xref: /openbmc/linux/net/ipv4/ip_output.c (revision f3a8b664)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82 
83 static int
84 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
85 	    unsigned int mtu,
86 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
87 
88 /* Generate a checksum for an outgoing IP datagram. */
89 void ip_send_check(struct iphdr *iph)
90 {
91 	iph->check = 0;
92 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
93 }
94 EXPORT_SYMBOL(ip_send_check);
95 
96 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
97 {
98 	struct iphdr *iph = ip_hdr(skb);
99 
100 	iph->tot_len = htons(skb->len);
101 	ip_send_check(iph);
102 
103 	/* if egress device is enslaved to an L3 master device pass the
104 	 * skb to its handler for processing
105 	 */
106 	skb = l3mdev_ip_out(sk, skb);
107 	if (unlikely(!skb))
108 		return 0;
109 
110 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
111 		       net, sk, skb, NULL, skb_dst(skb)->dev,
112 		       dst_output);
113 }
114 
115 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
116 {
117 	int err;
118 
119 	err = __ip_local_out(net, sk, skb);
120 	if (likely(err == 1))
121 		err = dst_output(net, sk, skb);
122 
123 	return err;
124 }
125 EXPORT_SYMBOL_GPL(ip_local_out);
126 
127 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
128 {
129 	int ttl = inet->uc_ttl;
130 
131 	if (ttl < 0)
132 		ttl = ip4_dst_hoplimit(dst);
133 	return ttl;
134 }
135 
136 /*
137  *		Add an ip header to a skbuff and send it out.
138  *
139  */
140 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
141 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
142 {
143 	struct inet_sock *inet = inet_sk(sk);
144 	struct rtable *rt = skb_rtable(skb);
145 	struct net *net = sock_net(sk);
146 	struct iphdr *iph;
147 
148 	/* Build the IP header. */
149 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
150 	skb_reset_network_header(skb);
151 	iph = ip_hdr(skb);
152 	iph->version  = 4;
153 	iph->ihl      = 5;
154 	iph->tos      = inet->tos;
155 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
156 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
157 	iph->saddr    = saddr;
158 	iph->protocol = sk->sk_protocol;
159 	if (ip_dont_fragment(sk, &rt->dst)) {
160 		iph->frag_off = htons(IP_DF);
161 		iph->id = 0;
162 	} else {
163 		iph->frag_off = 0;
164 		__ip_select_ident(net, iph, 1);
165 	}
166 
167 	if (opt && opt->opt.optlen) {
168 		iph->ihl += opt->opt.optlen>>2;
169 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
170 	}
171 
172 	skb->priority = sk->sk_priority;
173 	skb->mark = sk->sk_mark;
174 
175 	/* Send it out. */
176 	return ip_local_out(net, skb->sk, skb);
177 }
178 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
179 
180 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
181 {
182 	struct dst_entry *dst = skb_dst(skb);
183 	struct rtable *rt = (struct rtable *)dst;
184 	struct net_device *dev = dst->dev;
185 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
186 	struct neighbour *neigh;
187 	u32 nexthop;
188 
189 	if (rt->rt_type == RTN_MULTICAST) {
190 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
191 	} else if (rt->rt_type == RTN_BROADCAST)
192 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
193 
194 	/* Be paranoid, rather than too clever. */
195 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
196 		struct sk_buff *skb2;
197 
198 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
199 		if (!skb2) {
200 			kfree_skb(skb);
201 			return -ENOMEM;
202 		}
203 		if (skb->sk)
204 			skb_set_owner_w(skb2, skb->sk);
205 		consume_skb(skb);
206 		skb = skb2;
207 	}
208 
209 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
210 		int res = lwtunnel_xmit(skb);
211 
212 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
213 			return res;
214 	}
215 
216 	rcu_read_lock_bh();
217 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
218 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
219 	if (unlikely(!neigh))
220 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
221 	if (!IS_ERR(neigh)) {
222 		int res = dst_neigh_output(dst, neigh, skb);
223 
224 		rcu_read_unlock_bh();
225 		return res;
226 	}
227 	rcu_read_unlock_bh();
228 
229 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
230 			    __func__);
231 	kfree_skb(skb);
232 	return -EINVAL;
233 }
234 
235 static int ip_finish_output_gso(struct net *net, struct sock *sk,
236 				struct sk_buff *skb, unsigned int mtu)
237 {
238 	netdev_features_t features;
239 	struct sk_buff *segs;
240 	int ret = 0;
241 
242 	/* common case: fragmentation of segments is not allowed,
243 	 * or seglen is <= mtu
244 	 */
245 	if (((IPCB(skb)->flags & IPSKB_FRAG_SEGS) == 0) ||
246 	      skb_gso_validate_mtu(skb, mtu))
247 		return ip_finish_output2(net, sk, skb);
248 
249 	/* Slowpath -  GSO segment length is exceeding the dst MTU.
250 	 *
251 	 * This can happen in two cases:
252 	 * 1) TCP GRO packet, DF bit not set
253 	 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
254 	 * from host network stack.
255 	 */
256 	features = netif_skb_features(skb);
257 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
258 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
259 	if (IS_ERR_OR_NULL(segs)) {
260 		kfree_skb(skb);
261 		return -ENOMEM;
262 	}
263 
264 	consume_skb(skb);
265 
266 	do {
267 		struct sk_buff *nskb = segs->next;
268 		int err;
269 
270 		segs->next = NULL;
271 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
272 
273 		if (err && ret == 0)
274 			ret = err;
275 		segs = nskb;
276 	} while (segs);
277 
278 	return ret;
279 }
280 
281 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
282 {
283 	unsigned int mtu;
284 
285 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
286 	/* Policy lookup after SNAT yielded a new policy */
287 	if (skb_dst(skb)->xfrm) {
288 		IPCB(skb)->flags |= IPSKB_REROUTED;
289 		return dst_output(net, sk, skb);
290 	}
291 #endif
292 	mtu = ip_skb_dst_mtu(sk, skb);
293 	if (skb_is_gso(skb))
294 		return ip_finish_output_gso(net, sk, skb, mtu);
295 
296 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
297 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
298 
299 	return ip_finish_output2(net, sk, skb);
300 }
301 
302 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
303 {
304 	struct rtable *rt = skb_rtable(skb);
305 	struct net_device *dev = rt->dst.dev;
306 
307 	/*
308 	 *	If the indicated interface is up and running, send the packet.
