1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The Internet Protocol (IP) output module. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Donald Becker, <becker@super.org> 11 * Alan Cox, <Alan.Cox@linux.org> 12 * Richard Underwood 13 * Stefan Becker, <stefanb@yello.ping.de> 14 * Jorge Cwik, <jorge@laser.satlink.net> 15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 16 * Hirokazu Takahashi, <taka@valinux.co.jp> 17 * 18 * See ip_input.c for original log 19 * 20 * Fixes: 21 * Alan Cox : Missing nonblock feature in ip_build_xmit. 22 * Mike Kilburn : htons() missing in ip_build_xmit. 23 * Bradford Johnson: Fix faulty handling of some frames when 24 * no route is found. 25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 26 * (in case if packet not accepted by 27 * output firewall rules) 28 * Mike McLagan : Routing by source 29 * Alexey Kuznetsov: use new route cache 30 * Andi Kleen: Fix broken PMTU recovery and remove 31 * some redundant tests. 32 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 33 * Andi Kleen : Replace ip_reply with ip_send_reply. 34 * Andi Kleen : Split fast and slow ip_build_xmit path 35 * for decreased register pressure on x86 36 * and more readibility. 37 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 38 * silently drop skb instead of failing with -EPERM. 39 * Detlev Wengorz : Copy protocol for fragments. 40 * Hirokazu Takahashi: HW checksumming for outgoing UDP 41 * datagrams. 42 * Hirokazu Takahashi: sendfile() on UDP works now. 43 */ 44 45 #include <linux/uaccess.h> 46 #include <linux/module.h> 47 #include <linux/types.h> 48 #include <linux/kernel.h> 49 #include <linux/mm.h> 50 #include <linux/string.h> 51 #include <linux/errno.h> 52 #include <linux/highmem.h> 53 #include <linux/slab.h> 54 55 #include <linux/socket.h> 56 #include <linux/sockios.h> 57 #include <linux/in.h> 58 #include <linux/inet.h> 59 #include <linux/netdevice.h> 60 #include <linux/etherdevice.h> 61 #include <linux/proc_fs.h> 62 #include <linux/stat.h> 63 #include <linux/init.h> 64 65 #include <net/snmp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/xfrm.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <net/arp.h> 73 #include <net/icmp.h> 74 #include <net/checksum.h> 75 #include <net/inetpeer.h> 76 #include <net/lwtunnel.h> 77 #include <linux/bpf-cgroup.h> 78 #include <linux/igmp.h> 79 #include <linux/netfilter_ipv4.h> 80 #include <linux/netfilter_bridge.h> 81 #include <linux/netlink.h> 82 #include <linux/tcp.h> 83 84 static int 85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 86 unsigned int mtu, 87 int (*output)(struct net *, struct sock *, struct sk_buff *)); 88 89 /* Generate a checksum for an outgoing IP datagram. */ 90 void ip_send_check(struct iphdr *iph) 91 { 92 iph->check = 0; 93 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 94 } 95 EXPORT_SYMBOL(ip_send_check); 96 97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 98 { 99 struct iphdr *iph = ip_hdr(skb); 100 101 iph->tot_len = htons(skb->len); 102 ip_send_check(iph); 103 104 /* if egress device is enslaved to an L3 master device pass the 105 * skb to its handler for processing 106 */ 107 skb = l3mdev_ip_out(sk, skb); 108 if (unlikely(!skb)) 109 return 0; 110 111 skb->protocol = htons(ETH_P_IP); 112 113 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 114 net, sk, skb, NULL, skb_dst(skb)->dev, 115 dst_output); 116 } 117 118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 119 { 120 int err; 121 122 err = __ip_local_out(net, sk, skb); 123 if (likely(err == 1)) 124 err = dst_output(net, sk, skb); 125 126 return err; 127 } 128 EXPORT_SYMBOL_GPL(ip_local_out); 129 130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 131 { 132 int ttl = inet->uc_ttl; 133 134 if (ttl < 0) 135 ttl = ip4_dst_hoplimit(dst); 136 return ttl; 137 } 138 139 /* 140 * Add an ip header to a skbuff and send it out. 141 * 142 */ 143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 144 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 145 { 146 struct inet_sock *inet = inet_sk(sk); 147 struct rtable *rt = skb_rtable(skb); 148 struct net *net = sock_net(sk); 149 struct iphdr *iph; 150 151 /* Build the IP header. */ 152 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 153 skb_reset_network_header(skb); 154 iph = ip_hdr(skb); 155 iph->version = 4; 156 iph->ihl = 5; 157 iph->tos = inet->tos; 158 iph->ttl = ip_select_ttl(inet, &rt->dst); 159 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 160 iph->saddr = saddr; 161 iph->protocol = sk->sk_protocol; 162 if (ip_dont_fragment(sk, &rt->dst)) { 163 iph->frag_off = htons(IP_DF); 164 iph->id = 0; 165 } else { 166 iph->frag_off = 0; 167 __ip_select_ident(net, iph, 1); 168 } 169 170 if (opt && opt->opt.optlen) { 171 iph->ihl += opt->opt.optlen>>2; 172 ip_options_build(skb, &opt->opt, daddr, rt, 0); 173 } 174 175 skb->priority = sk->sk_priority; 176 skb->mark = sk->sk_mark; 177 178 /* Send it out. */ 179 return ip_local_out(net, skb->sk, skb); 180 } 181 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 182 183 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 184 { 185 struct dst_entry *dst = skb_dst(skb); 186 struct rtable *rt = (struct rtable *)dst; 187 struct net_device *dev = dst->dev; 188 unsigned int hh_len = LL_RESERVED_SPACE(dev); 189 struct neighbour *neigh; 190 u32 nexthop; 191 192 if (rt->rt_type == RTN_MULTICAST) { 193 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 194 } else if (rt->rt_type == RTN_BROADCAST) 195 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 196 197 /* Be paranoid, rather than too