1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The Internet Protocol (IP) output module. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Donald Becker, <becker@super.org> 12 * Alan Cox, <Alan.Cox@linux.org> 13 * Richard Underwood 14 * Stefan Becker, <stefanb@yello.ping.de> 15 * Jorge Cwik, <jorge@laser.satlink.net> 16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 17 * Hirokazu Takahashi, <taka@valinux.co.jp> 18 * 19 * See ip_input.c for original log 20 * 21 * Fixes: 22 * Alan Cox : Missing nonblock feature in ip_build_xmit. 23 * Mike Kilburn : htons() missing in ip_build_xmit. 24 * Bradford Johnson: Fix faulty handling of some frames when 25 * no route is found. 26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 27 * (in case if packet not accepted by 28 * output firewall rules) 29 * Mike McLagan : Routing by source 30 * Alexey Kuznetsov: use new route cache 31 * Andi Kleen: Fix broken PMTU recovery and remove 32 * some redundant tests. 33 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 34 * Andi Kleen : Replace ip_reply with ip_send_reply. 35 * Andi Kleen : Split fast and slow ip_build_xmit path 36 * for decreased register pressure on x86 37 * and more readability. 38 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 39 * silently drop skb instead of failing with -EPERM. 40 * Detlev Wengorz : Copy protocol for fragments. 41 * Hirokazu Takahashi: HW checksumming for outgoing UDP 42 * datagrams. 43 * Hirokazu Takahashi: sendfile() on UDP works now. 44 */ 45 46 #include <linux/uaccess.h> 47 #include <linux/module.h> 48 #include <linux/types.h> 49 #include <linux/kernel.h> 50 #include <linux/mm.h> 51 #include <linux/string.h> 52 #include <linux/errno.h> 53 #include <linux/highmem.h> 54 #include <linux/slab.h> 55 56 #include <linux/socket.h> 57 #include <linux/sockios.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/etherdevice.h> 62 #include <linux/proc_fs.h> 63 #include <linux/stat.h> 64 #include <linux/init.h> 65 66 #include <net/snmp.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <net/route.h> 70 #include <net/xfrm.h> 71 #include <linux/skbuff.h> 72 #include <net/sock.h> 73 #include <net/arp.h> 74 #include <net/icmp.h> 75 #include <net/checksum.h> 76 #include <net/inetpeer.h> 77 #include <net/inet_ecn.h> 78 #include <net/lwtunnel.h> 79 #include <linux/bpf-cgroup.h> 80 #include <linux/igmp.h> 81 #include <linux/netfilter_ipv4.h> 82 #include <linux/netfilter_bridge.h> 83 #include <linux/netlink.h> 84 #include <linux/tcp.h> 85 86 static int 87 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 88 unsigned int mtu, 89 int (*output)(struct net *, struct sock *, struct sk_buff *)); 90 91 /* Generate a checksum for an outgoing IP datagram. */ 92 void ip_send_check(struct iphdr *iph) 93 { 94 iph->check = 0; 95 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 96 } 97 EXPORT_SYMBOL(ip_send_check); 98 99 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 100 { 101 struct iphdr *iph = ip_hdr(skb); 102 103 iph->tot_len = htons(skb->len); 104 ip_send_check(iph); 105 106 /* if egress device is enslaved to an L3 master device pass the 107 * skb to its handler for processing 108 */ 109 skb = l3mdev_ip_out(sk, skb); 110 if (unlikely(!skb)) 111 return 0; 112 113 skb->protocol = htons(ETH_P_IP); 114 115 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 116 net, sk, skb, NULL, skb_dst(skb)->dev, 117 dst_output); 118 } 119 120 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 121 { 122 int err; 123 124 err = __ip_local_out(net, sk, skb); 125 if (likely(err == 1)) 126 err = dst_output(net, sk, skb); 127 128 return err; 129 } 130 EXPORT_SYMBOL_GPL(ip_local_out); 131 132 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 133 { 134 int ttl = inet->uc_ttl; 135 136 if (ttl < 0) 137 ttl = ip4_dst_hoplimit(dst); 138 return ttl; 139 } 140 141 /* 142 * Add an ip header to a skbuff and send it out. 143 * 144 */ 145 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 146 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt, 147 u8 tos) 148 { 149 struct inet_sock *inet = inet_sk(sk); 150 struct rtable *rt = skb_rtable(skb); 151 struct net *net = sock_net(sk); 152 struct iphdr *iph; 153 154 /* Build the IP header. */ 155 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 156 skb_reset_network_header(skb); 157 iph = ip_hdr(skb); 158 iph->version = 4; 159 iph->ihl = 5; 160 iph->tos = tos; 161 iph->ttl = ip_select_ttl(inet, &rt->dst); 162 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 163 iph->saddr = saddr; 164 iph->protocol = sk->sk_protocol; 165 if (ip_dont_fragment(sk, &rt->dst)) { 166 iph->frag_off = htons(IP_DF); 167 iph->id = 0; 168 } else { 169 iph->frag_off = 0; 170 __ip_select_ident(net, iph, 1); 171 } 172 173 if (opt && opt->opt.optlen) { 174 iph->ihl += opt->opt.optlen>>2; 175 ip_options_build(skb, &opt->opt, daddr, rt, 0); 176 } 177 178 skb->priority = sk->sk_priority; 179 if (!skb->mark) 180 skb->mark = sk->sk_mark; 181 182 /* Send it out. */ 183 return ip_local_out(net, skb->sk, skb); 184 } 185 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 186 187 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 188 { 189 struct dst_entry *dst = skb_dst(skb); 190 struct rtable *rt = (struct rtable *)dst; 191 struct net_device *dev = dst->dev; 192 unsigned int hh_len = LL_RESERVED_SPACE(dev); 193 struct neighbour *neigh; 194 bool is_v6gw = false; 195 196 if (rt->rt_type == RTN_MULTICAST) { 197 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 198 } else if (rt->rt_type == RTN_BROADCAST) 199 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 200 201 /* Be paranoid, rather than too clever. */ 202 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 203 struct sk_buff *skb2; 204 205 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 206 if (!skb2) { 207 kfree_skb(skb); 208 return -ENOMEM; 209 } 210 if (skb->sk) 211 skb_set_owner_w(skb2, skb->sk); 212 consume_skb(skb); 