1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The Internet Protocol (IP) output module. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Donald Becker, <becker@super.org> 11 * Alan Cox, <Alan.Cox@linux.org> 12 * Richard Underwood 13 * Stefan Becker, <stefanb@yello.ping.de> 14 * Jorge Cwik, <jorge@laser.satlink.net> 15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 16 * Hirokazu Takahashi, <taka@valinux.co.jp> 17 * 18 * See ip_input.c for original log 19 * 20 * Fixes: 21 * Alan Cox : Missing nonblock feature in ip_build_xmit. 22 * Mike Kilburn : htons() missing in ip_build_xmit. 23 * Bradford Johnson: Fix faulty handling of some frames when 24 * no route is found. 25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 26 * (in case if packet not accepted by 27 * output firewall rules) 28 * Mike McLagan : Routing by source 29 * Alexey Kuznetsov: use new route cache 30 * Andi Kleen: Fix broken PMTU recovery and remove 31 * some redundant tests. 32 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 33 * Andi Kleen : Replace ip_reply with ip_send_reply. 34 * Andi Kleen : Split fast and slow ip_build_xmit path 35 * for decreased register pressure on x86 36 * and more readibility. 37 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 38 * silently drop skb instead of failing with -EPERM. 39 * Detlev Wengorz : Copy protocol for fragments. 40 * Hirokazu Takahashi: HW checksumming for outgoing UDP 41 * datagrams. 42 * Hirokazu Takahashi: sendfile() on UDP works now. 43 */ 44 45 #include <asm/uaccess.h> 46 #include <linux/module.h> 47 #include <linux/types.h> 48 #include <linux/kernel.h> 49 #include <linux/mm.h> 50 #include <linux/string.h> 51 #include <linux/errno.h> 52 #include <linux/highmem.h> 53 #include <linux/slab.h> 54 55 #include <linux/socket.h> 56 #include <linux/sockios.h> 57 #include <linux/in.h> 58 #include <linux/inet.h> 59 #include <linux/netdevice.h> 60 #include <linux/etherdevice.h> 61 #include <linux/proc_fs.h> 62 #include <linux/stat.h> 63 #include <linux/init.h> 64 65 #include <net/snmp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/xfrm.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <net/arp.h> 73 #include <net/icmp.h> 74 #include <net/checksum.h> 75 #include <net/inetpeer.h> 76 #include <linux/igmp.h> 77 #include <linux/netfilter_ipv4.h> 78 #include <linux/netfilter_bridge.h> 79 #include <linux/mroute.h> 80 #include <linux/netlink.h> 81 #include <linux/tcp.h> 82 83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL; 84 EXPORT_SYMBOL(sysctl_ip_default_ttl); 85 86 static int ip_fragment(struct sock *sk, struct sk_buff *skb, 87 unsigned int mtu, 88 int (*output)(struct sock *, struct sk_buff *)); 89 90 /* Generate a checksum for an outgoing IP datagram. */ 91 void ip_send_check(struct iphdr *iph) 92 { 93 iph->check = 0; 94 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 95 } 96 EXPORT_SYMBOL(ip_send_check); 97 98 static int __ip_local_out_sk(struct sock *sk, struct sk_buff *skb) 99 { 100 struct iphdr *iph = ip_hdr(skb); 101 102 iph->tot_len = htons(skb->len); 103 ip_send_check(iph); 104 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, sk, skb, NULL, 105 skb_dst(skb)->dev, dst_output_sk); 106 } 107 108 int __ip_local_out(struct sk_buff *skb) 109 { 110 return __ip_local_out_sk(skb->sk, skb); 111 } 112 113 int ip_local_out_sk(struct sock *sk, struct sk_buff *skb) 114 { 115 int err; 116 117 err = __ip_local_out(skb); 118 if (likely(err == 1)) 119 err = dst_output_sk(sk, skb); 120 121 return err; 122 } 123 EXPORT_SYMBOL_GPL(ip_local_out_sk); 124 125 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 126 { 127 int ttl = inet->uc_ttl; 128 129 if (ttl < 0) 130 ttl = ip4_dst_hoplimit(dst); 131 return ttl; 132 } 133 134 /* 135 * Add an ip header to a skbuff and send it out. 136 * 137 */ 138 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk, 139 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 140 { 141 struct inet_sock *inet = inet_sk(sk); 142 struct rtable *rt = skb_rtable(skb); 143 struct iphdr *iph; 144 145 /* Build the IP header. */ 146 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 147 skb_reset_network_header(skb); 148 iph = ip_hdr(skb); 149 iph->version = 4; 150 iph->ihl = 5; 151 iph->tos = inet->tos; 152 if (ip_dont_fragment(sk, &rt->dst)) 153 iph->frag_off = htons(IP_DF); 154 else 155 iph->frag_off = 0; 156 iph->ttl = ip_select_ttl(inet, &rt->dst); 157 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 158 iph->saddr = saddr; 159 iph->protocol = sk->sk_protocol; 160 ip_select_ident(sock_net(sk), skb, sk); 161 162 if (opt && opt->opt.optlen) { 163 iph->ihl += opt->opt.optlen>>2; 164 ip_options_build(skb, &opt->opt, daddr, rt, 0); 165 } 166 167 skb->priority = sk->sk_priority; 168 skb->mark = sk->sk_mark; 169 170 /* Send it out. */ 171 return ip_local_out(skb); 172 } 173 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 174 175 static int ip_finish_output2(struct sock *sk, struct sk_buff *skb) 176 { 177 struct dst_entry *dst = skb_dst(skb); 178 struct rtable *rt = (struct rtable *)dst; 179 struct net_device *dev = dst->dev; 180 unsigned int hh_len = LL_RESERVED_SPACE(dev); 181 struct neighbour *neigh; 182 u32 nexthop; 183 184 if (rt->rt_type == RTN_MULTICAST) { 185 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len); 186 } else if (rt->rt_type == RTN_BROADCAST) 187 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len); 188 189 /* Be paranoid, rather than too clever. */ 190 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 191 struct sk_buff *skb2; 192 193 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 194 if (!skb2) { 195 kfree_skb(skb); 196 return -ENOMEM; 197 } 198 if (skb->sk) 199 skb_set_owner_w(skb2, skb->sk); 200 consume_skb(skb); 201 skb = skb2; 202 } 203 204 rcu_read_lock_bh(); 205 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr); 206 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 207 if (unlikely(!neigh)) 208 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 209 if (!IS_ERR(neigh)) { 210 int res = dst_neigh_output(dst, neigh, skb); 211 212 rcu_read_unlock_bh(); 213 return res; 214 } 215 rcu_read_unlock_bh(); 216 217 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 218 __func__); 219 kfree_skb(skb); 220 return -EINVAL; 221 } 222 223 static int ip_finish_output_gso(struct sock *sk, struct sk_buff *skb, 224 unsigned int mtu) 225 { 226 netdev_features_t features; 227 struct sk_buff *segs; 228 int ret = 0; 229 230 /* common case: locally created skb or seglen is <= mtu */ 231 if (((IPCB(skb)->flags & IPSKB_FORWARDED) == 0) || 232 skb_gso_network_seglen(skb) <= mtu) 233 return ip_finish_output2(sk, skb); 234 235 /* Slowpath - GSO segment length is exceeding the dst MTU. 236 * 237 * This can happen in two cases: 238 * 1) TCP GRO packet, DF bit not set 239 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly 240 * from host network stack. 241 */ 242 features = netif_skb_features(skb); 243 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 244 if (IS_ERR_OR_NULL(segs)) { 245 kfree_skb(skb); 246 return -ENOMEM; 247 } 248 249 consume_skb(skb); 250 251 do { 252 struct sk_buff *nskb = segs->next; 253 int err; 254 255 segs->next = NULL; 256 err = ip_fragment(sk, segs, mtu, ip_finish_output2); 257 258 if (err && ret == 0) 259 ret = err; 260 segs = nskb; 261 } while (segs); 262 263 return ret; 264 } 265 266 static int ip_finish_output(struct sock *sk, struct sk_buff *skb) 267 { 268 unsigned int mtu; 269 270 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 271 /* Policy lookup after SNAT yielded a new policy */ 272 if (skb_dst(skb)->xfrm) { 273 IPCB(skb)->flags |= IPSKB_REROUTED; 274 return dst_output_sk(sk, skb); 275 } 276 #endif 277 mtu = ip_skb_dst_mtu(skb); 278 if (skb_is_gso(skb)) 279 return ip_finish_output_gso(sk, skb, mtu); 280 281 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 282 return ip_fragment(sk, skb, mtu, ip_finish_output2); 283 284 return ip_finish_output2(sk, skb); 285 } 286 287 int ip_mc_output(struct sock *sk, struct sk_buff *skb) 288 { 289 struct rtable *rt = skb_rtable(skb); 290 struct net_device *dev = rt->dst.dev; 291 292 /* 293 * If the indicated interface is up and running, send the packet. 