xref: /openbmc/linux/net/ipv4/ip_output.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82 
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 
85 /* Generate a checksum for an outgoing IP datagram. */
86 __inline__ void ip_send_check(struct iphdr *iph)
87 {
88 	iph->check = 0;
89 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
90 }
91 
92 int __ip_local_out(struct sk_buff *skb)
93 {
94 	struct iphdr *iph = ip_hdr(skb);
95 
96 	iph->tot_len = htons(skb->len);
97 	ip_send_check(iph);
98 	return nf_hook(PF_INET, NF_INET_LOCAL_OUT, skb, NULL, skb->dst->dev,
99 		       dst_output);
100 }
101 
102 int ip_local_out(struct sk_buff *skb)
103 {
104 	int err;
105 
106 	err = __ip_local_out(skb);
107 	if (likely(err == 1))
108 		err = dst_output(skb);
109 
110 	return err;
111 }
112 EXPORT_SYMBOL_GPL(ip_local_out);
113 
114 /* dev_loopback_xmit for use with netfilter. */
115 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
116 {
117 	skb_reset_mac_header(newskb);
118 	__skb_pull(newskb, skb_network_offset(newskb));
119 	newskb->pkt_type = PACKET_LOOPBACK;
120 	newskb->ip_summed = CHECKSUM_UNNECESSARY;
121 	WARN_ON(!newskb->dst);
122 	netif_rx(newskb);
123 	return 0;
124 }
125 
126 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
127 {
128 	int ttl = inet->uc_ttl;
129 
130 	if (ttl < 0)
131 		ttl = dst_metric(dst, RTAX_HOPLIMIT);
132 	return ttl;
133 }
134 
135 /*
136  *		Add an ip header to a skbuff and send it out.
137  *
138  */
139 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
140 			  __be32 saddr, __be32 daddr, struct ip_options *opt)
141 {
142 	struct inet_sock *inet = inet_sk(sk);
143 	struct rtable *rt = skb->rtable;
144 	struct iphdr *iph;
145 
146 	/* Build the IP header. */
147 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
148 	skb_reset_network_header(skb);
149 	iph = ip_hdr(skb);
150 	iph->version  = 4;
151 	iph->ihl      = 5;
152 	iph->tos      = inet->tos;
153 	if (ip_dont_fragment(sk, &rt->u.dst))
154 		iph->frag_off = htons(IP_DF);
155 	else
156 		iph->frag_off = 0;
157 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
158 	iph->daddr    = rt->rt_dst;
159 	iph->saddr    = rt->rt_src;
160 	iph->protocol = sk->sk_protocol;
161 	ip_select_ident(iph, &rt->u.dst, sk);
162 
163 	if (opt && opt->optlen) {
164 		iph->ihl += opt->optlen>>2;
165 		ip_options_build(skb, opt, daddr, rt, 0);
166 	}
167 
168 	skb->priority = sk->sk_priority;
169 	skb->mark = sk->sk_mark;
170 
171 	/* Send it out. */
172 	return ip_local_out(skb);
173 }
174 
175 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
176 
177 static inline int ip_finish_output2(struct sk_buff *skb)
178 {
179 	struct dst_entry *dst = skb->dst;
180 	struct rtable *rt = (struct rtable *)dst;
181 	struct net_device *dev = dst->dev;
182 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
183 
184 	if (rt->rt_type == RTN_MULTICAST)
185 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTMCASTPKTS);
186 	else if (rt->rt_type == RTN_BROADCAST)
187 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTBCASTPKTS);
188 
189 	/* Be paranoid, rather than too clever. */
190 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
191 		struct sk_buff *skb2;
192 
193 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
194 		if (skb2 == NULL) {
195 			kfree_skb(skb);
196 			return -ENOMEM;
197 		}
198 		if (skb->sk)
199 			skb_set_owner_w(skb2, skb->sk);
200 		kfree_skb(skb);
201 		skb = skb2;
202 	}
203 
204 	if (dst->hh)
205 		return neigh_hh_output(dst->hh, skb);
206 	else if (dst->neighbour)
207 		return dst->neighbour->output(skb);
208 
209 	if (net_ratelimit())
210 		printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
211 	kfree_skb(skb);
212 	return -EINVAL;
213 }
214 
215 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
216 {
217 	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
218 
219 	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
220 	       skb->dst->dev->mtu : dst_mtu(skb->dst);
221 }
222 
223 static int ip_finish_output(struct sk_buff *skb)
224 {
225 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
226 	/* Policy lookup after SNAT yielded a new policy */
227 	if (skb->dst->xfrm != NULL) {
228 		IPCB(skb)->flags |= IPSKB_REROUTED;
229 		return dst_output(skb);
230 	}
231 #endif
232 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
233 		return ip_fragment(skb, ip_finish_output2);
234 	else
235 		return ip_finish_output2(skb);
236 }
237 
238 int ip_mc_output(struct sk_buff *skb)
239 {
240 	struct sock *sk = skb->sk;
241 	struct rtable *rt = skb->rtable;
242 	struct net_device *dev = rt->u.dst.dev;
243 
244 	/*
245 	 *	If the indicated interface is up and running, send the packet.