clever. */ 198 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 199 struct sk_buff *skb2; 200 201 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 202 if (!skb2) { 203 kfree_skb(skb); 204 return -ENOMEM; 205 } 206 if (skb->sk) 207 skb_set_owner_w(skb2, skb->sk); 208 consume_skb(skb); 209 skb = skb2; 210 } 211 212 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 213 int res = lwtunnel_xmit(skb); 214 215 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 216 return res; 217 } 218 219 rcu_read_lock_bh(); 220 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr); 221 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 222 if (unlikely(!neigh)) 223 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 224 if (!IS_ERR(neigh)) { 225 int res = dst_neigh_output(dst, neigh, skb); 226 227 rcu_read_unlock_bh(); 228 return res; 229 } 230 rcu_read_unlock_bh(); 231 232 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 233 __func__); 234 kfree_skb(skb); 235 return -EINVAL; 236 } 237 238 static int ip_finish_output_gso(struct net *net, struct sock *sk, 239 struct sk_buff *skb, unsigned int mtu) 240 { 241 netdev_features_t features; 242 struct sk_buff *segs; 243 int ret = 0; 244 245 /* common case: seglen is <= mtu 246 */ 247 if (skb_gso_validate_mtu(skb, mtu)) 248 return ip_finish_output2(net, sk, skb); 249 250 /* Slowpath - GSO segment length exceeds the egress MTU. 251 * 252 * This can happen in several cases: 253 * - Forwarding of a TCP GRO skb, when DF flag is not set. 254 * - Forwarding of an skb that arrived on a virtualization interface 255 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 256 * stack. 257 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 258 * interface with a smaller MTU. 259 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 260 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 261 * insufficent MTU. 262 */ 263 features = netif_skb_features(skb); 264 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET); 265 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 266 if (IS_ERR_OR_NULL(segs)) { 267 kfree_skb(skb); 268 return -ENOMEM; 269 } 270 271 consume_skb(skb); 272 273 do { 274 struct sk_buff *nskb = segs->next; 275 int err; 276 277 segs->next = NULL; 278 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 279 280 if (err && ret == 0) 281 ret = err; 282 segs = nskb; 283 } while (segs); 284 285 return ret; 286 } 287 288 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 289 { 290 unsigned int mtu; 291 int ret; 292 293 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 294 if (ret) { 295 kfree_skb(skb); 296 return ret; 297 } 298 299 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 300 /* Policy lookup after SNAT yielded a new policy */ 301 if (skb_dst(skb)->xfrm) { 302 IPCB(skb)->flags |= IPSKB_REROUTED; 303 return dst_output(net, sk, skb); 304 } 305 #endif 306 mtu = ip_skb_dst_mtu(sk, skb); 307 if (skb_is_gso(skb)) 308 return ip_finish_output_gso(net, sk, skb, mtu); 309 310 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 311 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 312 313 return ip_finish_output2(net, sk, skb); 314 } 315 316 static int ip_mc_finish_output(struct net *net, struct sock *sk, 317 struct sk_buff *skb) 318 { 319 int ret; 320 321 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 322 if (ret) { 323 kfree_skb(skb); 324 return ret; 325 } 326 327 return dev_loopback_xmit(net, sk, skb); 328 } 329 330 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 331 { 332 struct rtable *rt = skb_rtable(skb); 333 struct net_device *dev = rt->dst.dev; 334 335 /* 336 * If the indicated interface is up and running, send the packet. 337 */ 338 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 339 340 skb->dev = dev; 341 skb->protocol = htons(ETH_P_IP); 342 343 /* 344 * Multicasts are looped back for other local users 345 */ 346 347 if (rt->rt_flags&RTCF_MULTICAST) { 348 if (sk_mc_loop(sk) 349 #ifdef CONFIG_IP_MROUTE 350 /* Small optimization: do not loopback not local frames, 351 which returned after forwarding; they will be dropped 352 by ip_mr_input in any case. 353 Note, that local frames are looped back to be delivered 354 to local recipients. 355 356 This check is duplicated in ip_mr_input at the moment. 357 */ 358 && 359 ((rt->rt_flags & RTCF_LOCAL) || 360 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 361 #endif 362 ) { 363 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 364 if (newskb) 365 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 366 net, sk, newskb, NULL, newskb->dev, 367 ip_mc_finish_output); 368 } 369 370 /* Multicasts with ttl 0 must not go beyond the host */ 371 372 if (ip_hdr(skb)->ttl == 0) { 373 kfree_skb(skb); 374 return 0; 375 } 376 } 377 378 if (rt->rt_flags&RTCF_BROADCAST) { 379 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 380 if (newskb) 381 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 382 net, sk, newskb, NULL, newskb->dev, 383 ip_mc_finish_output); 384 } 385 386 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 387 net, sk, skb, NULL, skb->dev, 388 ip_finish_output, 389 !(IPCB(skb)->flags & IPSKB_REROUTED)); 390 } 391 392 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 393 { 394 struct net_device *dev = skb_dst(skb)->dev; 395 396 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 397 398 skb->dev = dev; 399 skb->protocol = htons(ETH_P_IP); 400 401 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 402 net, sk, skb, NULL, dev, 403 ip_finish_output, 404 !