294 */ 295 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len); 296 297 skb->dev = dev; 298 skb->protocol = htons(ETH_P_IP); 299 300 /* 301 * Multicasts are looped back for other local users 302 */ 303 304 if (rt->rt_flags&RTCF_MULTICAST) { 305 if (sk_mc_loop(sk) 306 #ifdef CONFIG_IP_MROUTE 307 /* Small optimization: do not loopback not local frames, 308 which returned after forwarding; they will be dropped 309 by ip_mr_input in any case. 310 Note, that local frames are looped back to be delivered 311 to local recipients. 312 313 This check is duplicated in ip_mr_input at the moment. 314 */ 315 && 316 ((rt->rt_flags & RTCF_LOCAL) || 317 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 318 #endif 319 ) { 320 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 321 if (newskb) 322 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 323 sk, newskb, NULL, newskb->dev, 324 dev_loopback_xmit); 325 } 326 327 /* Multicasts with ttl 0 must not go beyond the host */ 328 329 if (ip_hdr(skb)->ttl == 0) { 330 kfree_skb(skb); 331 return 0; 332 } 333 } 334 335 if (rt->rt_flags&RTCF_BROADCAST) { 336 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 337 if (newskb) 338 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, sk, newskb, 339 NULL, newskb->dev, dev_loopback_xmit); 340 } 341 342 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, sk, skb, NULL, 343 skb->dev, ip_finish_output, 344 !(IPCB(skb)->flags & IPSKB_REROUTED)); 345 } 346 347 int ip_output(struct sock *sk, struct sk_buff *skb) 348 { 349 struct net_device *dev = skb_dst(skb)->dev; 350 351 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len); 352 353 skb->dev = dev; 354 skb->protocol = htons(ETH_P_IP); 355 356 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, sk, skb, 357 NULL, dev, 358 ip_finish_output, 359 !(IPCB(skb)->flags & IPSKB_REROUTED)); 360 } 361 362 /* 363 * copy saddr and daddr, possibly using 64bit load/stores 364 * Equivalent to : 365 * iph->saddr = fl4->saddr; 366 * iph->daddr = fl4->daddr; 367 */ 368 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 369 { 370 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 371 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 372 memcpy(&iph->saddr, &fl4->saddr, 373 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 374 } 375 376 /* Note: skb->sk can be different from sk, in case of tunnels */ 377 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 378 { 379 struct inet_sock *inet = inet_sk(sk); 380 struct ip_options_rcu *inet_opt; 381 struct flowi4 *fl4; 382 struct rtable *rt; 383 struct iphdr *iph; 384 int res; 385 386 /* Skip all of this if the packet is already routed, 387 * f.e. by something like SCTP. 388 */ 389 rcu_read_lock(); 390 inet_opt = rcu_dereference(inet->inet_opt); 391 fl4 = &fl->u.ip4; 392 rt = skb_rtable(skb); 393 if (rt) 394 goto packet_routed; 395 396 /* Make sure we can route this packet. */ 397 rt = (struct rtable *)__sk_dst_check(sk, 0); 398 if (!rt) { 399 __be32 daddr; 400 401 /* Use correct destination address if we have options. */ 402 daddr = inet->inet_daddr; 403 if (inet_opt && inet_opt->opt.srr) 404 daddr = inet_opt->opt.faddr; 405 406 /* If this fails, retransmit mechanism of transport layer will 407 * keep trying until route appears or the connection times 408 * itself out. 409 */ 410 rt = ip_route_output_ports(sock_net(sk), fl4, sk, 411 daddr, inet->inet_saddr, 412 inet->inet_dport, 413 inet->inet_sport, 414 sk->sk_protocol, 415 RT_CONN_FLAGS(sk), 416 sk->sk_bound_dev_if); 417 if (IS_ERR(rt)) 418 goto no_route; 419 sk_setup_caps(sk, &rt->dst); 420 } 421 skb_dst_set_noref(skb, &rt->dst); 422 423 