213 skb = skb2; 214 } 215 216 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 217 int res = lwtunnel_xmit(skb); 218 219 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 220 return res; 221 } 222 223 rcu_read_lock_bh(); 224 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 225 if (!IS_ERR(neigh)) { 226 int res; 227 228 sock_confirm_neigh(skb, neigh); 229 /* if crossing protocols, can not use the cached header */ 230 res = neigh_output(neigh, skb, is_v6gw); 231 rcu_read_unlock_bh(); 232 return res; 233 } 234 rcu_read_unlock_bh(); 235 236 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 237 __func__); 238 kfree_skb(skb); 239 return -EINVAL; 240 } 241 242 static int ip_finish_output_gso(struct net *net, struct sock *sk, 243 struct sk_buff *skb, unsigned int mtu) 244 { 245 struct sk_buff *segs, *nskb; 246 netdev_features_t features; 247 int ret = 0; 248 249 /* common case: seglen is <= mtu 250 */ 251 if (skb_gso_validate_network_len(skb, mtu)) 252 return ip_finish_output2(net, sk, skb); 253 254 /* Slowpath - GSO segment length exceeds the egress MTU. 255 * 256 * This can happen in several cases: 257 * - Forwarding of a TCP GRO skb, when DF flag is not set. 258 * - Forwarding of an skb that arrived on a virtualization interface 259 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 260 * stack. 261 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 262 * interface with a smaller MTU. 263 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 264 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 265 * insufficient MTU. 266 */ 267 features = netif_skb_features(skb); 268 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET); 269 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 270 if (IS_ERR_OR_NULL(segs)) { 271 kfree_skb(skb); 272 return -ENOMEM; 273 } 274 275 consume_skb(skb); 276 277 skb_list_walk_safe(segs, segs, nskb) { 278 int err; 279 280 skb_mark_not_on_list(segs); 281 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 282 283 if (err && ret == 0) 284 ret = err; 285 } 286 287 return ret; 288 } 289 290 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 291 { 292 unsigned int mtu; 293 294 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 295 /* Policy lookup after SNAT yielded a new policy */ 296 if (skb_dst(skb)->xfrm) { 297 IPCB(skb)->flags |= IPSKB_REROUTED; 298 return dst_output(net, sk, skb); 299 } 300 #endif 301 mtu = ip_skb_dst_mtu(sk, skb); 302 if (skb_is_gso(skb)) 303 return ip_finish_output_gso(net, sk, skb, mtu); 304 305 if (skb->len > mtu || IPCB(skb)->frag_max_size) 306 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 307 308 return ip_finish_output2(net, sk, skb); 309 } 310 311 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 312 { 313 int ret; 314 315 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 316 switch (ret) { 317 case NET_XMIT_SUCCESS: 318 return __ip_finish_output(net, sk, skb); 319 case NET_XMIT_CN: 320 return __ip_finish_output(net, sk, skb) ? : ret; 321 default: 322 kfree_skb(skb); 323 return ret; 324 } 325 } 326 327 static int ip_mc_finish_output(struct net *net, struct sock *sk, 328 struct sk_buff *skb) 329 { 330 struct rtable *new_rt; 331 bool do_cn = false; 332 int ret, err; 333 334 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 335 switch (ret) { 336 case NET_XMIT_CN: 337 do_cn = true; 338 fallthrough; 339 case NET_XMIT_SUCCESS: 340 break; 341 default: 342 kfree_skb(skb); 343 return ret; 344 } 345 346 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting 347 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten, 348 * see ipv4_pktinfo_prepare(). 349 */ 350 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb)); 351 if (new_rt) { 352 new_rt->rt_iif = 0; 353 skb_dst_drop(skb); 354 skb_dst_set(skb, &new_rt->dst); 355 } 356 357 err = dev_loopback_xmit(net, sk, skb); 358 return (do_cn && err) ? ret : err; 359 } 360 361 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 362 { 363 struct rtable *rt = skb_rtable(skb); 364 struct net_device *dev = rt->dst.dev; 365 366 /* 367 * If the indicated interface is up and running, send the packet. 368 */ 369 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 370 371 skb->dev = dev; 372 skb->protocol = htons(ETH_P_IP); 373 374 /* 375 * Multicasts are looped back for other local users 376 */ 377 378 if (rt->rt_flags&RTCF_MULTICAST) { 379 if (sk_mc_loop(sk) 380 #ifdef CONFIG_IP_MROUTE 381 /* Small optimization: do not loopback not local frames, 382 which returned after forwarding; they will be dropped 383 by ip_mr_input in any case. 384 Note, that local frames are looped back to be delivered 385 to local recipients. 386 387 This check is duplicated in ip_mr_input at the moment. 388 */ 389 && 390 ((rt->rt_flags & RTCF_LOCAL) || 391 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 392 #endif 393 ) { 394 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 395 if (newskb) 396 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 397 net, sk, newskb, NULL, newskb->dev, 398 ip_mc_finish_output); 399 } 400 401 /* Multicasts with ttl 0 must not go beyond the host */ 402 403 if (ip_hdr(skb)->ttl == 0) { 404 kfree_skb(skb); 405 return 0; 406 } 407 } 408 409 if (rt->rt_flags&RTCF_BROADCAST) { 410 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 411 if (newskb) 412 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 413 net, sk, newskb, NULL, newskb->dev, 414 ip_mc_finish_output); 415 } 416 417 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 418 net, sk, skb, NULL, skb->dev, 419 ip_finish_output, 420 !(IPCB(skb)->flags & IPSKB_REROUTED)); 421 } 422 423 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 424 { 425 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev; 426 427 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 428 429 skb->dev = dev; 430 skb->protocol = htons(ETH_P_IP); 431 432 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 433 net, sk, skb, indev, dev, 434 ip_finish_output, 435 !