1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The Internet Protocol (IP) output module. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Donald Becker, <becker@super.org> 12 * Alan Cox, <Alan.Cox@linux.org> 13 * Richard Underwood 14 * Stefan Becker, <stefanb@yello.ping.de> 15 * Jorge Cwik, <jorge@laser.satlink.net> 16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 17 * Hirokazu Takahashi, <taka@valinux.co.jp> 18 * 19 * See ip_input.c for original log 20 * 21 * Fixes: 22 * Alan Cox : Missing nonblock feature in ip_build_xmit. 23 * Mike Kilburn : htons() missing in ip_build_xmit. 24 * Bradford Johnson: Fix faulty handling of some frames when 25 * no route is found. 26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 27 * (in case if packet not accepted by 28 * output firewall rules) 29 * Mike McLagan : Routing by source 30 * Alexey Kuznetsov: use new route cache 31 * Andi Kleen: Fix broken PMTU recovery and remove 32 * some redundant tests. 33 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 34 * Andi Kleen : Replace ip_reply with ip_send_reply. 35 * Andi Kleen : Split fast and slow ip_build_xmit path 36 * for decreased register pressure on x86 37 * and more readability. 38 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 39 * silently drop skb instead of failing with -EPERM. 40 * Detlev Wengorz : Copy protocol for fragments. 41 * Hirokazu Takahashi: HW checksumming for outgoing UDP 42 * datagrams. 43 * Hirokazu Takahashi: sendfile() on UDP works now. 44 */ 45 46 #include <linux/uaccess.h> 47 #include <linux/module.h> 48 #include <linux/types.h> 49 #include <linux/kernel.h> 50 #include <linux/mm.h> 51 #include <linux/string.h> 52 #include <linux/errno.h> 53 #include <linux/highmem.h> 54 #include <linux/slab.h> 55 56 #include <linux/socket.h> 57 #include <linux/sockios.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/etherdevice.h> 62 #include <linux/proc_fs.h> 63 #include <linux/stat.h> 64 #include <linux/init.h> 65 66 #include <net/snmp.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <net/route.h> 70 #include <net/xfrm.h> 71 #include <linux/skbuff.h> 72 #include <net/sock.h> 73 #include <net/arp.h> 74 #include <net/icmp.h> 75 #include <net/checksum.h> 76 #include <net/inetpeer.h> 77 #include <net/inet_ecn.h> 78 #include <net/lwtunnel.h> 79 #include <linux/bpf-cgroup.h> 80 #include <linux/igmp.h> 81 #include <linux/netfilter_ipv4.h> 82 #include <linux/netfilter_bridge.h> 83 #include <linux/netlink.h> 84 #include <linux/tcp.h> 85 86 static int 87 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 88 unsigned int mtu, 89 int (*output)(struct net *, struct sock *, struct sk_buff *)); 90 91 /* Generate a checksum for an outgoing IP datagram. */ 92 void ip_send_check(struct iphdr *iph) 93 { 94 iph->check = 0; 95 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 96 } 97 EXPORT_SYMBOL(ip_send_check); 98 99 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 100 { 101 struct iphdr *iph = ip_hdr(skb); 102 103 iph->tot_len = htons(skb->len); 104 ip_send_check(iph); 105 106 /* if egress device is enslaved to an L3 master device pass the 107 * skb to its handler for processing 108 */ 109 skb = l3mdev_ip_out(sk, skb); 110 if (unlikely(!skb)) 111 return 0; 112 113 skb->protocol = htons(ETH_P_IP); 114 115 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 116 net, sk, skb, NULL, skb_dst(skb)->dev, 117 dst_output); 118 } 119 120 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 121 { 122 int err; 123 124 err = __ip_local_out(net, sk, skb); 125 if (likely(err == 1)) 126 err = dst_output(net, sk, skb); 127 128 return err; 129 } 130 EXPORT_SYMBOL_GPL(ip_local_out); 131 132 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 133 { 134 int ttl = inet->uc_ttl; 135 136 if (ttl < 0) 137 ttl = ip4_dst_hoplimit(dst); 138 return ttl; 139 } 140 141 /* 142 * Add an ip header to a skbuff and send it out. 143 * 144 */ 145 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 146 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt, 147 u8 tos) 148 { 149 struct inet_sock *inet = inet_sk(sk); 150 struct rtable *rt = skb_rtable(skb); 151 struct net *net = sock_net(sk); 152 struct iphdr *iph; 153 154 /* Build the IP header. */ 155 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 156 skb_reset_network_header(skb); 157 iph = ip_hdr(skb); 158 iph->version = 4; 159 iph->ihl = 5; 160 iph->tos = tos; 161 iph->ttl = ip_select_ttl(inet, &rt->dst); 162 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 163 iph->saddr = saddr; 164 iph->protocol = sk->sk_protocol; 165 if (ip_dont_fragment(sk, &rt->dst)) { 166 iph->frag_off = htons(IP_DF); 167 iph->id = 0; 168 } else { 169 iph->frag_off = 0; 170 __ip_select_ident(net, iph, 1); 171 } 172 173 if (opt && opt->opt.optlen) { 174 iph->ihl += opt->opt.optlen>>2; 175 ip_options_build(skb, &opt->opt, daddr, rt, 0); 176 } 177 178 skb->priority = sk->sk_priority; 179 if (!skb->mark) 180 skb->mark = sk->sk_mark; 181 182 /* Send it out. */ 183 return ip_local_out(net, skb->sk, skb); 184 } 185 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 186 187 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 188 { 189 struct dst_entry *dst = skb_dst(skb); 190 struct rtable *rt = (struct rtable *)dst; 191 struct net_device *dev = dst->dev; 192 unsigned int hh_len = LL_RESERVED_SPACE(dev); 193 struct neighbour *neigh; 194 bool is_v6gw = false; 195 196 if (rt->rt_type == RTN_MULTICAST) { 197 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 198 } else if (rt->rt_type == RTN_BROADCAST) 199 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 200 201 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 202 skb = skb_expand_head(skb, hh_len); 203 if (!skb) 204 return -ENOMEM; 205 } 206 207 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 208 int res = lwtunnel_xmit(skb); 209 210 