1 /* 2 * Linux NET3: IP/IP protocol decoder. 3 * 4 * Authors: 5 * Sam Lantinga (slouken@cs.ucdavis.edu) 02/01/95 6 * 7 * Fixes: 8 * Alan Cox : Merged and made usable non modular (its so tiny its silly as 9 * a module taking up 2 pages). 10 * Alan Cox : Fixed bug with 1.3.18 and IPIP not working (now needs to set skb->h.iph) 11 * to keep ip_forward happy. 12 * Alan Cox : More fixes for 1.3.21, and firewall fix. Maybe this will work soon 8). 13 * Kai Schulte : Fixed #defines for IP_FIREWALL->FIREWALL 14 * David Woodhouse : Perform some basic ICMP handling. 15 * IPIP Routing without decapsulation. 16 * Carlos Picoto : GRE over IP support 17 * Alexey Kuznetsov: Reworked. Really, now it is truncated version of ipv4/ip_gre.c. 18 * I do not want to merge them together. 19 * 20 * This program is free software; you can redistribute it and/or 21 * modify it under the terms of the GNU General Public License 22 * as published by the Free Software Foundation; either version 23 * 2 of the License, or (at your option) any later version. 24 * 25 */ 26 27 /* tunnel.c: an IP tunnel driver 28 29 The purpose of this driver is to provide an IP tunnel through 30 which you can tunnel network traffic transparently across subnets. 31 32 This was written by looking at Nick Holloway's dummy driver 33 Thanks for the great code! 34 35 -Sam Lantinga (slouken@cs.ucdavis.edu) 02/01/95 36 37 Minor tweaks: 38 Cleaned up the code a little and added some pre-1.3.0 tweaks. 39 dev->hard_header/hard_header_len changed to use no headers. 40 Comments/bracketing tweaked. 41 Made the tunnels use dev->name not tunnel: when error reporting. 42 Added tx_dropped stat 43 44 -Alan Cox (alan@lxorguk.ukuu.org.uk) 21 March 95 45 46 Reworked: 47 Changed to tunnel to destination gateway in addition to the 48 tunnel's pointopoint address 49 Almost completely rewritten 50 Note: There is currently no firewall or ICMP handling done. 51 52 -Sam Lantinga (slouken@cs.ucdavis.edu) 02/13/96 53 54 */ 55 56 /* Things I wish I had known when writing the tunnel driver: 57 58 When the tunnel_xmit() function is called, the skb contains the 59 packet to be sent (plus a great deal of extra info), and dev 60 contains the tunnel device that _we_ are. 61 62 When we are passed a packet, we are expected to fill in the 63 source address with our source IP address. 64 65 What is the proper way to allocate, copy and free a buffer? 66 After you allocate it, it is a "0 length" chunk of memory 67 starting at zero. If you want to add headers to the buffer 68 later, you'll have to call "skb_reserve(skb, amount)" with 69 the amount of memory you want reserved. Then, you call 70 "skb_put(skb, amount)" with the amount of space you want in 71 the buffer. skb_put() returns a pointer to the top (#0) of 72 that buffer. skb->len is set to the amount of space you have 73 "allocated" with skb_put(). You can then write up to skb->len 74 bytes to that buffer. If you need more, you can call skb_put() 75 again with the additional amount of space you need. You can 76 find out how much more space you can allocate by calling 77 "skb_tailroom(skb)". 