return -EADDRNOTAVAIL;
875 }
876 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
877 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
878 dev->ifindex, &in_dev->cnf);
879 ip_rt_multicast_event(in_dev);
880
881 /* Fill in the VIF structures */
882 vif_device_init(v, dev, vifc->vifc_rate_limit,
883 vifc->vifc_threshold,
884 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
885 (VIFF_TUNNEL | VIFF_REGISTER));
886
887 err = dev_get_port_parent_id(dev, &ppid, true);
888 if (err == 0) {
889 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
890 v->dev_parent_id.id_len = ppid.id_len;
891 } else {
892 v->dev_parent_id.id_len = 0;
893 }
894
895 v->local = vifc->vifc_lcl_addr.s_addr;
896 v->remote = vifc->vifc_rmt_addr.s_addr;
897
898 /* And finish update writing critical data */
899 spin_lock(&mrt_lock);
900 rcu_assign_pointer(v->dev, dev);
901 netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
902 if (v->flags & VIFF_REGISTER) {
903 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
904 WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
905 }
906 if (vifi+1 > mrt->maxvif)
907 WRITE_ONCE(mrt->maxvif, vifi + 1);
908 spin_unlock(&mrt_lock);
909 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev,
910 vifi, mrt->id);
911 return 0;
912 }
913
914 /* called with rcu_read_lock() */
ipmr_cache_find(struct mr_table * mrt,__be32 origin,__be32 mcastgrp)915 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
916 __be32 origin,
917 __be32 mcastgrp)
918 {
919 struct mfc_cache_cmp_arg arg = {
920 .mfc_mcastgrp = mcastgrp,
921 .mfc_origin = origin
922 };
923
924 return mr_mfc_find(mrt, &arg);
925 }
926
927 /* Look for a (*,G) entry */
ipmr_cache_find_any(struct mr_table * mrt,__be32 mcastgrp,int vifi)928 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
929 __be32 mcastgrp, int vifi)
930 {
931 struct mfc_cache_cmp_arg arg = {
932 .mfc_mcastgrp = mcastgrp,
933 .mfc_origin = htonl(INADDR_ANY)
934 };
935
936 if (mcastgrp == htonl(INADDR_ANY))
937 return mr_mfc_find_any_parent(mrt, vifi);
938 return mr_mfc_find_any(mrt, vifi, &arg);
939 }
940
941 /* Look for a (S,G,iif) entry if parent != -1 */
ipmr_cache_find_parent(struct mr_table * mrt,__be32 origin,__be32 mcastgrp,int parent)942 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
943 __be32 origin, __be32 mcastgrp,
944 int parent)
945 {
946 struct mfc_cache_cmp_arg arg = {
947 .mfc_mcastgrp = mcastgrp,
948 .mfc_origin = origin,
949 };
950
951 return mr_mfc_find_parent(mrt, &arg, parent);
952 }
953
954 /* Allocate a multicast cache entry */
ipmr_cache_alloc(void)955 static struct mfc_cache *ipmr_cache_alloc(void)
956 {
957 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
958
959 if (c) {
960 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
961 c->_c.mfc_un.res.minvif = MAXVIFS;
962 c->_c.free = ipmr_cache_free_rcu;
963 refcount_set(&c->_c.mfc_un.res.refcount, 1);
964 }
965 return c;
966 }
967
ipmr_cache_alloc_unres(void)968 static struct mfc_cache *ipmr_cache_alloc_unres(void)
969 {
970 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
971
972 if (c) {
973 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
974 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
975 }
976 return c;
977 }
978
979 /* A cache entry has gone into a resolved state from queued */
ipmr_cache_resolve(struct net * net,struct mr_table * mrt,struct mfc_cache * uc,struct mfc_cache * c)980 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
981 struct mfc_cache *uc, struct mfc_cache *c)
982 {
983 struct sk_buff *skb;
984 struct nlmsgerr *e;
985
986 /* Play the pending entries through our router */
987 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
988 if (ip_hdr(skb)->version == 0) {
989 struct nlmsghdr *nlh = skb_pull(skb,
990 sizeof(struct iphdr));
991
992 if (mr_fill_mroute(mrt, skb, &c->_c,
993 nlmsg_data(nlh)) > 0) {
994 nlh->nlmsg_len = skb_tail_pointer(skb) -
995 (u8 *)nlh;
996 } else {
997 nlh->nlmsg_type = NLMSG_ERROR;
998 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
999 skb_trim(skb, nlh->nlmsg_len);
1000 e = nlmsg_data(nlh);
1001 e->error = -EMSGSIZE;
1002 memset(&e->msg, 0, sizeof(e->msg));
1003 }
1004
1005 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1006 } else {
1007 rcu_read_lock();
1008 ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1009 rcu_read_unlock();
1010 }
1011 }
1012 }
1013
1014 /* Bounce a cache query up to mrouted and netlink.
1015 *
1016 * Called under rcu_read_lock().
1017 */
ipmr_cache_report(const struct mr_table * mrt,struct sk_buff * pkt,vifi_t vifi,int assert)1018 static int ipmr_cache_report(const struct mr_table *mrt,
1019 struct sk_buff *pkt, vifi_t vifi, int assert)
1020 {
1021 const int ihl = ip_hdrlen(pkt);
1022 struct sock *mroute_sk;
1023 struct igmphdr *igmp;
1024 struct igmpmsg *msg;
1025 struct sk_buff *skb;
1026 int ret;
1027
1028 mroute_sk = rcu_dereference(mrt->mroute_sk);
1029 if (!mroute_sk)
1030 return -EINVAL;
1031
1032 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1033 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1034 else
1035 skb = alloc_skb(128, GFP_ATOMIC);
1036
1037 if (!skb)
1038 return -ENOBUFS;
1039
1040 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1041 /* Ugly, but we have no choice with this interface.
1042 * Duplicate old header, fix ihl, length etc.
1043 * And all this only to mangle msg->im_msgtype and
1044 * to set msg->im_mbz to "mbz" :-)
1045 */
1046 skb_push(skb, sizeof(struct iphdr));
1047 skb_reset_network_header(skb);
1048 skb_reset_transport_header(skb);
1049 msg = (struct igmpmsg *)skb_network_header(skb);
1050 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1051 msg->im_msgtype = assert;
1052 msg->im_mbz = 0;
1053 if (assert == IGMPMSG_WRVIFWHOLE) {
1054 msg->im_vif = vifi;
1055 msg->im_vif_hi = vifi >> 8;
1056 } else {
1057 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1058 int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1059
1060 msg->im_vif = vif_num;
1061 msg->im_vif_hi = vif_num >> 8;
1062 }
1063 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1064 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1065 sizeof(struct iphdr));
1066 } else {
1067 /* Copy the IP header */
1068 skb_set_network_header(skb, skb->len);
1069 skb_put(skb, ihl);
1070 skb_copy_to_linear_data(skb, pkt->data, ihl);
1071 /* Flag to the kernel this is a route add */
1072 ip_hdr(skb)->protocol = 0;
1073 msg = (struct igmpmsg *)skb_network_header(skb);
1074 msg->im_vif = vifi;
1075 msg->im_vif_hi = vifi >> 8;
1076 ipv4_pktinfo_prepare(mroute_sk, pkt, false);
1077 memcpy(skb->cb, pkt->cb, sizeof(skb->cb));
1078 /* Add our header */
1079 igmp = skb_put(skb, sizeof(struct igmphdr));
1080 igmp->type = assert;
1081 msg->im_msgtype = assert;
1082 igmp->code = 0;
1083 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1084 skb->transport_header = skb->network_header;
1085 }
1086
1087 igmpmsg_netlink_event(mrt, skb);
1088
1089 /* Deliver to mrouted */
1090 ret = sock_queue_rcv_skb(mroute_sk, skb);
1091
1092 if (ret < 0) {
1093 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1094 kfree_skb(skb);
1095 }
1096
1097 return ret;
1098 }
1099
1100 /* Queue a packet for resolution. It gets locked cache entry! */
1101 /* Called under rcu_read_lock() */
ipmr_cache_unresolved(struct mr_table * mrt,vifi_t vifi,struct sk_buff * skb,struct net_device * dev)1102 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1103 struct sk_buff *skb, struct net_device *dev)
1104 {
1105 const struct iphdr *iph = ip_hdr(skb);
1106 struct mfc_cache *c;
1107 bool found = false;
1108 int err;
1109
1110 spin_lock_bh(&mfc_unres_lock);
1111 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1112 if (c->mfc_mcastgrp == iph->daddr &&
1113 c->mfc_origin == iph->saddr) {
1114 found = true;
1115 break;
1116 }
1117 }
1118
1119 if (!found) {
1120 /* Create a new entry if allowable */
1121 c = ipmr_cache_alloc_unres();
1122 if (!c) {
1123 spin_unlock_bh(&mfc_unres_lock);
1124
1125 kfree_skb(skb);
1126 return -ENOBUFS;
1127 }
1128
1129 /* Fill in the new cache entry */
1130 c->_c.mfc_parent = -1;
1131 c->mfc_origin = iph->saddr;
1132 c->mfc_mcastgrp = iph->daddr;
1133
1134 /* Reflect first query at mrouted. */
1135 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1136
1137 if (err < 0) {
1138 /* If the report failed throw the cache entry
1139 out - Brad Parker
1140 */
1141 spin_unlock_bh(&mfc_unres_lock);
1142
1143 ipmr_cache_free(c);
1144 kfree_skb(skb);
1145 return err;
1146 }
1147
1148 atomic_inc(&mrt->cache_resolve_queue_len);