246 	 */
247 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTREQUESTS);
248 
249 	skb->dev = dev;
250 	skb->protocol = htons(ETH_P_IP);
251 
252 	/*
253 	 *	Multicasts are looped back for other local users
254 	 */
255 
256 	if (rt->rt_flags&RTCF_MULTICAST) {
257 		if ((!sk || inet_sk(sk)->mc_loop)
258 #ifdef CONFIG_IP_MROUTE
259 		/* Small optimization: do not loopback not local frames,
260 		   which returned after forwarding; they will be  dropped
261 		   by ip_mr_input in any case.
262 		   Note, that local frames are looped back to be delivered
263 		   to local recipients.
264 
265 		   This check is duplicated in ip_mr_input at the moment.
266 		 */
267 		    && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
268 #endif
269 		) {
270 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
271 			if (newskb)
272 				NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb,
273 					NULL, newskb->dev,
274 					ip_dev_loopback_xmit);
275 		}
276 
277 		/* Multicasts with ttl 0 must not go beyond the host */
278 
279 		if (ip_hdr(skb)->ttl == 0) {
280 			kfree_skb(skb);
281 			return 0;
282 		}
283 	}
284 
285 	if (rt->rt_flags&RTCF_BROADCAST) {
286 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
287 		if (newskb)
288 			NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb, NULL,
289 				newskb->dev, ip_dev_loopback_xmit);
290 	}
291 
292 	return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, skb->dev,
293 			    ip_finish_output,
294 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
295 }
296 
297 int ip_output(struct sk_buff *skb)
298 {
299 	struct net_device *dev = skb->dst->dev;
300 
301 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTREQUESTS);
302 
303 	skb->dev = dev;
304 	skb->protocol = htons(ETH_P_IP);
305 
306 	return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, dev,
307 			    ip_finish_output,
308 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
309 }
310 
311 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
312 {
313 	struct sock *sk = skb->sk;
314 	struct inet_sock *inet = inet_sk(sk);
315 	struct ip_options *opt = inet->opt;
316 	struct rtable *rt;
317 	struct iphdr *iph;
318 
319 	/* Skip all of this if the packet is already routed,
320 	 * f.e. by something like SCTP.
321 	 */
322 	rt = skb->rtable;
323 	if (rt != NULL)
324 		goto packet_routed;
325 
326 	/* Make sure we can route this packet. */
327 	rt = (struct rtable *)__sk_dst_check(sk, 0);
328 	if (rt == NULL) {
329 		__be32 daddr;
330 
331 		/* Use correct destination address if we have options. */
332 		daddr = inet->daddr;
333 		if(opt && opt->srr)
334 			daddr = opt->faddr;
335 
336 		{
337 			struct flowi fl = { .oif = sk->sk_bound_dev_if,
338 					    .nl_u = { .ip4_u =
339 						      { .daddr = daddr,
340 							.saddr = inet->saddr,
341 							.tos = RT_CONN_FLAGS(sk) } },
342 					    .proto = sk->sk_protocol,
343 					    .uli_u = { .ports =
344 						       { .sport = inet->sport,
345 							 .dport = inet->dport } } };
346 
347 			/* If this fails, retransmit mechanism of transport layer will
348 			 * keep trying until route appears or the connection times
349 			 * itself out.
350 			 */
351 			security_sk_classify_flow(sk, &fl);
352 			if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
353 				goto no_route;
354 		}
355 		sk_setup_caps(sk, &rt->u.dst);
356 	}
357 	skb->dst = dst_clone(&rt->u.dst);
358 
359 packet_routed:
360 	if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
361 		goto no_route;
362 
363 	/* OK, we know where to send it, allocate and build IP header. */
364 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
365 	skb_reset_network_header(skb);
366 	iph = ip_hdr(skb);
367 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
368 	if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
369 		iph->frag_off = htons(IP_DF);
370 	else
371 		iph->frag_off = 0;
372 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
373 	iph->protocol = sk->sk_protocol;
374 	iph->saddr    = rt->rt_src;
375 	iph->daddr    = rt->rt_dst;
376 	/* Transport layer set skb->h.foo itself. */
377 
378 	if (opt && opt->optlen) {
379 		iph->ihl += opt->optlen >> 2;
380 		ip_options_build(skb, opt, inet->daddr, rt, 0);
381 	}
382 
383 	ip_select_ident_more(iph, &rt->u.dst, sk,
384 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
385 
386 	skb->priority = sk->sk_priority;
387 	skb->mark = sk->sk_mark;
388 
389 	return ip_local_out(skb);
390 
391 no_route:
392 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
393 	kfree_skb(skb);
394 	return -EHOSTUNREACH;
395 }
396 
397 
398 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
399 {
400 	to->pkt_type = from->pkt_type;
401 	to->priority = from->priority;
402 	to->protocol = from->protocol;
403 	dst_release(to->dst);
404 	to->dst = dst_clone(from->dst);
405 	to->dev = from->dev;
406 	to->mark = from->mark;
407 
408 	/* Copy the flags to each fragment. */
409 	IPCB(to)->flags = IPCB(from)->flags;
410 
411 #ifdef CONFIG_NET_SCHED
412 	to->tc_index = from->tc_index;
413 #endif
414 	nf_copy(to, from);
415 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
416     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
417 	to->nf_trace = from->nf_trace;
418 #endif
419 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
420 	to->ipvs_property = from->ipvs_property;
421 #endif
422 	skb_copy_secmark(to, from);
423 }
424 
425 /*
426  *	This IP datagram is too large to be sent in one piece.  Break it up into
427  *	smaller pieces (each of size equal to IP header plus
428  *	a block of the data of the original IP data part) that will yet fit in a
429  *	single device frame, and queue such a frame for sending.