309 	 */
310 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
311 
312 	skb->dev = dev;
313 	skb->protocol = htons(ETH_P_IP);
314 
315 	/*
316 	 *	Multicasts are looped back for other local users
317 	 */
318 
319 	if (rt->rt_flags&RTCF_MULTICAST) {
320 		if (sk_mc_loop(sk)
321 #ifdef CONFIG_IP_MROUTE
322 		/* Small optimization: do not loopback not local frames,
323 		   which returned after forwarding; they will be  dropped
324 		   by ip_mr_input in any case.
325 		   Note, that local frames are looped back to be delivered
326 		   to local recipients.
327 
328 		   This check is duplicated in ip_mr_input at the moment.
329 		 */
330 		    &&
331 		    ((rt->rt_flags & RTCF_LOCAL) ||
332 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
333 #endif
334 		   ) {
335 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
336 			if (newskb)
337 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
338 					net, sk, newskb, NULL, newskb->dev,
339 					dev_loopback_xmit);
340 		}
341 
342 		/* Multicasts with ttl 0 must not go beyond the host */
343 
344 		if (ip_hdr(skb)->ttl == 0) {
345 			kfree_skb(skb);
346 			return 0;
347 		}
348 	}
349 
350 	if (rt->rt_flags&RTCF_BROADCAST) {
351 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
352 		if (newskb)
353 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
354 				net, sk, newskb, NULL, newskb->dev,
355 				dev_loopback_xmit);
356 	}
357 
358 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
359 			    net, sk, skb, NULL, skb->dev,
360 			    ip_finish_output,
361 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
362 }
363 
364 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
365 {
366 	struct net_device *dev = skb_dst(skb)->dev;
367 
368 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
369 
370 	skb->dev = dev;
371 	skb->protocol = htons(ETH_P_IP);
372 
373 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
374 			    net, sk, skb, NULL, dev,
375 			    ip_finish_output,
376 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
377 }
378 
379 /*
380  * copy saddr and daddr, possibly using 64bit load/stores
381  * Equivalent to :
382  *   iph->saddr = fl4->saddr;
383  *   iph->daddr = fl4->daddr;
384  */
385 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
386 {
387 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
388 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
389 	memcpy(&iph->saddr, &fl4->saddr,
390 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
391 }
392 
393 /* Note: skb->sk can be different from sk, in case of tunnels */
394 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
395 {
396 	struct inet_sock *inet = inet_sk(sk);
397 	struct net *net = sock_net(sk);
398 	struct ip_options_rcu *inet_opt;
399 	struct flowi4 *fl4;
400 	struct rtable *rt;
401 	struct iphdr *iph;
402 	int res;
403 
404 	/* Skip all of this if the packet is already routed,
405 	 * f.e. by something like SCTP.
406 	 */
407 	rcu_read_lock();
408 	inet_opt = rcu_dereference(inet->inet_opt);
409 	fl4 = &fl->u.ip4;
410 	rt = skb_rtable(skb);
411 	if (rt)
412 		goto packet_routed;
413 
414 	/* Make sure we can route this packet. */
415 	rt = (struct rtable *)__sk_dst_check(sk, 0);
416 	if (!rt) {
417 		__be32 daddr;
418 
419 		/* Use correct destination address if we have options. */
420 		daddr = inet->inet_daddr;
421 		if (inet_opt && inet_opt->opt.srr)
422 			daddr = inet_opt->opt.faddr;
423 
424 		/* If this fails, retransmit mechanism of transport layer will
425 		 * keep trying until route appears or the connection times
426 		 * itself out.
427 		 */
428 		rt = ip_route_output_ports(net, fl4, sk,
429 					   daddr, inet->inet_saddr,
430 					   inet->inet_dport,
431 					   inet->inet_sport,
432 					   sk->sk_protocol,
433 					   RT_CONN_FLAGS(sk),
434 					   sk->sk_bound_dev_if);
435 		if (IS_ERR(rt))
436 			goto no_route;
437 		sk_setup_caps(sk, &rt->dst);
438 	}
439 	skb_dst_set_noref(skb, &rt->dst);
440 
441 packet_routed:
442 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
443 		goto no_route;
444 
445 	/* OK, we know where to send it, allocate and build IP header. */
446 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
447 	skb_reset_network_header(skb);
448 	iph = ip_hdr(skb);
449 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
450 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
451 		iph->frag_off = htons(IP_DF);
452 	else
453 		iph->frag_off = 0;
454 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
455 	iph->protocol = sk->sk_protocol;
456 	ip_copy_addrs(iph, fl4);
457 
458 	/* Transport layer set skb->h.foo itself. */
459 
460 	if (inet_opt && inet_opt->opt.optlen) {
461 		iph->ihl += inet_opt->opt.optlen >> 2;
462 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
463 	}
464 
465 	ip_select_ident_segs(net, skb, sk,
466 			     skb_shinfo(skb)->gso_segs ?: 1);
467 
468 	/* TODO : should we use skb->sk here instead of sk ? */
469 	skb->priority = sk->sk_priority;
470 	skb->mark = sk->sk_mark;
471 
472 	res = ip_local_out(net, sk, skb);
473 	rcu_read_unlock();
474 	return res;
475 
476 no_route:
477 	rcu_read_unlock();
478 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
479 	kfree_skb(skb);
480 	return -EHOSTUNREACH;
481 }
482 EXPORT_SYMBOL(ip_queue_xmit);
483 
484 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
485 {
486 	to->pkt_type = from->pkt_type;
487 	to->priority = from->priority;
488 	to->protocol = from->protocol;
489 	skb_dst_drop(to);
490 	skb_dst_copy(to, from);
491 	to->dev = from->dev;
492 	to->mark = from->mark;
493 
494 	/* Copy the flags to each fragment. */
495 	IPCB(to)->flags = IPCB(from)->flags;
496 
497 #ifdef CONFIG_NET_SCHED
498 	to->tc_index = from->tc_index;
499 #endif
500 	nf_copy(to, from);
501 #if IS_ENABLED(CONFIG_IP_VS)
502 	to->ipvs_property = from->ipvs_property;
503 #endif
504 	skb_copy_secmark(to, from);
505 }
506 
507 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
508 		       unsigned int mtu,
509 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
510 {
511 	struct iphdr *iph = ip_hdr(skb);
512 
513 	if ((iph->frag_off & htons(IP_DF)) == 0)
514 		return ip_do_fragment(net, sk, skb, output);
515 
516 	if (unlikely(!skb->ignore_df ||
517 		     (IPCB(skb)->frag_max_size &&
518 		      IPCB(skb)->frag_max_size > mtu))) {
519 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
520 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
521 			  htonl(mtu));
522 		kfree_skb(skb);
523 		return -EMSGSIZE;
524 	}
525 
526 	return ip_do_fragment(net, sk, skb, output);
527 }
528 
529 /*
530  *	This IP datagram is too large to be sent in one piece.  Break it up into
531  *	smaller pieces (each of size equal to IP header plus
532  *	a block of the data of the original IP data part) that will yet fit in a
533  *	single device frame, and queue such a frame for sending.