(IPCB(skb)->flags & IPSKB_REROUTED)); 405 } 406 407 /* 408 * copy saddr and daddr, possibly using 64bit load/stores 409 * Equivalent to : 410 * iph->saddr = fl4->saddr; 411 * iph->daddr = fl4->daddr; 412 */ 413 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 414 { 415 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 416 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 417 memcpy(&iph->saddr, &fl4->saddr, 418 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 419 } 420 421 /* Note: skb->sk can be different from sk, in case of tunnels */ 422 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 423 { 424 struct inet_sock *inet = inet_sk(sk); 425 struct net *net = sock_net(sk); 426 struct ip_options_rcu *inet_opt; 427 struct flowi4 *fl4; 428 struct rtable *rt; 429 struct iphdr *iph; 430 int res; 431 432 /* Skip all of this if the packet is already routed, 433 * f.e. by something like SCTP. 434 */ 435 rcu_read_lock(); 436 inet_opt = rcu_dereference(inet->inet_opt); 437 fl4 = &fl->u.ip4; 438 rt = skb_rtable(skb); 439 if (rt) 440 goto packet_routed; 441 442 /* Make sure we can route this packet. */ 443 rt = (struct rtable *)__sk_dst_check(sk, 0); 444 if (!rt) { 445 __be32 daddr; 446 447 /* Use correct destination address if we have options. */ 448 daddr = inet->inet_daddr; 449 if (inet_opt && inet_opt->opt.srr) 450 daddr = inet_opt->opt.faddr; 451 452 /* If this fails, retransmit mechanism of transport layer will 453 * keep trying until route appears or the connection times 454 * itself out. 455 */ 456 rt = ip_route_output_ports(net, fl4, sk, 457 daddr, inet->inet_saddr, 458 inet->inet_dport, 459 inet->inet_sport, 460 sk->sk_protocol, 461 RT_CONN_FLAGS(sk), 462 sk->sk_bound_dev_if); 463 if (IS_ERR(rt)) 464 goto no_route; 465 sk_setup_caps(sk, &rt->dst); 466 } 467 skb_dst_set_noref(skb, &rt->dst); 468 469 packet_routed: 470 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 471 goto no_route; 472 473 /* OK, we know where to send it, allocate and build IP header. */ 474 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 475 skb_reset_network_header(skb); 476 iph = ip_hdr(skb); 477 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff)); 478 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 479 iph->frag_off = htons(IP_DF); 480 else 481 iph->frag_off = 0; 482 iph->ttl = ip_select_ttl(inet, &rt->dst); 483 iph->protocol = sk->sk_protocol; 484 ip_copy_addrs(iph, fl4); 485 486 /* Transport layer set skb->h.foo itself. */ 487 488 if (inet_opt && inet_opt->opt.optlen) { 489 iph->ihl += inet_opt->opt.optlen >> 2; 490 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 491 } 492 493 ip_select_ident_segs(net, skb, sk, 494 skb_shinfo(skb)->gso_segs ?: 1); 495 496 /* TODO : should we use skb->sk here instead of sk ? */ 497 skb->priority = sk->sk_priority; 498 skb->mark = sk->sk_mark; 499 500 res = ip_local_out(net, sk, skb); 501 rcu_read_unlock(); 502 return res; 503 504 no_route: 505 rcu_read_unlock(); 506 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 507 kfree_skb(skb); 508 return -EHOSTUNREACH; 509 } 510 EXPORT_SYMBOL(ip_queue_xmit); 511 512 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 513 { 514 to->pkt_type = from->pkt_type; 515 to->priority = from->priority; 516 to->protocol = from->protocol; 517 skb_dst_drop(to); 518 skb_dst_copy(to, from); 519 to->dev = from->dev; 520 to->mark = from->mark; 521 522 /* Copy the flags to each fragment. */ 523 IPCB(to)->flags = IPCB(from)->flags; 524 525 #ifdef CONFIG_NET_SCHED 526 to->tc_index = from->tc_index; 527 #endif 528 nf_copy(to, from); 529 #if IS_ENABLED(CONFIG_IP_VS) 530 to->ipvs_property = from->ipvs_property; 531 #endif 532 skb_copy_secmark(to, from); 533 } 534 535 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 536 unsigned int mtu, 537 int (*output)(struct net *, struct sock *, struct sk_buff *)) 538 { 539 struct iphdr *iph = ip_hdr(skb); 540 541 if ((iph->frag_off & htons(IP_DF)) == 0) 542 return ip_do_fragment(net, sk, skb, output); 543 544 if (unlikely(!skb->ignore_df || 545 (IPCB(skb)->frag_max_size && 546 IPCB(skb)->frag_max_size > mtu))) { 547 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 548 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 549 htonl(mtu)); 550 kfree_skb(skb); 551 return -EMSGSIZE; 552 } 553 554 return ip_do_fragment(net, sk, skb, output); 555 } 556 557 /* 558 * This IP datagram is too large to be sent in one piece. Break it up into 559 * smaller pieces (each of size equal to IP header plus 560 * a block of the data of the original IP data part) that will yet fit in a 561 * single device frame, and queue such a frame for sending. 562 */ 563 564 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 565 int (*output)(struct net *, struct sock *, struct sk_buff *)) 566 { 567 struct iphdr *iph; 568 int ptr; 569 struct sk_buff *skb2; 570 unsigned int mtu, hlen, left, len, ll_rs; 571 int offset; 572 __be16 not_last_frag; 573 struct rtable *rt = skb_rtable(skb); 574 int err = 0; 575 576 /* for offloaded checksums cleanup checksum before fragmentation */ 577 if (skb->ip_summed == CHECKSUM_PARTIAL && 578 (err = skb_checksum_help(skb))) 579 goto fail; 580 581 /* 582 * Point into the IP datagram header. 583 */ 584 585 iph = ip_hdr(skb); 586 587 mtu = ip_skb_dst_mtu(sk, skb); 588 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 589 mtu = IPCB(skb)->frag_max_size; 590 591 /* 592 * Setup starting values. 593 */ 594 595 hlen = iph->ihl * 4; 596 mtu = mtu - hlen; /* Size of data space */ 597 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 598 599 /* When frag_list is given, use it. First, check its validity: 600 * some transformers could create wrong frag_list or break existing 601 * one, it is not prohibited. In this case fall back to copying. 