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 211 return res; 212 } 213 214 rcu_read_lock_bh(); 215 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 216 if (!IS_ERR(neigh)) { 217 int res; 218 219 sock_confirm_neigh(skb, neigh); 220 /* if crossing protocols, can not use the cached header */ 221 res = neigh_output(neigh, skb, is_v6gw); 222 rcu_read_unlock_bh(); 223 return res; 224 } 225 rcu_read_unlock_bh(); 226 227 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 228 __func__); 229 kfree_skb(skb); 230 return -EINVAL; 231 } 232 233 static int ip_finish_output_gso(struct net *net, struct sock *sk, 234 struct sk_buff *skb, unsigned int mtu) 235 { 236 struct sk_buff *segs, *nskb; 237 netdev_features_t features; 238 int ret = 0; 239 240 /* common case: seglen is <= mtu 241 */ 242 if (skb_gso_validate_network_len(skb, mtu)) 243 return ip_finish_output2(net, sk, skb); 244 245 /* Slowpath - GSO segment length exceeds the egress MTU. 246 * 247 * This can happen in several cases: 248 * - Forwarding of a TCP GRO skb, when DF flag is not set. 249 * - Forwarding of an skb that arrived on a virtualization interface 250 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 251 * stack. 252 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 253 * interface with a smaller MTU. 254 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 255 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 256 * insufficient MTU. 257 */ 258 features = netif_skb_features(skb); 259 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET); 260 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 261 if (IS_ERR_OR_NULL(segs)) { 262 kfree_skb(skb); 263 return -ENOMEM; 264 } 265 266 consume_skb(skb); 267 268 skb_list_walk_safe(segs, segs, nskb) { 269 int err; 270 271 skb_mark_not_on_list(segs); 272 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 273 274 if (err && ret == 0) 275 ret = err; 276 } 277 278 return ret; 279 } 280 281 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 282 { 283 unsigned int mtu; 284 285 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 286 /* Policy lookup after SNAT yielded a new policy */ 287 if (skb_dst(skb)->xfrm) { 288 IPCB(skb)->flags |= IPSKB_REROUTED; 289 return dst_output(net, sk, skb); 290 } 291 #endif 292 mtu = ip_skb_dst_mtu(sk, skb); 293 if (skb_is_gso(skb)) 294 return ip_finish_output_gso(net, sk, skb, mtu); 295 296 if (skb->len > mtu || IPCB(skb)->frag_max_size) 297 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 298 299 return ip_finish_output2(net, sk, skb); 300 } 301 302 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 303 { 304 int ret; 305 306 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 307 switch (ret) { 308 case NET_XMIT_SUCCESS: 309 return __ip_finish_output(net, sk, skb); 310 case NET_XMIT_CN: 311 return __ip_finish_output(net, sk, skb) ? : ret; 312 default: 313 kfree_skb(skb); 314 return ret; 315 } 316 } 317 318 static int ip_mc_finish_output(struct net *net, struct sock *sk, 319 struct sk_buff *skb) 320 { 321 struct rtable *new_rt; 322 bool do_cn = false; 323 int ret, err; 324 325 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 326 switch (ret) { 327 case NET_XMIT_CN: 328 do_cn = true; 329 fallthrough; 330 case NET_XMIT_SUCCESS: 331 break; 332 default: 333 kfree_skb(skb); 334 return ret; 335 } 336 337 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting 338 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten, 339 * see ipv4_pktinfo_prepare(). 340 */ 341 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb)); 342 if (new_rt) { 343 new_rt->rt_iif = 0; 344 skb_dst_drop(skb); 345 skb_dst_set(skb, &new_rt->dst); 346 } 347 348 err = dev_loopback_xmit(net, sk, skb); 349 return (do_cn && err) ? ret : err; 350 } 351 352 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 353 { 354 struct rtable *rt = skb_rtable(skb); 355 struct net_device *dev = rt->dst.dev; 356 357 /* 358 * If the indicated interface is up and running, send the packet. 359 */ 360 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 361 362 skb->dev = dev; 363 skb->protocol = htons(ETH_P_IP); 364 365 /* 366 * Multicasts are looped back for other local users 367 */ 368 369 if (rt->rt_flags&RTCF_MULTICAST) { 370 if (sk_mc_loop(sk) 371 #ifdef CONFIG_IP_MROUTE 372 /* Small optimization: do not loopback not local frames, 373 which returned after forwarding; they will be dropped 374 by ip_mr_input in any case. 375 Note, that local frames are looped back to be delivered 376 to local recipients. 377 378 This check is duplicated in ip_mr_input at the moment. 379 */ 380 && 381 ((rt->rt_flags & RTCF_LOCAL) || 382 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 383 #endif 384 ) { 385 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 386 if (newskb) 387 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 388 net, sk, newskb, NULL, newskb->dev, 389 ip_mc_finish_output); 390 } 391 392 /* Multicasts with ttl 0 must not go beyond the host */ 393 394 if (ip_hdr(skb)->ttl == 0) { 395 kfree_skb(skb); 396 return 0; 397 } 398 } 399 400 if (rt->rt_flags&RTCF_BROADCAST) { 401 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 402 if (newskb) 403 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 404 net, sk, newskb, NULL, newskb->dev, 405 ip_mc_finish_output); 406 } 407 408 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 409 net, sk, skb, NULL, skb->dev, 410 ip_finish_output, 411 !(IPCB(skb)->flags & IPSKB_REROUTED)); 412 } 413 414 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 415 { 416 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev; 417 418 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 419 420 skb->dev = dev; 421 skb->protocol = htons(ETH_P_IP); 422 423 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 424 net, sk, skb, indev, dev, 425 ip_finish_output, 426 !