534  */
535 
536 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
537 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
538 {
539 	struct iphdr *iph;
540 	int ptr;
541 	struct sk_buff *skb2;
542 	unsigned int mtu, hlen, left, len, ll_rs;
543 	int offset;
544 	__be16 not_last_frag;
545 	struct rtable *rt = skb_rtable(skb);
546 	int err = 0;
547 
548 	/* for offloaded checksums cleanup checksum before fragmentation */
549 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
550 	    (err = skb_checksum_help(skb)))
551 		goto fail;
552 
553 	/*
554 	 *	Point into the IP datagram header.
555 	 */
556 
557 	iph = ip_hdr(skb);
558 
559 	mtu = ip_skb_dst_mtu(sk, skb);
560 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
561 		mtu = IPCB(skb)->frag_max_size;
562 
563 	/*
564 	 *	Setup starting values.
565 	 */
566 
567 	hlen = iph->ihl * 4;
568 	mtu = mtu - hlen;	/* Size of data space */
569 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
570 
571 	/* When frag_list is given, use it. First, check its validity:
572 	 * some transformers could create wrong frag_list or break existing
573 	 * one, it is not prohibited. In this case fall back to copying.
574 	 *
575 	 * LATER: this step can be merged to real generation of fragments,
576 	 * we can switch to copy when see the first bad fragment.
577 	 */
578 	if (skb_has_frag_list(skb)) {
579 		struct sk_buff *frag, *frag2;
580 		int first_len = skb_pagelen(skb);
581 
582 		if (first_len - hlen > mtu ||
583 		    ((first_len - hlen) & 7) ||
584 		    ip_is_fragment(iph) ||
585 		    skb_cloned(skb))
586 			goto slow_path;
587 
588 		skb_walk_frags(skb, frag) {
589 			/* Correct geometry. */
590 			if (frag->len > mtu ||
591 			    ((frag->len & 7) && frag->next) ||
592 			    skb_headroom(frag) < hlen)
593 				goto slow_path_clean;
594 
595 			/* Partially cloned skb? */
596 			if (skb_shared(frag))
597 				goto slow_path_clean;
598 
599 			BUG_ON(frag->sk);
600 			if (skb->sk) {
601 				frag->sk = skb->sk;
602 				frag->destructor = sock_wfree;
603 			}
604 			skb->truesize -= frag->truesize;
605 		}
606 
607 		/* Everything is OK. Generate! */
608 
609 		err = 0;
610 		offset = 0;
611 		frag = skb_shinfo(skb)->frag_list;
612 		skb_frag_list_init(skb);
613 		skb->data_len = first_len - skb_headlen(skb);
614 		skb->len = first_len;
615 		iph->tot_len = htons(first_len);
616 		iph->frag_off = htons(IP_MF);
617 		ip_send_check(iph);
618 
619 		for (;;) {
620 			/* Prepare header of the next frame,
621 			 * before previous one went down. */
622 			if (frag) {
623 				frag->ip_summed = CHECKSUM_NONE;
624 				skb_reset_transport_header(frag);
625 				__skb_push(frag, hlen);
626 				skb_reset_network_header(frag);
627 				memcpy(skb_network_header(frag), iph, hlen);
628 				iph = ip_hdr(frag);
629 				iph->tot_len = htons(frag->len);
630 				ip_copy_metadata(frag, skb);
631 				if (offset == 0)
632 					ip_options_fragment(frag);
633 				offset += skb->len - hlen;
634 				iph->frag_off = htons(offset>>3);
635 				if (frag->next)
636 					iph->frag_off |= htons(IP_MF);
637 				/* Ready, complete checksum */
638 				ip_send_check(iph);
639 			}
640 
641 			err = output(net, sk, skb);
642 
643 			if (!err)
644 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
645 			if (err || !frag)
646 				break;
647 
648 			skb = frag;
649 			frag = skb->next;
650 			skb->next = NULL;
651 		}
652 
653 		if (err == 0) {
654 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
655 			return 0;
656 		}
657 
658 		while (frag) {
659 			skb = frag->next;
660 			kfree_skb(frag);
661 			frag = skb;
662 		}
663 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
664 		return err;
665 
666 slow_path_clean:
667 		skb_walk_frags(skb, frag2) {
668 			if (frag2 == frag)
669 				break;
670 			frag2->sk = NULL;
671 			frag2->destructor = NULL;
672 			skb->truesize += frag2->truesize;
673 		}
674 	}
675 
676 slow_path:
677 	iph = ip_hdr(skb);
678 
679 	left = skb->len - hlen;		/* Space per frame */
680 	ptr = hlen;		/* Where to start from */
681 
682 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
683 
684 	/*
685 	 *	Fragment the datagram.