packet_routed: 424 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 425 goto no_route; 426 427 /* OK, we know where to send it, allocate and build IP header. */ 428 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 429 skb_reset_network_header(skb); 430 iph = ip_hdr(skb); 431 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff)); 432 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 433 iph->frag_off = htons(IP_DF); 434 else 435 iph->frag_off = 0; 436 iph->ttl = ip_select_ttl(inet, &rt->dst); 437 iph->protocol = sk->sk_protocol; 438 ip_copy_addrs(iph, fl4); 439 440 /* Transport layer set skb->h.foo itself. */ 441 442 if (inet_opt && inet_opt->opt.optlen) { 443 iph->ihl += inet_opt->opt.optlen >> 2; 444 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 445 } 446 447 ip_select_ident_segs(sock_net(sk), skb, sk, 448 skb_shinfo(skb)->gso_segs ?: 1); 449 450 /* TODO : should we use skb->sk here instead of sk ? */ 451 skb->priority = sk->sk_priority; 452 skb->mark = sk->sk_mark; 453 454 res = ip_local_out(skb); 455 rcu_read_unlock(); 456 return res; 457 458 no_route: 459 rcu_read_unlock(); 460 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 461 kfree_skb(skb); 462 return -EHOSTUNREACH; 463 } 464 EXPORT_SYMBOL(ip_queue_xmit); 465 466 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 467 { 468 to->pkt_type = from->pkt_type; 469 to->priority = from->priority; 470 to->protocol = from->protocol; 471 skb_dst_drop(to); 472 skb_dst_copy(to, from); 473 to->dev = from->dev; 474 to->mark = from->mark; 475 476 /* Copy the flags to each fragment. */ 477 IPCB(to)->flags = IPCB(from)->flags; 478 479 #ifdef CONFIG_NET_SCHED 480 to->tc_index = from->tc_index; 481 #endif 482 nf_copy(to, from); 483 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 484 to->ipvs_property = from->ipvs_property; 485 #endif 486 skb_copy_secmark(to, from); 487 } 488 489 static int ip_fragment(struct sock *sk, struct sk_buff *skb, 490 unsigned int mtu, 491 int (*output)(struct sock *, struct sk_buff *)) 492 { 493 struct iphdr *iph = ip_hdr(skb); 494 495 if ((iph->frag_off & htons(IP_DF)) == 0) 496 return ip_do_fragment(sk, skb, output); 497 498 if (unlikely(!skb->ignore_df || 499 (IPCB(skb)->frag_max_size && 500 IPCB(skb)->frag_max_size > mtu))) { 501 struct rtable *rt = skb_rtable(skb); 502 struct net_device *dev = rt->dst.dev; 503 504 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS); 505 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 506 htonl(mtu)); 507 kfree_skb(skb); 508 return -EMSGSIZE; 509 } 510 511 return ip_do_fragment(sk, skb, output); 512 } 513 514 /* 515 * This IP datagram is too large to be sent in one piece. Break it up into 516 * smaller pieces (each of size equal to IP header plus 517 * a block of the data of the original IP data part) that will yet fit in a 518 * single device frame, and queue such a frame for sending. 519 */ 520 521 int ip_do_fragment(struct sock *sk, struct sk_buff *skb, 522 int (*output)(struct sock *, struct sk_buff *)) 523 { 524 struct iphdr *iph; 525 int ptr; 526 struct net_device *dev; 527 struct sk_buff *skb2; 528 unsigned int mtu, hlen, left, len, ll_rs; 529 int offset; 530 __be16 not_last_frag; 531 struct rtable *rt = skb_rtable(skb); 532 int err = 0; 533 534 dev = rt->dst.dev; 535 536 /* 537 * Point into the IP datagram header. 538 */ 539 540 iph = ip_hdr(skb); 541 542 mtu = ip_skb_dst_mtu(skb); 543 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 544 mtu = IPCB(skb)->frag_max_size; 545 546 /* 547 * Setup starting values. 548 */ 549 550 hlen = iph->ihl * 4; 551 mtu = mtu - hlen; /* Size of data space */ 552 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 553 554 /* When frag_list is given, use it. First, check its validity: 555 * some transformers could create wrong frag_list or break existing 556 * one, it is not prohibited. In this case fall back to copying. 