1149 list_add(&c->_c.list, &mrt->mfc_unres_queue);
1150 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1151
1152 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1153 mod_timer(&mrt->ipmr_expire_timer,
1154 c->_c.mfc_un.unres.expires);
1155 }
1156
1157 /* See if we can append the packet */
1158 if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1159 kfree_skb(skb);
1160 err = -ENOBUFS;
1161 } else {
1162 if (dev) {
1163 skb->dev = dev;
1164 skb->skb_iif = dev->ifindex;
1165 }
1166 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1167 err = 0;
1168 }
1169
1170 spin_unlock_bh(&mfc_unres_lock);
1171 return err;
1172 }
1173
1174 /* MFC cache manipulation by user space mroute daemon */
1175
ipmr_mfc_delete(struct mr_table * mrt,struct mfcctl * mfc,int parent)1176 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1177 {
1178 struct net *net = read_pnet(&mrt->net);
1179 struct mfc_cache *c;
1180
1181 /* The entries are added/deleted only under RTNL */
1182 rcu_read_lock();
1183 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1184 mfc->mfcc_mcastgrp.s_addr, parent);
1185 rcu_read_unlock();
1186 if (!c)
1187 return -ENOENT;
1188 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1189 list_del_rcu(&c->_c.list);
1190 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1191 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1192 mr_cache_put(&c->_c);
1193
1194 return 0;
1195 }
1196
ipmr_mfc_add(struct net * net,struct mr_table * mrt,struct mfcctl * mfc,int mrtsock,int parent)1197 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1198 struct mfcctl *mfc, int mrtsock, int parent)
1199 {
1200 struct mfc_cache *uc, *c;
1201 struct mr_mfc *_uc;
1202 bool found;
1203 int ret;
1204
1205 if (mfc->mfcc_parent >= MAXVIFS)
1206 return -ENFILE;
1207
1208 /* The entries are added/deleted only under RTNL */
1209 rcu_read_lock();
1210 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1211 mfc->mfcc_mcastgrp.s_addr, parent);
1212 rcu_read_unlock();
1213 if (c) {
1214 spin_lock(&mrt_lock);
1215 c->_c.mfc_parent = mfc->mfcc_parent;
1216 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1217 if (!mrtsock)
1218 c->_c.mfc_flags |= MFC_STATIC;
1219 spin_unlock(&mrt_lock);
1220 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1221 mrt->id);
1222 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1223 return 0;
1224 }
1225
1226 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1227 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1228 return -EINVAL;
1229
1230 c = ipmr_cache_alloc();
1231 if (!c)
1232 return -ENOMEM;
1233
1234 c->mfc_origin = mfc->mfcc_origin.s_addr;
1235 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1236 c->_c.mfc_parent = mfc->mfcc_parent;
1237 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1238 if (!mrtsock)
1239 c->_c.mfc_flags |= MFC_STATIC;
1240
1241 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1242 ipmr_rht_params);
1243 if (ret) {
1244 pr_err("ipmr: rhtable insert error %d\n", ret);
1245 ipmr_cache_free(c);
1246 return ret;
1247 }
1248 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1249 /* Check to see if we resolved a queued list. If so we
1250 * need to send on the frames and tidy up.
1251 */
1252 found = false;
1253 spin_lock_bh(&mfc_unres_lock);
1254 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1255 uc = (struct mfc_cache *)_uc;
1256 if (uc->mfc_origin == c->mfc_origin &&
1257 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1258 list_del(&_uc->list);
1259 atomic_dec(&mrt->cache_resolve_queue_len);
1260 found = true;
1261 break;
1262 }
1263 }
1264 if (list_empty(&mrt->mfc_unres_queue))
1265 del_timer(&mrt->ipmr_expire_timer);
1266 spin_unlock_bh(&mfc_unres_lock);
1267
1268 if (found) {
1269 ipmr_cache_resolve(net, mrt, uc, c);
1270 ipmr_cache_free(uc);
1271 }
1272 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1273 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1274 return 0;
1275 }
1276
1277 /* Close the multicast socket, and clear the vif tables etc */
mroute_clean_tables(struct mr_table * mrt,int flags)1278 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1279 {
1280 struct net *net = read_pnet(&mrt->net);
1281 struct mr_mfc *c, *tmp;
1282 struct mfc_cache *cache;
1283 LIST_HEAD(list);
1284 int i;
1285
1286 /* Shut down all active vif entries */
1287 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1288 for (i = 0; i < mrt->maxvif; i++) {
1289 if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1290 !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1291 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1292 continue;
1293 vif_delete(mrt, i, 0, &list);
1294 }
1295 unregister_netdevice_many(&list);
1296 }
1297
1298 /* Wipe the cache */
1299 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1300 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1301 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1302 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1303 continue;
1304 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1305 list_del_rcu(&c->list);
1306 cache = (struct mfc_cache *)c;
1307 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1308 mrt->id);
1309 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1310 mr_cache_put(c);
1311 }
1312 }
1313
1314 if (flags & MRT_FLUSH_MFC) {
1315 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1316 spin_lock_bh(&mfc_unres_lock);
1317 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1318 list_del(&c->list);
1319 cache = (struct mfc_cache *)c;
1320 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1321 ipmr_destroy_unres(mrt, cache);
1322 }
1323 spin_unlock_bh(&mfc_unres_lock);
1324 }
1325 }
1326 }
1327
1328 /* called from ip_ra_control(), before an RCU grace period,
1329 * we don't need to call synchronize_rcu() here
1330 */
mrtsock_destruct(struct sock * sk)1331 static void mrtsock_destruct(struct sock *sk)
1332 {
1333 struct net *net = sock_net(sk);
1334 struct mr_table *mrt;
1335
1336 rtnl_lock();
1337 ipmr_for_each_table(mrt, net) {
1338 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1339 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1340 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1341 NETCONFA_MC_FORWARDING,
1342 NETCONFA_IFINDEX_ALL,
1343 net->ipv4.devconf_all);
1344 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1345 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1346 }
1347 }
1348 rtnl_unlock();
1349 }
1350
1351 /* Socket options and virtual interface manipulation. The whole
1352 * virtual interface system is a complete heap, but unfortunately
1353 * that's how BSD mrouted happens to think. Maybe one day with a proper
1354 * MOSPF/PIM router set up we can clean this up.
1355 */
1356
ip_mroute_setsockopt(struct sock * sk,int optname,sockptr_t optval,unsigned int optlen)1357 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1358 unsigned int optlen)
1359 {
1360 struct net *net = sock_net(sk);
1361 int val, ret = 0, parent = 0;
1362 struct mr_table *mrt;
1363 struct vifctl vif;
1364 struct mfcctl mfc;
1365 bool do_wrvifwhole;
1366 u32 uval;
1367
1368 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1369 rtnl_lock();
1370 if (sk->sk_type != SOCK_RAW ||
1371 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1372 ret = -EOPNOTSUPP;
1373 goto out_unlock;
1374 }
1375
1376 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1377 if (!mrt) {
1378 ret = -ENOENT;
1379 goto out_unlock;
1380 }
1381 if (optname != MRT_INIT) {
1382 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1383 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1384 ret = -EACCES;
1385 goto out_unlock;
1386 }
1387 }
1388
1389 switch (optname) {
1390 case MRT_INIT:
1391 if (optlen != sizeof(int)) {
1392 ret = -EINVAL;
1393 break;
1394 }
1395 if (rtnl_dereference(mrt->mroute_sk)) {
1396 ret = -EADDRINUSE;
1397 break;
1398 }
1399
1400 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1401 if (ret == 0) {
1402 rcu_assign_pointer(mrt->mroute_sk, sk);
1403 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1404 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1405 NETCONFA_MC_FORWARDING,
1406 NETCONFA_IFINDEX_ALL,
1407 net->ipv4.devconf_all);
1408 }
1409 break;
1410 case MRT_DONE:
1411 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1412 ret = -EACCES;
1413 } else {
1414 /* We need to unlock here because mrtsock_destruct takes
1415 * care of rtnl itself and we can't change that due to
1416 * the IP_ROUTER_ALERT setsockopt which runs without it.