(IPCB(skb)->flags & IPSKB_REROUTED)); 436 } 437 EXPORT_SYMBOL(ip_output); 438 439 /* 440 * copy saddr and daddr, possibly using 64bit load/stores 441 * Equivalent to : 442 * iph->saddr = fl4->saddr; 443 * iph->daddr = fl4->daddr; 444 */ 445 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 446 { 447 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 448 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 449 memcpy(&iph->saddr, &fl4->saddr, 450 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 451 } 452 453 /* Note: skb->sk can be different from sk, in case of tunnels */ 454 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, 455 __u8 tos) 456 { 457 struct inet_sock *inet = inet_sk(sk); 458 struct net *net = sock_net(sk); 459 struct ip_options_rcu *inet_opt; 460 struct flowi4 *fl4; 461 struct rtable *rt; 462 struct iphdr *iph; 463 int res; 464 465 /* Skip all of this if the packet is already routed, 466 * f.e. by something like SCTP. 467 */ 468 rcu_read_lock(); 469 inet_opt = rcu_dereference(inet->inet_opt); 470 fl4 = &fl->u.ip4; 471 rt = skb_rtable(skb); 472 if (rt) 473 goto packet_routed; 474 475 /* Make sure we can route this packet. */ 476 rt = (struct rtable *)__sk_dst_check(sk, 0); 477 if (!rt) { 478 __be32 daddr; 479 480 /* Use correct destination address if we have options. */ 481 daddr = inet->inet_daddr; 482 if (inet_opt && inet_opt->opt.srr) 483 daddr = inet_opt->opt.faddr; 484 485 /* If this fails, retransmit mechanism of transport layer will 486 * keep trying until route appears or the connection times 487 * itself out. 488 */ 489 rt = ip_route_output_ports(net, fl4, sk, 490 daddr, inet->inet_saddr, 491 inet->inet_dport, 492 inet->inet_sport, 493 sk->sk_protocol, 494 RT_CONN_FLAGS_TOS(sk, tos), 495 sk->sk_bound_dev_if); 496 if (IS_ERR(rt)) 497 goto no_route; 498 sk_setup_caps(sk, &rt->dst); 499 } 500 skb_dst_set_noref(skb, &rt->dst); 501 502 packet_routed: 503 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 504 goto no_route; 505 506 /* OK, we know where to send it, allocate and build IP header. */ 507 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 508 skb_reset_network_header(skb); 509 iph = ip_hdr(skb); 510 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); 511 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 512 iph->frag_off = htons(IP_DF); 513 else 514 iph->frag_off = 0; 515 iph->ttl = ip_select_ttl(inet, &rt->dst); 516 iph->protocol = sk->sk_protocol; 517 ip_copy_addrs(iph, fl4); 518 519 /* Transport layer set skb->h.foo itself. */ 520 521 if (inet_opt && inet_opt->opt.optlen) { 522 iph->ihl += inet_opt->opt.optlen >> 2; 523 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 524 } 525 526 ip_select_ident_segs(net, skb, sk, 527 skb_shinfo(skb)->gso_segs ?: 1); 528 529 /* TODO : should we use skb->sk here instead of sk ? */ 530 skb->priority = sk->sk_priority; 531 skb->mark = sk->sk_mark; 532 533 res = ip_local_out(net, sk, skb); 534 rcu_read_unlock(); 535 return res; 536 537 no_route: 538 rcu_read_unlock(); 539 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 540 kfree_skb(skb); 541 return -EHOSTUNREACH; 542 } 543 EXPORT_SYMBOL(__ip_queue_xmit); 544 545 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 546 { 547 return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos); 548 } 549 EXPORT_SYMBOL(ip_queue_xmit); 550 551 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 552 { 553 to->pkt_type = from->pkt_type; 554 to->priority = from->priority; 555 to->protocol = from->protocol; 556 to->skb_iif = from->skb_iif; 557 skb_dst_drop(to); 558 skb_dst_copy(to, from); 559 to->dev = from->dev; 560 to->mark = from->mark; 561 562 skb_copy_hash(to, from); 563 564 #ifdef CONFIG_NET_SCHED 565 to->tc_index = from->tc_index; 566 #endif 567 nf_copy(to, from); 568 skb_ext_copy(to, from); 569 #if IS_ENABLED(CONFIG_IP_VS) 570 to->ipvs_property = from->ipvs_property; 571 #endif 572 skb_copy_secmark(to, from); 573 } 574 575 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 576 unsigned int mtu, 577 int (*output)(struct net *, struct sock *, struct sk_buff *)) 578 { 579 struct iphdr *iph = ip_hdr(skb); 580 581 if ((iph->frag_off & htons(IP_DF)) == 0) 582 return ip_do_fragment(net, sk, skb, output); 583 584 if (unlikely(!skb->ignore_df || 585 (IPCB(skb)->frag_max_size && 586 IPCB(skb)->frag_max_size > mtu))) { 587 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 588 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 589 htonl(mtu)); 590 kfree_skb(skb); 591 return -EMSGSIZE; 592 } 593 594 return ip_do_fragment(net, sk, skb, output); 595 } 596 597 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, 598 unsigned int hlen, struct ip_fraglist_iter *iter) 599 { 600 unsigned int first_len = skb_pagelen(skb); 601 602 iter->frag = skb_shinfo(skb)->frag_list; 603 skb_frag_list_init(skb); 604 605 iter->offset = 0; 606 iter->iph = iph; 607 iter->hlen = hlen; 608 609 skb->data_len = first_len - skb_headlen(skb); 610 skb->len = first_len; 611 iph->tot_len = htons(first_len); 612 iph->frag_off = htons(IP_MF); 613 ip_send_check(iph); 614 } 615 EXPORT_SYMBOL(ip_fraglist_init); 616 617 static void ip_fraglist_ipcb_prepare(struct sk_buff *skb, 618 struct ip_fraglist_iter *iter) 619 { 620 struct sk_buff *to = iter->frag; 621 622 /* Copy the flags to each fragment. */ 623 IPCB(to)->flags = IPCB(skb)->flags; 624 625 if (iter->offset == 0) 626 ip_options_fragment(to); 627 } 628 629 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter) 630 { 631 unsigned int hlen = iter->hlen; 632 struct iphdr *iph = iter->iph; 633 struct sk_buff *frag; 634 635 frag = iter->frag; 636 frag->ip_summed = CHECKSUM_NONE; 637 skb_reset_transport_header(frag); 638 __skb_push(frag, hlen); 639 skb_reset_network_header(frag); 640 memcpy(skb_network_header(frag), iph, hlen); 641 iter->iph = ip_hdr(frag); 642 iph = iter->iph; 643 iph->tot_len = htons(frag->len); 644 