430  */
431 
432 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
433 {
434 	struct iphdr *iph;
435 	int raw = 0;
436 	int ptr;
437 	struct net_device *dev;
438 	struct sk_buff *skb2;
439 	unsigned int mtu, hlen, left, len, ll_rs, pad;
440 	int offset;
441 	__be16 not_last_frag;
442 	struct rtable *rt = skb->rtable;
443 	int err = 0;
444 
445 	dev = rt->u.dst.dev;
446 
447 	/*
448 	 *	Point into the IP datagram header.
449 	 */
450 
451 	iph = ip_hdr(skb);
452 
453 	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
454 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
455 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
456 			  htonl(ip_skb_dst_mtu(skb)));
457 		kfree_skb(skb);
458 		return -EMSGSIZE;
459 	}
460 
461 	/*
462 	 *	Setup starting values.
463 	 */
464 
465 	hlen = iph->ihl * 4;
466 	mtu = dst_mtu(&rt->u.dst) - hlen;	/* Size of data space */
467 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
468 
469 	/* When frag_list is given, use it. First, check its validity:
470 	 * some transformers could create wrong frag_list or break existing
471 	 * one, it is not prohibited. In this case fall back to copying.
472 	 *
473 	 * LATER: this step can be merged to real generation of fragments,
474 	 * we can switch to copy when see the first bad fragment.
475 	 */
476 	if (skb_shinfo(skb)->frag_list) {
477 		struct sk_buff *frag;
478 		int first_len = skb_pagelen(skb);
479 		int truesizes = 0;
480 
481 		if (first_len - hlen > mtu ||
482 		    ((first_len - hlen) & 7) ||
483 		    (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
484 		    skb_cloned(skb))
485 			goto slow_path;
486 
487 		for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
488 			/* Correct geometry. */
489 			if (frag->len > mtu ||
490 			    ((frag->len & 7) && frag->next) ||
491 			    skb_headroom(frag) < hlen)
492 			    goto slow_path;
493 
494 			/* Partially cloned skb? */
495 			if (skb_shared(frag))
496 				goto slow_path;
497 
498 			BUG_ON(frag->sk);
499 			if (skb->sk) {
500 				sock_hold(skb->sk);
501 				frag->sk = skb->sk;
502 				frag->destructor = sock_wfree;
503 				truesizes += frag->truesize;
504 			}
505 		}
506 
507 		/* Everything is OK. Generate! */
508 
509 		err = 0;
510 		offset = 0;
511 		frag = skb_shinfo(skb)->frag_list;
512 		skb_shinfo(skb)->frag_list = NULL;
513 		skb->data_len = first_len - skb_headlen(skb);
514 		skb->truesize -= truesizes;
515 		skb->len = first_len;
516 		iph->tot_len = htons(first_len);
517 		iph->frag_off = htons(IP_MF);
518 		ip_send_check(iph);
519 
520 		for (;;) {
521 			/* Prepare header of the next frame,
522 			 * before previous one went down. */
523 			if (frag) {
524 				frag->ip_summed = CHECKSUM_NONE;
525 				skb_reset_transport_header(frag);
526 				__skb_push(frag, hlen);
527 				skb_reset_network_header(frag);
528 				memcpy(skb_network_header(frag), iph, hlen);
529 				iph = ip_hdr(frag);
530 				iph->tot_len = htons(frag->len);
531 				ip_copy_metadata(frag, skb);
532 				if (offset == 0)
533 					ip_options_fragment(frag);
534 				offset += skb->len - hlen;
535 				iph->frag_off = htons(offset>>3);
536 				if (frag->next != NULL)
537 					iph->frag_off |= htons(IP_MF);
538 				/* Ready, complete checksum */
539 				ip_send_check(iph);
540 			}
541 
542 			err = output(skb);
543 
544 			if (!err)
545 				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
546 			if (err || !frag)
547 				break;
548 
549 			skb = frag;
550 			frag = skb->next;
551 			skb->next = NULL;
552 		}
553 
554 		if (err == 0) {
555 			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
556 			return 0;
557 		}
558 
559 		while (frag) {
560 			skb = frag->next;
561 			kfree_skb(frag);
562 			frag = skb;
563 		}
564 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
565 		return err;
566 	}
567 
568 slow_path:
569 	left = skb->len - hlen;		/* Space per frame */
570 	ptr = raw + hlen;		/* Where to start from */
571 
572 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
573 	 * we need to make room for the encapsulating header
574 	 */
575 	pad = nf_bridge_pad(skb);
576 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
577 	mtu -= pad;
578 
579 	/*
580 	 *	Fragment the datagram.
581 	 */
582 
583 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
584 	not_last_frag = iph->frag_off & htons(IP_MF);
585 
586 	/*
587 	 *	Keep copying data until we run out.
588 	 */
589 
590 	while (left > 0) {
591 		len = left;
592 		/* IF: it doesn't fit, use 'mtu' - the data space left */
593 		if (len > mtu)
594 			len = mtu;
595 		/* IF: we are not sending upto and including the packet end
596 		   then align the next start on an eight byte boundary */
597 		if (len < left)	{
598 			len &= ~7;
599 		}
600 		/*
601 		 *	Allocate buffer.