(IPCB(skb)->flags & IPSKB_REROUTED)); 427 } 428 EXPORT_SYMBOL(ip_output); 429 430 /* 431 * copy saddr and daddr, possibly using 64bit load/stores 432 * Equivalent to : 433 * iph->saddr = fl4->saddr; 434 * iph->daddr = fl4->daddr; 435 */ 436 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 437 { 438 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 439 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 440 441 iph->saddr = fl4->saddr; 442 iph->daddr = fl4->daddr; 443 } 444 445 /* Note: skb->sk can be different from sk, in case of tunnels */ 446 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, 447 __u8 tos) 448 { 449 struct inet_sock *inet = inet_sk(sk); 450 struct net *net = sock_net(sk); 451 struct ip_options_rcu *inet_opt; 452 struct flowi4 *fl4; 453 struct rtable *rt; 454 struct iphdr *iph; 455 int res; 456 457 /* Skip all of this if the packet is already routed, 458 * f.e. by something like SCTP. 459 */ 460 rcu_read_lock(); 461 inet_opt = rcu_dereference(inet->inet_opt); 462 fl4 = &fl->u.ip4; 463 rt = skb_rtable(skb); 464 if (rt) 465 goto packet_routed; 466 467 /* Make sure we can route this packet. */ 468 rt = (struct rtable *)__sk_dst_check(sk, 0); 469 if (!rt) { 470 __be32 daddr; 471 472 /* Use correct destination address if we have options. */ 473 daddr = inet->inet_daddr; 474 if (inet_opt && inet_opt->opt.srr) 475 daddr = inet_opt->opt.faddr; 476 477 /* If this fails, retransmit mechanism of transport layer will 478 * keep trying until route appears or the connection times 479 * itself out. 480 */ 481 rt = ip_route_output_ports(net, fl4, sk, 482 daddr, inet->inet_saddr, 483 inet->inet_dport, 484 inet->inet_sport, 485 sk->sk_protocol, 486 RT_CONN_FLAGS_TOS(sk, tos), 487 sk->sk_bound_dev_if); 488 if (IS_ERR(rt)) 489 goto no_route; 490 sk_setup_caps(sk, &rt->dst); 491 } 492 skb_dst_set_noref(skb, &rt->dst); 493 494 packet_routed: 495 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 496 goto no_route; 497 498 /* OK, we know where to send it, allocate and build IP header. */ 499 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 500 skb_reset_network_header(skb); 501 iph = ip_hdr(skb); 502 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); 503 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 504 iph->frag_off = htons(IP_DF); 505 else 506 iph->frag_off = 0; 507 iph->ttl = ip_select_ttl(inet, &rt->dst); 508 iph->protocol = sk->sk_protocol; 509 ip_copy_addrs(iph, fl4); 510 511 /* Transport layer set skb->h.foo itself. */ 512 513 if (inet_opt && inet_opt->opt.optlen) { 514 iph->ihl += inet_opt->opt.optlen >> 2; 515 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 516 } 517 518 ip_select_ident_segs(net, skb, sk, 519 skb_shinfo(skb)->gso_segs ?: 1); 520 521 /* TODO : should we use skb->sk here instead of sk ? */ 522 skb->priority = sk->sk_priority; 523 skb->mark = sk->sk_mark; 524 525 res = ip_local_out(net, sk, skb); 526 rcu_read_unlock(); 527 return res; 528 529 no_route: 530 rcu_read_unlock(); 531 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 532 kfree_skb(skb); 533 return -EHOSTUNREACH; 534 } 535 EXPORT_SYMBOL(__ip_queue_xmit); 536 537 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 538 { 539 return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos); 540 } 541 EXPORT_SYMBOL(ip_queue_xmit); 542 543 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 544 { 545 to->pkt_type = from->pkt_type; 546 to->priority = from->priority; 547 to->protocol = from->protocol; 548 to->skb_iif = from->skb_iif; 549 skb_dst_drop(to); 550 skb_dst_copy(to, from); 551 to->dev = from->dev; 552 to->mark = from->mark; 553 554 skb_copy_hash(to, from); 555 556 #ifdef CONFIG_NET_SCHED 557 to->tc_index = from->tc_index; 558 #endif 559 nf_copy(to, from); 560 skb_ext_copy(to, from); 561 #if IS_ENABLED(CONFIG_IP_VS) 562 to->ipvs_property = from->ipvs_property; 563 #endif 564 skb_copy_secmark(to, from); 565 } 566 567 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 568 unsigned int mtu, 569 int (*output)(struct net *, struct sock *, struct sk_buff *)) 570 { 571 struct iphdr *iph = ip_hdr(skb); 572 573 if ((iph->frag_off & htons(IP_DF)) == 0) 574 return ip_do_fragment(net, sk, skb, output); 575 576 if (unlikely(!skb->ignore_df || 577 (IPCB(skb)->frag_max_size && 578 IPCB(skb)->frag_max_size > mtu))) { 579 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 580 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 581 htonl(mtu)); 582 kfree_skb(skb); 583 return -EMSGSIZE; 584 } 585 586 return ip_do_fragment(net, sk, skb, output); 587 } 588 589 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, 590 unsigned int hlen, struct ip_fraglist_iter *iter) 591 { 592 unsigned int first_len = skb_pagelen(skb); 593 594 iter->frag = skb_shinfo(skb)->frag_list; 595 skb_frag_list_init(skb); 596 597 iter->offset = 0; 598 iter->iph = iph; 599 iter->hlen = hlen; 600 601 skb->data_len = first_len - skb_headlen(skb); 602 skb->len = first_len; 603 iph->tot_len = htons(first_len); 604 iph->frag_off = htons(IP_MF); 605 ip_send_check(iph); 606 } 607 EXPORT_SYMBOL(ip_fraglist_init); 608 609 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter) 610 { 611 unsigned int hlen = iter->hlen; 612 struct iphdr *iph = iter->iph; 613 struct sk_buff *frag; 614 615 frag = iter->frag; 616 frag->ip_summed = CHECKSUM_NONE; 617 skb_reset_transport_header(frag); 618 __skb_push(frag, hlen); 619 skb_reset_network_header(frag); 620 memcpy(skb_network_header(frag), iph, hlen); 621 iter->iph = ip_hdr(frag); 622 iph = iter->iph; 623 iph->tot_len = htons(frag->len); 624 ip_copy_metadata(frag, skb); 625 iter->offset += skb->len - hlen; 626 iph->frag_off = htons(iter->offset >> 3); 627 if (frag->next) 628 iph->frag_off |= htons(IP_MF); 629 /* Ready, complete checksum */ 630 ip_send_check(iph); 631 } 632 EXPORT_SYMBOL(ip_fraglist_prepare); 633 634 void ip_frag_init(struct sk_buff *skb, unsigned int hlen, 