ip_copy_metadata(frag, skb); 645 iter->offset += skb->len - hlen; 646 iph->frag_off = htons(iter->offset >> 3); 647 if (frag->next) 648 iph->frag_off |= htons(IP_MF); 649 /* Ready, complete checksum */ 650 ip_send_check(iph); 651 } 652 EXPORT_SYMBOL(ip_fraglist_prepare); 653 654 void ip_frag_init(struct sk_buff *skb, unsigned int hlen, 655 unsigned int ll_rs, unsigned int mtu, bool DF, 656 struct ip_frag_state *state) 657 { 658 struct iphdr *iph = ip_hdr(skb); 659 660 state->DF = DF; 661 state->hlen = hlen; 662 state->ll_rs = ll_rs; 663 state->mtu = mtu; 664 665 state->left = skb->len - hlen; /* Space per frame */ 666 state->ptr = hlen; /* Where to start from */ 667 668 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 669 state->not_last_frag = iph->frag_off & htons(IP_MF); 670 } 671 EXPORT_SYMBOL(ip_frag_init); 672 673 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to, 674 bool first_frag, struct ip_frag_state *state) 675 { 676 /* Copy the flags to each fragment. */ 677 IPCB(to)->flags = IPCB(from)->flags; 678 679 /* ANK: dirty, but effective trick. Upgrade options only if 680 * the segment to be fragmented was THE FIRST (otherwise, 681 * options are already fixed) and make it ONCE 682 * on the initial skb, so that all the following fragments 683 * will inherit fixed options. 684 */ 685 if (first_frag) 686 ip_options_fragment(from); 687 } 688 689 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state) 690 { 691 unsigned int len = state->left; 692 struct sk_buff *skb2; 693 struct iphdr *iph; 694 695 len = state->left; 696 /* IF: it doesn't fit, use 'mtu' - the data space left */ 697 if (len > state->mtu) 698 len = state->mtu; 699 /* IF: we are not sending up to and including the packet end 700 then align the next start on an eight byte boundary */ 701 if (len < state->left) { 702 len &= ~7; 703 } 704 705 /* Allocate buffer */ 706 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC); 707 if (!skb2) 708 return ERR_PTR(-ENOMEM); 709 710 /* 711 * Set up data on packet 712 */ 713 714 ip_copy_metadata(skb2, skb); 715 skb_reserve(skb2, state->ll_rs); 716 skb_put(skb2, len + state->hlen); 717 skb_reset_network_header(skb2); 718 skb2->transport_header = skb2->network_header + state->hlen; 719 720 /* 721 * Charge the memory for the fragment to any owner 722 * it might possess 723 */ 724 725 if (skb->sk) 726 skb_set_owner_w(skb2, skb->sk); 727 728 /* 729 * Copy the packet header into the new buffer. 730 */ 731 732 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen); 733 734 /* 735 * Copy a block of the IP datagram. 736 */ 737 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len)) 738 BUG(); 739 state->left -= len; 740 741 /* 742 * Fill in the new header fields. 743 */ 744 iph = ip_hdr(skb2); 745 iph->frag_off = htons((state->offset >> 3)); 746 if (state->DF) 747 iph->frag_off |= htons(IP_DF); 748 749 /* 750 * Added AC : If we are fragmenting a fragment that's not the 751 * last fragment then keep MF on each bit 752 */ 753 if (state->left > 0 || state->not_last_frag) 754 iph->frag_off |= htons(IP_MF); 755 state->ptr += len; 756 state->offset += len; 757 758 iph->tot_len = htons(len + state->hlen); 759 760 ip_send_check(iph); 761 762 return skb2; 763 } 764 EXPORT_SYMBOL(ip_frag_next); 765 766 /* 767 * This IP datagram is too large to be sent in one piece. Break it up into 768 * smaller pieces (each of size equal to IP header plus 769 * a block of the data of the original IP data part) that will yet fit in a 770 * single device frame, and queue such a frame for sending. 771 */ 772 773 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 774 int (*output)(struct net *, struct sock *, struct sk_buff *)) 775 { 776 struct iphdr *iph; 777 struct sk_buff *skb2; 778 struct rtable *rt = skb_rtable(skb); 779 unsigned int mtu, hlen, ll_rs; 780 struct ip_fraglist_iter iter; 781 ktime_t tstamp = skb->tstamp; 782 struct ip_frag_state state; 783 int err = 0; 784 785 /* for offloaded checksums cleanup checksum before fragmentation */ 786 if (skb->ip_summed == CHECKSUM_PARTIAL && 787 (err = skb_checksum_help(skb))) 788 goto fail; 789 790 /* 791 * Point into the IP datagram header. 792 */ 793 794 iph = ip_hdr(skb); 795 796 mtu = ip_skb_dst_mtu(sk, skb); 797 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 798 mtu = IPCB(skb)->frag_max_size; 799 800 /* 801 * Setup starting values. 802 */ 803 804 hlen = iph->ihl * 4; 805 mtu = mtu - hlen; /* Size of data space */ 806 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 807 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 808 809 /* When frag_list is given, use it. First, check its validity: 810 * some transformers could create wrong frag_list or break existing 811 * one, it is not prohibited. In this case fall back to copying. 812 * 813 * LATER: this step can be merged to real generation of fragments, 814 * we can switch to copy when see the first bad fragment. 815 */ 816 if (skb_has_frag_list(skb)) { 817 struct sk_buff *frag, *frag2; 818 unsigned int first_len = skb_pagelen(skb); 819 820 if (first_len - hlen > mtu || 821 ((first_len - hlen) & 7) || 822 ip_is_fragment(iph) || 823 skb_cloned(skb) || 824 skb_headroom(skb) < ll_rs) 825 goto slow_path; 826 827 skb_walk_frags(skb, frag) { 828 /* Correct geometry. */ 829 if (frag->len > mtu || 830 ((frag->len & 7) && frag->next) || 831 skb_headroom(frag) < hlen + ll_rs) 832 goto slow_path_clean; 833 834 /* Partially cloned skb? */ 835 if (skb_shared(frag)) 836 goto slow_path_clean; 837 838 BUG_ON(frag->sk); 839 if (skb->sk) { 840 frag->sk = skb->sk; 841 frag->destructor = sock_wfree; 842 } 843 skb->truesize -= frag->truesize; 844 } 845 846 /* Everything is OK. Generate! */ 847 ip_fraglist_init(skb, iph, hlen, &iter); 848 849 for (;;) { 850 /* Prepare header of the next frame, 851 * before previous one went down. */ 852 if (iter.frag) { 853 ip_fraglist_ipcb_prepare(skb, &iter); 854 ip_fraglist_prepare(skb, &iter); 855 } 856 857 skb->tstamp = tstamp; 858 err = output(net, sk, skb); 859 860 if (!err) 861 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 862 if (err || !iter.frag) 863 break; 864 865 skb = ip_fraglist_next(&iter); 866 } 867 868 if (err == 0) { 869 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 870 return 0; 871 } 872 873 kfree_skb_list(iter.frag); 874 875 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 876 return err; 877 878 slow_path_clean: 879 skb_walk_frags(skb, frag2) { 880 if (frag2 == frag) 881 break; 882 frag2->sk = NULL; 883 frag2->destructor = NULL; 884 skb->truesize += frag2->truesize; 885 } 886 } 887 888 slow_path: 889 /* 890 * Fragment the datagram. 