602 		 */
603 
604 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
605 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
606 			err = -ENOMEM;
607 			goto fail;
608 		}
609 
610 		/*
611 		 *	Set up data on packet
612 		 */
613 
614 		ip_copy_metadata(skb2, skb);
615 		skb_reserve(skb2, ll_rs);
616 		skb_put(skb2, len + hlen);
617 		skb_reset_network_header(skb2);
618 		skb2->transport_header = skb2->network_header + hlen;
619 
620 		/*
621 		 *	Charge the memory for the fragment to any owner
622 		 *	it might possess
623 		 */
624 
625 		if (skb->sk)
626 			skb_set_owner_w(skb2, skb->sk);
627 
628 		/*
629 		 *	Copy the packet header into the new buffer.
630 		 */
631 
632 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
633 
634 		/*
635 		 *	Copy a block of the IP datagram.
636 		 */
637 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
638 			BUG();
639 		left -= len;
640 
641 		/*
642 		 *	Fill in the new header fields.
643 		 */
644 		iph = ip_hdr(skb2);
645 		iph->frag_off = htons((offset >> 3));
646 
647 		/* ANK: dirty, but effective trick. Upgrade options only if
648 		 * the segment to be fragmented was THE FIRST (otherwise,
649 		 * options are already fixed) and make it ONCE
650 		 * on the initial skb, so that all the following fragments
651 		 * will inherit fixed options.
652 		 */
653 		if (offset == 0)
654 			ip_options_fragment(skb);
655 
656 		/*
657 		 *	Added AC : If we are fragmenting a fragment that's not the
658 		 *		   last fragment then keep MF on each bit
659 		 */
660 		if (left > 0 || not_last_frag)
661 			iph->frag_off |= htons(IP_MF);
662 		ptr += len;
663 		offset += len;
664 
665 		/*
666 		 *	Put this fragment into the sending queue.
667 		 */
668 		iph->tot_len = htons(len + hlen);
669 
670 		ip_send_check(iph);
671 
672 		err = output(skb2);
673 		if (err)
674 			goto fail;
675 
676 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
677 	}
678 	kfree_skb(skb);
679 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
680 	return err;
681 
682 fail:
683 	kfree_skb(skb);
684 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
685 	return err;
686 }
687 
688 EXPORT_SYMBOL(ip_fragment);
689 
690 int
691 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
692 {
693 	struct iovec *iov = from;
694 
695 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
696 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
697 			return -EFAULT;
698 	} else {
699 		__wsum csum = 0;
700 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
701 			return -EFAULT;
702 		skb->csum = csum_block_add(skb->csum, csum, odd);
703 	}
704 	return 0;
705 }
706 
707 static inline __wsum
708 csum_page(struct page *page, int offset, int copy)
709 {
710 	char *kaddr;
711 	__wsum csum;
712 	kaddr = kmap(page);
713 	csum = csum_partial(kaddr + offset, copy, 0);
714 	kunmap(page);
715 	return csum;
716 }
717 
718 static inline int ip_ufo_append_data(struct sock *sk,
719 			int getfrag(void *from, char *to, int offset, int len,
720 			       int odd, struct sk_buff *skb),
721 			void *from, int length, int hh_len, int fragheaderlen,
722 			int transhdrlen, int mtu,unsigned int flags)
723 {
724 	struct sk_buff *skb;
725 	int err;
726 
727 	/* There is support for UDP fragmentation offload by network
728 	 * device, so create one single skb packet containing complete
729 	 * udp datagram
730 	 */
731 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
732 		skb = sock_alloc_send_skb(sk,
733 			hh_len + fragheaderlen + transhdrlen + 20,
734 			(flags & MSG_DONTWAIT), &err);
735 
736 		if (skb == NULL)
737 			return err;
738 
739 		/* reserve space for Hardware header */
740 		skb_reserve(skb, hh_len);
741 
742 		/* create space for UDP/IP header */
743 		skb_put(skb,fragheaderlen + transhdrlen);
744 
745 		/* initialize network header pointer */
746 		skb_reset_network_header(skb);
747 
748 		/* initialize protocol header pointer */
749 		skb->transport_header = skb->network_header + fragheaderlen;
750 
751 		skb->ip_summed = CHECKSUM_PARTIAL;
752 		skb->csum = 0;
753 		sk->sk_sndmsg_off = 0;
754 
755 		/* specify the length of each IP datagram fragment */
756 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
757 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
758 		__skb_queue_tail(&sk->sk_write_queue, skb);
759 	}
760 
761 	return skb_append_datato_frags(sk, skb, getfrag, from,
762 				       (length - transhdrlen));
763 }
764 
765 /*
766  *	ip_append_data() and ip_append_page() can make one large IP datagram
767  *	from many pieces of data. Each pieces will be holded on the socket
768  *	until ip_push_pending_frames() is called. Each piece can be a page
769  *	or non-page data.
770  *
771  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
772  *	this interface potentially.
773  *
774  *	LATER: length must be adjusted by pad at tail, when it is required.