635 unsigned int ll_rs, unsigned int mtu, bool DF, 636 struct ip_frag_state *state) 637 { 638 struct iphdr *iph = ip_hdr(skb); 639 640 state->DF = DF; 641 state->hlen = hlen; 642 state->ll_rs = ll_rs; 643 state->mtu = mtu; 644 645 state->left = skb->len - hlen; /* Space per frame */ 646 state->ptr = hlen; /* Where to start from */ 647 648 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 649 state->not_last_frag = iph->frag_off & htons(IP_MF); 650 } 651 EXPORT_SYMBOL(ip_frag_init); 652 653 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to, 654 bool first_frag) 655 { 656 /* Copy the flags to each fragment. */ 657 IPCB(to)->flags = IPCB(from)->flags; 658 659 /* ANK: dirty, but effective trick. Upgrade options only if 660 * the segment to be fragmented was THE FIRST (otherwise, 661 * options are already fixed) and make it ONCE 662 * on the initial skb, so that all the following fragments 663 * will inherit fixed options. 664 */ 665 if (first_frag) 666 ip_options_fragment(from); 667 } 668 669 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state) 670 { 671 unsigned int len = state->left; 672 struct sk_buff *skb2; 673 struct iphdr *iph; 674 675 len = state->left; 676 /* IF: it doesn't fit, use 'mtu' - the data space left */ 677 if (len > state->mtu) 678 len = state->mtu; 679 /* IF: we are not sending up to and including the packet end 680 then align the next start on an eight byte boundary */ 681 if (len < state->left) { 682 len &= ~7; 683 } 684 685 /* Allocate buffer */ 686 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC); 687 if (!skb2) 688 return ERR_PTR(-ENOMEM); 689 690 /* 691 * Set up data on packet 692 */ 693 694 ip_copy_metadata(skb2, skb); 695 skb_reserve(skb2, state->ll_rs); 696 skb_put(skb2, len + state->hlen); 697 skb_reset_network_header(skb2); 698 skb2->transport_header = skb2->network_header + state->hlen; 699 700 /* 701 * Charge the memory for the fragment to any owner 702 * it might possess 703 */ 704 705 if (skb->sk) 706 skb_set_owner_w(skb2, skb->sk); 707 708 /* 709 * Copy the packet header into the new buffer. 710 */ 711 712 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen); 713 714 /* 715 * Copy a block of the IP datagram. 716 */ 717 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len)) 718 BUG(); 719 state->left -= len; 720 721 /* 722 * Fill in the new header fields. 723 */ 724 iph = ip_hdr(skb2); 725 iph->frag_off = htons((state->offset >> 3)); 726 if (state->DF) 727 iph->frag_off |= htons(IP_DF); 728 729 /* 730 * Added AC : If we are fragmenting a fragment that's not the 731 * last fragment then keep MF on each bit 732 */ 733 if (state->left > 0 || state->not_last_frag) 734 iph->frag_off |= htons(IP_MF); 735 state->ptr += len; 736 state->offset += len; 737 738 iph->tot_len = htons(len + state->hlen); 739 740 ip_send_check(iph); 741 742 return skb2; 743 } 744 EXPORT_SYMBOL(ip_frag_next); 745 746 /* 747 * This IP datagram is too large to be sent in one piece. Break it up into 748 * smaller pieces (each of size equal to IP header plus 749 * a block of the data of the original IP data part) that will yet fit in a 750 * single device frame, and queue such a frame for sending. 751 */ 752 753 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 754 int (*output)(struct net *, struct sock *, struct sk_buff *)) 755 { 756 struct iphdr *iph; 757 struct sk_buff *skb2; 758 struct rtable *rt = skb_rtable(skb); 759 unsigned int mtu, hlen, ll_rs; 760 struct ip_fraglist_iter iter; 761 ktime_t tstamp = skb->tstamp; 762 struct ip_frag_state state; 763 int err = 0; 764 765 /* for offloaded checksums cleanup checksum before fragmentation */ 766 if (skb->ip_summed == CHECKSUM_PARTIAL && 767 (err = skb_checksum_help(skb))) 768 goto fail; 769 770 /* 771 * Point into the IP datagram header. 772 */ 773 774 iph = ip_hdr(skb); 775 776 mtu = ip_skb_dst_mtu(sk, skb); 777 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 778 mtu = IPCB(skb)->frag_max_size; 779 780 /* 781 * Setup starting values. 782 */ 783 784 hlen = iph->ihl * 4; 785 mtu = mtu - hlen; /* Size of data space */ 786 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 787 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 788 789 /* When frag_list is given, use it. First, check its validity: 790 * some transformers could create wrong frag_list or break existing 791 * one, it is not prohibited. In this case fall back to copying. 792 * 793 * LATER: this step can be merged to real generation of fragments, 794 * we can switch to copy when see the first bad fragment. 795 */ 796 if (skb_has_frag_list(skb)) { 797 struct sk_buff *frag, *frag2; 798 unsigned int first_len = skb_pagelen(skb); 799 800 if (first_len - hlen > mtu || 801 ((first_len - hlen) & 7) || 802 ip_is_fragment(iph) || 803 skb_cloned(skb) || 804 skb_headroom(skb) < ll_rs) 805 goto slow_path; 806 807 skb_walk_frags(skb, frag) { 808 /* Correct geometry. */ 809 if (frag->len > mtu || 810 ((frag->len & 7) && frag->next) || 811 skb_headroom(frag) < hlen + ll_rs) 812 goto slow_path_clean; 813 814 /* Partially cloned skb? */ 815 if (skb_shared(frag)) 816 goto slow_path_clean; 817 818 BUG_ON(frag->sk); 819 if (skb->sk) { 820 frag->sk = skb->sk; 821 frag->destructor = sock_wfree; 822 } 823 skb->truesize -= frag->truesize; 824 } 825 826 /* Everything is OK. Generate! */ 827 ip_fraglist_init(skb, iph, hlen, &iter); 828 ip_options_fragment(iter.frag); 829 830 for (;;) { 831 /* Prepare header of the next frame, 832 * before previous one went down. */ 833 if (iter.frag) { 834 IPCB(iter.frag)->flags = IPCB(skb)->flags; 835 ip_fraglist_prepare(skb, &iter); 836 } 837 838 skb->tstamp = tstamp; 839 err = output(net, sk, skb); 840 841 if (!err) 842 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 843 if (err || !iter.frag) 844 break; 845 846 skb = ip_fraglist_next(&iter); 847 } 848 849 if (err == 0) { 850 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 851 return 0; 852 } 853 854 kfree_skb_list(iter.frag); 855 856 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 857 return err; 858 859 slow_path_clean: 860 skb_walk_frags(skb, frag2) { 861 if (frag2 == frag) 862 break; 863 frag2->sk = NULL; 864 frag2->destructor = NULL; 865 skb->truesize += frag2->truesize; 866 } 867 } 868 869 slow_path: 870 /* 871 * Fragment the datagram. 