891 */ 892 893 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU, 894 &state); 895 896 /* 897 * Keep copying data until we run out. 898 */ 899 900 while (state.left > 0) { 901 bool first_frag = (state.offset == 0); 902 903 skb2 = ip_frag_next(skb, &state); 904 if (IS_ERR(skb2)) { 905 err = PTR_ERR(skb2); 906 goto fail; 907 } 908 ip_frag_ipcb(skb, skb2, first_frag, &state); 909 910 /* 911 * Put this fragment into the sending queue. 912 */ 913 skb2->tstamp = tstamp; 914 err = output(net, sk, skb2); 915 if (err) 916 goto fail; 917 918 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 919 } 920 consume_skb(skb); 921 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 922 return err; 923 924 fail: 925 kfree_skb(skb); 926 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 927 return err; 928 } 929 EXPORT_SYMBOL(ip_do_fragment); 930 931 int 932 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 933 { 934 struct msghdr *msg = from; 935 936 if (skb->ip_summed == CHECKSUM_PARTIAL) { 937 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 938 return -EFAULT; 939 } else { 940 __wsum csum = 0; 941 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 942 return -EFAULT; 943 skb->csum = csum_block_add(skb->csum, csum, odd); 944 } 945 return 0; 946 } 947 EXPORT_SYMBOL(ip_generic_getfrag); 948 949 static inline __wsum 950 csum_page(struct page *page, int offset, int copy) 951 { 952 char *kaddr; 953 __wsum csum; 954 kaddr = kmap(page); 955 csum = csum_partial(kaddr + offset, copy, 0); 956 kunmap(page); 957 return csum; 958 } 959 960 static int __ip_append_data(struct sock *sk, 961 struct flowi4 *fl4, 962 struct sk_buff_head *queue, 963 struct inet_cork *cork, 964 struct page_frag *pfrag, 965 int getfrag(void *from, char *to, int offset, 966 int len, int odd, struct sk_buff *skb), 967 void *from, int length, int transhdrlen, 968 unsigned int flags) 969 { 970 struct inet_sock *inet = inet_sk(sk); 971 struct ubuf_info *uarg = NULL; 972 struct sk_buff *skb; 973 974 struct ip_options *opt = cork->opt; 975 int hh_len; 976 int exthdrlen; 977 int mtu; 978 int copy; 979 int err; 980 int offset = 0; 981 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 982 int csummode = CHECKSUM_NONE; 983 struct rtable *rt = (struct rtable *)cork->dst; 984 unsigned int wmem_alloc_delta = 0; 985 bool paged, extra_uref = false; 986 u32 tskey = 0; 987 988 skb = skb_peek_tail(queue); 989 990 exthdrlen = !skb ? rt->dst.header_len : 0; 991 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 992 paged = !!cork->gso_size; 993 994 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 995 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 996 tskey = sk->sk_tskey++; 997 998 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 999 1000 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1001 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1002 maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu; 1003 1004 if (cork->length + length > maxnonfragsize - fragheaderlen) { 1005 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1006 mtu - (opt ? opt->optlen : 0)); 1007 return -EMSGSIZE; 1008 } 1009 1010 /* 1011 * transhdrlen > 0 means that this is the first fragment and we wish 1012 * it won't be fragmented in the future. 1013 */ 1014 if (transhdrlen && 1015 length + fragheaderlen <= mtu && 1016 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 1017 (!(flags & MSG_MORE) || cork->gso_size) && 1018 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 1019 csummode = CHECKSUM_PARTIAL; 1020 1021 if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) { 1022 uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb)); 1023 if (!uarg) 1024 return -ENOBUFS; 1025 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ 1026 if (rt->dst.dev->features & NETIF_F_SG && 1027 csummode == CHECKSUM_PARTIAL) { 1028 paged = true; 1029 } else { 1030 uarg->zerocopy = 0; 1031 skb_zcopy_set(skb, uarg, &extra_uref); 1032 } 1033 } 1034 1035 cork->length += length; 1036 1037 /* So, what's going on in the loop below? 1038 * 1039 * We use calculated fragment length to generate chained skb, 1040 * each of segments is IP fragment ready for sending to network after 1041 * adding appropriate IP header. 1042 */ 1043 1044 if (!skb) 1045 goto alloc_new_skb; 1046 1047 while (length > 0) { 1048 /* Check if the remaining data fits into current packet. */ 1049 copy = mtu - skb->len; 1050 if (copy < length) 1051 copy = maxfraglen - skb->len; 1052 if (copy <= 0) { 1053 char *data; 1054 unsigned int datalen; 1055 unsigned int fraglen; 1056 unsigned int fraggap; 1057 unsigned int alloclen, alloc_extra; 1058 unsigned int pagedlen; 1059 struct sk_buff *skb_prev; 1060 alloc_new_skb: 1061 skb_prev = skb; 1062 if (skb_prev) 1063 fraggap = skb_prev->len - maxfraglen; 1064 else 1065 fraggap = 0; 1066 1067 /* 1068 * If remaining data exceeds the mtu, 1069 * we know we need more fragment(s). 1070 */ 1071 datalen = length + fraggap; 1072 if (datalen > mtu - fragheaderlen) 1073 datalen = maxfraglen - fragheaderlen; 1074 fraglen = datalen + fragheaderlen; 1075 pagedlen = 0; 1076 1077 alloc_extra = hh_len + 15; 1078 alloc_extra += exthdrlen; 1079 1080 /* The last fragment gets additional space at tail. 1081 * Note, with MSG_MORE we overallocate on fragments, 1082 * because we have no idea what fragment will be 1083 * the last. 1084 */ 1085 if (datalen == length + fraggap) 1086 alloc_extra += rt->dst.trailer_len; 1087 1088 if ((flags & MSG_MORE) && 1089 !