775  */
776 int ip_append_data(struct sock *sk,
777 		   int getfrag(void *from, char *to, int offset, int len,
778 			       int odd, struct sk_buff *skb),
779 		   void *from, int length, int transhdrlen,
780 		   struct ipcm_cookie *ipc, struct rtable *rt,
781 		   unsigned int flags)
782 {
783 	struct inet_sock *inet = inet_sk(sk);
784 	struct sk_buff *skb;
785 
786 	struct ip_options *opt = NULL;
787 	int hh_len;
788 	int exthdrlen;
789 	int mtu;
790 	int copy;
791 	int err;
792 	int offset = 0;
793 	unsigned int maxfraglen, fragheaderlen;
794 	int csummode = CHECKSUM_NONE;
795 
796 	if (flags&MSG_PROBE)
797 		return 0;
798 
799 	if (skb_queue_empty(&sk->sk_write_queue)) {
800 		/*
801 		 * setup for corking.
802 		 */
803 		opt = ipc->opt;
804 		if (opt) {
805 			if (inet->cork.opt == NULL) {
806 				inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
807 				if (unlikely(inet->cork.opt == NULL))
808 					return -ENOBUFS;
809 			}
810 			memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
811 			inet->cork.flags |= IPCORK_OPT;
812 			inet->cork.addr = ipc->addr;
813 		}
814 		dst_hold(&rt->u.dst);
815 		inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
816 					    rt->u.dst.dev->mtu :
817 					    dst_mtu(rt->u.dst.path);
818 		inet->cork.dst = &rt->u.dst;
819 		inet->cork.length = 0;
820 		sk->sk_sndmsg_page = NULL;
821 		sk->sk_sndmsg_off = 0;
822 		if ((exthdrlen = rt->u.dst.header_len) != 0) {
823 			length += exthdrlen;
824 			transhdrlen += exthdrlen;
825 		}
826 	} else {
827 		rt = (struct rtable *)inet->cork.dst;
828 		if (inet->cork.flags & IPCORK_OPT)
829 			opt = inet->cork.opt;
830 
831 		transhdrlen = 0;
832 		exthdrlen = 0;
833 		mtu = inet->cork.fragsize;
834 	}
835 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
836 
837 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
838 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
839 
840 	if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
841 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
842 		return -EMSGSIZE;
843 	}
844 
845 	/*
846 	 * transhdrlen > 0 means that this is the first fragment and we wish
847 	 * it won't be fragmented in the future.
848 	 */
849 	if (transhdrlen &&
850 	    length + fragheaderlen <= mtu &&
851 	    rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
852 	    !exthdrlen)
853 		csummode = CHECKSUM_PARTIAL;
854 
855 	inet->cork.length += length;
856 	if (((length> mtu) || !skb_queue_empty(&sk->sk_write_queue)) &&
857 	    (sk->sk_protocol == IPPROTO_UDP) &&
858 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
859 		err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
860 					 fragheaderlen, transhdrlen, mtu,
861 					 flags);
862 		if (err)
863 			goto error;
864 		return 0;
865 	}
866 
867 	/* So, what's going on in the loop below?
868 	 *
869 	 * We use calculated fragment length to generate chained skb,
870 	 * each of segments is IP fragment ready for sending to network after
871 	 * adding appropriate IP header.
872 	 */
873 
874 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
875 		goto alloc_new_skb;
876 
877 	while (length > 0) {
878 		/* Check if the remaining data fits into current packet. */
879 		copy = mtu - skb->len;
880 		if (copy < length)
881 			copy = maxfraglen - skb->len;
882 		if (copy <= 0) {
883 			char *data;
884 			unsigned int datalen;
885 			unsigned int fraglen;
886 			unsigned int fraggap;
887 			unsigned int alloclen;
888 			struct sk_buff *skb_prev;
889 alloc_new_skb:
890 			skb_prev = skb;
891 			if (skb_prev)
892 				fraggap = skb_prev->len - maxfraglen;
893 			else
894 				fraggap = 0;
895 
896 			/*
897 			 * If remaining data exceeds the mtu,
898 			 * we know we need more fragment(s).
899 			 */
900 			datalen = length + fraggap;
901 			if (datalen > mtu - fragheaderlen)
902 				datalen = maxfraglen - fragheaderlen;
903 			fraglen = datalen + fragheaderlen;
904 
905 			if ((flags & MSG_MORE) &&
906 			    !(rt->u.dst.dev->features&NETIF_F_SG))
907 				alloclen = mtu;
908 			else
909 				alloclen = datalen + fragheaderlen;
910 
911 			/* The last fragment gets additional space at tail.
912 			 * Note, with MSG_MORE we overallocate on fragments,
913 			 * because we have no idea what fragment will be
914 			 * the last.
915 			 */
916 			if (datalen == length + fraggap)
917 				alloclen += rt->u.dst.trailer_len;
918 
919 			if (transhdrlen) {
920 				skb = sock_alloc_send_skb(sk,
921 						alloclen + hh_len + 15,
922 						(flags & MSG_DONTWAIT), &err);
923 			} else {
924 				skb = NULL;
925 				if (atomic_read(&sk->sk_wmem_alloc) <=
926 				    2 * sk->sk_sndbuf)
927 					skb = sock_wmalloc(sk,
928 							   alloclen + hh_len + 15, 1,
929 							   sk->sk_allocation);
930 				if (unlikely(skb == NULL))
931 					err = -ENOBUFS;
932 			}
933 			if (skb == NULL)
934 				goto error;
935 
936 			/*
937 			 *	Fill in the control structures
938 			 */
939 			skb->ip_summed = csummode;
940 			skb->csum = 0;
941 			skb_reserve(skb, hh_len);
942 
943 			/*
944 			 *	Find where to start putting bytes.