602 * 603 * LATER: this step can be merged to real generation of fragments, 604 * we can switch to copy when see the first bad fragment. 605 */ 606 if (skb_has_frag_list(skb)) { 607 struct sk_buff *frag, *frag2; 608 unsigned int first_len = skb_pagelen(skb); 609 610 if (first_len - hlen > mtu || 611 ((first_len - hlen) & 7) || 612 ip_is_fragment(iph) || 613 skb_cloned(skb)) 614 goto slow_path; 615 616 skb_walk_frags(skb, frag) { 617 /* Correct geometry. */ 618 if (frag->len > mtu || 619 ((frag->len & 7) && frag->next) || 620 skb_headroom(frag) < hlen) 621 goto slow_path_clean; 622 623 /* Partially cloned skb? */ 624 if (skb_shared(frag)) 625 goto slow_path_clean; 626 627 BUG_ON(frag->sk); 628 if (skb->sk) { 629 frag->sk = skb->sk; 630 frag->destructor = sock_wfree; 631 } 632 skb->truesize -= frag->truesize; 633 } 634 635 /* Everything is OK. Generate! */ 636 637 err = 0; 638 offset = 0; 639 frag = skb_shinfo(skb)->frag_list; 640 skb_frag_list_init(skb); 641 skb->data_len = first_len - skb_headlen(skb); 642 skb->len = first_len; 643 iph->tot_len = htons(first_len); 644 iph->frag_off = htons(IP_MF); 645 ip_send_check(iph); 646 647 for (;;) { 648 /* Prepare header of the next frame, 649 * before previous one went down. */ 650 if (frag) { 651 frag->ip_summed = CHECKSUM_NONE; 652 skb_reset_transport_header(frag); 653 __skb_push(frag, hlen); 654 skb_reset_network_header(frag); 655 memcpy(skb_network_header(frag), iph, hlen); 656 iph = ip_hdr(frag); 657 iph->tot_len = htons(frag->len); 658 ip_copy_metadata(frag, skb); 659 if (offset == 0) 660 ip_options_fragment(frag); 661 offset += skb->len - hlen; 662 iph->frag_off = htons(offset>>3); 663 if (frag->next) 664 iph->frag_off |= htons(IP_MF); 665 /* Ready, complete checksum */ 666 ip_send_check(iph); 667 } 668 669 err = output(net, sk, skb); 670 671 if (!err) 672 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 673 if (err || !frag) 674 break; 675 676 skb = frag; 677 frag = skb->next; 678 skb->next = NULL; 679 } 680 681 if (err == 0) { 682 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 683 return 0; 684 } 685 686 while (frag) { 687 skb = frag->next; 688 kfree_skb(frag); 689 frag = skb; 690 } 691 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 692 return err; 693 694 slow_path_clean: 695 skb_walk_frags(skb, frag2) { 696 if (frag2 == frag) 697 break; 698 frag2->sk = NULL; 699 frag2->destructor = NULL; 700 skb->truesize += frag2->truesize; 701 } 702 } 703 704 slow_path: 705 iph = ip_hdr(skb); 706 707 left = skb->len - hlen; /* Space per frame */ 708 ptr = hlen; /* Where to start from */ 709 710 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 711 712 /* 713 * Fragment the datagram. 714 */ 715 716 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 717 not_last_frag = iph->frag_off & htons(IP_MF); 718 719 /* 720 * Keep copying data until we run out. 721 */ 722 723 while (left > 0) { 724 len = left; 725 /* IF: it doesn't fit, use 'mtu' - the data space left */ 726 if (len > mtu) 727 len = mtu; 728 /* IF: we are not sending up to and including the packet end 729 then align the next start on an eight byte boundary */ 730 if (len < left) { 731 len &= ~7; 732 } 733 734 /* Allocate buffer */ 735 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 736 if (!skb2) { 737 err = -ENOMEM; 738 goto fail; 739 } 740 741 /* 742 * Set up data on packet 743 */ 744 745 ip_copy_metadata(skb2, skb); 746 skb_reserve(skb2, ll_rs); 747 skb_put(skb2, len + hlen); 748 skb_reset_network_header(skb2); 749 skb2->transport_header = skb2->network_header + hlen; 750 751 /* 752 * Charge the memory for the fragment to any owner 753 * it might possess 754 */ 755 756 if (skb->sk) 757 skb_set_owner_w(skb2, skb->sk); 758 759 /* 760 * Copy the packet header into the new buffer. 761 */ 762 763 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 764 765 /* 766 * Copy a block of the IP datagram. 767 */ 768 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 769 BUG(); 770 left -= len; 771 772 /* 773 * Fill in the new header fields. 774 */ 775 iph = ip_hdr(skb2); 776 iph->frag_off = htons((offset >> 3)); 777 778 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 779 iph->frag_off |= htons(IP_DF); 780 781 /* ANK: dirty, but effective trick. Upgrade options only if 782 * the segment to be fragmented was THE FIRST (otherwise, 783 * options are already fixed) and make it ONCE 784 * on the initial skb, so that all the following fragments 785 * will inherit fixed options. 786 */ 787 if (offset == 0) 788 ip_options_fragment(skb); 789 790 /* 791 * Added AC : If we are fragmenting a fragment that's not the 792 * last fragment then keep MF on each bit 793 */ 794 if (left > 0 || not_last_frag) 795 iph->frag_off |= htons(IP_MF); 796 ptr += len; 797 offset += len; 798 799 /* 800 * Put this fragment into the sending queue. 