686 	 */
687 
688 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
689 	not_last_frag = iph->frag_off & htons(IP_MF);
690 
691 	/*
692 	 *	Keep copying data until we run out.
693 	 */
694 
695 	while (left > 0) {
696 		len = left;
697 		/* IF: it doesn't fit, use 'mtu' - the data space left */
698 		if (len > mtu)
699 			len = mtu;
700 		/* IF: we are not sending up to and including the packet end
701 		   then align the next start on an eight byte boundary */
702 		if (len < left)	{
703 			len &= ~7;
704 		}
705 
706 		/* Allocate buffer */
707 		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
708 		if (!skb2) {
709 			err = -ENOMEM;
710 			goto fail;
711 		}
712 
713 		/*
714 		 *	Set up data on packet
715 		 */
716 
717 		ip_copy_metadata(skb2, skb);
718 		skb_reserve(skb2, ll_rs);
719 		skb_put(skb2, len + hlen);
720 		skb_reset_network_header(skb2);
721 		skb2->transport_header = skb2->network_header + hlen;
722 
723 		/*
724 		 *	Charge the memory for the fragment to any owner
725 		 *	it might possess
726 		 */
727 
728 		if (skb->sk)
729 			skb_set_owner_w(skb2, skb->sk);
730 
731 		/*
732 		 *	Copy the packet header into the new buffer.
733 		 */
734 
735 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
736 
737 		/*
738 		 *	Copy a block of the IP datagram.
739 		 */
740 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
741 			BUG();
742 		left -= len;
743 
744 		/*
745 		 *	Fill in the new header fields.
746 		 */
747 		iph = ip_hdr(skb2);
748 		iph->frag_off = htons((offset >> 3));
749 
750 		if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
751 			iph->frag_off |= htons(IP_DF);
752 
753 		/* ANK: dirty, but effective trick. Upgrade options only if
754 		 * the segment to be fragmented was THE FIRST (otherwise,
755 		 * options are already fixed) and make it ONCE
756 		 * on the initial skb, so that all the following fragments
757 		 * will inherit fixed options.
758 		 */
759 		if (offset == 0)
760 			ip_options_fragment(skb);
761 
762 		/*
763 		 *	Added AC : If we are fragmenting a fragment that's not the
764 		 *		   last fragment then keep MF on each bit
765 		 */
766 		if (left > 0 || not_last_frag)
767 			iph->frag_off |= htons(IP_MF);
768 		ptr += len;
769 		offset += len;
770 
771 		/*
772 		 *	Put this fragment into the sending queue.
773 		 */
774 		iph->tot_len = htons(len + hlen);
775 
776 		ip_send_check(iph);
777 
778 		err = output(net, sk, skb2);
779 		if (err)
780 			goto fail;
781 
782 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
783 	}
784 	consume_skb(skb);
785 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
786 	return err;
787 
788 fail:
789 	kfree_skb(skb);
790 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
791 	return err;
792 }
793 EXPORT_SYMBOL(ip_do_fragment);
794 
795 int
796 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
797 {
798 	struct msghdr *msg = from;
799 
800 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
801 		if (copy_from_iter(to, len, &msg->msg_iter) != len)
802 			return -EFAULT;
803 	} else {
804 		__wsum csum = 0;
805 		if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
806 			return -EFAULT;
807 		skb->csum = csum_block_add(skb->csum, csum, odd);
808 	}
809 	return 0;
810 }
811 EXPORT_SYMBOL(ip_generic_getfrag);
812 
813 static inline __wsum
814 csum_page(struct page *page, int offset, int copy)
815 {
816 	char *kaddr;
817 	__wsum csum;
818 	kaddr = kmap(page);
819 	csum = csum_partial(kaddr + offset, copy, 0);
820 	kunmap(page);
821 	return csum;
822 }
823 
824 static inline int ip_ufo_append_data(struct sock *sk,
825 			struct sk_buff_head *queue,
826 			int getfrag(void *from, char *to, int offset, int len,
827 			       int odd, struct sk_buff *skb),
828 			void *from, int length, int hh_len, int fragheaderlen,
829 			int transhdrlen, int maxfraglen, unsigned int flags)
830 {
831 	struct sk_buff *skb;
832 	int err;
833 
834 	/* There is support for UDP fragmentation offload by network
835 	 * device, so create one single skb packet containing complete
836 	 * udp datagram
837 	 */
838 	skb = skb_peek_tail(queue);
839 	if (!skb) {
840 		skb = sock_alloc_send_skb(sk,
841 			hh_len + fragheaderlen + transhdrlen + 20,
842 			(flags & MSG_DONTWAIT), &err);
843 
844 		if (!skb)
845 			return err;
846 
847 		/* reserve space for Hardware header */
848 		skb_reserve(skb, hh_len);
849 
850 		/* create space for UDP/IP header */
851 		skb_put(skb, fragheaderlen + transhdrlen);
852 
853 		/* initialize network header pointer */
854 		skb_reset_network_header(skb);
855 
856 		/* initialize protocol header pointer */
857 		skb->transport_header = skb->network_header + fragheaderlen;
858 
859 		skb->csum = 0;
860 
861 		__skb_queue_tail(queue, skb);
862 	} else if (skb_is_gso(skb)) {
863 		goto append;
864 	}
865 
866 	skb->ip_summed = CHECKSUM_PARTIAL;
867 	/* specify the length of each IP datagram fragment */
868 	skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
869 	skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
870 
871 append:
872 	return skb_append_datato_frags(sk, skb, getfrag, from,
873 				       (length - transhdrlen));
874 }
875 
876 static int __ip_append_data(struct sock *sk,
877 			    struct flowi4 *fl4,
878 			    struct sk_buff_head *queue,
879 			    struct inet_cork *cork,
880 			    struct page_frag *pfrag,
881 			    int getfrag(void *from, char *to, int offset,
882 					int len, int odd, struct sk_buff *skb),
883 			    void *from, int length, int transhdrlen,
884 			    unsigned int flags)
885 {
886 	struct inet_sock *inet = inet_sk(sk);
887 	struct sk_buff *skb;
888 
889 	struct ip_options *opt = cork->opt;
890 	int hh_len;
891 	int exthdrlen;
892 	int mtu;
893 	int copy;
894 	int err;
895 	int offset = 0;
896 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
897 	int csummode = CHECKSUM_NONE;
898 	struct rtable *rt = (struct rtable *)cork->dst;
899 	u32 tskey = 0;
900 
901 	skb = skb_peek_tail(queue);
902 
903 	exthdrlen = !skb ? rt->dst.header_len : 0;
904 	mtu = cork->fragsize;
905 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
906 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
907 		tskey = sk->sk_tskey++;
908 
909 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
910 
911 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
912 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
913 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
914 
915 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
916 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
917 			       mtu - (opt ? opt->optlen : 0));
918 		return -EMSGSIZE;
919 	}
920 
921 	/*
922 	 * transhdrlen > 0 means that this is the first fragment and we wish
923 	 * it won't be fragmented in the future.