945 			 */
946 			data = skb_put(skb, fraglen);
947 			skb_set_network_header(skb, exthdrlen);
948 			skb->transport_header = (skb->network_header +
949 						 fragheaderlen);
950 			data += fragheaderlen;
951 
952 			if (fraggap) {
953 				skb->csum = skb_copy_and_csum_bits(
954 					skb_prev, maxfraglen,
955 					data + transhdrlen, fraggap, 0);
956 				skb_prev->csum = csum_sub(skb_prev->csum,
957 							  skb->csum);
958 				data += fraggap;
959 				pskb_trim_unique(skb_prev, maxfraglen);
960 			}
961 
962 			copy = datalen - transhdrlen - fraggap;
963 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
964 				err = -EFAULT;
965 				kfree_skb(skb);
966 				goto error;
967 			}
968 
969 			offset += copy;
970 			length -= datalen - fraggap;
971 			transhdrlen = 0;
972 			exthdrlen = 0;
973 			csummode = CHECKSUM_NONE;
974 
975 			/*
976 			 * Put the packet on the pending queue.
977 			 */
978 			__skb_queue_tail(&sk->sk_write_queue, skb);
979 			continue;
980 		}
981 
982 		if (copy > length)
983 			copy = length;
984 
985 		if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
986 			unsigned int off;
987 
988 			off = skb->len;
989 			if (getfrag(from, skb_put(skb, copy),
990 					offset, copy, off, skb) < 0) {
991 				__skb_trim(skb, off);
992 				err = -EFAULT;
993 				goto error;
994 			}
995 		} else {
996 			int i = skb_shinfo(skb)->nr_frags;
997 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
998 			struct page *page = sk->sk_sndmsg_page;
999 			int off = sk->sk_sndmsg_off;
1000 			unsigned int left;
1001 
1002 			if (page && (left = PAGE_SIZE - off) > 0) {
1003 				if (copy >= left)
1004 					copy = left;
1005 				if (page != frag->page) {
1006 					if (i == MAX_SKB_FRAGS) {
1007 						err = -EMSGSIZE;
1008 						goto error;
1009 					}
1010 					get_page(page);
1011 					skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1012 					frag = &skb_shinfo(skb)->frags[i];
1013 				}
1014 			} else if (i < MAX_SKB_FRAGS) {
1015 				if (copy > PAGE_SIZE)
1016 					copy = PAGE_SIZE;
1017 				page = alloc_pages(sk->sk_allocation, 0);
1018 				if (page == NULL)  {
1019 					err = -ENOMEM;
1020 					goto error;
1021 				}
1022 				sk->sk_sndmsg_page = page;
1023 				sk->sk_sndmsg_off = 0;
1024 
1025 				skb_fill_page_desc(skb, i, page, 0, 0);
1026 				frag = &skb_shinfo(skb)->frags[i];
1027 			} else {
1028 				err = -EMSGSIZE;
1029 				goto error;
1030 			}
1031 			if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1032 				err = -EFAULT;
1033 				goto error;
1034 			}
1035 			sk->sk_sndmsg_off += copy;
1036 			frag->size += copy;
1037 			skb->len += copy;
1038 			skb->data_len += copy;
1039 			skb->truesize += copy;
1040 			atomic_add(copy, &sk->sk_wmem_alloc);
1041 		}
1042 		offset += copy;
1043 		length -= copy;
1044 	}
1045 
1046 	return 0;
1047 
1048 error:
1049 	inet->cork.length -= length;
1050 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1051 	return err;
1052 }
1053 
1054 ssize_t	ip_append_page(struct sock *sk, struct page *page,
1055 		       int offset, size_t size, int flags)
1056 {
1057 	struct inet_sock *inet = inet_sk(sk);
1058 	struct sk_buff *skb;
1059 	struct rtable *rt;
1060 	struct ip_options *opt = NULL;
1061 	int hh_len;
1062 	int mtu;
1063 	int len;
1064 	int err;
1065 	unsigned int maxfraglen, fragheaderlen, fraggap;
1066 
1067 	if (inet->hdrincl)
1068 		return -EPERM;
1069 
1070 	if (flags&MSG_PROBE)
1071 		return 0;
1072 
1073 	if (skb_queue_empty(&sk->sk_write_queue))
1074 		return -EINVAL;
1075 
1076 	rt = (struct rtable *)inet->cork.dst;
1077 	if (inet->cork.flags & IPCORK_OPT)
1078 		opt = inet->cork.opt;
1079 
1080 	if (!(rt->u.dst.dev->features&NETIF_F_SG))
1081 		return -EOPNOTSUPP;
1082 
1083 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1084 	mtu = inet->cork.fragsize;
1085 
1086 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1087 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1088 
1089 	if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1090 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1091 		return -EMSGSIZE;
1092 	}
1093 
1094 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1095 		return -EINVAL;
1096 
1097 	inet->cork.length += size;
1098 	if ((sk->sk_protocol == IPPROTO_UDP) &&
1099 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
1100 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1101 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1102 	}
1103 
1104 
1105 	while (size > 0) {
1106 		int i;
1107 
1108 		if (skb_is_gso(skb))
1109 			len = size;
1110 		else {
1111 
1112 			/* Check if the remaining data fits into current packet. */
1113 			len = mtu - skb->len;
1114 			if (len < size)
1115 				len = maxfraglen - skb->len;
1116 		}
1117 		if (len <= 0) {
1118 			struct sk_buff *skb_prev;
1119 			int alloclen;
1120 
1121 			skb_prev = skb;
1122 			fraggap = skb_prev->len - maxfraglen;
1123 
1124 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1125 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1126 			if (unlikely(!skb)) {
1127 				err = -ENOBUFS;
1128 				goto error;
1129 			}
1130 
1131 			/*
1132 			 *	Fill in the control structures
1133 			 */
1134 			skb->ip_summed = CHECKSUM_NONE;
1135 			skb->csum = 0;
1136 			skb_reserve(skb, hh_len);
1137 
1138 			/*
1139 			 *	Find where to start putting bytes.