78 Now, to add header space, call "skb_push(skb, header_len)". 79 This creates space at the beginning of the buffer and returns 80 a pointer to this new space. If later you need to strip a 81 header from a buffer, call "skb_pull(skb, header_len)". 82 skb_headroom() will return how much space is left at the top 83 of the buffer (before the main data). Remember, this headroom 84 space must be reserved before the skb_put() function is called. 85 */ 86 87 /* 88 This version of net/ipv4/ipip.c is cloned of net/ipv4/ip_gre.c 89 90 For comments look at net/ipv4/ip_gre.c --ANK 91 */ 92 93 94 #include <linux/capability.h> 95 #include <linux/module.h> 96 #include <linux/types.h> 97 #include <linux/kernel.h> 98 #include <linux/slab.h> 99 #include <linux/uaccess.h> 100 #include <linux/skbuff.h> 101 #include <linux/netdevice.h> 102 #include <linux/in.h> 103 #include <linux/tcp.h> 104 #include <linux/udp.h> 105 #include <linux/if_arp.h> 106 #include <linux/init.h> 107 #include <linux/netfilter_ipv4.h> 108 #include <linux/if_ether.h> 109 110 #include <net/sock.h> 111 #include <net/ip.h> 112 #include <net/icmp.h> 113 #include <net/ip_tunnels.h> 114 #include <net/inet_ecn.h> 115 #include <net/xfrm.h> 116 #include <net/net_namespace.h> 117 #include <net/netns/generic.h> 118 #include <net/dst_metadata.h> 119 120 static bool log_ecn_error = true; 121 module_param(log_ecn_error, bool, 0644); 122 MODULE_PARM_DESC(log_ecn_error, "Log packets received with corrupted ECN"); 123 124 static unsigned int ipip_net_id __read_mostly; 125 126 static int ipip_tunnel_init(struct net_device *dev); 127 static struct rtnl_link_ops ipip_link_ops __read_mostly; 128 129 static int ipip_err(struct sk_buff *skb, u32 info) 130 { 131 132 /* All the routers (except for Linux) return only 133 8 bytes of packet payload. It means, that precise relaying of 134 ICMP in the real Internet is absolutely infeasible. 135 */ 136 struct net *net = dev_net(skb->dev); 137 struct ip_tunnel_net *itn = net_generic(net, ipip_net_id); 138 const struct iphdr *iph = (const struct iphdr *)skb->data; 139 struct ip_tunnel *t; 140 int err; 141 const int type = icmp_hdr(skb)->type; 142 const int code = icmp_hdr(skb)->code; 143 144 err = -ENOENT; 145 t = ip_tunnel_lookup(itn, skb->dev->ifindex, TUNNEL_NO_KEY, 146 iph->daddr, iph->saddr, 0); 147 if (!t) 148 goto out; 149 150 if (type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED) { 151 ipv4_update_pmtu(skb, dev_net(skb->dev), info, 152 t->parms.link, 0, iph->protocol, 0); 153 err = 0; 154 goto out; 155 } 156 157 if (type == ICMP_REDIRECT) { 158 ipv4_redirect(skb, dev_net(skb->dev), t->parms.link, 0, 159 iph->protocol, 0); 160 err = 0; 161 goto out; 162 } 163 164 if (t->parms.iph.daddr == 0) 165 goto out; 166 167 err = 0; 168 if (t->parms.iph.ttl == 0 && type == ICMP_TIME_EXCEEDED) 169 goto out; 170 171 if (time_before(jiffies, t->err_time + IPTUNNEL_ERR_TIMEO)) 172 t->err_count++; 173 else 174 t->err_count = 1; 175 t->err_time = jiffies; 176 177 out: 178 return err; 179 } 180 181 static const struct tnl_ptk_info ipip_tpi = { 182 /* no tunnel info required for ipip. */ 183 .proto = htons(ETH_P_IP), 184 }; 185 186 #if IS_ENABLED(CONFIG_MPLS) 187 static const struct tnl_ptk_info mplsip_tpi = { 188 /* no tunnel info required for mplsip. */ 189 .proto = htons(ETH_P_MPLS_UC), 190 }; 191 #endif 192 193 static int ipip_tunnel_rcv(struct sk_buff *skb, u8 ipproto) 194 { 195 struct net *net = dev_net(skb->dev); 196 struct ip_tunnel_net *itn = net_generic(net, ipip_net_id); 197 struct metadata_dst *tun_dst = NULL; 198 struct ip_tunnel *tunnel; 199 const struct iphdr *iph; 200 201 iph = ip_hdr(skb); 202 tunnel = ip_tunnel_lookup(itn, skb->dev->ifindex, TUNNEL_NO_KEY, 203 iph->saddr, iph->daddr, 0); 204 if (tunnel) { 205 const struct tnl_ptk_info *tpi; 206 207 if (tunnel->parms.iph.protocol != ipproto && 208 tunnel->parms.iph.protocol != 0) 209 goto drop; 210 211 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 212 goto drop; 213 #if IS_ENABLED(CONFIG_MPLS) 214 if (ipproto == IPPROTO_MPLS) 215 tpi = &mplsip_tpi; 216 else 217 #endif 218 tpi = &ipip_tpi; 219 if (iptunnel_pull_header(skb, 0, tpi->proto, false)) 220 goto drop; 221 if (tunnel->collect_md) { 222 tun_dst = ip_tun_rx_dst(skb, 0, 0, 0); 223 if (!tun_dst) 224 return 0; 225 } 226 return ip_tunnel_rcv(tunnel, skb, tpi, tun_dst, log_ecn_error); 227 } 228 229 return -1; 230 231 drop: 232 kfree_skb(skb); 233 return 0; 234 } 235 236 static int ipip_rcv(struct sk_buff *skb) 237 { 238 return ipip_tunnel_rcv(skb, IPPROTO_IPIP); 239 } 240 241 #if IS_ENABLED(CONFIG_MPLS) 242 static int mplsip_rcv(struct sk_buff *skb) 243 { 244 return ipip_tunnel_rcv(skb, IPPROTO_MPLS); 245 } 246 #endif 247 248 /* 249 * This function assumes it is being called from dev_queue_xmit() 250 * and that skb is filled properly by that function. 251 */ 252 static netdev_tx_t ipip_tunnel_xmit(struct sk_buff *skb, 253 struct net_device *dev) 254 { 255 struct ip_tunnel *tunnel = netdev_priv(dev); 256 const struct iphdr *tiph = &tunnel->parms.iph; 257 u8 ipproto; 258 259 switch (skb->protocol) { 260 case htons(ETH_P_IP): 261 ipproto = IPPROTO_IPIP; 262 break; 263 #if IS_ENABLED(CONFIG_MPLS) 264 case htons(ETH_P_MPLS_UC): 265 ipproto = IPPROTO_MPLS; 266 break; 267 #endif 268 default: 269 goto tx_error; 270 } 271 272 if (tiph->protocol != ipproto && tiph->protocol != 0) 273 goto tx_error; 274 275 if (iptunnel_handle_offloads(skb, SKB_GSO_IPXIP4)) 276 goto tx_error; 277 278 skb_set_inner_ipproto(skb, ipproto); 279 280 if (tunnel->collect_md) 281 ip_md_tunnel_xmit(skb, dev, ipproto); 282 else 283 ip_tunnel_xmit(skb, dev, tiph, ipproto); 