(rt->dst.dev->features&NETIF_F_SG)) 1090 alloclen = mtu; 1091 else if (!paged && 1092 (fraglen + alloc_extra < SKB_MAX_ALLOC || 1093 !(rt->dst.dev->features & NETIF_F_SG))) 1094 alloclen = fraglen; 1095 else { 1096 alloclen = min_t(int, fraglen, MAX_HEADER); 1097 pagedlen = fraglen - alloclen; 1098 } 1099 1100 alloclen += alloc_extra; 1101 1102 if (transhdrlen) { 1103 skb = sock_alloc_send_skb(sk, alloclen, 1104 (flags & MSG_DONTWAIT), &err); 1105 } else { 1106 skb = NULL; 1107 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 1108 2 * sk->sk_sndbuf) 1109 skb = alloc_skb(alloclen, 1110 sk->sk_allocation); 1111 if (unlikely(!skb)) 1112 err = -ENOBUFS; 1113 } 1114 if (!skb) 1115 goto error; 1116 1117 /* 1118 * Fill in the control structures 1119 */ 1120 skb->ip_summed = csummode; 1121 skb->csum = 0; 1122 skb_reserve(skb, hh_len); 1123 1124 /* 1125 * Find where to start putting bytes. 1126 */ 1127 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1128 skb_set_network_header(skb, exthdrlen); 1129 skb->transport_header = (skb->network_header + 1130 fragheaderlen); 1131 data += fragheaderlen + exthdrlen; 1132 1133 if (fraggap) { 1134 skb->csum = skb_copy_and_csum_bits( 1135 skb_prev, maxfraglen, 1136 data + transhdrlen, fraggap); 1137 skb_prev->csum = csum_sub(skb_prev->csum, 1138 skb->csum); 1139 data += fraggap; 1140 pskb_trim_unique(skb_prev, maxfraglen); 1141 } 1142 1143 copy = datalen - transhdrlen - fraggap - pagedlen; 1144 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1145 err = -EFAULT; 1146 kfree_skb(skb); 1147 goto error; 1148 } 1149 1150 offset += copy; 1151 length -= copy + transhdrlen; 1152 transhdrlen = 0; 1153 exthdrlen = 0; 1154 csummode = CHECKSUM_NONE; 1155 1156 /* only the initial fragment is time stamped */ 1157 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1158 cork->tx_flags = 0; 1159 skb_shinfo(skb)->tskey = tskey; 1160 tskey = 0; 1161 skb_zcopy_set(skb, uarg, &extra_uref); 1162 1163 if ((flags & MSG_CONFIRM) && !skb_prev) 1164 skb_set_dst_pending_confirm(skb, 1); 1165 1166 /* 1167 * Put the packet on the pending queue. 1168 */ 1169 if (!skb->destructor) { 1170 skb->destructor = sock_wfree; 1171 skb->sk = sk; 1172 wmem_alloc_delta += skb->truesize; 1173 } 1174 __skb_queue_tail(queue, skb); 1175 continue; 1176 } 1177 1178 if (copy > length) 1179 copy = length; 1180 1181 if (!(rt->dst.dev->features&NETIF_F_SG) && 1182 skb_tailroom(skb) >= copy) { 1183 unsigned int off; 1184 1185 off = skb->len; 1186 if (getfrag(from, skb_put(skb, copy), 1187 offset, copy, off, skb) < 0) { 1188 __skb_trim(skb, off); 1189 err = -EFAULT; 1190 goto error; 1191 } 1192 } else if (!uarg || !uarg->zerocopy) { 1193 int i = skb_shinfo(skb)->nr_frags; 1194 1195 err = -ENOMEM; 1196 if (!sk_page_frag_refill(sk, pfrag)) 1197 goto error; 1198 1199 if (!skb_can_coalesce(skb, i, pfrag->page, 1200 pfrag->offset)) { 1201 err = -EMSGSIZE; 1202 if (i == MAX_SKB_FRAGS) 1203 goto error; 1204 1205 __skb_fill_page_desc(skb, i, pfrag->page, 1206 pfrag->offset, 0); 1207 skb_shinfo(skb)->nr_frags = ++i; 1208 get_page(pfrag->page); 1209 } 1210 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1211 if (getfrag(from, 1212 page_address(pfrag->page) + pfrag->offset, 1213 offset, copy, skb->len, skb) < 0) 1214 goto error_efault; 1215 1216 pfrag->offset += copy; 1217 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1218 skb->len += copy; 1219 skb->data_len += copy; 1220 skb->truesize += copy; 1221 wmem_alloc_delta += copy; 1222 } else { 1223 err = skb_zerocopy_iter_dgram(skb, from, copy); 1224 if (err < 0) 1225 goto error; 1226 } 1227 offset += copy; 1228 length -= copy; 1229 } 1230 1231 if (wmem_alloc_delta) 1232 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1233 return 0; 1234 1235 error_efault: 1236 err = -EFAULT; 1237 error: 1238 net_zcopy_put_abort(uarg, extra_uref); 1239 cork->length -= length; 1240 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1241 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1242 return err; 1243 } 1244 1245 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1246 struct ipcm_cookie *ipc, struct rtable **rtp) 1247 { 1248 struct ip_options_rcu *opt; 1249 struct rtable *rt; 1250 1251 rt = *rtp; 1252 if (unlikely(!rt)) 1253 return -EFAULT; 1254 1255 /* 1256 * setup for corking. 1257 */ 1258 opt = ipc->opt; 1259 if (opt) { 1260 if (!cork->opt) { 1261 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1262 sk->sk_allocation); 1263 if (unlikely(!cork->opt)) 1264 return -ENOBUFS; 1265 } 1266 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1267 cork->flags |= IPCORK_OPT; 1268 cork->addr = ipc->addr; 1269 } 1270 1271 cork->fragsize = ip_sk_use_pmtu(sk) ? 1272 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu); 1273 1274 if (!inetdev_valid_mtu(cork->fragsize)) 1275 return -ENETUNREACH; 1276 1277 cork->gso_size = ipc->gso_size; 1278 1279 cork->dst = &rt->dst; 1280 /* We stole this route, caller should not release it. */ 1281 *rtp = NULL; 1282 1283 cork->length = 0; 1284 cork->ttl = ipc->ttl; 1285 cork->tos = ipc->tos; 1286 cork->mark = ipc->sockc.mark; 1287 cork->priority = ipc->priority; 1288 cork->transmit_time = ipc->sockc.transmit_time; 1289 cork->tx_flags = 0; 1290 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); 1291 1292 return 0; 1293 } 1294 1295 /* 1296 * ip_append_data() and ip_append_page() can make one large IP datagram 1297 * from many pieces of data. Each pieces will be holded on the socket 1298 * until ip_push_pending_frames() is called. Each piece can be a page 1299 * or non-page data. 1300 * 1301 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1302 * this interface potentially. 1303 * 1304 * LATER: length must be adjusted by pad at tail, when it is required. 