924 	 */
925 	if (transhdrlen &&
926 	    length + fragheaderlen <= mtu &&
927 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
928 	    !(flags & MSG_MORE) &&
929 	    !exthdrlen)
930 		csummode = CHECKSUM_PARTIAL;
931 
932 	cork->length += length;
933 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
934 	    (sk->sk_protocol == IPPROTO_UDP) &&
935 	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
936 	    (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
937 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
938 					 hh_len, fragheaderlen, transhdrlen,
939 					 maxfraglen, flags);
940 		if (err)
941 			goto error;
942 		return 0;
943 	}
944 
945 	/* So, what's going on in the loop below?
946 	 *
947 	 * We use calculated fragment length to generate chained skb,
948 	 * each of segments is IP fragment ready for sending to network after
949 	 * adding appropriate IP header.
950 	 */
951 
952 	if (!skb)
953 		goto alloc_new_skb;
954 
955 	while (length > 0) {
956 		/* Check if the remaining data fits into current packet. */
957 		copy = mtu - skb->len;
958 		if (copy < length)
959 			copy = maxfraglen - skb->len;
960 		if (copy <= 0) {
961 			char *data;
962 			unsigned int datalen;
963 			unsigned int fraglen;
964 			unsigned int fraggap;
965 			unsigned int alloclen;
966 			struct sk_buff *skb_prev;
967 alloc_new_skb:
968 			skb_prev = skb;
969 			if (skb_prev)
970 				fraggap = skb_prev->len - maxfraglen;
971 			else
972 				fraggap = 0;
973 
974 			/*
975 			 * If remaining data exceeds the mtu,
976 			 * we know we need more fragment(s).
977 			 */
978 			datalen = length + fraggap;
979 			if (datalen > mtu - fragheaderlen)
980 				datalen = maxfraglen - fragheaderlen;
981 			fraglen = datalen + fragheaderlen;
982 
983 			if ((flags & MSG_MORE) &&
984 			    !(rt->dst.dev->features&NETIF_F_SG))
985 				alloclen = mtu;
986 			else
987 				alloclen = fraglen;
988 
989 			alloclen += exthdrlen;
990 
991 			/* The last fragment gets additional space at tail.
992 			 * Note, with MSG_MORE we overallocate on fragments,
993 			 * because we have no idea what fragment will be
994 			 * the last.
995 			 */
996 			if (datalen == length + fraggap)
997 				alloclen += rt->dst.trailer_len;
998 
999 			if (transhdrlen) {
1000 				skb = sock_alloc_send_skb(sk,
1001 						alloclen + hh_len + 15,
1002 						(flags & MSG_DONTWAIT), &err);
1003 			} else {
1004 				skb = NULL;
1005 				if (atomic_read(&sk->sk_wmem_alloc) <=
1006 				    2 * sk->sk_sndbuf)
1007 					skb = sock_wmalloc(sk,
1008 							   alloclen + hh_len + 15, 1,
1009 							   sk->sk_allocation);
1010 				if (unlikely(!skb))
1011 					err = -ENOBUFS;
1012 			}
1013 			if (!skb)
1014 				goto error;
1015 
1016 			/*
1017 			 *	Fill in the control structures
1018 			 */
1019 			skb->ip_summed = csummode;
1020 			skb->csum = 0;
1021 			skb_reserve(skb, hh_len);
1022 
1023 			/* only the initial fragment is time stamped */
1024 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1025 			cork->tx_flags = 0;
1026 			skb_shinfo(skb)->tskey = tskey;
1027 			tskey = 0;
1028 
1029 			/*
1030 			 *	Find where to start putting bytes.
1031 			 */
1032 			data = skb_put(skb, fraglen + exthdrlen);
1033 			skb_set_network_header(skb, exthdrlen);
1034 			skb->transport_header = (skb->network_header +
1035 						 fragheaderlen);
1036 			data += fragheaderlen + exthdrlen;
1037 
1038 			if (fraggap) {
1039 				skb->csum = skb_copy_and_csum_bits(
1040 					skb_prev, maxfraglen,
1041 					data + transhdrlen, fraggap, 0);
1042 				skb_prev->csum = csum_sub(skb_prev->csum,
1043 							  skb->csum);
1044 				data += fraggap;
1045 				pskb_trim_unique(skb_prev, maxfraglen);
1046 			}
1047 
1048 			copy = datalen - transhdrlen - fraggap;
1049 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1050 				err = -EFAULT;
1051 				kfree_skb(skb);
1052 				goto error;
1053 			}
1054 
1055 			offset += copy;
1056 			length -= datalen - fraggap;
1057 			transhdrlen = 0;
1058 			exthdrlen = 0;
1059 			csummode = CHECKSUM_NONE;
1060 
1061 			/*
1062 			 * Put the packet on the pending queue.