1417 */
1418 rtnl_unlock();
1419 ret = ip_ra_control(sk, 0, NULL);
1420 goto out;
1421 }
1422 break;
1423 case MRT_ADD_VIF:
1424 case MRT_DEL_VIF:
1425 if (optlen != sizeof(vif)) {
1426 ret = -EINVAL;
1427 break;
1428 }
1429 if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1430 ret = -EFAULT;
1431 break;
1432 }
1433 if (vif.vifc_vifi >= MAXVIFS) {
1434 ret = -ENFILE;
1435 break;
1436 }
1437 if (optname == MRT_ADD_VIF) {
1438 ret = vif_add(net, mrt, &vif,
1439 sk == rtnl_dereference(mrt->mroute_sk));
1440 } else {
1441 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1442 }
1443 break;
1444 /* Manipulate the forwarding caches. These live
1445 * in a sort of kernel/user symbiosis.
1446 */
1447 case MRT_ADD_MFC:
1448 case MRT_DEL_MFC:
1449 parent = -1;
1450 fallthrough;
1451 case MRT_ADD_MFC_PROXY:
1452 case MRT_DEL_MFC_PROXY:
1453 if (optlen != sizeof(mfc)) {
1454 ret = -EINVAL;
1455 break;
1456 }
1457 if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1458 ret = -EFAULT;
1459 break;
1460 }
1461 if (parent == 0)
1462 parent = mfc.mfcc_parent;
1463 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1464 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1465 else
1466 ret = ipmr_mfc_add(net, mrt, &mfc,
1467 sk == rtnl_dereference(mrt->mroute_sk),
1468 parent);
1469 break;
1470 case MRT_FLUSH:
1471 if (optlen != sizeof(val)) {
1472 ret = -EINVAL;
1473 break;
1474 }
1475 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1476 ret = -EFAULT;
1477 break;
1478 }
1479 mroute_clean_tables(mrt, val);
1480 break;
1481 /* Control PIM assert. */
1482 case MRT_ASSERT:
1483 if (optlen != sizeof(val)) {
1484 ret = -EINVAL;
1485 break;
1486 }
1487 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1488 ret = -EFAULT;
1489 break;
1490 }
1491 mrt->mroute_do_assert = val;
1492 break;
1493 case MRT_PIM:
1494 if (!ipmr_pimsm_enabled()) {
1495 ret = -ENOPROTOOPT;
1496 break;
1497 }
1498 if (optlen != sizeof(val)) {
1499 ret = -EINVAL;
1500 break;
1501 }
1502 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1503 ret = -EFAULT;
1504 break;
1505 }
1506
1507 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1508 val = !!val;
1509 if (val != mrt->mroute_do_pim) {
1510 mrt->mroute_do_pim = val;
1511 mrt->mroute_do_assert = val;
1512 mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1513 }
1514 break;
1515 case MRT_TABLE:
1516 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1517 ret = -ENOPROTOOPT;
1518 break;
1519 }
1520 if (optlen != sizeof(uval)) {
1521 ret = -EINVAL;
1522 break;
1523 }
1524 if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1525 ret = -EFAULT;
1526 break;
1527 }
1528
1529 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1530 ret = -EBUSY;
1531 } else {
1532 mrt = ipmr_new_table(net, uval);
1533 if (IS_ERR(mrt))
1534 ret = PTR_ERR(mrt);
1535 else
1536 raw_sk(sk)->ipmr_table = uval;
1537 }
1538 break;
1539 /* Spurious command, or MRT_VERSION which you cannot set. */
1540 default:
1541 ret = -ENOPROTOOPT;
1542 }
1543 out_unlock:
1544 rtnl_unlock();
1545 out:
1546 return ret;
1547 }
1548
1549 /* Execute if this ioctl is a special mroute ioctl */
ipmr_sk_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)1550 int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1551 {
1552 switch (cmd) {
1553 /* These userspace buffers will be consumed by ipmr_ioctl() */
1554 case SIOCGETVIFCNT: {
1555 struct sioc_vif_req buffer;
1556
1557 return sock_ioctl_inout(sk, cmd, arg, &buffer,
1558 sizeof(buffer));
1559 }
1560 case SIOCGETSGCNT: {
1561 struct sioc_sg_req buffer;
1562
1563 return sock_ioctl_inout(sk, cmd, arg, &buffer,
1564 sizeof(buffer));
1565 }
1566 }
1567 /* return code > 0 means that the ioctl was not executed */
1568 return 1;
1569 }
1570
1571 /* Getsock opt support for the multicast routing system. */
ip_mroute_getsockopt(struct sock * sk,int optname,sockptr_t optval,sockptr_t optlen)1572 int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1573 sockptr_t optlen)
1574 {
1575 int olr;
1576 int val;
1577 struct net *net = sock_net(sk);
1578 struct mr_table *mrt;
1579
1580 if (sk->sk_type != SOCK_RAW ||
1581 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1582 return -EOPNOTSUPP;
1583
1584 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1585 if (!mrt)
1586 return -ENOENT;
1587
1588 switch (optname) {
1589 case MRT_VERSION:
1590 val = 0x0305;
1591 break;
1592 case MRT_PIM:
1593 if (!ipmr_pimsm_enabled())
1594 return -ENOPROTOOPT;
1595 val = mrt->mroute_do_pim;
1596 break;
1597 case MRT_ASSERT:
1598 val = mrt->mroute_do_assert;
1599 break;
1600 default:
1601 return -ENOPROTOOPT;
1602 }
1603
1604 if (copy_from_sockptr(&olr, optlen, sizeof(int)))
1605 return -EFAULT;
1606 if (olr < 0)
1607 return -EINVAL;
1608
1609 olr = min_t(unsigned int, olr, sizeof(int));
1610
1611 if (copy_to_sockptr(optlen, &olr, sizeof(int)))
1612 return -EFAULT;
1613 if (copy_to_sockptr(optval, &val, olr))
1614 return -EFAULT;
1615 return 0;
1616 }
1617
1618 /* The IP multicast ioctl support routines. */
ipmr_ioctl(struct sock * sk,int cmd,void * arg)1619 int ipmr_ioctl(struct sock *sk, int cmd, void *arg)
1620 {
1621 struct vif_device *vif;
1622 struct mfc_cache *c;
1623 struct net *net = sock_net(sk);
1624 struct sioc_vif_req *vr;
1625 struct sioc_sg_req *sr;
1626 struct mr_table *mrt;
1627
1628 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1629 if (!mrt)
1630 return -ENOENT;
1631
1632 switch (cmd) {
1633 case SIOCGETVIFCNT:
1634 vr = (struct sioc_vif_req *)arg;
1635 if (vr->vifi >= mrt->maxvif)
1636 return -EINVAL;
1637 vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif);
1638 rcu_read_lock();
1639 vif = &mrt->vif_table[vr->vifi];
1640 if (VIF_EXISTS(mrt, vr->vifi)) {
1641 vr->icount = READ_ONCE(vif->pkt_in);
1642 vr->ocount = READ_ONCE(vif->pkt_out);
1643 vr->ibytes = READ_ONCE(vif->bytes_in);
1644 vr->obytes = READ_ONCE(vif->bytes_out);
1645 rcu_read_unlock();
1646
1647 return 0;
1648 }
1649 rcu_read_unlock();
1650 return -EADDRNOTAVAIL;
1651 case SIOCGETSGCNT:
1652 sr = (struct sioc_sg_req *)arg;
1653
1654 rcu_read_lock();
1655 c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr);
1656 if (c) {
1657 sr->pktcnt = c->_c.mfc_un.res.pkt;
1658 sr->bytecnt = c->_c.mfc_un.res.bytes;
1659 sr->wrong_if = c->_c.mfc_un.res.wrong_if;
1660 rcu_read_unlock();
1661 return 0;
1662 }
1663 rcu_read_unlock();
1664 return -EADDRNOTAVAIL;
1665 default:
1666 return -ENOIOCTLCMD;
1667 }
1668 }
1669
1670 #ifdef CONFIG_COMPAT
1671 struct compat_sioc_sg_req {
1672 struct in_addr src;
1673 struct in_addr grp;
1674 compat_ulong_t pktcnt;
1675 compat_ulong_t bytecnt;
1676 compat_ulong_t wrong_if;
1677 };
1678
1679 struct compat_sioc_vif_req {
1680 vifi_t vifi; /* Which iface */
1681 compat_ulong_t icount;
1682 compat_ulong_t ocount;
1683 compat_ulong_t ibytes;
1684 compat_ulong_t obytes;
1685 };
1686
ipmr_compat_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)1687 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1688 {
1689 struct compat_sioc_sg_req sr;
1690 struct compat_sioc_vif_req vr;
1691 struct vif_device *vif;
1692 struct mfc_cache *c;
1693 struct net *net = sock_net(sk);
1694 struct mr_table *mrt;
1695
1696 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1697 if (!mrt)
1698 return -ENOENT;
1699
1700 switch (cmd) {
1701 case SIOCGETVIFCNT:
1702 if (copy_from_user(&vr, arg, sizeof(vr)))
1703 return -EFAULT;
1704 if (vr.vifi >= mrt->maxvif)
1705 return -EINVAL;
1706 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1707 rcu_read_lock();
1708 vif = &mrt->vif_table[vr.vifi];
1709 if (VIF_EXISTS(mrt, vr.vifi)) {
1710 vr.icount = READ_ONCE(vif->pkt_in);
1711 vr.ocount = READ_ONCE(vif->pkt_out);
1712 vr.ibytes = READ_ONCE(vif->bytes_in);
1713 vr.obytes = READ_ONCE(vif->bytes_out);
1714 rcu_read_unlock();
1715
1716 if (copy_to_user(arg, &vr, sizeof(vr)))
1717 return -EFAULT;
1718 return 0;
1719 }
1720 rcu_read_unlock();
1721 return -EADDRNOTAVAIL;
1722 case SIOCGETSGCNT:
1723 if (copy_from_user(&sr, arg, sizeof(sr)))
1724 return -EFAULT;
1725
1726 rcu_read_lock();
1727 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1728 if (c) {
1729 sr.pktcnt = c->_c.mfc_un.res.pkt;
1730 sr.bytecnt = c->_c.mfc_un.res.bytes;
1731 sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1732 rcu_read_unlock();
1733
1734 if (copy_to_user(arg, &sr, sizeof(sr)))
1735 return -EFAULT;
1736 return 0;
1737 }
1738 rcu_read_unlock();
1739 return -EADDRNOTAVAIL;
1740 default:
1741 return -ENOIOCTLCMD;
1742 }
1743 }
1744 #endif
1745
ipmr_device_event(struct notifier_block * this,unsigned long event,void * ptr)1746 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1747 {
1748 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1749 struct net *net = dev_net(dev);
1750 struct mr_table *mrt;
1751 struct vif_device *v;
1752 int ct;
1753
1754 if (event != NETDEV_UNREGISTER)
1755 return NOTIFY_DONE;
1756
1757 ipmr_for_each_table(mrt, net) {
1758 v = &mrt->vif_table[0];
1759 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1760 if (rcu_access_pointer(v->dev) == dev)
1761 vif_delete(mrt, ct, 1, NULL);
1762 }
1763 }
1764 return NOTIFY_DONE;
1765 }
1766
1767 static struct notifier_block ip_mr_notifier = {
1768 .notifier_call = ipmr_device_event,
1769 };
1770
1771 /* Encapsulate a packet by attaching a valid IPIP header to it.