801 */ 802 iph->tot_len = htons(len + hlen); 803 804 ip_send_check(iph); 805 806 err = output(net, sk, skb2); 807 if (err) 808 goto fail; 809 810 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 811 } 812 consume_skb(skb); 813 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 814 return err; 815 816 fail: 817 kfree_skb(skb); 818 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 819 return err; 820 } 821 EXPORT_SYMBOL(ip_do_fragment); 822 823 int 824 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 825 { 826 struct msghdr *msg = from; 827 828 if (skb->ip_summed == CHECKSUM_PARTIAL) { 829 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 830 return -EFAULT; 831 } else { 832 __wsum csum = 0; 833 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 834 return -EFAULT; 835 skb->csum = csum_block_add(skb->csum, csum, odd); 836 } 837 return 0; 838 } 839 EXPORT_SYMBOL(ip_generic_getfrag); 840 841 static inline __wsum 842 csum_page(struct page *page, int offset, int copy) 843 { 844 char *kaddr; 845 __wsum csum; 846 kaddr = kmap(page); 847 csum = csum_partial(kaddr + offset, copy, 0); 848 kunmap(page); 849 return csum; 850 } 851 852 static inline int ip_ufo_append_data(struct sock *sk, 853 struct sk_buff_head *queue, 854 int getfrag(void *from, char *to, int offset, int len, 855 int odd, struct sk_buff *skb), 856 void *from, int length, int hh_len, int fragheaderlen, 857 int transhdrlen, int maxfraglen, unsigned int flags) 858 { 859 struct sk_buff *skb; 860 int err; 861 862 /* There is support for UDP fragmentation offload by network 863 * device, so create one single skb packet containing complete 864 * udp datagram 865 */ 866 skb = skb_peek_tail(queue); 867 if (!skb) { 868 skb = sock_alloc_send_skb(sk, 869 hh_len + fragheaderlen + transhdrlen + 20, 870 (flags & MSG_DONTWAIT), &err); 871 872 if (!skb) 873 return err; 874 875 /* reserve space for Hardware header */ 876 skb_reserve(skb, hh_len); 877 878 /* create space for UDP/IP header */ 879 skb_put(skb, fragheaderlen + transhdrlen); 880 881 /* initialize network header pointer */ 882 skb_reset_network_header(skb); 883 884 /* initialize protocol header pointer */ 885 skb->transport_header = skb->network_header + fragheaderlen; 886 887 skb->csum = 0; 888 889 __skb_queue_tail(queue, skb); 890 } else if (skb_is_gso(skb)) { 891 goto append; 892 } 893 894 skb->ip_summed = CHECKSUM_PARTIAL; 895 /* specify the length of each IP datagram fragment */ 896 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen; 897 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 898 899 append: 900 return skb_append_datato_frags(sk, skb, getfrag, from, 901 (length - transhdrlen)); 902 } 903 904 static int __ip_append_data(struct sock *sk, 905 struct flowi4 *fl4, 906 struct sk_buff_head *queue, 907 struct inet_cork *cork, 908 struct page_frag *pfrag, 909 int getfrag(void *from, char *to, int offset, 910 int len, int odd, struct sk_buff *skb), 911 void *from, int length, int transhdrlen, 912 unsigned int flags) 913 { 914 struct inet_sock *inet = inet_sk(sk); 915 struct sk_buff *skb; 916 917 struct ip_options *opt = cork->opt; 918 int hh_len; 919 int exthdrlen; 920 int mtu; 921 int copy; 922 int err; 923 int offset = 0; 924 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 925 int csummode = CHECKSUM_NONE; 926 struct rtable *rt = (struct rtable *)cork->dst; 927 u32 tskey = 0; 928 929 skb = skb_peek_tail(queue); 930 931 exthdrlen = !skb ? rt->dst.header_len : 0; 932 mtu = cork->fragsize; 933 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 934 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 935 tskey = sk->sk_tskey++; 936 937 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 938 939 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 940 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 941 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 942 943 if (cork->length + length > maxnonfragsize - fragheaderlen) { 944 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 945 mtu - (opt ? opt->optlen : 0)); 946 return -EMSGSIZE; 947 } 948 949 /* 950 * transhdrlen > 0 means that this is the first fragment and we wish 951 * it won't be fragmented in the future. 952 */ 953 if (transhdrlen && 954 length + fragheaderlen <= mtu && 955 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 956 !(flags & MSG_MORE) && 957 !exthdrlen) 958 csummode = CHECKSUM_PARTIAL; 959 960 cork->length += length; 961 if ((((length + fragheaderlen) > mtu) || (skb && skb_is_gso(skb))) && 962 (sk->sk_protocol == IPPROTO_UDP) && 963 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len && 964 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) { 965 err = ip_ufo_append_data(sk, queue, getfrag, from, length, 966 hh_len, fragheaderlen, transhdrlen, 967 maxfraglen, flags); 968 if (err) 969 goto error; 970 return 0; 971 } 972 973 /* So, what's going on in the loop below? 974 * 975 * We use calculated fragment length to generate chained skb, 976 * each of segments is IP fragment ready for sending to network after 977 * adding appropriate IP header. 978 */ 979 980 if (!skb) 981 goto alloc_new_skb; 982 983 while (length > 0) { 984 /* Check if the remaining data fits into current packet. */ 985 copy = mtu - skb->len; 986 if (copy < length) 987 copy = maxfraglen - skb->len; 988 if (copy <= 0) { 989 char *data; 990 unsigned int datalen; 991 unsigned int fraglen; 992 unsigned int fraggap; 993 unsigned int alloclen; 994 struct sk_buff *skb_prev; 995 alloc_new_skb: 996 skb_prev = skb; 997 if (skb_prev) 998 fraggap = skb_prev->len - maxfraglen; 999 else 1000 fraggap = 0; 1001 1002 /* 1003 * If remaining data exceeds the mtu, 1004 * we know we need more fragment(s). 1005 */ 1006 datalen = length + fraggap; 1007 if (datalen > mtu - fragheaderlen) 1008 datalen = maxfraglen - fragheaderlen; 1009 fraglen = datalen + fragheaderlen; 1010 1011 if ((flags & MSG_MORE) && 1012 !