872 */ 873 874 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU, 875 &state); 876 877 /* 878 * Keep copying data until we run out. 879 */ 880 881 while (state.left > 0) { 882 bool first_frag = (state.offset == 0); 883 884 skb2 = ip_frag_next(skb, &state); 885 if (IS_ERR(skb2)) { 886 err = PTR_ERR(skb2); 887 goto fail; 888 } 889 ip_frag_ipcb(skb, skb2, first_frag); 890 891 /* 892 * Put this fragment into the sending queue. 893 */ 894 skb2->tstamp = tstamp; 895 err = output(net, sk, skb2); 896 if (err) 897 goto fail; 898 899 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 900 } 901 consume_skb(skb); 902 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 903 return err; 904 905 fail: 906 kfree_skb(skb); 907 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 908 return err; 909 } 910 EXPORT_SYMBOL(ip_do_fragment); 911 912 int 913 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 914 { 915 struct msghdr *msg = from; 916 917 if (skb->ip_summed == CHECKSUM_PARTIAL) { 918 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 919 return -EFAULT; 920 } else { 921 __wsum csum = 0; 922 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 923 return -EFAULT; 924 skb->csum = csum_block_add(skb->csum, csum, odd); 925 } 926 return 0; 927 } 928 EXPORT_SYMBOL(ip_generic_getfrag); 929 930 static inline __wsum 931 csum_page(struct page *page, int offset, int copy) 932 { 933 char *kaddr; 934 __wsum csum; 935 kaddr = kmap(page); 936 csum = csum_partial(kaddr + offset, copy, 0); 937 kunmap(page); 938 return csum; 939 } 940 941 static int __ip_append_data(struct sock *sk, 942 struct flowi4 *fl4, 943 struct sk_buff_head *queue, 944 struct inet_cork *cork, 945 struct page_frag *pfrag, 946 int getfrag(void *from, char *to, int offset, 947 int len, int odd, struct sk_buff *skb), 948 void *from, int length, int transhdrlen, 949 unsigned int flags) 950 { 951 struct inet_sock *inet = inet_sk(sk); 952 struct ubuf_info *uarg = NULL; 953 struct sk_buff *skb; 954 955 struct ip_options *opt = cork->opt; 956 int hh_len; 957 int exthdrlen; 958 int mtu; 959 int copy; 960 int err; 961 int offset = 0; 962 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 963 int csummode = CHECKSUM_NONE; 964 struct rtable *rt = (struct rtable *)cork->dst; 965 unsigned int wmem_alloc_delta = 0; 966 bool paged, extra_uref = false; 967 u32 tskey = 0; 968 969 skb = skb_peek_tail(queue); 970 971 exthdrlen = !skb ? rt->dst.header_len : 0; 972 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 973 paged = !!cork->gso_size; 974 975 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 976 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 977 tskey = sk->sk_tskey++; 978 979 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 980 981 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 982 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 983 maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu; 984 985 if (cork->length + length > maxnonfragsize - fragheaderlen) { 986 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 987 mtu - (opt ? opt->optlen : 0)); 988 return -EMSGSIZE; 989 } 990 991 /* 992 * transhdrlen > 0 means that this is the first fragment and we wish 993 * it won't be fragmented in the future. 994 */ 995 if (transhdrlen && 996 length + fragheaderlen <= mtu && 997 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 998 (!(flags & MSG_MORE) || cork->gso_size) && 999 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 1000 csummode = CHECKSUM_PARTIAL; 1001 1002 if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) { 1003 uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb)); 1004 if (!uarg) 1005 return -ENOBUFS; 1006 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ 1007 if (rt->dst.dev->features & NETIF_F_SG && 1008 csummode == CHECKSUM_PARTIAL) { 1009 paged = true; 1010 } else { 1011 uarg->zerocopy = 0; 1012 skb_zcopy_set(skb, uarg, &extra_uref); 1013 } 1014 } 1015 1016 cork->length += length; 1017 1018 /* So, what's going on in the loop below? 1019 * 1020 * We use calculated fragment length to generate chained skb, 1021 * each of segments is IP fragment ready for sending to network after 1022 * adding appropriate IP header. 1023 */ 1024 1025 if (!skb) 1026 goto alloc_new_skb; 1027 1028 while (length > 0) { 1029 /* Check if the remaining data fits into current packet. */ 1030 copy = mtu - skb->len; 1031 if (copy < length) 1032 copy = maxfraglen - skb->len; 1033 if (copy <= 0) { 1034 char *data; 1035 unsigned int datalen; 1036 unsigned int fraglen; 1037 unsigned int fraggap; 1038 unsigned int alloclen, alloc_extra; 1039 unsigned int pagedlen; 1040 struct sk_buff *skb_prev; 1041 alloc_new_skb: 1042 skb_prev = skb; 1043 if (skb_prev) 1044 fraggap = skb_prev->len - maxfraglen; 1045 else 1046 fraggap = 0; 1047 1048 /* 1049 * If remaining data exceeds the mtu, 1050 * we know we need more fragment(s). 1051 */ 1052 datalen = length + fraggap; 1053 if (datalen > mtu - fragheaderlen) 1054 datalen = maxfraglen - fragheaderlen; 1055 fraglen = datalen + fragheaderlen; 1056 pagedlen = 0; 1057 1058 alloc_extra = hh_len + 15; 1059 alloc_extra += exthdrlen; 1060 1061 /* The last fragment gets additional space at tail. 1062 * Note, with MSG_MORE we overallocate on fragments, 1063 * because we have no idea what fragment will be 1064 * the last. 1065 */ 1066 if (datalen == length + fraggap) 1067 alloc_extra += rt->dst.trailer_len; 1068 1069 if ((flags & MSG_MORE) && 1070 !