1772 * This avoids tunnel drivers and other mess and gives us the speed so
1773 * important for multicast video.
1774 */
ip_encap(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr)1775 static void ip_encap(struct net *net, struct sk_buff *skb,
1776 __be32 saddr, __be32 daddr)
1777 {
1778 struct iphdr *iph;
1779 const struct iphdr *old_iph = ip_hdr(skb);
1780
1781 skb_push(skb, sizeof(struct iphdr));
1782 skb->transport_header = skb->network_header;
1783 skb_reset_network_header(skb);
1784 iph = ip_hdr(skb);
1785
1786 iph->version = 4;
1787 iph->tos = old_iph->tos;
1788 iph->ttl = old_iph->ttl;
1789 iph->frag_off = 0;
1790 iph->daddr = daddr;
1791 iph->saddr = saddr;
1792 iph->protocol = IPPROTO_IPIP;
1793 iph->ihl = 5;
1794 iph->tot_len = htons(skb->len);
1795 ip_select_ident(net, skb, NULL);
1796 ip_send_check(iph);
1797
1798 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1799 nf_reset_ct(skb);
1800 }
1801
ipmr_forward_finish(struct net * net,struct sock * sk,struct sk_buff * skb)1802 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1803 struct sk_buff *skb)
1804 {
1805 struct ip_options *opt = &(IPCB(skb)->opt);
1806
1807 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1808
1809 if (unlikely(opt->optlen))
1810 ip_forward_options(skb);
1811
1812 return dst_output(net, sk, skb);
1813 }
1814
1815 #ifdef CONFIG_NET_SWITCHDEV
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1816 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1817 int in_vifi, int out_vifi)
1818 {
1819 struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1820 struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1821
1822 if (!skb->offload_l3_fwd_mark)
1823 return false;
1824 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1825 return false;
1826 return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1827 &in_vif->dev_parent_id);
1828 }
1829 #else
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1830 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1831 int in_vifi, int out_vifi)
1832 {
1833 return false;
1834 }
1835 #endif
1836
1837 /* Processing handlers for ipmr_forward, under rcu_read_lock() */
1838
ipmr_queue_xmit(struct net * net,struct mr_table * mrt,int in_vifi,struct sk_buff * skb,int vifi)1839 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1840 int in_vifi, struct sk_buff *skb, int vifi)
1841 {
1842 const struct iphdr *iph = ip_hdr(skb);
1843 struct vif_device *vif = &mrt->vif_table[vifi];
1844 struct net_device *vif_dev;
1845 struct net_device *dev;
1846 struct rtable *rt;
1847 struct flowi4 fl4;
1848 int encap = 0;
1849
1850 vif_dev = vif_dev_read(vif);
1851 if (!vif_dev)
1852 goto out_free;
1853
1854 if (vif->flags & VIFF_REGISTER) {
1855 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1856 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1857 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1858 DEV_STATS_INC(vif_dev, tx_packets);
1859 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1860 goto out_free;
1861 }
1862
1863 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1864 goto out_free;
1865
1866 if (vif->flags & VIFF_TUNNEL) {
1867 rt = ip_route_output_ports(net, &fl4, NULL,
1868 vif->remote, vif->local,
1869 0, 0,
1870 IPPROTO_IPIP,
1871 RT_TOS(iph->tos), vif->link);
1872 if (IS_ERR(rt))
1873 goto out_free;
1874 encap = sizeof(struct iphdr);
1875 } else {
1876 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1877 0, 0,
1878 IPPROTO_IPIP,
1879 RT_TOS(iph->tos), vif->link);
1880 if (IS_ERR(rt))
1881 goto out_free;
1882 }
1883
1884 dev = rt->dst.dev;
1885
1886 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1887 /* Do not fragment multicasts. Alas, IPv4 does not
1888 * allow to send ICMP, so that packets will disappear
1889 * to blackhole.
1890 */
1891 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1892 ip_rt_put(rt);
1893 goto out_free;
1894 }
1895
1896 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1897
1898 if (skb_cow(skb, encap)) {
1899 ip_rt_put(rt);
1900 goto out_free;
1901 }
1902
1903 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1904 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1905
1906 skb_dst_drop(skb);
1907 skb_dst_set(skb, &rt->dst);
1908 ip_decrease_ttl(ip_hdr(skb));
1909
1910 /* FIXME: forward and output firewalls used to be called here.
1911 * What do we do with netfilter? -- RR
1912 */
1913 if (vif->flags & VIFF_TUNNEL) {
1914 ip_encap(net, skb, vif->local, vif->remote);
1915 /* FIXME: extra output firewall step used to be here. --RR */
1916 DEV_STATS_INC(vif_dev, tx_packets);
1917 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1918 }
1919
1920 IPCB(skb)->flags |= IPSKB_FORWARDED;
1921
1922 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1923 * not only before forwarding, but after forwarding on all output
1924 * interfaces. It is clear, if mrouter runs a multicasting
1925 * program, it should receive packets not depending to what interface
1926 * program is joined.
1927 * If we will not make it, the program will have to join on all
1928 * interfaces. On the other hand, multihoming host (or router, but
1929 * not mrouter) cannot join to more than one interface - it will
1930 * result in receiving multiple packets.
1931 */
1932 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1933 net, NULL, skb, skb->dev, dev,
1934 ipmr_forward_finish);
1935 return;
1936
1937 out_free:
1938 kfree_skb(skb);
1939 }
1940
1941 /* Called with mrt_lock or rcu_read_lock() */
ipmr_find_vif(const struct mr_table * mrt,struct net_device * dev)1942 static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1943 {
1944 int ct;
1945 /* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1946 for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1947 if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1948 break;
1949 }
1950 return ct;
1951 }
1952
1953 /* "local" means that we should preserve one skb (for local delivery) */
1954 /* Called uner rcu_read_lock() */
ip_mr_forward(struct net * net,struct mr_table * mrt,struct net_device * dev,struct sk_buff * skb,struct mfc_cache * c,int local)1955 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1956 struct net_device *dev, struct sk_buff *skb,
1957 struct mfc_cache *c, int local)
1958 {
1959 int true_vifi = ipmr_find_vif(mrt, dev);
1960 int psend = -1;
1961 int vif, ct;
1962
1963 vif = c->_c.mfc_parent;
1964 c->_c.mfc_un.res.pkt++;
1965 c->_c.mfc_un.res.bytes += skb->len;
1966 c->_c.mfc_un.res.lastuse = jiffies;
1967
1968 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1969 struct mfc_cache *cache_proxy;
1970
1971 /* For an (*,G) entry, we only check that the incoming
1972 * interface is part of the static tree.
1973 */
1974 cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1975 if (cache_proxy &&
1976 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1977 goto forward;
1978 }
1979
1980 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1981 if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
1982 if (rt_is_output_route(skb_rtable(skb))) {
1983 /* It is our own packet, looped back.
1984 * Very complicated situation...