557 * 558 * LATER: this step can be merged to real generation of fragments, 559 * we can switch to copy when see the first bad fragment. 560 */ 561 if (skb_has_frag_list(skb)) { 562 struct sk_buff *frag, *frag2; 563 int first_len = skb_pagelen(skb); 564 565 if (first_len - hlen > mtu || 566 ((first_len - hlen) & 7) || 567 ip_is_fragment(iph) || 568 skb_cloned(skb)) 569 goto slow_path; 570 571 skb_walk_frags(skb, frag) { 572 /* Correct geometry. */ 573 if (frag->len > mtu || 574 ((frag->len & 7) && frag->next) || 575 skb_headroom(frag) < hlen) 576 goto slow_path_clean; 577 578 /* Partially cloned skb? */ 579 if (skb_shared(frag)) 580 goto slow_path_clean; 581 582 BUG_ON(frag->sk); 583 if (skb->sk) { 584 frag->sk = skb->sk; 585 frag->destructor = sock_wfree; 586 } 587 skb->truesize -= frag->truesize; 588 } 589 590 /* Everything is OK. Generate! */ 591 592 err = 0; 593 offset = 0; 594 frag = skb_shinfo(skb)->frag_list; 595 skb_frag_list_init(skb); 596 skb->data_len = first_len - skb_headlen(skb); 597 skb->len = first_len; 598 iph->tot_len = htons(first_len); 599 iph->frag_off = htons(IP_MF); 600 ip_send_check(iph); 601 602 for (;;) { 603 /* Prepare header of the next frame, 604 * before previous one went down. */ 605 if (frag) { 606 frag->ip_summed = CHECKSUM_NONE; 607 skb_reset_transport_header(frag); 608 __skb_push(frag, hlen); 609 skb_reset_network_header(frag); 610 memcpy(skb_network_header(frag), iph, hlen); 611 iph = ip_hdr(frag); 612 iph->tot_len = htons(frag->len); 613 ip_copy_metadata(frag, skb); 614 if (offset == 0) 615 ip_options_fragment(frag); 616 offset += skb->len - hlen; 617 iph->frag_off = htons(offset>>3); 618 if (frag->next) 619 iph->frag_off |= htons(IP_MF); 620 /* Ready, complete checksum */ 621 ip_send_check(iph); 622 } 623 624 err = output(sk, skb); 625 626 if (!err) 627 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES); 628 if (err || !frag) 629 break; 630 631 skb = frag; 632 frag = skb->next; 633 skb->next = NULL; 634 } 635 636 if (err == 0) { 637 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS); 638 return 0; 639 } 640 641 while (frag) { 642 skb = frag->next; 643 kfree_skb(frag); 644 frag = skb; 645 } 646 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS); 647 return err; 648 649 slow_path_clean: 650 skb_walk_frags(skb, frag2) { 651 if (frag2 == frag) 652 break; 653 frag2->sk = NULL; 654 frag2->destructor = NULL; 655 skb->truesize += frag2->truesize; 656 } 657 } 658 659 slow_path: 660 /* for offloaded checksums cleanup checksum before fragmentation */ 661 if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb)) 662 goto fail; 663 iph = ip_hdr(skb); 664 665 left = skb->len - hlen; /* Space per frame */ 666 ptr = hlen; /* Where to start from */ 667 668 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 669 670 /* 671 * Fragment the datagram. 672 */ 673 674 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 675 not_last_frag = iph->frag_off & htons(IP_MF); 676 677 /* 678 * Keep copying data until we run out. 679 */ 680 681 while (left > 0) { 682 len = left; 683 /* IF: it doesn't fit, use 'mtu' - the data space left */ 684 if (len > mtu) 685 len = mtu; 686 /* IF: we are not sending up to and including the packet end 687 then align the next start on an eight byte boundary */ 688 if (len < left) { 689 len &= ~7; 690 } 691 692 /* Allocate buffer */ 693 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 694 if (!skb2) { 695 err = -ENOMEM; 696 goto fail; 697 } 698 699 /* 700 * Set up data on packet 701 */ 702 703 ip_copy_metadata(skb2, skb); 704 skb_reserve(skb2, ll_rs); 705 skb_put(skb2, len + hlen); 706 skb_reset_network_header(skb2); 707 skb2->transport_header = skb2->network_header + hlen; 708 709 /* 710 * Charge the memory for the fragment to any owner 711 * it might possess 712 */ 713 714 if (skb->sk) 715 skb_set_owner_w(skb2, skb->sk); 716 717 /* 718 * Copy the packet header into the new buffer. 719 */ 720 721 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 722 723 /* 724 * Copy a block of the IP datagram. 