(rt->dst.dev->features&NETIF_F_SG)) 1013 alloclen = mtu; 1014 else 1015 alloclen = fraglen; 1016 1017 alloclen += exthdrlen; 1018 1019 /* The last fragment gets additional space at tail. 1020 * Note, with MSG_MORE we overallocate on fragments, 1021 * because we have no idea what fragment will be 1022 * the last. 1023 */ 1024 if (datalen == length + fraggap) 1025 alloclen += rt->dst.trailer_len; 1026 1027 if (transhdrlen) { 1028 skb = sock_alloc_send_skb(sk, 1029 alloclen + hh_len + 15, 1030 (flags & MSG_DONTWAIT), &err); 1031 } else { 1032 skb = NULL; 1033 if (atomic_read(&sk->sk_wmem_alloc) <= 1034 2 * sk->sk_sndbuf) 1035 skb = sock_wmalloc(sk, 1036 alloclen + hh_len + 15, 1, 1037 sk->sk_allocation); 1038 if (unlikely(!skb)) 1039 err = -ENOBUFS; 1040 } 1041 if (!skb) 1042 goto error; 1043 1044 /* 1045 * Fill in the control structures 1046 */ 1047 skb->ip_summed = csummode; 1048 skb->csum = 0; 1049 skb_reserve(skb, hh_len); 1050 1051 /* only the initial fragment is time stamped */ 1052 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1053 cork->tx_flags = 0; 1054 skb_shinfo(skb)->tskey = tskey; 1055 tskey = 0; 1056 1057 /* 1058 * Find where to start putting bytes. 1059 */ 1060 data = skb_put(skb, fraglen + exthdrlen); 1061 skb_set_network_header(skb, exthdrlen); 1062 skb->transport_header = (skb->network_header + 1063 fragheaderlen); 1064 data += fragheaderlen + exthdrlen; 1065 1066 if (fraggap) { 1067 skb->csum = skb_copy_and_csum_bits( 1068 skb_prev, maxfraglen, 1069 data + transhdrlen, fraggap, 0); 1070 skb_prev->csum = csum_sub(skb_prev->csum, 1071 skb->csum); 1072 data += fraggap; 1073 pskb_trim_unique(skb_prev, maxfraglen); 1074 } 1075 1076 copy = datalen - transhdrlen - fraggap; 1077 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1078 err = -EFAULT; 1079 kfree_skb(skb); 1080 goto error; 1081 } 1082 1083 offset += copy; 1084 length -= datalen - fraggap; 1085 transhdrlen = 0; 1086 exthdrlen = 0; 1087 csummode = CHECKSUM_NONE; 1088 1089 /* 1090 * Put the packet on the pending queue. 1091 */ 1092 __skb_queue_tail(queue, skb); 1093 continue; 1094 } 1095 1096 if (copy > length) 1097 copy = length; 1098 1099 if (!(rt->dst.dev->features&NETIF_F_SG)) { 1100 unsigned int off; 1101 1102 off = skb->len; 1103 if (getfrag(from, skb_put(skb, copy), 1104 offset, copy, off, skb) < 0) { 1105 __skb_trim(skb, off); 1106 err = -EFAULT; 1107 goto error; 1108 } 1109 } else { 1110 int i = skb_shinfo(skb)->nr_frags; 1111 1112 err = -ENOMEM; 1113 if (!sk_page_frag_refill(sk, pfrag)) 1114 goto error; 1115 1116 if (!skb_can_coalesce(skb, i, pfrag->page, 1117 pfrag->offset)) { 1118 err = -EMSGSIZE; 1119 if (i == MAX_SKB_FRAGS) 1120 goto error; 1121 1122 __skb_fill_page_desc(skb, i, pfrag->page, 1123 pfrag->offset, 0); 1124 skb_shinfo(skb)->nr_frags = ++i; 1125 get_page(pfrag->page); 1126 } 1127 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1128 if (getfrag(from, 1129 page_address(pfrag->page) + pfrag->offset, 1130 offset, copy, skb->len, skb) < 0) 1131 goto error_efault; 1132 1133 pfrag->offset += copy; 1134 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1135 skb->len += copy; 1136 skb->data_len += copy; 1137 skb->truesize += copy; 1138 atomic_add(copy, &sk->sk_wmem_alloc); 1139 } 1140 offset += copy; 1141 length -= copy; 1142 } 1143 1144 return 0; 1145 1146 error_efault: 1147 err = -EFAULT; 1148 error: 1149 cork->length -= length; 1150 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1151 return err; 1152 } 1153 1154 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1155 struct ipcm_cookie *ipc, struct rtable **rtp) 1156 { 1157 struct ip_options_rcu *opt; 1158 struct rtable *rt; 1159 1160 /* 1161 * setup for corking. 1162 */ 1163 opt = ipc->opt; 1164 if (opt) { 1165 if (!cork->opt) { 1166 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1167 sk->sk_allocation); 1168 if (unlikely(!cork->opt)) 1169 return -ENOBUFS; 1170 } 1171 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1172 cork->flags |= IPCORK_OPT; 1173 cork->addr = ipc->addr; 1174 } 1175 rt = *rtp; 1176 if (unlikely(!rt)) 1177 return -EFAULT; 1178 /* 1179 * We steal reference to this route, caller should not release it 1180 */ 1181 *rtp = NULL; 1182 cork->fragsize = ip_sk_use_pmtu(sk) ? 1183 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1184 cork->dst = &rt->dst; 1185 cork->length = 0; 1186 cork->ttl = ipc->ttl; 1187 cork->tos = ipc->tos; 1188 cork->priority = ipc->priority; 1189 cork->tx_flags = ipc->tx_flags; 1190 1191 return 0; 1192 } 1193 1194 /* 1195 * ip_append_data() and ip_append_page() can make one large IP datagram 1196 * from many pieces of data. Each pieces will be holded on the socket 1197 * until ip_push_pending_frames() is called. Each piece can be a page 1198 * or non-page data. 1199 * 1200 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1201 * this interface potentially. 1202 * 1203 * LATER: length must be adjusted by pad at tail, when it is required. 1204 */ 1205 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1206 int getfrag(void *from, char *to, int offset, int len, 1207 int odd, struct sk_buff *skb), 1208 void *from, int length, int transhdrlen, 1209 struct ipcm_cookie *ipc, struct rtable **rtp, 1210 unsigned int flags) 1211 { 1212 struct inet_sock *inet = inet_sk(sk); 1213 int err; 1214 1215 if (flags&MSG_PROBE) 1216 return 0; 1217 1218 if (skb_queue_empty(&sk->sk_write_queue)) { 1219 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1220 if (err) 1221 return err; 1222 } else { 1223 transhdrlen = 0; 1224 } 1225 1226 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1227 sk_page_frag(sk), getfrag, 1228 from, length, transhdrlen, flags); 1229 } 1230 1231 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1232 int offset, size_t size, int flags) 1233 { 1234 struct inet_sock *inet = inet_sk(sk); 1235 struct sk_buff *skb; 1236 struct rtable *rt; 1237 struct ip_options *opt = NULL; 1238 struct inet_cork *cork; 1239 int hh_len; 1240 int mtu; 1241 int len; 1242 int err; 1243 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1244 1245 if (inet->hdrincl) 1246 return -EPERM; 1247 1248 if (flags&MSG_PROBE) 1249 return 0; 1250 1251 if (skb_queue_empty(&sk->sk_write_queue)) 1252 return -EINVAL; 1253 1254 cork = &inet->cork.base; 1255 rt = (struct rtable *)cork->dst; 1256 if (cork->flags & IPCORK_OPT) 1257 opt = cork->opt; 1258 1259 if (!