1985 *
1986 * The best workaround until routing daemons will be
1987 * fixed is not to redistribute packet, if it was
1988 * send through wrong interface. It means, that
1989 * multicast applications WILL NOT work for
1990 * (S,G), which have default multicast route pointing
1991 * to wrong oif. In any case, it is not a good
1992 * idea to use multicasting applications on router.
1993 */
1994 goto dont_forward;
1995 }
1996
1997 c->_c.mfc_un.res.wrong_if++;
1998
1999 if (true_vifi >= 0 && mrt->mroute_do_assert &&
2000 /* pimsm uses asserts, when switching from RPT to SPT,
2001 * so that we cannot check that packet arrived on an oif.
2002 * It is bad, but otherwise we would need to move pretty
2003 * large chunk of pimd to kernel. Ough... --ANK
2004 */
2005 (mrt->mroute_do_pim ||
2006 c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2007 time_after(jiffies,
2008 c->_c.mfc_un.res.last_assert +
2009 MFC_ASSERT_THRESH)) {
2010 c->_c.mfc_un.res.last_assert = jiffies;
2011 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2012 if (mrt->mroute_do_wrvifwhole)
2013 ipmr_cache_report(mrt, skb, true_vifi,
2014 IGMPMSG_WRVIFWHOLE);
2015 }
2016 goto dont_forward;
2017 }
2018
2019 forward:
2020 WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2021 mrt->vif_table[vif].pkt_in + 1);
2022 WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2023 mrt->vif_table[vif].bytes_in + skb->len);
2024
2025 /* Forward the frame */
2026 if (c->mfc_origin == htonl(INADDR_ANY) &&
2027 c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2028 if (true_vifi >= 0 &&
2029 true_vifi != c->_c.mfc_parent &&
2030 ip_hdr(skb)->ttl >
2031 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2032 /* It's an (*,*) entry and the packet is not coming from
2033 * the upstream: forward the packet to the upstream
2034 * only.
2035 */
2036 psend = c->_c.mfc_parent;
2037 goto last_forward;
2038 }
2039 goto dont_forward;
2040 }
2041 for (ct = c->_c.mfc_un.res.maxvif - 1;
2042 ct >= c->_c.mfc_un.res.minvif; ct--) {
2043 /* For (*,G) entry, don't forward to the incoming interface */
2044 if ((c->mfc_origin != htonl(INADDR_ANY) ||
2045 ct != true_vifi) &&
2046 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2047 if (psend != -1) {
2048 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2049
2050 if (skb2)
2051 ipmr_queue_xmit(net, mrt, true_vifi,
2052 skb2, psend);
2053 }
2054 psend = ct;
2055 }
2056 }
2057 last_forward:
2058 if (psend != -1) {
2059 if (local) {
2060 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2061
2062 if (skb2)
2063 ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2064 psend);
2065 } else {
2066 ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2067 return;
2068 }
2069 }
2070
2071 dont_forward:
2072 if (!local)
2073 kfree_skb(skb);
2074 }
2075
ipmr_rt_fib_lookup(struct net * net,struct sk_buff * skb)2076 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2077 {
2078 struct rtable *rt = skb_rtable(skb);
2079 struct iphdr *iph = ip_hdr(skb);
2080 struct flowi4 fl4 = {
2081 .daddr = iph->daddr,
2082 .saddr = iph->saddr,
2083 .flowi4_tos = RT_TOS(iph->tos),
2084 .flowi4_oif = (rt_is_output_route(rt) ?
2085 skb->dev->ifindex : 0),
2086 .flowi4_iif = (rt_is_output_route(rt) ?
2087 LOOPBACK_IFINDEX :
2088 skb->dev->ifindex),
2089 .flowi4_mark = skb->mark,
2090 };
2091 struct mr_table *mrt;
2092 int err;
2093
2094 err = ipmr_fib_lookup(net, &fl4, &mrt);
2095 if (err)
2096 return ERR_PTR(err);
2097 return mrt;
2098 }
2099
2100 /* Multicast packets for forwarding arrive here
2101 * Called with rcu_read_lock();
2102 */
ip_mr_input(struct sk_buff * skb)2103 int ip_mr_input(struct sk_buff *skb)
2104 {
2105 struct mfc_cache *cache;
2106 struct net *net = dev_net(skb->dev);
2107 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2108 struct mr_table *mrt;
2109 struct net_device *dev;
2110
2111 /* skb->dev passed in is the loX master dev for vrfs.
2112 * As there are no vifs associated with loopback devices,
2113 * get the proper interface that does have a vif associated with it.
2114 */
2115 dev = skb->dev;
2116 if (netif_is_l3_master(skb->dev)) {
2117 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2118 if (!dev) {
2119 kfree_skb(skb);
2120 return -ENODEV;
2121 }
2122 }
2123
2124 /* Packet is looped back after forward, it should not be
2125 * forwarded second time, but still can be delivered locally.
2126 */
2127 if (IPCB(skb)->flags & IPSKB_FORWARDED)
2128 goto dont_forward;
2129
2130 mrt = ipmr_rt_fib_lookup(net, skb);
2131 if (IS_ERR(mrt)) {
2132 kfree_skb(skb);
2133 return PTR_ERR(mrt);
2134 }
2135 if (!local) {
2136 if (IPCB(skb)->opt.router_alert) {
2137 if (ip_call_ra_chain(skb))
2138 return 0;
2139 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2140 /* IGMPv1 (and broken IGMPv2 implementations sort of
2141 * Cisco IOS <= 11.2(8)) do not put router alert
2142 * option to IGMP packets destined to routable
2143 * groups. It is very bad, because it means
2144 * that we can forward NO IGMP messages.
2145 */
2146 struct sock *mroute_sk;
2147
2148 mroute_sk = rcu_dereference(mrt->mroute_sk);
2149 if (mroute_sk) {
2150 nf_reset_ct(skb);
2151 raw_rcv(mroute_sk, skb);
2152 return 0;
2153 }
2154 }
2155 }
2156
2157 /* already under rcu_read_lock() */
2158 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2159 if (!cache) {
2160 int vif = ipmr_find_vif(mrt, dev);
2161
2162 if (vif >= 0)
2163 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2164 vif);
2165 }
2166
2167 /* No usable cache entry */
2168 if (!cache) {
2169 int vif;
2170
2171 if (local) {
2172 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2173 ip_local_deliver(skb);
2174 if (!skb2)
2175 return -ENOBUFS;
2176 skb = skb2;
2177 }
2178
2179 vif = ipmr_find_vif(mrt, dev);
2180 if (vif >= 0)
2181 return ipmr_cache_unresolved(mrt, vif, skb, dev);
2182 kfree_skb(skb);
2183 return -ENODEV;
2184 }
2185
2186 ip_mr_forward(net, mrt, dev, skb, cache, local);
2187
2188 if (local)
2189 return ip_local_deliver(skb);
2190
2191 return 0;
2192
2193 dont_forward:
2194 if (local)
2195 return ip_local_deliver(skb);
2196 kfree_skb(skb);
2197 return 0;
2198 }
2199
2200 #ifdef CONFIG_IP_PIMSM_V1
2201 /* Handle IGMP messages of PIMv1 */
pim_rcv_v1(struct sk_buff * skb)2202 int pim_rcv_v1(struct sk_buff *skb)
2203 {
2204 struct igmphdr *pim;
2205 struct net *net = dev_net(skb->dev);
2206 struct mr_table *mrt;
2207
2208 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2209 goto drop;
2210
2211 pim = igmp_hdr(skb);
2212
2213 mrt = ipmr_rt_fib_lookup(net, skb);
2214 if (IS_ERR(mrt))
2215 goto drop;
2216 if (!mrt->mroute_do_pim ||
2217 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2218 goto drop;
2219
2220 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2221 drop:
2222 kfree_skb(skb);
2223 }
2224 return 0;
2225 }
2226 #endif
2227
2228 #ifdef CONFIG_IP_PIMSM_V2
pim_rcv(struct sk_buff * skb)2229 static int pim_rcv(struct sk_buff *skb)
2230 {
2231 struct pimreghdr *pim;
2232 struct net *net = dev_net(skb->dev);
2233 struct mr_table *mrt;
2234
2235 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2236 goto drop;
2237
2238 pim = (struct pimreghdr *)skb_transport_header(skb);
2239 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2240 (pim->flags & PIM_NULL_REGISTER) ||
2241 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2242 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2243 goto drop;
2244
2245 mrt = ipmr_rt_fib_lookup(net, skb);
2246 if (IS_ERR(mrt))
2247 goto drop;
2248 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2249 drop:
2250 kfree_skb(skb);
2251 }
2252 return 0;
2253 }
2254 #endif
2255
ipmr_get_route(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr,struct rtmsg * rtm,u32 portid)2256 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2257 __be32 saddr, __be32 daddr,
2258 struct rtmsg *rtm, u32 portid)
2259 {
2260 struct mfc_cache *cache;
2261 struct mr_table *mrt;
2262 int err;
2263
2264 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2265 if (!mrt)
2266 return -ENOENT;
2267
2268 rcu_read_lock();
2269 cache = ipmr_cache_find(mrt, saddr, daddr);
2270 if (!cache && skb->dev) {
2271 int vif = ipmr_find_vif(mrt, skb->dev);
2272
2273 if (vif >= 0)
2274 cache = ipmr_cache_find_any(mrt, daddr, vif);
2275 }
2276 if (!cache) {
2277 struct sk_buff *skb2;
2278 struct iphdr *iph;
2279 struct net_device *dev;
2280 int vif = -1;
2281
2282 dev = skb->dev;
2283 if (dev)
2284 vif = ipmr_find_vif(mrt, dev);
2285 if (vif < 0) {
2286 rcu_read_unlock();
2287 return -ENODEV;
2288 }
2289
2290 skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2291 if (!skb2) {