725 */ 726 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 727 BUG(); 728 left -= len; 729 730 /* 731 * Fill in the new header fields. 732 */ 733 iph = ip_hdr(skb2); 734 iph->frag_off = htons((offset >> 3)); 735 736 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 737 iph->frag_off |= htons(IP_DF); 738 739 /* ANK: dirty, but effective trick. Upgrade options only if 740 * the segment to be fragmented was THE FIRST (otherwise, 741 * options are already fixed) and make it ONCE 742 * on the initial skb, so that all the following fragments 743 * will inherit fixed options. 744 */ 745 if (offset == 0) 746 ip_options_fragment(skb); 747 748 /* 749 * Added AC : If we are fragmenting a fragment that's not the 750 * last fragment then keep MF on each bit 751 */ 752 if (left > 0 || not_last_frag) 753 iph->frag_off |= htons(IP_MF); 754 ptr += len; 755 offset += len; 756 757 /* 758 * Put this fragment into the sending queue. 759 */ 760 iph->tot_len = htons(len + hlen); 761 762 ip_send_check(iph); 763 764 err = output(sk, skb2); 765 if (err) 766 goto fail; 767 768 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES); 769 } 770 consume_skb(skb); 771 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS); 772 return err; 773 774 fail: 775 kfree_skb(skb); 776 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS); 777 return err; 778 } 779 EXPORT_SYMBOL(ip_do_fragment); 780 781 int 782 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 783 { 784 struct msghdr *msg = from; 785 786 if (skb->ip_summed == CHECKSUM_PARTIAL) { 787 if (copy_from_iter(to, len, &msg->msg_iter) != len) 788 return -EFAULT; 789 } else { 790 __wsum csum = 0; 791 if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len) 792 return -EFAULT; 793 skb->csum = csum_block_add(skb->csum, csum, odd); 794 } 795 return 0; 796 } 797 EXPORT_SYMBOL(ip_generic_getfrag); 798 799 static inline __wsum 800 csum_page(struct page *page, int offset, int copy) 801 { 802 char *kaddr; 803 __wsum csum; 804 kaddr = kmap(page); 805 csum = csum_partial(kaddr + offset, copy, 0); 806 kunmap(page); 807 return csum; 808 } 809 810 static inline int ip_ufo_append_data(struct sock *sk, 811 struct sk_buff_head *queue, 812 int getfrag(void *from, char *to, int offset, int len, 813 int odd, struct sk_buff *skb), 814 void *from, int length, int hh_len, int fragheaderlen, 815 int transhdrlen, int maxfraglen, unsigned int flags) 816 { 817 struct sk_buff *skb; 818 int err; 819 820 /* There is support for UDP fragmentation offload by network 821 * device, so create one single skb packet containing complete 822 * udp datagram 823 */ 824 skb = skb_peek_tail(queue); 825 if (!skb) { 826 skb = sock_alloc_send_skb(sk, 827 hh_len + fragheaderlen + transhdrlen + 20, 828 (flags & MSG_DONTWAIT), &err); 829 830 if (!skb) 831 return err; 832 833 /* reserve space for Hardware header */ 834 skb_reserve(skb, hh_len); 835 836 /* create space for UDP/IP header */ 837 skb_put(skb, fragheaderlen + transhdrlen); 838 839 /* initialize network header pointer */ 840 skb_reset_network_header(skb); 841 842 /* initialize protocol header pointer */ 843 skb->transport_header = skb->network_header + fragheaderlen; 844 845 skb->csum = 0; 846 847 __skb_queue_tail(queue, skb); 848 } else if (skb_is_gso(skb)) { 849 goto append; 850 } 851 852 skb->ip_summed = CHECKSUM_PARTIAL; 853 /* specify the length of each IP datagram fragment */ 854 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen; 855 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 856 857 append: 858 return skb_append_datato_frags(sk, skb, getfrag, from, 859 (length - transhdrlen)); 860 } 861 862 static int __ip_append_data(struct sock *sk, 863 struct flowi4 *fl4, 864 struct sk_buff_head *queue, 865 struct inet_cork *cork, 866 struct page_frag *pfrag, 867 int getfrag(void *from, char *to, int offset, 868 int len, int odd, struct sk_buff *skb), 869 void *from, int length, int transhdrlen, 