284 return NETDEV_TX_OK; 285 286 tx_error: 287 kfree_skb(skb); 288 289 dev->stats.tx_errors++; 290 return NETDEV_TX_OK; 291 } 292 293 static bool ipip_tunnel_ioctl_verify_protocol(u8 ipproto) 294 { 295 switch (ipproto) { 296 case 0: 297 case IPPROTO_IPIP: 298 #if IS_ENABLED(CONFIG_MPLS) 299 case IPPROTO_MPLS: 300 #endif 301 return true; 302 } 303 304 return false; 305 } 306 307 static int 308 ipip_tunnel_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 309 { 310 int err = 0; 311 struct ip_tunnel_parm p; 312 313 if (copy_from_user(&p, ifr->ifr_ifru.ifru_data, sizeof(p))) 314 return -EFAULT; 315 316 if (cmd == SIOCADDTUNNEL || cmd == SIOCCHGTUNNEL) { 317 if (p.iph.version != 4 || 318 !ipip_tunnel_ioctl_verify_protocol(p.iph.protocol) || 319 p.iph.ihl != 5 || (p.iph.frag_off&htons(~IP_DF))) 320 return -EINVAL; 321 } 322 323 p.i_key = p.o_key = 0; 324 p.i_flags = p.o_flags = 0; 325 err = ip_tunnel_ioctl(dev, &p, cmd); 326 if (err) 327 return err; 328 329 if (copy_to_user(ifr->ifr_ifru.ifru_data, &p, sizeof(p))) 330 return -EFAULT; 331 332 return 0; 333 } 334 335 static const struct net_device_ops ipip_netdev_ops = { 336 .ndo_init = ipip_tunnel_init, 337 .ndo_uninit = ip_tunnel_uninit, 338 .ndo_start_xmit = ipip_tunnel_xmit, 339 .ndo_do_ioctl = ipip_tunnel_ioctl, 340 .ndo_change_mtu = ip_tunnel_change_mtu, 341 .ndo_get_stats64 = ip_tunnel_get_stats64, 342 .ndo_get_iflink = ip_tunnel_get_iflink, 343 }; 344 345 #define IPIP_FEATURES (NETIF_F_SG | \ 346 NETIF_F_FRAGLIST | \ 347 NETIF_F_HIGHDMA | \ 348 NETIF_F_GSO_SOFTWARE | \ 349 NETIF_F_HW_CSUM) 350 351 static void ipip_tunnel_setup(struct net_device *dev) 352 { 353 dev->netdev_ops = &ipip_netdev_ops; 354 355 dev->type = ARPHRD_TUNNEL; 356 dev->flags = IFF_NOARP; 357 dev->addr_len = 4; 358 dev->features |= NETIF_F_LLTX; 359 netif_keep_dst(dev); 360 361 dev->features |= IPIP_FEATURES; 362 dev->hw_features |= IPIP_FEATURES; 363 ip_tunnel_setup(dev, ipip_net_id); 364 } 365 366 static int ipip_tunnel_init(struct net_device *dev) 367 { 368 struct ip_tunnel *tunnel = netdev_priv(dev); 369 370 memcpy(dev->dev_addr, &tunnel->parms.iph.saddr, 4); 371 memcpy(dev->broadcast, &tunnel->parms.iph.daddr, 4); 372 373 tunnel->tun_hlen = 0; 374 tunnel->hlen = tunnel->tun_hlen + tunnel->encap_hlen; 375 return ip_tunnel_init(dev); 376 } 377 378 static int ipip_tunnel_validate(struct nlattr *tb[], struct nlattr *data[]) 379 { 380 u8 proto; 381 382 if (!data || !data[IFLA_IPTUN_PROTO]) 383 return 0; 384 385 proto = nla_get_u8(data[IFLA_IPTUN_PROTO]); 386 if (proto != IPPROTO_IPIP && proto != IPPROTO_MPLS && proto != 0) 387 return -EINVAL; 388 389 return 0; 390 } 391 392 static void ipip_netlink_parms(struct nlattr *data[], 393 struct ip_tunnel_parm *parms, bool *collect_md, 394 __u32 *fwmark) 395 { 396 memset(parms, 0, sizeof(*parms)); 397 398 parms->iph.version = 4; 399 parms->iph.protocol = IPPROTO_IPIP; 400 parms->iph.ihl = 