2292 rcu_read_unlock();
2293 return -ENOMEM;
2294 }
2295
2296 NETLINK_CB(skb2).portid = portid;
2297 skb_push(skb2, sizeof(struct iphdr));
2298 skb_reset_network_header(skb2);
2299 iph = ip_hdr(skb2);
2300 iph->ihl = sizeof(struct iphdr) >> 2;
2301 iph->saddr = saddr;
2302 iph->daddr = daddr;
2303 iph->version = 0;
2304 err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2305 rcu_read_unlock();
2306 return err;
2307 }
2308
2309 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2310 rcu_read_unlock();
2311 return err;
2312 }
2313
ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mfc_cache * c,int cmd,int flags)2314 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2315 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2316 int flags)
2317 {
2318 struct nlmsghdr *nlh;
2319 struct rtmsg *rtm;
2320 int err;
2321
2322 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2323 if (!nlh)
2324 return -EMSGSIZE;
2325
2326 rtm = nlmsg_data(nlh);
2327 rtm->rtm_family = RTNL_FAMILY_IPMR;
2328 rtm->rtm_dst_len = 32;
2329 rtm->rtm_src_len = 32;
2330 rtm->rtm_tos = 0;
2331 rtm->rtm_table = mrt->id;
2332 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2333 goto nla_put_failure;
2334 rtm->rtm_type = RTN_MULTICAST;
2335 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2336 if (c->_c.mfc_flags & MFC_STATIC)
2337 rtm->rtm_protocol = RTPROT_STATIC;
2338 else
2339 rtm->rtm_protocol = RTPROT_MROUTED;
2340 rtm->rtm_flags = 0;
2341
2342 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2343 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2344 goto nla_put_failure;
2345 err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2346 /* do not break the dump if cache is unresolved */
2347 if (err < 0 && err != -ENOENT)
2348 goto nla_put_failure;
2349
2350 nlmsg_end(skb, nlh);
2351 return 0;
2352
2353 nla_put_failure:
2354 nlmsg_cancel(skb, nlh);
2355 return -EMSGSIZE;
2356 }
2357
_ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mr_mfc * c,int cmd,int flags)2358 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2359 u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2360 int flags)
2361 {
2362 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2363 cmd, flags);
2364 }
2365
mroute_msgsize(bool unresolved,int maxvif)2366 static size_t mroute_msgsize(bool unresolved, int maxvif)
2367 {
2368 size_t len =
2369 NLMSG_ALIGN(sizeof(struct rtmsg))
2370 + nla_total_size(4) /* RTA_TABLE */
2371 + nla_total_size(4) /* RTA_SRC */
2372 + nla_total_size(4) /* RTA_DST */
2373 ;
2374
2375 if (!unresolved)
2376 len = len
2377 + nla_total_size(4) /* RTA_IIF */
2378 + nla_total_size(0) /* RTA_MULTIPATH */
2379 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2380 /* RTA_MFC_STATS */
2381 + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2382 ;
2383
2384 return len;
2385 }
2386
mroute_netlink_event(struct mr_table * mrt,struct mfc_cache * mfc,int cmd)2387 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2388 int cmd)
2389 {
2390 struct net *net = read_pnet(&mrt->net);
2391 struct sk_buff *skb;
2392 int err = -ENOBUFS;
2393
2394 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2395 mrt->maxvif),
2396 GFP_ATOMIC);
2397 if (!skb)
2398 goto errout;
2399
2400 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2401 if (err < 0)
2402 goto errout;
2403
2404 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2405 return;
2406
2407 errout:
2408 kfree_skb(skb);
2409 if (err < 0)
2410 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2411 }
2412
igmpmsg_netlink_msgsize(size_t payloadlen)2413 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2414 {
2415 size_t len =
2416 NLMSG_ALIGN(sizeof(struct rtgenmsg))
2417 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */
2418 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */
2419 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */
2420 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */
2421 + nla_total_size(4) /* IPMRA_CREPORT_TABLE */
2422 /* IPMRA_CREPORT_PKT */
2423 + nla_total_size(payloadlen)
2424 ;
2425
2426 return len;
2427 }
2428
igmpmsg_netlink_event(const struct mr_table * mrt,struct sk_buff * pkt)2429 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2430 {
2431 struct net *net = read_pnet(&mrt->net);
2432 struct nlmsghdr *nlh;
2433 struct rtgenmsg *rtgenm;
2434 struct igmpmsg *msg;
2435 struct sk_buff *skb;
2436 struct nlattr *nla;
2437 int payloadlen;
2438
2439 payloadlen = pkt->len - sizeof(struct igmpmsg);
2440 msg = (struct igmpmsg *)skb_network_header(pkt);
2441
2442 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2443 if (!skb)
2444 goto errout;
2445
2446 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2447 sizeof(struct rtgenmsg), 0);
2448 if (!nlh)
2449 goto errout;
2450 rtgenm = nlmsg_data(nlh);
2451 rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2452 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2453 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2454 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2455 msg->im_src.s_addr) ||
2456 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2457 msg->im_dst.s_addr) ||
2458 nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2459 goto nla_put_failure;
2460
2461 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2462 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2463 nla_data(nla), payloadlen))
2464 goto nla_put_failure;
2465
2466 nlmsg_end(skb, nlh);
2467
2468 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2469 return;
2470
2471 nla_put_failure:
2472 nlmsg_cancel(skb, nlh);
2473 errout:
2474 kfree_skb(skb);
2475 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2476 }
2477
ipmr_rtm_valid_getroute_req(struct sk_buff * skb,const struct nlmsghdr * nlh,struct nlattr ** tb,struct netlink_ext_ack * extack)2478 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2479 const struct nlmsghdr *nlh,
2480 struct nlattr **tb,
2481 struct netlink_ext_ack *extack)
2482 {
2483 struct rtmsg *rtm;
2484 int i, err;
2485
2486 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2487 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2488 return -EINVAL;
2489 }
2490
2491 if (!netlink_strict_get_check(skb))
2492 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2493 rtm_ipv4_policy, extack);
2494
2495 rtm = nlmsg_data(nlh);
2496 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2497 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2498 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2499 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2500 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2501 return -EINVAL;
2502 }
2503
2504 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2505 rtm_ipv4_policy, extack);
2506 if (err)
2507 return err;
2508
2509 if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2510 (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2511 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2512 return -EINVAL;
2513 }
2514
2515 for (i = 0; i <= RTA_MAX; i++) {
2516 if (!tb[i])
2517 continue;
2518
2519 switch (i) {
2520 case RTA_SRC:
2521 case RTA_DST:
2522 case RTA_TABLE:
2523 break;
2524 default:
2525 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2526 return -EINVAL;
2527 }
2528 }
2529
2530 return 0;
2531 }
2532
ipmr_rtm_getroute(struct sk_buff * in_skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2533 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2534 struct netlink_ext_ack *extack)
2535 {
2536 struct net *net = sock_net(in_skb->sk);
2537 struct nlattr *tb[RTA_MAX + 1];
2538 struct sk_buff *skb = NULL;
2539 struct mfc_cache *cache;
2540 struct mr_table *mrt;
2541 __be32 src, grp;
2542 u32 tableid;
2543 int err;
2544
2545 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2546 if (err < 0)
2547 goto errout;
2548
2549 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2550 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2551 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2552
2553 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2554 if (!mrt) {
2555 err = -ENOENT;
2556 goto errout_free;
2557 }
2558
2559 /* entries are added/deleted only under RTNL */
2560 rcu_read_lock();
2561 cache = ipmr_cache_find(mrt, src, grp);
2562 rcu_read_unlock();
2563 if (!cache) {
2564 err = -ENOENT;
2565 goto errout_free;
2566 }
2567
2568 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2569 if (!skb) {
2570 err = -ENOBUFS;
2571 goto errout_free;
2572 }
2573
2574 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2575 nlh->nlmsg_seq, cache,
2576 RTM_NEWROUTE, 0);
2577 if (err < 0)
2578 goto errout_free;