1305 */ 1306 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1307 int getfrag(void *from, char *to, int offset, int len, 1308 int odd, struct sk_buff *skb), 1309 void *from, int length, int transhdrlen, 1310 struct ipcm_cookie *ipc, struct rtable **rtp, 1311 unsigned int flags) 1312 { 1313 struct inet_sock *inet = inet_sk(sk); 1314 int err; 1315 1316 if (flags&MSG_PROBE) 1317 return 0; 1318 1319 if (skb_queue_empty(&sk->sk_write_queue)) { 1320 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1321 if (err) 1322 return err; 1323 } else { 1324 transhdrlen = 0; 1325 } 1326 1327 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1328 sk_page_frag(sk), getfrag, 1329 from, length, transhdrlen, flags); 1330 } 1331 1332 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1333 int offset, size_t size, int flags) 1334 { 1335 struct inet_sock *inet = inet_sk(sk); 1336 struct sk_buff *skb; 1337 struct rtable *rt; 1338 struct ip_options *opt = NULL; 1339 struct inet_cork *cork; 1340 int hh_len; 1341 int mtu; 1342 int len; 1343 int err; 1344 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1345 1346 if (inet->hdrincl) 1347 return -EPERM; 1348 1349 if (flags&MSG_PROBE) 1350 return 0; 1351 1352 if (skb_queue_empty(&sk->sk_write_queue)) 1353 return -EINVAL; 1354 1355 cork = &inet->cork.base; 1356 rt = (struct rtable *)cork->dst; 1357 if (cork->flags & IPCORK_OPT) 1358 opt = cork->opt; 1359 1360 if (!(rt->dst.dev->features & NETIF_F_SG)) 1361 return -EOPNOTSUPP; 1362 1363 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1364 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 1365 1366 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1367 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1368 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1369 1370 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1371 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1372 mtu - (opt ? opt->optlen : 0)); 1373 return -EMSGSIZE; 1374 } 1375 1376 skb = skb_peek_tail(&sk->sk_write_queue); 1377 if (!skb) 1378 return -EINVAL; 1379 1380 cork->length += size; 1381 1382 while (size > 0) { 1383 /* Check if the remaining data fits into current packet. */ 1384 len = mtu - skb->len; 1385 if (len < size) 1386 len = maxfraglen - skb->len; 1387 1388 if (len <= 0) { 1389 struct sk_buff *skb_prev; 1390 int alloclen; 1391 1392 skb_prev = skb; 1393 fraggap = skb_prev->len - maxfraglen; 1394 1395 alloclen = fragheaderlen + hh_len + fraggap + 15; 1396 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1397 if (unlikely(!skb)) { 1398 err = -ENOBUFS; 1399 goto error; 1400 } 1401 1402 /* 1403 * Fill in the control structures 1404 */ 1405 skb->ip_summed = CHECKSUM_NONE; 1406 skb->csum = 0; 1407 skb_reserve(skb, hh_len); 1408 1409 /* 1410 * Find where to start putting bytes. 1411 */ 1412 skb_put(skb, fragheaderlen + fraggap); 1413 skb_reset_network_header(skb); 1414 skb->transport_header = (skb->network_header + 1415 fragheaderlen); 1416 if (fraggap) { 1417 skb->csum = skb_copy_and_csum_bits(skb_prev, 1418 maxfraglen, 1419 skb_transport_header(skb), 1420 fraggap); 1421 skb_prev->csum = csum_sub(skb_prev->csum, 1422 skb->csum); 1423 pskb_trim_unique(skb_prev, maxfraglen); 1424 } 1425 1426 /* 1427 * Put the packet on the pending queue. 1428 */ 1429 __skb_queue_tail(&sk->sk_write_queue, skb); 1430 continue; 1431 } 1432 1433 if (len > size) 1434 len = size; 1435 1436 if (skb_append_pagefrags(skb, page, offset, len)) { 1437 err = -EMSGSIZE; 1438 goto error; 1439 } 1440 1441 if (skb->ip_summed == CHECKSUM_NONE) { 1442 __wsum csum; 1443 csum = csum_page(page, offset, len); 1444 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1445 } 1446 1447 skb->len += len; 1448 skb->data_len += len; 1449 skb->truesize += len; 1450 refcount_add(len, &sk->sk_wmem_alloc); 1451 offset += len; 1452 size -= len; 1453 } 1454 return 0; 1455 1456 error: 1457 cork->length -= size; 1458 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1459 return err; 1460 } 1461 1462 static void ip_cork_release(struct inet_cork *cork) 1463 { 1464 cork->flags &= ~IPCORK_OPT; 1465 kfree(cork->opt); 1466 cork->opt = NULL; 1467 dst_release(cork->dst); 1468 cork->dst = NULL; 1469 } 1470 1471 /* 1472 * Combined all pending IP fragments on the socket as one IP datagram 1473 * and push them out. 1474 */ 1475 struct sk_buff *__ip_make_skb(struct sock *sk, 1476 struct flowi4 *fl4, 1477 struct sk_buff_head *queue, 1478 struct inet_cork *cork) 1479 { 1480 struct sk_buff *skb, *tmp_skb; 1481 struct sk_buff **tail_skb; 1482 struct inet_sock *inet = inet_sk(sk); 1483 struct net *net = sock_net(sk); 1484 struct ip_options *opt = NULL; 1485 struct rtable *rt = (struct rtable *)cork->dst; 1486 struct iphdr *iph; 1487 __be16 df = 0; 1488 __u8 ttl; 1489 1490 skb = __skb_dequeue(queue); 1491 if (!skb) 1492 goto out; 1493 tail_skb = &(skb_shinfo(skb)->frag_list); 1494 1495 /* move skb->data to ip header from ext header */ 1496 if (skb->data < skb_network_header(skb)) 1497 __skb_pull(skb, skb_network_offset(skb)); 1498 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1499 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1500 *tail_skb = tmp_skb; 1501 tail_skb = &(tmp_skb->next); 1502 skb->len += tmp_skb->len; 1503 skb->data_len += tmp_skb->len; 1504 skb->truesize += tmp_skb->truesize; 1505 tmp_skb->destructor = NULL; 1506 tmp_skb->sk = NULL; 1507 } 1508 1509 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1510 * to fragment the frame generated here. No matter, what transforms 1511 * how transforms change size of the packet, it will come out. 1512 */ 1513 skb->ignore_df = ip_sk_ignore_df(sk); 1514 1515 /* DF bit is set when we want to see DF on outgoing frames. 