870 unsigned int flags) 871 { 872 struct inet_sock *inet = inet_sk(sk); 873 struct sk_buff *skb; 874 875 struct ip_options *opt = cork->opt; 876 int hh_len; 877 int exthdrlen; 878 int mtu; 879 int copy; 880 int err; 881 int offset = 0; 882 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 883 int csummode = CHECKSUM_NONE; 884 struct rtable *rt = (struct rtable *)cork->dst; 885 u32 tskey = 0; 886 887 skb = skb_peek_tail(queue); 888 889 exthdrlen = !skb ? rt->dst.header_len : 0; 890 mtu = cork->fragsize; 891 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 892 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 893 tskey = sk->sk_tskey++; 894 895 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 896 897 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 898 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 899 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 900 901 if (cork->length + length > maxnonfragsize - fragheaderlen) { 902 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 903 mtu - (opt ? opt->optlen : 0)); 904 return -EMSGSIZE; 905 } 906 907 /* 908 * transhdrlen > 0 means that this is the first fragment and we wish 909 * it won't be fragmented in the future. 910 */ 911 if (transhdrlen && 912 length + fragheaderlen <= mtu && 913 rt->dst.dev->features & NETIF_F_V4_CSUM && 914 !exthdrlen) 915 csummode = CHECKSUM_PARTIAL; 916 917 cork->length += length; 918 if (((length > mtu) || (skb && skb_is_gso(skb))) && 919 (sk->sk_protocol == IPPROTO_UDP) && 920 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len && 921 (sk->sk_type == SOCK_DGRAM)) { 922 err = ip_ufo_append_data(sk, queue, getfrag, from, length, 923 hh_len, fragheaderlen, transhdrlen, 924 maxfraglen, flags); 925 if (err) 926 goto error; 927 return 0; 928 } 929 930 /* So, what's going on in the loop below? 931 * 932 * We use calculated fragment length to generate chained skb, 933 * each of segments is IP fragment ready for sending to network after 934 * adding appropriate IP header. 935 */ 936 937 if (!skb) 938 goto alloc_new_skb; 939 940 while (length > 0) { 941 /* Check if the remaining data fits into current packet. */ 942 copy = mtu - skb->len; 943 if (copy < length) 944 copy = maxfraglen - skb->len; 945 if (copy <= 0) { 946 char *data; 947 unsigned int datalen; 948 unsigned int fraglen; 949 unsigned int fraggap; 950 unsigned int alloclen; 951 struct sk_buff *skb_prev; 952 alloc_new_skb: 953 skb_prev = skb; 954 if (skb_prev) 955 fraggap = skb_prev->len - maxfraglen; 956 else 957 fraggap = 0; 958 959 /* 960 * If remaining data exceeds the mtu, 961 * we know we need more fragment(s). 962 */ 963 datalen = length + fraggap; 964 if (datalen > mtu - fragheaderlen) 965 datalen = maxfraglen - fragheaderlen; 966 fraglen = datalen + fragheaderlen; 967 968 if ((flags & MSG_MORE) && 969 !(rt->dst.dev->features&NETIF_F_SG)) 970 alloclen = mtu; 971 else 972 alloclen = fraglen; 973 974 alloclen += exthdrlen; 975 976 /* The last fragment gets additional space at tail. 977 * Note, with MSG_MORE we overallocate on fragments, 978 * because we have no idea what fragment will be 979 * the last. 980 */ 981 if (datalen == length + fraggap) 982 alloclen += rt->dst.trailer_len; 983 984 if (transhdrlen) { 985 skb = sock_alloc_send_skb(sk, 986 alloclen + hh_len + 15, 987 (flags & MSG_DONTWAIT), &err); 988 } else { 989 skb = NULL; 990 if (atomic_read(&sk->sk_wmem_alloc) <= 991 2 * sk->sk_sndbuf) 992 skb = sock_wmalloc(sk, 993 alloclen + hh_len + 15, 1, 994 sk->sk_allocation); 995 if (unlikely(!skb)) 996 err = -ENOBUFS; 997 } 998 if (!skb) 999 goto error; 1000 1001 /* 1002 * Fill in the control structures 1003 */ 1004 skb->ip_summed = csummode; 1005 skb->csum = 0; 1006 skb_reserve(skb, hh_len); 1007 1008 /* only the initial fragment is time stamped */ 1009 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1010 cork->tx_flags = 0; 1011 skb_shinfo(skb)->tskey = tskey; 1012 tskey = 0; 1013 1014 /* 1015 * Find where to start putting bytes. 