5; 401 *collect_md = false; 402 403 if (!data) 404 return; 405 406 if (data[IFLA_IPTUN_LINK]) 407 parms->link = nla_get_u32(data[IFLA_IPTUN_LINK]); 408 409 if (data[IFLA_IPTUN_LOCAL]) 410 parms->iph.saddr = nla_get_in_addr(data[IFLA_IPTUN_LOCAL]); 411 412 if (data[IFLA_IPTUN_REMOTE]) 413 parms->iph.daddr = nla_get_in_addr(data[IFLA_IPTUN_REMOTE]); 414 415 if (data[IFLA_IPTUN_TTL]) { 416 parms->iph.ttl = nla_get_u8(data[IFLA_IPTUN_TTL]); 417 if (parms->iph.ttl) 418 parms->iph.frag_off = htons(IP_DF); 419 } 420 421 if (data[IFLA_IPTUN_TOS]) 422 parms->iph.tos = nla_get_u8(data[IFLA_IPTUN_TOS]); 423 424 if (data[IFLA_IPTUN_PROTO]) 425 parms->iph.protocol = nla_get_u8(data[IFLA_IPTUN_PROTO]); 426 427 if (!data[IFLA_IPTUN_PMTUDISC] || nla_get_u8(data[IFLA_IPTUN_PMTUDISC])) 428 parms->iph.frag_off = htons(IP_DF); 429 430 if (data[IFLA_IPTUN_COLLECT_METADATA]) 431 *collect_md = true; 432 433 if (data[IFLA_IPTUN_FWMARK]) 434 *fwmark = nla_get_u32(data[IFLA_IPTUN_FWMARK]); 435 } 436 437 /* This function returns true when ENCAP attributes are present in the nl msg */ 438 static bool ipip_netlink_encap_parms(struct nlattr *data[], 439 struct ip_tunnel_encap *ipencap) 440 { 441 bool ret = false; 442 443 memset(ipencap, 0, sizeof(*ipencap)); 444 445 if (!data) 446 return ret; 447 448 if (data[IFLA_IPTUN_ENCAP_TYPE]) { 449 ret = true; 450 ipencap->type = nla_get_u16(data[IFLA_IPTUN_ENCAP_TYPE]); 451 } 452 453 if (data[IFLA_IPTUN_ENCAP_FLAGS]) { 454 ret = true; 455 ipencap->flags = nla_get_u16(data[IFLA_IPTUN_ENCAP_FLAGS]); 456 } 457 458 if (data[IFLA_IPTUN_ENCAP_SPORT]) { 459 ret = true; 460 ipencap->sport = nla_get_be16(data[IFLA_IPTUN_ENCAP_SPORT]); 461 } 462 463 if (data[IFLA_IPTUN_ENCAP_DPORT]) { 464 ret = true; 465 ipencap->dport = nla_get_be16(data[IFLA_IPTUN_ENCAP_DPORT]); 466 } 467 468 return ret; 469 } 470 471 static int ipip_newlink(struct net *src_net, struct net_device *dev, 472 struct nlattr *tb[], struct nlattr *data[]) 473 { 474 struct ip_tunnel *t = netdev_priv(dev); 475 struct ip_tunnel_parm p; 476 struct ip_tunnel_encap ipencap; 477 __u32 fwmark = 0; 478 479 if (ipip_netlink_encap_parms(data, &ipencap)) { 480 int err = ip_tunnel_encap_setup(t, &ipencap); 481 482 if (err < 0) 483 return err; 484 } 485 486 ipip_netlink_parms(data, &p, &t->collect_md, &fwmark); 487 return ip_tunnel_newlink(dev, tb, &p, fwmark); 488 } 489 490 static int ipip_changelink(struct net_device *dev, struct nlattr *tb[], 491 struct nlattr *data[]) 492 { 493 struct ip_tunnel *t = netdev_priv(dev); 494 struct ip_tunnel_parm p; 495 struct ip_tunnel_encap ipencap; 496 bool collect_md; 497 __u32 fwmark = t->fwmark; 498 499 if (ipip_netlink_encap_parms(data, &ipencap)) { 500 int err = ip_tunnel_encap_setup(t, &ipencap); 501 502 if (err < 0) 503 return err; 504 } 505 506 ipip_netlink_parms(data, &p, &collect_md, &fwmark); 507 if (collect_md) 508 return -EINVAL; 509 510 if (((dev->flags & IFF_POINTOPOINT) && !p.iph.daddr) || 511 (!