(rt->dst.dev->features&NETIF_F_SG)) 1260 return -EOPNOTSUPP; 1261 1262 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1263 mtu = cork->fragsize; 1264 1265 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1266 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1267 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1268 1269 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1270 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1271 mtu - (opt ? opt->optlen : 0)); 1272 return -EMSGSIZE; 1273 } 1274 1275 skb = skb_peek_tail(&sk->sk_write_queue); 1276 if (!skb) 1277 return -EINVAL; 1278 1279 if ((size + skb->len > mtu) && 1280 (sk->sk_protocol == IPPROTO_UDP) && 1281 (rt->dst.dev->features & NETIF_F_UFO)) { 1282 if (skb->ip_summed != CHECKSUM_PARTIAL) 1283 return -EOPNOTSUPP; 1284 1285 skb_shinfo(skb)->gso_size = mtu - fragheaderlen; 1286 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 1287 } 1288 cork->length += size; 1289 1290 while (size > 0) { 1291 if (skb_is_gso(skb)) { 1292 len = size; 1293 } else { 1294 1295 /* Check if the remaining data fits into current packet. */ 1296 len = mtu - skb->len; 1297 if (len < size) 1298 len = maxfraglen - skb->len; 1299 } 1300 if (len <= 0) { 1301 struct sk_buff *skb_prev; 1302 int alloclen; 1303 1304 skb_prev = skb; 1305 fraggap = skb_prev->len - maxfraglen; 1306 1307 alloclen = fragheaderlen + hh_len + fraggap + 15; 1308 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1309 if (unlikely(!skb)) { 1310 err = -ENOBUFS; 1311 goto error; 1312 } 1313 1314 /* 1315 * Fill in the control structures 1316 */ 1317 skb->ip_summed = CHECKSUM_NONE; 1318 skb->csum = 0; 1319 skb_reserve(skb, hh_len); 1320 1321 /* 1322 * Find where to start putting bytes. 1323 */ 1324 skb_put(skb, fragheaderlen + fraggap); 1325 skb_reset_network_header(skb); 1326 skb->transport_header = (skb->network_header + 1327 fragheaderlen); 1328 if (fraggap) { 1329 skb->csum = skb_copy_and_csum_bits(skb_prev, 1330 maxfraglen, 1331 skb_transport_header(skb), 1332 fraggap, 0); 1333 skb_prev->csum = csum_sub(skb_prev->csum, 1334 skb->csum); 1335 pskb_trim_unique(skb_prev, maxfraglen); 1336 } 1337 1338 /* 1339 * Put the packet on the pending queue. 1340 */ 1341 __skb_queue_tail(&sk->sk_write_queue, skb); 1342 continue; 1343 } 1344 1345 if (len > size) 1346 len = size; 1347 1348 if (skb_append_pagefrags(skb, page, offset, len)) { 1349 err = -EMSGSIZE; 1350 goto error; 1351 } 1352 1353 if (skb->ip_summed == CHECKSUM_NONE) { 1354 __wsum csum; 1355 csum = csum_page(page, offset, len); 1356 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1357 } 1358 1359 skb->len += len; 1360 skb->data_len += len; 1361 skb->truesize += len; 1362 atomic_add(len, &sk->sk_wmem_alloc); 1363 offset += len; 1364 size -= len; 1365 } 1366 return 0; 1367 1368 error: 1369 cork->length -= size; 1370 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1371 return err; 1372 } 1373 1374 static void ip_cork_release(struct inet_cork *cork) 1375 { 1376 cork->flags &= ~IPCORK_OPT; 1377 kfree(cork->opt); 1378 cork->opt = NULL; 1379 dst_release(cork->dst); 1380 cork->dst = NULL; 1381 } 1382 1383 /* 1384 * Combined all pending IP fragments on the socket as one IP datagram 1385 * and push them out. 1386 */ 1387 struct sk_buff *__ip_make_skb(struct sock *sk, 1388 struct flowi4 *fl4, 1389 struct sk_buff_head *queue, 1390 struct inet_cork *cork) 1391 { 1392 struct sk_buff *skb, *tmp_skb; 1393 struct sk_buff **tail_skb; 1394 struct inet_sock *inet = inet_sk(sk); 1395 struct net *net = sock_net(sk); 1396 struct ip_options *opt = NULL; 1397 struct rtable *rt = (struct rtable *)cork->dst; 1398 struct iphdr *iph; 1399 __be16 df = 0; 1400 __u8 ttl; 1401 1402 skb = __skb_dequeue(queue); 1403 if (!skb) 1404 goto out; 1405 tail_skb = &(skb_shinfo(skb)->frag_list); 1406 1407 /* move skb->data to ip header from ext header */ 1408 if (skb->data < skb_network_header(skb)) 1409 __skb_pull(skb, skb_network_offset(skb)); 1410 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1411 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1412 *tail_skb = tmp_skb; 1413 tail_skb = &(tmp_skb->next); 1414 skb->len += tmp_skb->len; 1415 skb->data_len += tmp_skb->len; 1416 skb->truesize += tmp_skb->truesize; 1417 tmp_skb->destructor = NULL; 1418 tmp_skb->sk = NULL; 1419 } 1420 1421 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1422 * to fragment the frame generated here. No matter, what transforms 1423 * how transforms change size of the packet, it will come out. 1424 */ 1425 skb->ignore_df = ip_sk_ignore_df(sk); 1426 1427 /* DF bit is set when we want to see DF on outgoing frames. 