1063 			 */
1064 			__skb_queue_tail(queue, skb);
1065 			continue;
1066 		}
1067 
1068 		if (copy > length)
1069 			copy = length;
1070 
1071 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
1072 			unsigned int off;
1073 
1074 			off = skb->len;
1075 			if (getfrag(from, skb_put(skb, copy),
1076 					offset, copy, off, skb) < 0) {
1077 				__skb_trim(skb, off);
1078 				err = -EFAULT;
1079 				goto error;
1080 			}
1081 		} else {
1082 			int i = skb_shinfo(skb)->nr_frags;
1083 
1084 			err = -ENOMEM;
1085 			if (!sk_page_frag_refill(sk, pfrag))
1086 				goto error;
1087 
1088 			if (!skb_can_coalesce(skb, i, pfrag->page,
1089 					      pfrag->offset)) {
1090 				err = -EMSGSIZE;
1091 				if (i == MAX_SKB_FRAGS)
1092 					goto error;
1093 
1094 				__skb_fill_page_desc(skb, i, pfrag->page,
1095 						     pfrag->offset, 0);
1096 				skb_shinfo(skb)->nr_frags = ++i;
1097 				get_page(pfrag->page);
1098 			}
1099 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1100 			if (getfrag(from,
1101 				    page_address(pfrag->page) + pfrag->offset,
1102 				    offset, copy, skb->len, skb) < 0)
1103 				goto error_efault;
1104 
1105 			pfrag->offset += copy;
1106 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1107 			skb->len += copy;
1108 			skb->data_len += copy;
1109 			skb->truesize += copy;
1110 			atomic_add(copy, &sk->sk_wmem_alloc);
1111 		}
1112 		offset += copy;
1113 		length -= copy;
1114 	}
1115 
1116 	return 0;
1117 
1118 error_efault:
1119 	err = -EFAULT;
1120 error:
1121 	cork->length -= length;
1122 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1123 	return err;
1124 }
1125 
1126 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1127 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1128 {
1129 	struct ip_options_rcu *opt;
1130 	struct rtable *rt;
1131 
1132 	/*
1133 	 * setup for corking.
1134 	 */
1135 	opt = ipc->opt;
1136 	if (opt) {
1137 		if (!cork->opt) {
1138 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1139 					    sk->sk_allocation);
1140 			if (unlikely(!cork->opt))
1141 				return -ENOBUFS;
1142 		}
1143 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1144 		cork->flags |= IPCORK_OPT;
1145 		cork->addr = ipc->addr;
1146 	}
1147 	rt = *rtp;
1148 	if (unlikely(!rt))
1149 		return -EFAULT;
1150 	/*
1151 	 * We steal reference to this route, caller should not release it
1152 	 */
1153 	*rtp = NULL;
1154 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1155 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1156 	cork->dst = &rt->dst;
1157 	cork->length = 0;
1158 	cork->ttl = ipc->ttl;
1159 	cork->tos = ipc->tos;
1160 	cork->priority = ipc->priority;
1161 	cork->tx_flags = ipc->tx_flags;
1162 
1163 	return 0;
1164 }
1165 
1166 /*
1167  *	ip_append_data() and ip_append_page() can make one large IP datagram
1168  *	from many pieces of data. Each pieces will be holded on the socket
1169  *	until ip_push_pending_frames() is called. Each piece can be a page
1170  *	or non-page data.
1171  *
1172  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1173  *	this interface potentially.
1174  *
1175  *	LATER: length must be adjusted by pad at tail, when it is required.
1176  */
1177 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1178 		   int getfrag(void *from, char *to, int offset, int len,
1179 			       int odd, struct sk_buff *skb),
1180 		   void *from, int length, int transhdrlen,
1181 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1182 		   unsigned int flags)
1183 {
1184 	struct inet_sock *inet = inet_sk(sk);
1185 	int err;
1186 
1187 	if (flags&MSG_PROBE)
1188 		return 0;
1189 
1190 	if (skb_queue_empty(&sk->sk_write_queue)) {
1191 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1192 		if (err)
1193 			return err;
1194 	} else {
1195 		transhdrlen = 0;
1196 	}
1197 
1198 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1199 				sk_page_frag(sk), getfrag,
1200 				from, length, transhdrlen, flags);
1201 }
1202 
1203 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1204 		       int offset, size_t size, int flags)
1205 {
1206 	struct inet_sock *inet = inet_sk(sk);
1207 	struct sk_buff *skb;
1208 	struct rtable *rt;
1209 	struct ip_options *opt = NULL;
1210 	struct inet_cork *cork;
1211 	int hh_len;
1212 	int mtu;
1213 	int len;
1214 	int err;
1215 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1216 
1217 	if (inet->hdrincl)
1218 		return -EPERM;
1219 
1220 	if (flags&MSG_PROBE)
1221 		return 0;
1222 
1223 	if (skb_queue_empty(&sk->sk_write_queue))
1224 		return -EINVAL;
1225 
1226 	cork = &inet->cork.base;
1227 	rt = (struct rtable *)cork->dst;
1228 	if (cork->flags & IPCORK_OPT)
1229 		opt = cork->opt;
1230 
1231 	if (!(rt->dst.dev->features&NETIF_F_SG))
1232 		return -EOPNOTSUPP;
1233 
1234 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1235 	mtu = cork->fragsize;
1236 
1237 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1238 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1239 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1240 
1241 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1242 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1243 			       mtu - (opt ? opt->optlen : 0));
1244 		return -EMSGSIZE;
1245 	}
1246 
1247 	skb = skb_peek_tail(&sk->sk_write_queue);
1248 	if (!skb)
1249 		return -EINVAL;
1250 
1251 	if ((size + skb->len > mtu) &&
1252 	    (sk->sk_protocol == IPPROTO_UDP) &&
1253 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1254 		if (skb->ip_summed != CHECKSUM_PARTIAL)
1255 			return -EOPNOTSUPP;
1256 
1257 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1258 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1259 	}
1260 	cork->length += size;
1261 
1262 	while (size > 0) {
1263 		if (skb_is_gso(skb)) {
1264 			len = size;
1265 		} else {
1266 
1267 			/* Check if the remaining data fits into current packet. */
1268 			len = mtu - skb->len;
1269 			if (len < size)
1270 				len = maxfraglen - skb->len;
1271 		}
1272 		if (len <= 0) {
1273 			struct sk_buff *skb_prev;
1274 			int alloclen;
1275 
1276 			skb_prev = skb;
1277 			fraggap = skb_prev->len - maxfraglen;
1278 
1279 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1280 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1281 			if (unlikely(!skb)) {
1282 				err = -ENOBUFS;
1283 				goto error;
1284 			}
1285 
1286 			/*
1287 			 *	Fill in the control structures
1288 			 */
1289 			skb->ip_summed = CHECKSUM_NONE;
1290 			skb->csum = 0;
1291 			skb_reserve(skb, hh_len);
1292 
1293 			/*
1294 			 *	Find where to start putting bytes.