(dev->flags & IFF_POINTOPOINT) && p.iph.daddr)) 512 return -EINVAL; 513 514 return ip_tunnel_changelink(dev, tb, &p, fwmark); 515 } 516 517 static size_t ipip_get_size(const struct net_device *dev) 518 { 519 return 520 /* IFLA_IPTUN_LINK */ 521 nla_total_size(4) + 522 /* IFLA_IPTUN_LOCAL */ 523 nla_total_size(4) + 524 /* IFLA_IPTUN_REMOTE */ 525 nla_total_size(4) + 526 /* IFLA_IPTUN_TTL */ 527 nla_total_size(1) + 528 /* IFLA_IPTUN_TOS */ 529 nla_total_size(1) + 530 /* IFLA_IPTUN_PROTO */ 531 nla_total_size(1) + 532 /* IFLA_IPTUN_PMTUDISC */ 533 nla_total_size(1) + 534 /* IFLA_IPTUN_ENCAP_TYPE */ 535 nla_total_size(2) + 536 /* IFLA_IPTUN_ENCAP_FLAGS */ 537 nla_total_size(2) + 538 /* IFLA_IPTUN_ENCAP_SPORT */ 539 nla_total_size(2) + 540 /* IFLA_IPTUN_ENCAP_DPORT */ 541 nla_total_size(2) + 542 /* IFLA_IPTUN_COLLECT_METADATA */ 543 nla_total_size(0) + 544 /* IFLA_IPTUN_FWMARK */ 545 nla_total_size(4) + 546 0; 547 } 548 549 static int ipip_fill_info(struct sk_buff *skb, const struct net_device *dev) 550 { 551 struct ip_tunnel *tunnel = netdev_priv(dev); 552 struct ip_tunnel_parm *parm = &tunnel->parms; 553 554 if (nla_put_u32(skb, IFLA_IPTUN_LINK, parm->link) || 555 nla_put_in_addr(skb, IFLA_IPTUN_LOCAL, parm->iph.saddr) || 556 nla_put_in_addr(skb, IFLA_IPTUN_REMOTE, parm->iph.daddr) || 557 nla_put_u8(skb, IFLA_IPTUN_TTL, parm->iph.ttl) || 558 nla_put_u8(skb, IFLA_IPTUN_TOS, parm->iph.tos) || 559 nla_put_u8(skb, IFLA_IPTUN_PROTO, parm->iph.protocol) || 560 nla_put_u8(skb, IFLA_IPTUN_PMTUDISC, 561 !!(parm->iph.frag_off & htons(IP_DF))) || 562 nla_put_u32(skb, IFLA_IPTUN_FWMARK, tunnel->fwmark)) 563 goto nla_put_failure; 564 565 if (nla_put_u16(skb, IFLA_IPTUN_ENCAP_TYPE, 566 tunnel->encap.type) || 567 nla_put_be16(skb, IFLA_IPTUN_ENCAP_SPORT, 568 tunnel->encap.sport) || 569 nla_put_be16(skb, IFLA_IPTUN_ENCAP_DPORT, 570 tunnel->encap.dport) || 571 nla_put_u16(skb, IFLA_IPTUN_ENCAP_FLAGS, 572 tunnel->encap.flags)) 573 goto nla_put_failure; 574 575 if (tunnel->collect_md) 576 if (nla_put_flag(skb, IFLA_IPTUN_COLLECT_METADATA)) 577 goto nla_put_failure; 578 return 0; 579 580 nla_put_failure: 581 return -EMSGSIZE; 582 } 583 584 static const struct nla_policy ipip_policy[IFLA_IPTUN_MAX + 1] = { 585 [IFLA_IPTUN_LINK] = { .type = NLA_U32 }, 586 [IFLA_IPTUN_LOCAL] = { .type = NLA_U32 }, 587 [IFLA_IPTUN_REMOTE] = { .type = NLA_U32 }, 588 [IFLA_IPTUN_TTL] = { .type = NLA_U8 }, 589 [IFLA_IPTUN_TOS] = { .type = NLA_U8 }, 590 [IFLA_IPTUN_PROTO] = { .type = NLA_U8 }, 591 [IFLA_IPTUN_PMTUDISC] = { .type = NLA_U8 }, 592 [IFLA_IPTUN_ENCAP_TYPE] = { .type = NLA_U16 }, 593 [IFLA_IPTUN_ENCAP_FLAGS] = { .type = NLA_U16 }, 594 [IFLA_IPTUN_ENCAP_SPORT] = { .type = NLA_U16 }, 595 [IFLA_IPTUN_ENCAP_DPORT] = { .type = NLA_U16 }, 596 [IFLA_IPTUN_COLLECT_METADATA] = { .type = NLA_FLAG }, 597 [IFLA_IPTUN_FWMARK] = { .type = NLA_U32 }, 598 }; 599 600 static