1140 			 */
1141 			skb_put(skb, fragheaderlen + fraggap);
1142 			skb_reset_network_header(skb);
1143 			skb->transport_header = (skb->network_header +
1144 						 fragheaderlen);
1145 			if (fraggap) {
1146 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1147 								   maxfraglen,
1148 						    skb_transport_header(skb),
1149 								   fraggap, 0);
1150 				skb_prev->csum = csum_sub(skb_prev->csum,
1151 							  skb->csum);
1152 				pskb_trim_unique(skb_prev, maxfraglen);
1153 			}
1154 
1155 			/*
1156 			 * Put the packet on the pending queue.
1157 			 */
1158 			__skb_queue_tail(&sk->sk_write_queue, skb);
1159 			continue;
1160 		}
1161 
1162 		i = skb_shinfo(skb)->nr_frags;
1163 		if (len > size)
1164 			len = size;
1165 		if (skb_can_coalesce(skb, i, page, offset)) {
1166 			skb_shinfo(skb)->frags[i-1].size += len;
1167 		} else if (i < MAX_SKB_FRAGS) {
1168 			get_page(page);
1169 			skb_fill_page_desc(skb, i, page, offset, len);
1170 		} else {
1171 			err = -EMSGSIZE;
1172 			goto error;
1173 		}
1174 
1175 		if (skb->ip_summed == CHECKSUM_NONE) {
1176 			__wsum csum;
1177 			csum = csum_page(page, offset, len);
1178 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1179 		}
1180 
1181 		skb->len += len;
1182 		skb->data_len += len;
1183 		skb->truesize += len;
1184 		atomic_add(len, &sk->sk_wmem_alloc);
1185 		offset += len;
1186 		size -= len;
1187 	}
1188 	return 0;
1189 
1190 error:
1191 	inet->cork.length -= size;
1192 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1193 	return err;
1194 }
1195 
1196 static void ip_cork_release(struct inet_sock *inet)
1197 {
1198 	inet->cork.flags &= ~IPCORK_OPT;
1199 	kfree(inet->cork.opt);
1200 	inet->cork.opt = NULL;
1201 	dst_release(inet->cork.dst);
1202 	inet->cork.dst = NULL;
1203 }
1204 
1205 /*
1206  *	Combined all pending IP fragments on the socket as one IP datagram
1207  *	and push them out.
1208  */
1209 int ip_push_pending_frames(struct sock *sk)
1210 {
1211 	struct sk_buff *skb, *tmp_skb;
1212 	struct sk_buff **tail_skb;
1213 	struct inet_sock *inet = inet_sk(sk);
1214 	struct net *net = sock_net(sk);
1215 	struct ip_options *opt = NULL;
1216 	struct rtable *rt = (struct rtable *)inet->cork.dst;
1217 	struct iphdr *iph;
1218 	__be16 df = 0;
1219 	__u8 ttl;
1220 	int err = 0;
1221 
1222 	if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1223 		goto out;
1224 	tail_skb = &(skb_shinfo(skb)->frag_list);
1225 
1226 	/* move skb->data to ip header from ext header */
1227 	if (skb->data < skb_network_header(skb))
1228 		__skb_pull(skb, skb_network_offset(skb));
1229 	while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1230 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1231 		*tail_skb = tmp_skb;
1232 		tail_skb = &(tmp_skb->next);
1233 		skb->len += tmp_skb->len;
1234 		skb->data_len += tmp_skb->len;
1235 		skb->truesize += tmp_skb->truesize;
1236 		__sock_put(tmp_skb->sk);
1237 		tmp_skb->destructor = NULL;
1238 		tmp_skb->sk = NULL;
1239 	}
1240 
1241 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1242 	 * to fragment the frame generated here. No matter, what transforms
1243 	 * how transforms change size of the packet, it will come out.
1244 	 */
1245 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1246 		skb->local_df = 1;
1247 
1248 	/* DF bit is set when we want to see DF on outgoing frames.