1295 			 */
1296 			skb_put(skb, fragheaderlen + fraggap);
1297 			skb_reset_network_header(skb);
1298 			skb->transport_header = (skb->network_header +
1299 						 fragheaderlen);
1300 			if (fraggap) {
1301 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1302 								   maxfraglen,
1303 						    skb_transport_header(skb),
1304 								   fraggap, 0);
1305 				skb_prev->csum = csum_sub(skb_prev->csum,
1306 							  skb->csum);
1307 				pskb_trim_unique(skb_prev, maxfraglen);
1308 			}
1309 
1310 			/*
1311 			 * Put the packet on the pending queue.
1312 			 */
1313 			__skb_queue_tail(&sk->sk_write_queue, skb);
1314 			continue;
1315 		}
1316 
1317 		if (len > size)
1318 			len = size;
1319 
1320 		if (skb_append_pagefrags(skb, page, offset, len)) {
1321 			err = -EMSGSIZE;
1322 			goto error;
1323 		}
1324 
1325 		if (skb->ip_summed == CHECKSUM_NONE) {
1326 			__wsum csum;
1327 			csum = csum_page(page, offset, len);
1328 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1329 		}
1330 
1331 		skb->len += len;
1332 		skb->data_len += len;
1333 		skb->truesize += len;
1334 		atomic_add(len, &sk->sk_wmem_alloc);
1335 		offset += len;
1336 		size -= len;
1337 	}
1338 	return 0;
1339 
1340 error:
1341 	cork->length -= size;
1342 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1343 	return err;
1344 }
1345 
1346 static void ip_cork_release(struct inet_cork *cork)
1347 {
1348 	cork->flags &= ~IPCORK_OPT;
1349 	kfree(cork->opt);
1350 	cork->opt = NULL;
1351 	dst_release(cork->dst);
1352 	cork->dst = NULL;
1353 }
1354 
1355 /*
1356  *	Combined all pending IP fragments on the socket as one IP datagram
1357  *	and push them out.
1358  */
1359 struct sk_buff *__ip_make_skb(struct sock *sk,
1360 			      struct flowi4 *fl4,
1361 			      struct sk_buff_head *queue,
1362 			      struct inet_cork *cork)
1363 {
1364 	struct sk_buff *skb, *tmp_skb;
1365 	struct sk_buff **tail_skb;
1366 	struct inet_sock *inet = inet_sk(sk);
1367 	struct net *net = sock_net(sk);
1368 	struct ip_options *opt = NULL;
1369 	struct rtable *rt = (struct rtable *)cork->dst;
1370 	struct iphdr *iph;
1371 	__be16 df = 0;
1372 	__u8 ttl;
1373 
1374 	skb = __skb_dequeue(queue);
1375 	if (!skb)
1376 		goto out;
1377 	tail_skb = &(skb_shinfo(skb)->frag_list);
1378 
1379 	/* move skb->data to ip header from ext header */
1380 	if (skb->data < skb_network_header(skb))
1381 		__skb_pull(skb, skb_network_offset(skb));
1382 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1383 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1384 		*tail_skb = tmp_skb;
1385 		tail_skb = &(tmp_skb->next);
1386 		skb->len += tmp_skb->len;
1387 		skb->data_len += tmp_skb->len;
1388 		skb->truesize += tmp_skb->truesize;
1389 		tmp_skb->destructor = NULL;
1390 		tmp_skb->sk = NULL;
1391 	}
1392 
1393 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1394 	 * to fragment the frame generated here. No matter, what transforms
1395 	 * how transforms change size of the packet, it will come out.
1396 	 */
1397 	skb->ignore_df = ip_sk_ignore_df(sk);
1398 
1399 	/* DF bit is set when we want to see DF on outgoing frames.
1400 	 * If ignore_df is set too, we still allow to fragment this frame
1401 	 * locally. */
1402 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1403 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1404 	    (skb->len <= dst_mtu(&rt->dst) &&
1405 	     ip_dont_fragment(sk, &rt->dst)))
1406 		df = htons(IP_DF);
1407 
1408 	if (cork->flags & IPCORK_OPT)
1409 		opt = cork->opt;
1410 
1411 	if (cork->ttl != 0)
1412 		ttl = cork->ttl;
1413 	else if (rt->rt_type == RTN_MULTICAST)
1414 		ttl = inet->mc_ttl;
1415 	else
1416 		ttl = ip_select_ttl(inet, &rt->dst);
1417 
1418 	iph = ip_hdr(skb);
1419 	iph->version = 4;
1420 	iph->ihl = 5;
1421 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1422 	iph->frag_off = df;
1423 	iph->ttl = ttl;
1424 	iph->protocol = sk->sk_protocol;
1425 	ip_copy_addrs(iph, fl4);
1426 	ip_select_ident(net, skb, sk);
1427 
1428 	if (opt) {
1429 		iph->ihl += opt->optlen>>2;
1430 		ip_options_build(skb, opt, cork->addr, rt, 0);
1431 	}
1432 
1433 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1434 	skb->mark = sk->sk_mark;
1435 	/*
1436 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1437 	 * on dst refcount
1438 	 */
1439 	cork->dst = NULL;
1440 	skb_dst_set(skb, &rt->dst);
1441 
1442 	if (iph->protocol == IPPROTO_ICMP)
1443 		icmp_out_count(net, ((struct icmphdr *)
1444 			skb_transport_header(skb))->type);
1445 
1446 	ip_cork_release(cork);
1447 out:
1448 	return skb;
1449 }
1450 
1451 int ip_send_skb(struct net *net, struct sk_buff *skb)
1452 {
1453 	int err;
1454 
1455 	err = ip_local_out(net, skb->sk, skb);
1456 	if (err) {
1457 		if (err > 0)
1458 			err = net_xmit_errno(err);
1459 		if (err)
1460 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1461 	}
1462 
1463 	return err;
1464 }
1465 
1466 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1467 {
1468 	struct sk_buff *skb;
1469 
1470 	skb = ip_finish_skb(sk, fl4);
1471 	if (!skb)
1472 		return 0;
1473 
1474 	/* Netfilter gets whole the not fragmented skb. */
1475 	return ip_send_skb(sock_net(sk), skb);
1476 }
1477 
1478 /*
1479  *	Throw away all pending data on the socket.