1428 * If ignore_df is set too, we still allow to fragment this frame 1429 * locally. */ 1430 if (inet->pmtudisc == IP_PMTUDISC_DO || 1431 inet->pmtudisc == IP_PMTUDISC_PROBE || 1432 (skb->len <= dst_mtu(&rt->dst) && 1433 ip_dont_fragment(sk, &rt->dst))) 1434 df = htons(IP_DF); 1435 1436 if (cork->flags & IPCORK_OPT) 1437 opt = cork->opt; 1438 1439 if (cork->ttl != 0) 1440 ttl = cork->ttl; 1441 else if (rt->rt_type == RTN_MULTICAST) 1442 ttl = inet->mc_ttl; 1443 else 1444 ttl = ip_select_ttl(inet, &rt->dst); 1445 1446 iph = ip_hdr(skb); 1447 iph->version = 4; 1448 iph->ihl = 5; 1449 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1450 iph->frag_off = df; 1451 iph->ttl = ttl; 1452 iph->protocol = sk->sk_protocol; 1453 ip_copy_addrs(iph, fl4); 1454 ip_select_ident(net, skb, sk); 1455 1456 if (opt) { 1457 iph->ihl += opt->optlen>>2; 1458 ip_options_build(skb, opt, cork->addr, rt, 0); 1459 } 1460 1461 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1462 skb->mark = sk->sk_mark; 1463 /* 1464 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1465 * on dst refcount 1466 */ 1467 cork->dst = NULL; 1468 skb_dst_set(skb, &rt->dst); 1469 1470 if (iph->protocol == IPPROTO_ICMP) 1471 icmp_out_count(net, ((struct icmphdr *) 1472 skb_transport_header(skb))->type); 1473 1474 ip_cork_release(cork); 1475 out: 1476 return skb; 1477 } 1478 1479 int ip_send_skb(struct net *net, struct sk_buff *skb) 1480 { 1481 int err; 1482 1483 err = ip_local_out(net, skb->sk, skb); 1484 if (err) { 1485 if (err > 0) 1486 err = net_xmit_errno(err); 1487 if (err) 1488 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1489 } 1490 1491 return err; 1492 } 1493 1494 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1495 { 1496 struct sk_buff *skb; 1497 1498 skb = ip_finish_skb(sk, fl4); 1499 if (!skb) 1500 return 0; 1501 1502 /* Netfilter gets whole the not fragmented skb. */ 1503 return ip_send_skb(sock_net(sk), skb); 1504 } 1505 1506 /* 1507 * Throw away all pending data on the socket. 1508 */ 1509 static void __ip_flush_pending_frames(struct sock *sk, 1510 struct sk_buff_head *queue, 1511 struct inet_cork *cork) 1512 { 1513 struct sk_buff *skb; 1514 1515 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1516 kfree_skb(skb); 1517 1518 ip_cork_release(cork); 1519 } 1520 1521 void ip_flush_pending_frames(struct sock *sk) 1522 { 1523 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1524 } 1525 1526 struct sk_buff *ip_make_skb(struct sock *sk, 1527 struct flowi4 *fl4, 1528 int getfrag(void *from, char *to, int offset, 1529 int len, int odd, struct sk_buff *skb), 1530 void *from, int length, int transhdrlen, 1531 struct ipcm_cookie *ipc, struct rtable **rtp, 1532 unsigned int flags) 1533 { 1534 struct inet_cork cork; 1535 struct sk_buff_head queue; 1536 int err; 1537 1538 if (flags & MSG_PROBE) 1539 return NULL; 1540 1541 __skb_queue_head_init(&queue); 1542 1543 cork.flags = 0; 1544 cork.addr = 0; 1545 cork.opt = NULL; 1546 err = ip_setup_cork(sk, &cork, ipc, rtp); 1547 if (err) 1548 return ERR_PTR(err); 1549 1550 err = __ip_append_data(sk, fl4, &queue, &cork, 1551 ¤t->task_frag, getfrag, 1552 from, length, transhdrlen, flags); 1553 if (err) { 1554 __ip_flush_pending_frames(sk, &queue, &cork); 1555 return ERR_PTR(err); 1556 } 1557 1558 return __ip_make_skb(sk, fl4, &queue, &cork); 1559 } 1560 1561 /* 1562 * Fetch data from kernel space and fill in checksum if needed. 1563 */ 1564 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1565 int len, int odd, struct sk_buff *skb) 1566 { 1567 __wsum csum; 1568 1569 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1570 skb->csum = csum_block_add(skb->csum, csum, odd); 1571 return 0; 1572 } 1573 1574 /* 1575 * Generic function to send a packet as reply to another packet. 1576 * Used to send some TCP resets/acks so far. 1577 */ 1578 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1579 const struct ip_options *sopt, 1580 __be32 daddr, __be32 saddr, 1581 const struct ip_reply_arg *arg, 1582 unsigned int len) 1583 { 1584 struct ip_options_data replyopts; 1585 struct ipcm_cookie ipc; 1586 struct flowi4 fl4; 1587 struct rtable *rt = skb_rtable(skb); 1588 struct net *net = sock_net(sk); 1589 struct sk_buff *nskb; 1590 int err; 1591 int oif; 1592 1593 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt)) 1594 return; 1595 1596 ipc.addr = daddr; 1597 ipc.opt = NULL; 1598 ipc.tx_flags = 0; 1599 ipc.ttl = 0; 1600 ipc.tos = -1; 1601 1602 if (replyopts.opt.opt.optlen) { 1603 ipc.opt = &replyopts.opt; 1604 1605 if (replyopts.opt.opt.srr) 1606 daddr = replyopts.opt.opt.faddr; 1607 } 1608 1609 oif = arg->bound_dev_if; 1610 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1611 oif = skb->skb_iif; 1612 1613 flowi4_init_output(&fl4, oif, 1614 IP4_REPLY_MARK(net, skb->mark), 1615 RT_TOS(arg->tos), 1616 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1617 ip_reply_arg_flowi_flags(arg), 1618 daddr, saddr, 1619 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1620 arg->uid); 1621 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1622 rt = ip_route_output_key(net, &fl4); 1623 if (IS_ERR(rt)) 1624 return; 1625 1626 inet_sk(sk)->tos = arg->tos; 1627 1628 sk->sk_priority = skb->priority; 1629 sk->sk_protocol = ip_hdr(skb)->protocol; 1630 sk->sk_bound_dev_if = arg->bound_dev_if; 1631 sk->sk_sndbuf = sysctl_wmem_default; 1632 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1633 len, 0, &ipc, &rt, MSG_DONTWAIT); 1634 if (unlikely(err)) { 1635 ip_flush_pending_frames(sk); 1636 goto out; 1637 } 1638 1639 nskb = skb_peek(&sk->sk_write_queue); 1640 if (nskb) { 1641 if (arg->csumoffset >= 0) 1642 *((__sum16 *)skb_transport_header(nskb) + 1643 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1644 arg->csum)); 1645 nskb->ip_summed = CHECKSUM_NONE; 1646 ip_push_pending_frames(sk, &fl4); 1647 } 1648 out: 1649 ip_rt_put(rt); 1650 } 1651 1652 void __init ip_init(void) 1653 { 1654 ip_rt_init(); 1655 inet_initpeers(); 1656 1657 #if defined(CONFIG_IP_MULTICAST) 1658 igmp_mc_init(); 1659 #endif 1660 } 1661