2579
2580 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2581
2582 errout:
2583 return err;
2584
2585 errout_free:
2586 kfree_skb(skb);
2587 goto errout;
2588 }
2589
ipmr_rtm_dumproute(struct sk_buff * skb,struct netlink_callback * cb)2590 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2591 {
2592 struct fib_dump_filter filter = {};
2593 int err;
2594
2595 if (cb->strict_check) {
2596 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2597 &filter, cb);
2598 if (err < 0)
2599 return err;
2600 }
2601
2602 if (filter.table_id) {
2603 struct mr_table *mrt;
2604
2605 mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id);
2606 if (!mrt) {
2607 if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2608 return skb->len;
2609
2610 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2611 return -ENOENT;
2612 }
2613 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2614 &mfc_unres_lock, &filter);
2615 return skb->len ? : err;
2616 }
2617
2618 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2619 _ipmr_fill_mroute, &mfc_unres_lock, &filter);
2620 }
2621
2622 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2623 [RTA_SRC] = { .type = NLA_U32 },
2624 [RTA_DST] = { .type = NLA_U32 },
2625 [RTA_IIF] = { .type = NLA_U32 },
2626 [RTA_TABLE] = { .type = NLA_U32 },
2627 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2628 };
2629
ipmr_rtm_validate_proto(unsigned char rtm_protocol)2630 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2631 {
2632 switch (rtm_protocol) {
2633 case RTPROT_STATIC:
2634 case RTPROT_MROUTED:
2635 return true;
2636 }
2637 return false;
2638 }
2639
ipmr_nla_get_ttls(const struct nlattr * nla,struct mfcctl * mfcc)2640 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2641 {
2642 struct rtnexthop *rtnh = nla_data(nla);
2643 int remaining = nla_len(nla), vifi = 0;
2644
2645 while (rtnh_ok(rtnh, remaining)) {
2646 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2647 if (++vifi == MAXVIFS)
2648 break;
2649 rtnh = rtnh_next(rtnh, &remaining);
2650 }
2651
2652 return remaining > 0 ? -EINVAL : vifi;
2653 }
2654
2655 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
rtm_to_ipmr_mfcc(struct net * net,struct nlmsghdr * nlh,struct mfcctl * mfcc,int * mrtsock,struct mr_table ** mrtret,struct netlink_ext_ack * extack)2656 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2657 struct mfcctl *mfcc, int *mrtsock,
2658 struct mr_table **mrtret,
2659 struct netlink_ext_ack *extack)
2660 {
2661 struct net_device *dev = NULL;
2662 u32 tblid = RT_TABLE_DEFAULT;
2663 struct mr_table *mrt;
2664 struct nlattr *attr;
2665 struct rtmsg *rtm;
2666 int ret, rem;
2667
2668 ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2669 rtm_ipmr_policy, extack);
2670 if (ret < 0)
2671 goto out;
2672 rtm = nlmsg_data(nlh);
2673
2674 ret = -EINVAL;
2675 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2676 rtm->rtm_type != RTN_MULTICAST ||
2677 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2678 !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2679 goto out;
2680
2681 memset(mfcc, 0, sizeof(*mfcc));
2682 mfcc->mfcc_parent = -1;
2683 ret = 0;
2684 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2685 switch (nla_type(attr)) {
2686 case RTA_SRC:
2687 mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2688 break;
2689 case RTA_DST:
2690 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2691 break;
2692 case RTA_IIF:
2693 dev = __dev_get_by_index(net, nla_get_u32(attr));
2694 if (!dev) {
2695 ret = -ENODEV;
2696 goto out;
2697 }
2698 break;
2699 case RTA_MULTIPATH:
2700 if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2701 ret = -EINVAL;
2702 goto out;
2703 }
2704 break;
2705 case RTA_PREFSRC:
2706 ret = 1;
2707 break;
2708 case RTA_TABLE:
2709 tblid = nla_get_u32(attr);
2710 break;
2711 }
2712 }
2713 mrt = ipmr_get_table(net, tblid);
2714 if (!mrt) {
2715 ret = -ENOENT;
2716 goto out;
2717 }
2718 *mrtret = mrt;
2719 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2720 if (dev)
2721 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2722
2723 out:
2724 return ret;
2725 }
2726
2727 /* takes care of both newroute and delroute */
ipmr_rtm_route(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2728 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2729 struct netlink_ext_ack *extack)
2730 {
2731 struct net *net = sock_net(skb->sk);
2732 int ret, mrtsock, parent;
2733 struct mr_table *tbl;
2734 struct mfcctl mfcc;
2735
2736 mrtsock = 0;
2737 tbl = NULL;
2738 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2739 if (ret < 0)
2740 return ret;
2741
2742 parent = ret ? mfcc.mfcc_parent : -1;
2743 if (nlh->nlmsg_type == RTM_NEWROUTE)
2744 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2745 else
2746 return ipmr_mfc_delete(tbl, &mfcc, parent);
2747 }
2748
ipmr_fill_table(struct mr_table * mrt,struct sk_buff * skb)2749 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2750 {
2751 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2752
2753 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2754 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2755 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2756 mrt->mroute_reg_vif_num) ||
2757 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2758 mrt->mroute_do_assert) ||
2759 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2760 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2761 mrt->mroute_do_wrvifwhole))
2762 return false;
2763
2764 return true;
2765 }
2766
ipmr_fill_vif(struct mr_table * mrt,u32 vifid,struct sk_buff * skb)2767 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2768 {
2769 struct net_device *vif_dev;
2770 struct nlattr *vif_nest;
2771 struct vif_device *vif;
2772
2773 vif = &mrt->vif_table[vifid];
2774 vif_dev = rtnl_dereference(vif->dev);
2775 /* if the VIF doesn't exist just continue */
2776 if (!vif_dev)
2777 return true;
2778
2779 vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2780 if (!vif_nest)
2781 return false;
2782
2783 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) ||
2784 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2785 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2786 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2787 IPMRA_VIFA_PAD) ||
2788 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2789 IPMRA_VIFA_PAD) ||
2790 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2791 IPMRA_VIFA_PAD) ||
2792 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2793 IPMRA_VIFA_PAD) ||
2794 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2795 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2796 nla_nest_cancel(skb, vif_nest);
2797 return false;
2798 }
2799 nla_nest_end(skb, vif_nest);
2800
2801 return true;
2802 }
2803
ipmr_valid_dumplink(const struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2804 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2805 struct netlink_ext_ack *extack)
2806 {
2807 struct ifinfomsg *ifm;
2808
2809 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2810 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2811 return -EINVAL;
2812 }
2813
2814 if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2815 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2816 return -EINVAL;
2817 }
2818
2819 ifm = nlmsg_data(nlh);
2820 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2821 ifm->ifi_change || ifm->ifi_index) {
2822 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2823 return -EINVAL;
2824 }
2825
2826 return 0;
2827 }
2828
ipmr_rtm_dumplink(struct sk_buff * skb,struct netlink_callback * cb)2829 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2830 {
2831 struct net *net = sock_net(skb->sk);
2832 struct nlmsghdr *nlh = NULL;
2833 unsigned int t = 0, s_t;
2834 unsigned int e = 0, s_e;
2835 struct mr_table *mrt;
2836
2837 if (cb->strict_check) {
2838 int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2839
2840 if (err < 0)
2841 return err;
2842 }
2843
2844 s_t = cb->args[0];
2845 s_e = cb->args[1];
2846
2847 ipmr_for_each_table(mrt, net) {
2848 struct nlattr *vifs, *af;
2849 struct ifinfomsg *hdr;
2850 u32 i;
2851
2852 if (t < s_t)
2853 goto skip_table;
2854 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2855 cb->nlh->nlmsg_seq, RTM_NEWLINK,
2856 sizeof(*hdr), NLM_F_MULTI);
2857 if (!nlh)
2858 break;
2859
2860 hdr = nlmsg_data(nlh);
2861 memset(hdr, 0, sizeof(*hdr));
2862 hdr->ifi_family = RTNL_FAMILY_IPMR;
2863
2864 af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2865 if (!af) {
2866 nlmsg_cancel(skb, nlh);
2867 goto out;
2868 }
2869
2870 if (!ipmr_fill_table(mrt, skb)) {