1480  */
1481 static void __ip_flush_pending_frames(struct sock *sk,
1482 				      struct sk_buff_head *queue,
1483 				      struct inet_cork *cork)
1484 {
1485 	struct sk_buff *skb;
1486 
1487 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1488 		kfree_skb(skb);
1489 
1490 	ip_cork_release(cork);
1491 }
1492 
1493 void ip_flush_pending_frames(struct sock *sk)
1494 {
1495 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1496 }
1497 
1498 struct sk_buff *ip_make_skb(struct sock *sk,
1499 			    struct flowi4 *fl4,
1500 			    int getfrag(void *from, char *to, int offset,
1501 					int len, int odd, struct sk_buff *skb),
1502 			    void *from, int length, int transhdrlen,
1503 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1504 			    unsigned int flags)
1505 {
1506 	struct inet_cork cork;
1507 	struct sk_buff_head queue;
1508 	int err;
1509 
1510 	if (flags & MSG_PROBE)
1511 		return NULL;
1512 
1513 	__skb_queue_head_init(&queue);
1514 
1515 	cork.flags = 0;
1516 	cork.addr = 0;
1517 	cork.opt = NULL;
1518 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1519 	if (err)
1520 		return ERR_PTR(err);
1521 
1522 	err = __ip_append_data(sk, fl4, &queue, &cork,
1523 			       &current->task_frag, getfrag,
1524 			       from, length, transhdrlen, flags);
1525 	if (err) {
1526 		__ip_flush_pending_frames(sk, &queue, &cork);
1527 		return ERR_PTR(err);
1528 	}
1529 
1530 	return __ip_make_skb(sk, fl4, &queue, &cork);
1531 }
1532 
1533 /*
1534  *	Fetch data from kernel space and fill in checksum if needed.
1535  */
1536 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1537 			      int len, int odd, struct sk_buff *skb)
1538 {
1539 	__wsum csum;
1540 
1541 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1542 	skb->csum = csum_block_add(skb->csum, csum, odd);
1543 	return 0;
1544 }
1545 
1546 /*
1547  *	Generic function to send a packet as reply to another packet.
1548  *	Used to send some TCP resets/acks so far.
1549  */
1550 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1551 			   const struct ip_options *sopt,
1552 			   __be32 daddr, __be32 saddr,
1553 			   const struct ip_reply_arg *arg,
1554 			   unsigned int len)
1555 {
1556 	struct ip_options_data replyopts;
1557 	struct ipcm_cookie ipc;
1558 	struct flowi4 fl4;
1559 	struct rtable *rt = skb_rtable(skb);
1560 	struct net *net = sock_net(sk);
1561 	struct sk_buff *nskb;
1562 	int err;
1563 	int oif;
1564 
1565 	if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1566 		return;
1567 
1568 	ipc.addr = daddr;
1569 	ipc.opt = NULL;
1570 	ipc.tx_flags = 0;
1571 	ipc.ttl = 0;
1572 	ipc.tos = -1;
1573 
1574 	if (replyopts.opt.opt.optlen) {
1575 		ipc.opt = &replyopts.opt;
1576 
1577 		if (replyopts.opt.opt.srr)
1578 			daddr = replyopts.opt.opt.faddr;
1579 	}
1580 
1581 	oif = arg->bound_dev_if;
1582 	oif = oif ? : skb->skb_iif;
1583 
1584 	flowi4_init_output(&fl4, oif,
1585 			   IP4_REPLY_MARK(net, skb->mark),
1586 			   RT_TOS(arg->tos),
1587 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1588 			   ip_reply_arg_flowi_flags(arg),
1589 			   daddr, saddr,
1590 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1591 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1592 	rt = ip_route_output_key(net, &fl4);
1593 	if (IS_ERR(rt))
1594 		return;
1595 
1596 	inet_sk(sk)->tos = arg->tos;
1597 
1598 	sk->sk_priority = skb->priority;
1599 	sk->sk_protocol = ip_hdr(skb)->protocol;
1600 	sk->sk_bound_dev_if = arg->bound_dev_if;
1601 	sk->sk_sndbuf = sysctl_wmem_default;
1602 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1603 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1604 	if (unlikely(err)) {
1605 		ip_flush_pending_frames(sk);
1606 		goto out;
1607 	}
1608 
1609 	nskb = skb_peek(&sk->sk_write_queue);
1610 	if (nskb) {
1611 		if (arg->csumoffset >= 0)
1612 			*((__sum16 *)skb_transport_header(nskb) +
1613 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1614 								arg->csum));
1615 		nskb->ip_summed = CHECKSUM_NONE;
1616 		ip_push_pending_frames(sk, &fl4);
1617 	}
1618 out:
1619 	ip_rt_put(rt);
1620 }
1621 
1622 void __init ip_init(void)
1623 {
1624 	ip_rt_init();
1625 	inet_initpeers();
1626 
1627 #if defined(CONFIG_IP_MULTICAST)
1628 	igmp_mc_init();
1629 #endif
1630 }
1631