(rt->dst.dev->features&NETIF_F_SG)) 1071 alloclen = mtu; 1072 else if (!paged && 1073 (fraglen + alloc_extra < SKB_MAX_ALLOC || 1074 !(rt->dst.dev->features & NETIF_F_SG))) 1075 alloclen = fraglen; 1076 else { 1077 alloclen = min_t(int, fraglen, MAX_HEADER); 1078 pagedlen = fraglen - alloclen; 1079 } 1080 1081 alloclen += alloc_extra; 1082 1083 if (transhdrlen) { 1084 skb = sock_alloc_send_skb(sk, alloclen, 1085 (flags & MSG_DONTWAIT), &err); 1086 } else { 1087 skb = NULL; 1088 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 1089 2 * sk->sk_sndbuf) 1090 skb = alloc_skb(alloclen, 1091 sk->sk_allocation); 1092 if (unlikely(!skb)) 1093 err = -ENOBUFS; 1094 } 1095 if (!skb) 1096 goto error; 1097 1098 /* 1099 * Fill in the control structures 1100 */ 1101 skb->ip_summed = csummode; 1102 skb->csum = 0; 1103 skb_reserve(skb, hh_len); 1104 1105 /* 1106 * Find where to start putting bytes. 1107 */ 1108 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1109 skb_set_network_header(skb, exthdrlen); 1110 skb->transport_header = (skb->network_header + 1111 fragheaderlen); 1112 data += fragheaderlen + exthdrlen; 1113 1114 if (fraggap) { 1115 skb->csum = skb_copy_and_csum_bits( 1116 skb_prev, maxfraglen, 1117 data + transhdrlen, fraggap); 1118 skb_prev->csum = csum_sub(skb_prev->csum, 1119 skb->csum); 1120 data += fraggap; 1121 pskb_trim_unique(skb_prev, maxfraglen); 1122 } 1123 1124 copy = datalen - transhdrlen - fraggap - pagedlen; 1125 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1126 err = -EFAULT; 1127 kfree_skb(skb); 1128 goto error; 1129 } 1130 1131 offset += copy; 1132 length -= copy + transhdrlen; 1133 transhdrlen = 0; 1134 exthdrlen = 0; 1135 csummode = CHECKSUM_NONE; 1136 1137 /* only the initial fragment is time stamped */ 1138 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1139 cork->tx_flags = 0; 1140 skb_shinfo(skb)->tskey = tskey; 1141 tskey = 0; 1142 skb_zcopy_set(skb, uarg, &extra_uref); 1143 1144 if ((flags & MSG_CONFIRM) && !skb_prev) 1145 skb_set_dst_pending_confirm(skb, 1); 1146 1147 /* 1148 * Put the packet on the pending queue. 1149 */ 1150 if (!skb->destructor) { 1151 skb->destructor = sock_wfree; 1152 skb->sk = sk; 1153 wmem_alloc_delta += skb->truesize; 1154 } 1155 __skb_queue_tail(queue, skb); 1156 continue; 1157 } 1158 1159 if (copy > length) 1160 copy = length; 1161 1162 if (!(rt->dst.dev->features&NETIF_F_SG) && 1163 skb_tailroom(skb) >= copy) { 1164 unsigned int off; 1165 1166 off = skb->len; 1167 if (getfrag(from, skb_put(skb, copy), 1168 offset, copy, off, skb) < 0) { 1169 __skb_trim(skb, off); 1170 err = -EFAULT; 1171 goto error; 1172 } 1173 } else if (!uarg || !uarg->zerocopy) { 1174 int i = skb_shinfo(skb)->nr_frags; 1175 1176 err = -ENOMEM; 1177 if (!sk_page_frag_refill(sk, pfrag)) 1178 goto error; 1179 1180 if (!skb_can_coalesce(skb, i, pfrag->page, 1181 pfrag->offset)) { 1182 err = -EMSGSIZE; 1183 if (i == MAX_SKB_FRAGS) 1184 goto error; 1185 1186 __skb_fill_page_desc(skb, i, pfrag->page, 1187 pfrag->offset, 0); 1188 skb_shinfo(skb)->nr_frags = ++i; 1189 get_page(pfrag->page); 1190 } 1191 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1192 if (getfrag(from, 1193 page_address(pfrag->page) + pfrag->offset, 1194 offset, copy, skb->len, skb) < 0) 1195 goto error_efault; 1196 1197 pfrag->offset += copy; 1198 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1199 skb->len += copy; 1200 skb->data_len += copy; 1201 skb->truesize += copy; 1202 wmem_alloc_delta += copy; 1203 } else { 1204 err = skb_zerocopy_iter_dgram(skb, from, copy); 1205 if (err < 0) 1206 goto error; 1207 } 1208 offset += copy; 1209 length -= copy; 1210 } 1211 1212 if (wmem_alloc_delta) 1213 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1214 return 0; 1215 1216 error_efault: 1217 err = -EFAULT; 1218 error: 1219 net_zcopy_put_abort(uarg, extra_uref); 1220 cork->length -= length; 1221 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1222 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1223 return err; 1224 } 1225 1226 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1227 struct ipcm_cookie *ipc, struct rtable **rtp) 1228 { 1229 struct ip_options_rcu *opt; 1230 struct rtable *rt; 1231 1232 rt = *rtp; 1233 if (unlikely(!rt)) 1234 return -EFAULT; 1235 1236 /* 1237 * setup for corking. 1238 */ 1239 opt = ipc->opt; 1240 if (opt) { 1241 if (!cork->opt) { 1242 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1243 sk->sk_allocation); 1244 if (unlikely(!cork->opt)) 1245 return -ENOBUFS; 1246 } 1247 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1248 cork->flags |= IPCORK_OPT; 1249 cork->addr = ipc->addr; 1250 } 1251 1252 cork->fragsize = ip_sk_use_pmtu(sk) ? 1253 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu); 1254 1255 if (!inetdev_valid_mtu(cork->fragsize)) 1256 return -ENETUNREACH; 1257 1258 cork->gso_size = ipc->gso_size; 1259 1260 cork->dst = &rt->dst; 1261 /* We stole this route, caller should not release it. */ 1262 *rtp = NULL; 1263 1264 cork->length = 0; 1265 cork->ttl = ipc->ttl; 1266 cork->tos = ipc->tos; 1267 cork->mark = ipc->sockc.mark; 1268 cork->priority = ipc->priority; 1269 cork->transmit_time = ipc->sockc.transmit_time; 1270 cork->tx_flags = 0; 1271 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); 1272 1273 return 0; 1274 } 1275 1276 /* 1277 * ip_append_data() and ip_append_page() can make one large IP datagram 1278 * from many pieces of data. Each pieces will be holded on the socket 1279 * until ip_push_pending_frames() is called. Each piece can be a page 1280 * or non-page data. 1281 * 1282 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1283 * this interface potentially. 1284 * 1285 * LATER: length must be adjusted by pad at tail, when it is required. 