struct rtnl_link_ops ipip_link_ops __read_mostly = { 601 .kind = "ipip", 602 .maxtype = IFLA_IPTUN_MAX, 603 .policy = ipip_policy, 604 .priv_size = sizeof(struct ip_tunnel), 605 .setup = ipip_tunnel_setup, 606 .validate = ipip_tunnel_validate, 607 .newlink = ipip_newlink, 608 .changelink = ipip_changelink, 609 .dellink = ip_tunnel_dellink, 610 .get_size = ipip_get_size, 611 .fill_info = ipip_fill_info, 612 .get_link_net = ip_tunnel_get_link_net, 613 }; 614 615 static struct xfrm_tunnel ipip_handler __read_mostly = { 616 .handler = ipip_rcv, 617 .err_handler = ipip_err, 618 .priority = 1, 619 }; 620 621 #if IS_ENABLED(CONFIG_MPLS) 622 static struct xfrm_tunnel mplsip_handler __read_mostly = { 623 .handler = mplsip_rcv, 624 .err_handler = ipip_err, 625 .priority = 1, 626 }; 627 #endif 628 629 static int __net_init ipip_init_net(struct net *net) 630 { 631 return ip_tunnel_init_net(net, ipip_net_id, &ipip_link_ops, "tunl0"); 632 } 633 634 static void __net_exit ipip_exit_net(struct net *net) 635 { 636 struct ip_tunnel_net *itn = net_generic(net, ipip_net_id); 637 ip_tunnel_delete_net(itn, &ipip_link_ops); 638 } 639 640 static struct pernet_operations ipip_net_ops = { 641 .init = ipip_init_net, 642 .exit = ipip_exit_net, 643 .id = &ipip_net_id, 644 .size = sizeof(struct ip_tunnel_net), 645 }; 646 647 static int __init ipip_init(void) 648 { 649 int err; 650 651 pr_info("ipip: IPv4 and MPLS over IPv4 tunneling driver\n"); 652 653 err = register_pernet_device(&ipip_net_ops); 654 if (err < 0) 655 return err; 656 err = xfrm4_tunnel_register(&ipip_handler, AF_INET); 657 if (err < 0) { 658 pr_info("%s: can't register tunnel\n", __func__); 659 goto xfrm_tunnel_ipip_failed; 660 } 661 #if IS_ENABLED(CONFIG_MPLS) 662 err = xfrm4_tunnel_register(&mplsip_handler, AF_MPLS); 663 if (err < 0) { 664 pr_info("%s: can't register tunnel\n", __func__); 665 goto xfrm_tunnel_mplsip_failed; 666 } 667 #endif 668 err = rtnl_link_register(&ipip_link_ops); 669 if (err < 0) 670 goto rtnl_link_failed; 671 672 out: 673 return err; 674 675 rtnl_link_failed: 676 #if IS_ENABLED(CONFIG_MPLS) 677 xfrm4_tunnel_deregister(&mplsip_handler, AF_INET); 678 xfrm_tunnel_mplsip_failed: 679 680 #endif 681 xfrm4_tunnel_deregister(&ipip_handler, AF_INET); 682 xfrm_tunnel_ipip_failed: 683 unregister_pernet_device(&ipip_net_ops); 684 goto out; 685 } 686 687 static void __exit ipip_fini(void) 688 { 689 rtnl_link_unregister(&ipip_link_ops); 690 if (xfrm4_tunnel_deregister(&ipip_handler, AF_INET)) 691 pr_info("%s: can't deregister tunnel\n", __func__); 692 #if IS_ENABLED(CONFIG_MPLS) 693 if (xfrm4_tunnel_deregister(&mplsip_handler, AF_MPLS)) 694 pr_info("%s: can't deregister tunnel\n", __func__); 695 #endif 696 unregister_pernet_device(&ipip_net_ops); 697 } 698 699 module_init(ipip_init); 700 module_exit(ipip_fini); 701 MODULE_LICENSE("GPL"); 702 MODULE_ALIAS_RTNL_LINK("ipip"); 703 MODULE_ALIAS_NETDEV("tunl0"); 704