2871 nlmsg_cancel(skb, nlh);
2872 goto out;
2873 }
2874
2875 vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2876 if (!vifs) {
2877 nla_nest_end(skb, af);
2878 nlmsg_end(skb, nlh);
2879 goto out;
2880 }
2881 for (i = 0; i < mrt->maxvif; i++) {
2882 if (e < s_e)
2883 goto skip_entry;
2884 if (!ipmr_fill_vif(mrt, i, skb)) {
2885 nla_nest_end(skb, vifs);
2886 nla_nest_end(skb, af);
2887 nlmsg_end(skb, nlh);
2888 goto out;
2889 }
2890 skip_entry:
2891 e++;
2892 }
2893 s_e = 0;
2894 e = 0;
2895 nla_nest_end(skb, vifs);
2896 nla_nest_end(skb, af);
2897 nlmsg_end(skb, nlh);
2898 skip_table:
2899 t++;
2900 }
2901
2902 out:
2903 cb->args[1] = e;
2904 cb->args[0] = t;
2905
2906 return skb->len;
2907 }
2908
2909 #ifdef CONFIG_PROC_FS
2910 /* The /proc interfaces to multicast routing :
2911 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2912 */
2913
ipmr_vif_seq_start(struct seq_file * seq,loff_t * pos)2914 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2915 __acquires(RCU)
2916 {
2917 struct mr_vif_iter *iter = seq->private;
2918 struct net *net = seq_file_net(seq);
2919 struct mr_table *mrt;
2920
2921 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2922 if (!mrt)
2923 return ERR_PTR(-ENOENT);
2924
2925 iter->mrt = mrt;
2926
2927 rcu_read_lock();
2928 return mr_vif_seq_start(seq, pos);
2929 }
2930
ipmr_vif_seq_stop(struct seq_file * seq,void * v)2931 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2932 __releases(RCU)
2933 {
2934 rcu_read_unlock();
2935 }
2936
ipmr_vif_seq_show(struct seq_file * seq,void * v)2937 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2938 {
2939 struct mr_vif_iter *iter = seq->private;
2940 struct mr_table *mrt = iter->mrt;
2941
2942 if (v == SEQ_START_TOKEN) {
2943 seq_puts(seq,
2944 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2945 } else {
2946 const struct vif_device *vif = v;
2947 const struct net_device *vif_dev;
2948 const char *name;
2949
2950 vif_dev = vif_dev_read(vif);
2951 name = vif_dev ? vif_dev->name : "none";
2952 seq_printf(seq,
2953 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2954 vif - mrt->vif_table,
2955 name, vif->bytes_in, vif->pkt_in,
2956 vif->bytes_out, vif->pkt_out,
2957 vif->flags, vif->local, vif->remote);
2958 }
2959 return 0;
2960 }
2961
2962 static const struct seq_operations ipmr_vif_seq_ops = {
2963 .start = ipmr_vif_seq_start,
2964 .next = mr_vif_seq_next,
2965 .stop = ipmr_vif_seq_stop,
2966 .show = ipmr_vif_seq_show,
2967 };
2968
ipmr_mfc_seq_start(struct seq_file * seq,loff_t * pos)2969 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2970 {
2971 struct net *net = seq_file_net(seq);
2972 struct mr_table *mrt;
2973
2974 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2975 if (!mrt)
2976 return ERR_PTR(-ENOENT);
2977
2978 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2979 }
2980
ipmr_mfc_seq_show(struct seq_file * seq,void * v)2981 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2982 {
2983 int n;
2984
2985 if (v == SEQ_START_TOKEN) {
2986 seq_puts(seq,
2987 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2988 } else {
2989 const struct mfc_cache *mfc = v;
2990 const struct mr_mfc_iter *it = seq->private;
2991 const struct mr_table *mrt = it->mrt;
2992
2993 seq_printf(seq, "%08X %08X %-3hd",
2994 (__force u32) mfc->mfc_mcastgrp,
2995 (__force u32) mfc->mfc_origin,
2996 mfc->_c.mfc_parent);
2997
2998 if (it->cache != &mrt->mfc_unres_queue) {
2999 seq_printf(seq, " %8lu %8lu %8lu",
3000 mfc->_c.mfc_un.res.pkt,
3001 mfc->_c.mfc_un.res.bytes,
3002 mfc->_c.mfc_un.res.wrong_if);
3003 for (n = mfc->_c.mfc_un.res.minvif;
3004 n < mfc->_c.mfc_un.res.maxvif; n++) {
3005 if (VIF_EXISTS(mrt, n) &&
3006 mfc->_c.mfc_un.res.ttls[n] < 255)
3007 seq_printf(seq,
3008 " %2d:%-3d",
3009 n, mfc->_c.mfc_un.res.ttls[n]);
3010 }
3011 } else {
3012 /* unresolved mfc_caches don't contain
3013 * pkt, bytes and wrong_if values
3014 */
3015 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3016 }
3017 seq_putc(seq, '\n');
3018 }
3019 return 0;
3020 }
3021
3022 static const struct seq_operations ipmr_mfc_seq_ops = {
3023 .start = ipmr_mfc_seq_start,
3024 .next = mr_mfc_seq_next,
3025 .stop = mr_mfc_seq_stop,
3026 .show = ipmr_mfc_seq_show,
3027 };
3028 #endif
3029
3030 #ifdef CONFIG_IP_PIMSM_V2
3031 static const struct net_protocol pim_protocol = {
3032 .handler = pim_rcv,
3033 };
3034 #endif
3035
ipmr_seq_read(struct net * net)3036 static unsigned int ipmr_seq_read(struct net *net)
3037 {
3038 ASSERT_RTNL();
3039
3040 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3041 }
3042
ipmr_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)3043 static int ipmr_dump(struct net *net, struct notifier_block *nb,
3044 struct netlink_ext_ack *extack)
3045 {
3046 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3047 ipmr_mr_table_iter, extack);
3048 }
3049
3050 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3051 .family = RTNL_FAMILY_IPMR,
3052 .fib_seq_read = ipmr_seq_read,
3053 .fib_dump = ipmr_dump,
3054 .owner = THIS_MODULE,
3055 };
3056
ipmr_notifier_init(struct net * net)3057 static int __net_init ipmr_notifier_init(struct net *net)
3058 {
3059 struct fib_notifier_ops *ops;
3060
3061 net->ipv4.ipmr_seq = 0;
3062
3063 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3064 if (IS_ERR(ops))
3065 return PTR_ERR(ops);
3066 net->ipv4.ipmr_notifier_ops = ops;
3067
3068 return 0;
3069 }
3070
ipmr_notifier_exit(struct net * net)3071 static void __net_exit ipmr_notifier_exit(struct net *net)
3072 {
3073 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3074 net->ipv4.ipmr_notifier_ops = NULL;
3075 }
3076
3077 /* Setup for IP multicast routing */
ipmr_net_init(struct net * net)3078 static int __net_init ipmr_net_init(struct net *net)
3079 {
3080 int err;
3081
3082 err = ipmr_notifier_init(net);
3083 if (err)
3084 goto ipmr_notifier_fail;
3085
3086 err = ipmr_rules_init(net);
3087 if (err < 0)
3088 goto ipmr_rules_fail;
3089
3090 #ifdef CONFIG_PROC_FS
3091 err = -ENOMEM;
3092 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3093 sizeof(struct mr_vif_iter)))
3094 goto proc_vif_fail;
3095 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3096 sizeof(struct mr_mfc_iter)))
3097 goto proc_cache_fail;
3098 #endif
3099 return 0;
3100
3101 #ifdef CONFIG_PROC_FS
3102 proc_cache_fail:
3103 remove_proc_entry("ip_mr_vif", net->proc_net);
3104 proc_vif_fail:
3105 rtnl_lock();
3106 ipmr_rules_exit(net);
3107 rtnl_unlock();
3108 #endif
3109 ipmr_rules_fail:
3110 ipmr_notifier_exit(net);
3111 ipmr_notifier_fail:
3112 return err;
3113 }
3114
ipmr_net_exit(struct net * net)3115 static void __net_exit ipmr_net_exit(struct net *net)
3116 {
3117 #ifdef CONFIG_PROC_FS
3118 remove_proc_entry("ip_mr_cache", net->proc_net);
3119 remove_proc_entry("ip_mr_vif", net->proc_net);
3120 #endif
3121 ipmr_notifier_exit(net);
3122 }
3123
ipmr_net_exit_batch(struct list_head * net_list)3124 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3125 {
3126 struct net *net;
3127
3128 rtnl_lock();
3129 list_for_each_entry(net, net_list, exit_list)
3130 ipmr_rules_exit(net);
3131 rtnl_unlock();
3132 }
3133
3134 static struct pernet_operations ipmr_net_ops = {
3135 .init = ipmr_net_init,
3136 .exit = ipmr_net_exit,
3137 .exit_batch = ipmr_net_exit_batch,
3138 };
3139
ip_mr_init(void)3140 int __init ip_mr_init(void)
3141 {
3142 int err;
3143
3144 mrt_cachep = kmem_cache_create("ip_mrt_cache",
3145 sizeof(struct mfc_cache),
3146 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3147 NULL);
3148
3149 err = register_pernet_subsys(&ipmr_net_ops);
3150 if (err)
3151 goto reg_pernet_fail;
3152
3153 err = register_netdevice_notifier(&ip_mr_notifier);
3154 if (err)
3155 goto reg_notif_fail;
3156 #ifdef CONFIG_IP_PIMSM_V2
3157 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3158 pr_err("%s: can't add PIM protocol\n", __func__);
3159 err = -EAGAIN;
3160 goto add_proto_fail;
3161 }
3162 #endif
3163 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3164 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3165 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3166 ipmr_rtm_route, NULL, 0);
3167 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3168 ipmr_rtm_route, NULL, 0);
3169
3170 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3171 NULL, ipmr_rtm_dumplink, 0);
3172 return 0;
3173
3174 #ifdef CONFIG_IP_PIMSM_V2
3175 add_proto_fail:
3176 unregister_netdevice_notifier(&ip_mr_notifier);
3177 #endif
3178 reg_notif_fail:
3179 unregister_pernet_subsys(&ipmr_net_ops);
3180 reg_pernet_fail:
3181 kmem_cache_destroy(mrt_cachep);
3182 return err;
3183 }
3184