1286 */ 1287 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1288 int getfrag(void *from, char *to, int offset, int len, 1289 int odd, struct sk_buff *skb), 1290 void *from, int length, int transhdrlen, 1291 struct ipcm_cookie *ipc, struct rtable **rtp, 1292 unsigned int flags) 1293 { 1294 struct inet_sock *inet = inet_sk(sk); 1295 int err; 1296 1297 if (flags&MSG_PROBE) 1298 return 0; 1299 1300 if (skb_queue_empty(&sk->sk_write_queue)) { 1301 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1302 if (err) 1303 return err; 1304 } else { 1305 transhdrlen = 0; 1306 } 1307 1308 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1309 sk_page_frag(sk), getfrag, 1310 from, length, transhdrlen, flags); 1311 } 1312 1313 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1314 int offset, size_t size, int flags) 1315 { 1316 struct inet_sock *inet = inet_sk(sk); 1317 struct sk_buff *skb; 1318 struct rtable *rt; 1319 struct ip_options *opt = NULL; 1320 struct inet_cork *cork; 1321 int hh_len; 1322 int mtu; 1323 int len; 1324 int err; 1325 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1326 1327 if (inet->hdrincl) 1328 return -EPERM; 1329 1330 if (flags&MSG_PROBE) 1331 return 0; 1332 1333 if (skb_queue_empty(&sk->sk_write_queue)) 1334 return -EINVAL; 1335 1336 cork = &inet->cork.base; 1337 rt = (struct rtable *)cork->dst; 1338 if (cork->flags & IPCORK_OPT) 1339 opt = cork->opt; 1340 1341 if (!(rt->dst.dev->features & NETIF_F_SG)) 1342 return -EOPNOTSUPP; 1343 1344 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1345 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 1346 1347 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1348 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1349 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1350 1351 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1352 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1353 mtu - (opt ? opt->optlen : 0)); 1354 return -EMSGSIZE; 1355 } 1356 1357 skb = skb_peek_tail(&sk->sk_write_queue); 1358 if (!skb) 1359 return -EINVAL; 1360 1361 cork->length += size; 1362 1363 while (size > 0) { 1364 /* Check if the remaining data fits into current packet. */ 1365 len = mtu - skb->len; 1366 if (len < size) 1367 len = maxfraglen - skb->len; 1368 1369 if (len <= 0) { 1370 struct sk_buff *skb_prev; 1371 int alloclen; 1372 1373 skb_prev = skb; 1374 fraggap = skb_prev->len - maxfraglen; 1375 1376 alloclen = fragheaderlen + hh_len + fraggap + 15; 1377 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1378 if (unlikely(!skb)) { 1379 err = -ENOBUFS; 1380 goto error; 1381 } 1382 1383 /* 1384 * Fill in the control structures 1385 */ 1386 skb->ip_summed = CHECKSUM_NONE; 1387 skb->csum = 0; 1388 skb_reserve(skb, hh_len); 1389 1390 /* 1391 * Find where to start putting bytes. 1392 */ 1393 skb_put(skb, fragheaderlen + fraggap); 1394 skb_reset_network_header(skb); 1395 skb->transport_header = (skb->network_header + 1396 fragheaderlen); 1397 if (fraggap) { 1398 skb->csum = skb_copy_and_csum_bits(skb_prev, 1399 maxfraglen, 1400 skb_transport_header(skb), 1401 fraggap); 1402 skb_prev->csum = csum_sub(skb_prev->csum, 1403 skb->csum); 1404 pskb_trim_unique(skb_prev, maxfraglen); 1405 } 1406 1407 /* 1408 * Put the packet on the pending queue. 1409 */ 1410 __skb_queue_tail(&sk->sk_write_queue, skb); 1411 continue; 1412 } 1413 1414 if (len > size) 1415 len = size; 1416 1417 if (skb_append_pagefrags(skb, page, offset, len)) { 1418 err = -EMSGSIZE; 1419 goto error; 1420 } 1421 1422 if (skb->ip_summed == CHECKSUM_NONE) { 1423 __wsum csum; 1424 csum = csum_page(page, offset, len); 1425 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1426 } 1427 1428 skb->len += len; 1429 skb->data_len += len; 1430 skb->truesize += len; 1431 refcount_add(len, &sk->sk_wmem_alloc); 1432 offset += len; 1433 size -= len; 1434 } 1435 return 0; 1436 1437 error: 1438 cork->length -= size; 1439 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1440 return err; 1441 } 1442 1443 static void ip_cork_release(struct inet_cork *cork) 1444 { 1445 cork->flags &= ~IPCORK_OPT; 1446 kfree(cork->opt); 1447 cork->opt = NULL; 1448 dst_release(cork->dst); 1449 cork->dst = NULL; 1450 } 1451 1452 /* 1453 * Combined all pending IP fragments on the socket as one IP datagram 1454 * and push them out. 1455 */ 1456 struct sk_buff *__ip_make_skb(struct sock *sk, 1457 struct flowi4 *fl4, 1458 struct sk_buff_head *queue, 1459 struct inet_cork *cork) 1460 { 1461 struct sk_buff *skb, *tmp_skb; 1462 struct sk_buff **tail_skb; 1463 struct inet_sock *inet = inet_sk(sk); 1464 struct net *net = sock_net(sk); 1465 struct ip_options *opt = NULL; 1466 struct rtable *rt = (struct rtable *)cork->dst; 1467 struct iphdr *iph; 1468 __be16 df = 0; 1469 __u8 ttl; 1470 1471 skb = __skb_dequeue(queue); 1472 if (!skb) 1473 goto out; 1474 tail_skb = &(skb_shinfo(skb)->frag_list); 1475 1476 /* move skb->data to ip header from ext header */ 1477 if (skb->data < skb_network_header(skb)) 1478 __skb_pull(skb, skb_network_offset(skb)); 1479 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1480 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1481 *tail_skb = tmp_skb; 1482 tail_skb = &(tmp_skb->next); 1483 skb->len += tmp_skb->len; 1484 skb->data_len += tmp_skb->len; 1485 skb->truesize += tmp_skb->truesize; 1486 tmp_skb->destructor = NULL; 1487 tmp_skb->sk = NULL; 1488 } 1489 1490 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1491 * to fragment the frame generated here. No matter, what transforms 1492 * how transforms change size of the packet, it will come out. 1493 */ 1494 skb->ignore_df = ip_sk_ignore_df(sk); 1495 1496 /* DF bit is set when we want to see DF on outgoing frames. 