1516 * If ignore_df is set too, we still allow to fragment this frame 1517 * locally. */ 1518 if (inet->pmtudisc == IP_PMTUDISC_DO || 1519 inet->pmtudisc == IP_PMTUDISC_PROBE || 1520 (skb->len <= dst_mtu(&rt->dst) && 1521 ip_dont_fragment(sk, &rt->dst))) 1522 df = htons(IP_DF); 1523 1524 if (cork->flags & IPCORK_OPT) 1525 opt = cork->opt; 1526 1527 if (cork->ttl != 0) 1528 ttl = cork->ttl; 1529 else if (rt->rt_type == RTN_MULTICAST) 1530 ttl = inet->mc_ttl; 1531 else 1532 ttl = ip_select_ttl(inet, &rt->dst); 1533 1534 iph = ip_hdr(skb); 1535 iph->version = 4; 1536 iph->ihl = 5; 1537 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1538 iph->frag_off = df; 1539 iph->ttl = ttl; 1540 iph->protocol = sk->sk_protocol; 1541 ip_copy_addrs(iph, fl4); 1542 ip_select_ident(net, skb, sk); 1543 1544 if (opt) { 1545 iph->ihl += opt->optlen >> 2; 1546 ip_options_build(skb, opt, cork->addr, rt, 0); 1547 } 1548 1549 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1550 skb->mark = cork->mark; 1551 skb->tstamp = cork->transmit_time; 1552 /* 1553 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1554 * on dst refcount 1555 */ 1556 cork->dst = NULL; 1557 skb_dst_set(skb, &rt->dst); 1558 1559 if (iph->protocol == IPPROTO_ICMP) 1560 icmp_out_count(net, ((struct icmphdr *) 1561 skb_transport_header(skb))->type); 1562 1563 ip_cork_release(cork); 1564 out: 1565 return skb; 1566 } 1567 1568 int ip_send_skb(struct net *net, struct sk_buff *skb) 1569 { 1570 int err; 1571 1572 err = ip_local_out(net, skb->sk, skb); 1573 if (err) { 1574 if (err > 0) 1575 err = net_xmit_errno(err); 1576 if (err) 1577 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1578 } 1579 1580 return err; 1581 } 1582 1583 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1584 { 1585 struct sk_buff *skb; 1586 1587 skb = ip_finish_skb(sk, fl4); 1588 if (!skb) 1589 return 0; 1590 1591 /* Netfilter gets whole the not fragmented skb. */ 1592 return ip_send_skb(sock_net(sk), skb); 1593 } 1594 1595 /* 1596 * Throw away all pending data on the socket. 1597 */ 1598 static void __ip_flush_pending_frames(struct sock *sk, 1599 struct sk_buff_head *queue, 1600 struct inet_cork *cork) 1601 { 1602 struct sk_buff *skb; 1603 1604 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1605 kfree_skb(skb); 1606 1607 ip_cork_release(cork); 1608 } 1609 1610 void ip_flush_pending_frames(struct sock *sk) 1611 { 1612 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1613 } 1614 1615 struct sk_buff *ip_make_skb(struct sock *sk, 1616 struct flowi4 *fl4, 1617 int getfrag(void *from, char *to, int offset, 1618 int len, int odd, struct sk_buff *skb), 1619 void *from, int length, int transhdrlen, 1620 struct ipcm_cookie *ipc, struct rtable **rtp, 1621 struct inet_cork *cork, unsigned int flags) 1622 { 1623 struct sk_buff_head queue; 1624 int err; 1625 1626 if (flags & MSG_PROBE) 1627 return NULL; 1628 1629 __skb_queue_head_init(&queue); 1630 1631 cork->flags = 0; 1632 cork->addr = 0; 1633 cork->opt = NULL; 1634 err = ip_setup_cork(sk, cork, ipc, rtp); 1635 if (err) 1636 return ERR_PTR(err); 1637 1638 err = __ip_append_data(sk, fl4, &queue, cork, 1639 ¤t->task_frag, getfrag, 1640 from, length, transhdrlen, flags); 1641 if (err) { 1642 __ip_flush_pending_frames(sk, &queue, cork); 1643 return ERR_PTR(err); 1644 } 1645 1646 return __ip_make_skb(sk, fl4, &queue, cork); 1647 } 1648 1649 /* 1650 * Fetch data from kernel space and fill in checksum if needed. 1651 */ 1652 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1653 int len, int odd, struct sk_buff *skb) 1654 { 1655 __wsum csum; 1656 1657 csum = csum_partial_copy_nocheck(dptr+offset, to, len); 1658 skb->csum = csum_block_add(skb->csum, csum, odd); 1659 return 0; 1660 } 1661 1662 /* 1663 * Generic function to send a packet as reply to another packet. 1664 * Used to send some TCP resets/acks so far. 1665 */ 1666 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1667 const struct ip_options *sopt, 1668 __be32 daddr, __be32 saddr, 1669 const struct ip_reply_arg *arg, 1670 unsigned int len, u64 transmit_time) 1671 { 1672 struct ip_options_data replyopts; 1673 struct ipcm_cookie ipc; 1674 struct flowi4 fl4; 1675 struct rtable *rt = skb_rtable(skb); 1676 struct net *net = sock_net(sk); 1677 struct sk_buff *nskb; 1678 int err; 1679 int oif; 1680 1681 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1682 return; 1683 1684 ipcm_init(&ipc); 1685 ipc.addr = daddr; 1686 ipc.sockc.transmit_time = transmit_time; 1687 1688 if (replyopts.opt.opt.optlen) { 1689 ipc.opt = &replyopts.opt; 1690 1691 if (replyopts.opt.opt.srr) 1692 daddr = replyopts.opt.opt.faddr; 1693 } 1694 1695 oif = arg->bound_dev_if; 1696 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1697 oif = skb->skb_iif; 1698 1699 flowi4_init_output(&fl4, oif, 1700 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1701 RT_TOS(arg->tos), 1702 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1703 ip_reply_arg_flowi_flags(arg), 1704 daddr, saddr, 1705 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1706 arg->uid); 1707 security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4)); 1708 rt = ip_route_output_key(net, &fl4); 1709 if (IS_ERR(rt)) 1710 return; 1711 1712 inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK; 1713 1714 sk->sk_protocol = ip_hdr(skb)->protocol; 1715 sk->sk_bound_dev_if = arg->bound_dev_if; 1716 sk->sk_sndbuf = sysctl_wmem_default; 1717 ipc.sockc.mark = fl4.flowi4_mark; 1718 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1719 len, 0, &ipc, &rt, MSG_DONTWAIT); 1720 if (unlikely(err)) { 1721 ip_flush_pending_frames(sk); 1722 goto out; 1723 } 1724 1725 nskb = skb_peek(&sk->sk_write_queue); 1726 if (nskb) { 1727 if (arg->csumoffset >= 0) 1728 *((__sum16 *)skb_transport_header(nskb) + 1729 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1730 arg->csum)); 1731 nskb->ip_summed = CHECKSUM_NONE; 1732 ip_push_pending_frames(sk, &fl4); 1733 } 1734 out: 1735 ip_rt_put(rt); 1736 } 1737 1738 void __init ip_init(void) 1739 { 1740 ip_rt_init(); 1741 inet_initpeers(); 1742 1743 #if defined(CONFIG_IP_MULTICAST) 1744 igmp_mc_init(); 1745 #endif 1746 } 1747