1249 	 * If local_df is set too, we still allow to fragment this frame
1250 	 * locally. */
1251 	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1252 	    (skb->len <= dst_mtu(&rt->u.dst) &&
1253 	     ip_dont_fragment(sk, &rt->u.dst)))
1254 		df = htons(IP_DF);
1255 
1256 	if (inet->cork.flags & IPCORK_OPT)
1257 		opt = inet->cork.opt;
1258 
1259 	if (rt->rt_type == RTN_MULTICAST)
1260 		ttl = inet->mc_ttl;
1261 	else
1262 		ttl = ip_select_ttl(inet, &rt->u.dst);
1263 
1264 	iph = (struct iphdr *)skb->data;
1265 	iph->version = 4;
1266 	iph->ihl = 5;
1267 	if (opt) {
1268 		iph->ihl += opt->optlen>>2;
1269 		ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1270 	}
1271 	iph->tos = inet->tos;
1272 	iph->frag_off = df;
1273 	ip_select_ident(iph, &rt->u.dst, sk);
1274 	iph->ttl = ttl;
1275 	iph->protocol = sk->sk_protocol;
1276 	iph->saddr = rt->rt_src;
1277 	iph->daddr = rt->rt_dst;
1278 
1279 	skb->priority = sk->sk_priority;
1280 	skb->mark = sk->sk_mark;
1281 	skb->dst = dst_clone(&rt->u.dst);
1282 
1283 	if (iph->protocol == IPPROTO_ICMP)
1284 		icmp_out_count(net, ((struct icmphdr *)
1285 			skb_transport_header(skb))->type);
1286 
1287 	/* Netfilter gets whole the not fragmented skb. */
1288 	err = ip_local_out(skb);
1289 	if (err) {
1290 		if (err > 0)
1291 			err = inet->recverr ? net_xmit_errno(err) : 0;
1292 		if (err)
1293 			goto error;
1294 	}
1295 
1296 out:
1297 	ip_cork_release(inet);
1298 	return err;
1299 
1300 error:
1301 	IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1302 	goto out;
1303 }
1304 
1305 /*
1306  *	Throw away all pending data on the socket.
1307  */
1308 void ip_flush_pending_frames(struct sock *sk)
1309 {
1310 	struct sk_buff *skb;
1311 
1312 	while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1313 		kfree_skb(skb);
1314 
1315 	ip_cork_release(inet_sk(sk));
1316 }
1317 
1318 
1319 /*
1320  *	Fetch data from kernel space and fill in checksum if needed.
1321  */
1322 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1323 			      int len, int odd, struct sk_buff *skb)
1324 {
1325 	__wsum csum;
1326 
1327 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1328 	skb->csum = csum_block_add(skb->csum, csum, odd);
1329 	return 0;
1330 }
1331 
1332 /*
1333  *	Generic function to send a packet as reply to another packet.
1334  *	Used to send TCP resets so far. ICMP should use this function too.
1335  *
1336  *	Should run single threaded per socket because it uses the sock
1337  *     	structure to pass arguments.
1338  */
1339 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1340 		   unsigned int len)
1341 {
1342 	struct inet_sock *inet = inet_sk(sk);
1343 	struct {
1344 		struct ip_options	opt;
1345 		char			data[40];
1346 	} replyopts;
1347 	struct ipcm_cookie ipc;
1348 	__be32 daddr;
1349 	struct rtable *rt = skb->rtable;
1350 
1351 	if (ip_options_echo(&replyopts.opt, skb))
1352 		return;
1353 
1354 	daddr = ipc.addr = rt->rt_src;
1355 	ipc.opt = NULL;
1356 
1357 	if (replyopts.opt.optlen) {
1358 		ipc.opt = &replyopts.opt;
1359 
1360 		if (ipc.opt->srr)
1361 			daddr = replyopts.opt.faddr;
1362 	}
1363 
1364 	{
1365 		struct flowi fl = { .oif = arg->bound_dev_if,
1366 				    .nl_u = { .ip4_u =
1367 					      { .daddr = daddr,
1368 						.saddr = rt->rt_spec_dst,
1369 						.tos = RT_TOS(ip_hdr(skb)->tos) } },
1370 				    /* Not quite clean, but right. */
1371 				    .uli_u = { .ports =
1372 					       { .sport = tcp_hdr(skb)->dest,
1373 						 .dport = tcp_hdr(skb)->source } },
1374 				    .proto = sk->sk_protocol };
1375 		security_skb_classify_flow(skb, &fl);
1376 		if (ip_route_output_key(sock_net(sk), &rt, &fl))
1377 			return;
1378 	}
1379 
1380 	/* And let IP do all the hard work.
1381 
1382 	   This chunk is not reenterable, hence spinlock.
1383 	   Note that it uses the fact, that this function is called
1384 	   with locally disabled BH and that sk cannot be already spinlocked.
1385 	 */
1386 	bh_lock_sock(sk);
1387 	inet->tos = ip_hdr(skb)->tos;
1388 	sk->sk_priority = skb->priority;
1389 	sk->sk_protocol = ip_hdr(skb)->protocol;
1390 	sk->sk_bound_dev_if = arg->bound_dev_if;
1391 	ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1392 		       &ipc, rt, MSG_DONTWAIT);
1393 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1394 		if (arg->csumoffset >= 0)
1395 			*((__sum16 *)skb_transport_header(skb) +
1396 			  arg->csumoffset) = csum_fold(csum_add(skb->csum,
1397 								arg->csum));
1398 		skb->ip_summed = CHECKSUM_NONE;
1399 		ip_push_pending_frames(sk);
1400 	}
1401 
1402 	bh_unlock_sock(sk);
1403 
1404 	ip_rt_put(rt);
1405 }
1406 
1407 void __init ip_init(void)
1408 {
1409 	ip_rt_init();
1410 	inet_initpeers();
1411 
1412 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1413 	igmp_mc_proc_init();
1414 #endif
1415 }
1416 
1417 EXPORT_SYMBOL(ip_generic_getfrag);
1418 EXPORT_SYMBOL(ip_queue_xmit);
1419 EXPORT_SYMBOL(ip_send_check);
1420