1497 * If ignore_df is set too, we still allow to fragment this frame 1498 * locally. */ 1499 if (inet->pmtudisc == IP_PMTUDISC_DO || 1500 inet->pmtudisc == IP_PMTUDISC_PROBE || 1501 (skb->len <= dst_mtu(&rt->dst) && 1502 ip_dont_fragment(sk, &rt->dst))) 1503 df = htons(IP_DF); 1504 1505 if (cork->flags & IPCORK_OPT) 1506 opt = cork->opt; 1507 1508 if (cork->ttl != 0) 1509 ttl = cork->ttl; 1510 else if (rt->rt_type == RTN_MULTICAST) 1511 ttl = inet->mc_ttl; 1512 else 1513 ttl = ip_select_ttl(inet, &rt->dst); 1514 1515 iph = ip_hdr(skb); 1516 iph->version = 4; 1517 iph->ihl = 5; 1518 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1519 iph->frag_off = df; 1520 iph->ttl = ttl; 1521 iph->protocol = sk->sk_protocol; 1522 ip_copy_addrs(iph, fl4); 1523 ip_select_ident(net, skb, sk); 1524 1525 if (opt) { 1526 iph->ihl += opt->optlen >> 2; 1527 ip_options_build(skb, opt, cork->addr, rt, 0); 1528 } 1529 1530 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1531 skb->mark = cork->mark; 1532 skb->tstamp = cork->transmit_time; 1533 /* 1534 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1535 * on dst refcount 1536 */ 1537 cork->dst = NULL; 1538 skb_dst_set(skb, &rt->dst); 1539 1540 if (iph->protocol == IPPROTO_ICMP) 1541 icmp_out_count(net, ((struct icmphdr *) 1542 skb_transport_header(skb))->type); 1543 1544 ip_cork_release(cork); 1545 out: 1546 return skb; 1547 } 1548 1549 int ip_send_skb(struct net *net, struct sk_buff *skb) 1550 { 1551 int err; 1552 1553 err = ip_local_out(net, skb->sk, skb); 1554 if (err) { 1555 if (err > 0) 1556 err = net_xmit_errno(err); 1557 if (err) 1558 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1559 } 1560 1561 return err; 1562 } 1563 1564 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1565 { 1566 struct sk_buff *skb; 1567 1568 skb = ip_finish_skb(sk, fl4); 1569 if (!skb) 1570 return 0; 1571 1572 /* Netfilter gets whole the not fragmented skb. */ 1573 return ip_send_skb(sock_net(sk), skb); 1574 } 1575 1576 /* 1577 * Throw away all pending data on the socket. 1578 */ 1579 static void __ip_flush_pending_frames(struct sock *sk, 1580 struct sk_buff_head *queue, 1581 struct inet_cork *cork) 1582 { 1583 struct sk_buff *skb; 1584 1585 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1586 kfree_skb(skb); 1587 1588 ip_cork_release(cork); 1589 } 1590 1591 void ip_flush_pending_frames(struct sock *sk) 1592 { 1593 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1594 } 1595 1596 struct sk_buff *ip_make_skb(struct sock *sk, 1597 struct flowi4 *fl4, 1598 int getfrag(void *from, char *to, int offset, 1599 int len, int odd, struct sk_buff *skb), 1600 void *from, int length, int transhdrlen, 1601 struct ipcm_cookie *ipc, struct rtable **rtp, 1602 struct inet_cork *cork, unsigned int flags) 1603 { 1604 struct sk_buff_head queue; 1605 int err; 1606 1607 if (flags & MSG_PROBE) 1608 return NULL; 1609 1610 __skb_queue_head_init(&queue); 1611 1612 cork->flags = 0; 1613 cork->addr = 0; 1614 cork->opt = NULL; 1615 err = ip_setup_cork(sk, cork, ipc, rtp); 1616 if (err) 1617 return ERR_PTR(err); 1618 1619 err = __ip_append_data(sk, fl4, &queue, cork, 1620 ¤t->task_frag, getfrag, 1621 from, length, transhdrlen, flags); 1622 if (err) { 1623 __ip_flush_pending_frames(sk, &queue, cork); 1624 return ERR_PTR(err); 1625 } 1626 1627 return __ip_make_skb(sk, fl4, &queue, cork); 1628 } 1629 1630 /* 1631 * Fetch data from kernel space and fill in checksum if needed. 1632 */ 1633 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1634 int len, int odd, struct sk_buff *skb) 1635 { 1636 __wsum csum; 1637 1638 csum = csum_partial_copy_nocheck(dptr+offset, to, len); 1639 skb->csum = csum_block_add(skb->csum, csum, odd); 1640 return 0; 1641 } 1642 1643 /* 1644 * Generic function to send a packet as reply to another packet. 1645 * Used to send some TCP resets/acks so far. 1646 */ 1647 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1648 const struct ip_options *sopt, 1649 __be32 daddr, __be32 saddr, 1650 const struct ip_reply_arg *arg, 1651 unsigned int len, u64 transmit_time) 1652 { 1653 struct ip_options_data replyopts; 1654 struct ipcm_cookie ipc; 1655 struct flowi4 fl4; 1656 struct rtable *rt = skb_rtable(skb); 1657 struct net *net = sock_net(sk); 1658 struct sk_buff *nskb; 1659 int err; 1660 int oif; 1661 1662 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1663 return; 1664 1665 ipcm_init(&ipc); 1666 ipc.addr = daddr; 1667 ipc.sockc.transmit_time = transmit_time; 1668 1669 if (replyopts.opt.opt.optlen) { 1670 ipc.opt = &replyopts.opt; 1671 1672 if (replyopts.opt.opt.srr) 1673 daddr = replyopts.opt.opt.faddr; 1674 } 1675 1676 oif = arg->bound_dev_if; 1677 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1678 oif = skb->skb_iif; 1679 1680 flowi4_init_output(&fl4, oif, 1681 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1682 RT_TOS(arg->tos), 1683 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1684 ip_reply_arg_flowi_flags(arg), 1685 daddr, saddr, 1686 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1687 arg->uid); 1688 security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4)); 1689 rt = ip_route_output_key(net, &fl4); 1690 if (IS_ERR(rt)) 1691 return; 1692 1693 inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK; 1694 1695 sk->sk_protocol = ip_hdr(skb)->protocol; 1696 sk->sk_bound_dev_if = arg->bound_dev_if; 1697 sk->sk_sndbuf = sysctl_wmem_default; 1698 ipc.sockc.mark = fl4.flowi4_mark; 1699 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1700 len, 0, &ipc, &rt, MSG_DONTWAIT); 1701 if (unlikely(err)) { 1702 ip_flush_pending_frames(sk); 1703 goto out; 1704 } 1705 1706 nskb = skb_peek(&sk->sk_write_queue); 1707 if (nskb) { 1708 if (arg->csumoffset >= 0) 1709 *((__sum16 *)skb_transport_header(nskb) + 1710 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1711 arg->csum)); 1712 nskb->ip_summed = CHECKSUM_NONE; 1713 ip_push_pending_frames(sk, &fl4); 1714 } 1715 out: 1716 ip_rt_put(rt); 1717 } 1718 1719 void __init ip_init(void) 1720 { 1721 ip_rt_init(); 1722 inet_initpeers(); 1723 1724 #if defined(CONFIG_IP_MULTICAST) 1725 igmp_mc_init(); 1726 #endif 1727 } 1728