1016 */ 1017 data = skb_put(skb, fraglen + exthdrlen); 1018 skb_set_network_header(skb, exthdrlen); 1019 skb->transport_header = (skb->network_header + 1020 fragheaderlen); 1021 data += fragheaderlen + exthdrlen; 1022 1023 if (fraggap) { 1024 skb->csum = skb_copy_and_csum_bits( 1025 skb_prev, maxfraglen, 1026 data + transhdrlen, fraggap, 0); 1027 skb_prev->csum = csum_sub(skb_prev->csum, 1028 skb->csum); 1029 data += fraggap; 1030 pskb_trim_unique(skb_prev, maxfraglen); 1031 } 1032 1033 copy = datalen - transhdrlen - fraggap; 1034 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1035 err = -EFAULT; 1036 kfree_skb(skb); 1037 goto error; 1038 } 1039 1040 offset += copy; 1041 length -= datalen - fraggap; 1042 transhdrlen = 0; 1043 exthdrlen = 0; 1044 csummode = CHECKSUM_NONE; 1045 1046 /* 1047 * Put the packet on the pending queue. 1048 */ 1049 __skb_queue_tail(queue, skb); 1050 continue; 1051 } 1052 1053 if (copy > length) 1054 copy = length; 1055 1056 if (!(rt->dst.dev->features&NETIF_F_SG)) { 1057 unsigned int off; 1058 1059 off = skb->len; 1060 if (getfrag(from, skb_put(skb, copy), 1061 offset, copy, off, skb) < 0) { 1062 __skb_trim(skb, off); 1063 err = -EFAULT; 1064 goto error; 1065 } 1066 } else { 1067 int i = skb_shinfo(skb)->nr_frags; 1068 1069 err = -ENOMEM; 1070 if (!sk_page_frag_refill(sk, pfrag)) 1071 goto error; 1072 1073 if (!skb_can_coalesce(skb, i, pfrag->page, 1074 pfrag->offset)) { 1075 err = -EMSGSIZE; 1076 if (i == MAX_SKB_FRAGS) 1077 goto error; 1078 1079 __skb_fill_page_desc(skb, i, pfrag->page, 1080 pfrag->offset, 0); 1081 skb_shinfo(skb)->nr_frags = ++i; 1082 get_page(pfrag->page); 1083 } 1084 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1085 if (getfrag(from, 1086 page_address(pfrag->page) + pfrag->offset, 1087 offset, copy, skb->len, skb) < 0) 1088 goto error_efault; 1089 1090 pfrag->offset += copy; 1091 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1092 skb->len += copy; 1093 skb->data_len += copy; 1094 skb->truesize += copy; 1095 atomic_add(copy, &sk->sk_wmem_alloc); 1096 } 1097 offset += copy; 1098 length -= copy; 1099 } 1100 1101 return 0; 1102 1103 error_efault: 1104 err = -EFAULT; 1105 error: 1106 cork->length -= length; 1107 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1108 return err; 1109 } 1110 1111 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1112 struct ipcm_cookie *ipc, struct rtable **rtp) 1113 { 1114 struct ip_options_rcu *opt; 1115 struct rtable *rt; 1116 1117 /* 1118 * setup for corking. 1119 */ 1120 opt = ipc->opt; 1121 if (opt) { 1122 if (!cork->opt) { 1123 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1124 sk->sk_allocation); 1125 if (unlikely(!cork->opt)) 1126 return -ENOBUFS; 1127 } 1128 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1129 cork->flags |= IPCORK_OPT; 1130 cork->addr = ipc->addr; 1131 } 1132 rt = *rtp; 1133 if (unlikely(!rt)) 1134 return -EFAULT; 1135 /* 1136 * We steal reference to this route, caller should not release it 1137 */ 1138 *rtp = NULL; 1139 cork->fragsize = ip_sk_use_pmtu(sk) ? 1140 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1141 cork->dst = &rt->dst; 1142 cork->length = 0; 1143 cork->ttl = ipc->ttl; 1144 cork->tos = ipc->tos; 1145 cork->priority = ipc->priority; 1146 cork->tx_flags = ipc->tx_flags; 1147 1148 return 0; 1149 } 1150 1151 /* 1152 * ip_append_data() and ip_append_page() can make one large IP datagram 1153 * from many pieces of data. Each pieces will be holded on the socket 1154 * until ip_push_pending_frames() is called. Each piece can be a page 1155 * or non-page data. 1156 * 1157 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1158 * this interface potentially. 1159 * 1160 * LATER: length must be adjusted by pad at tail, when it is required. 1161 */ 1162 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1163 int getfrag(void *from, char *to, int offset, int len, 1164 int odd, struct sk_buff *skb), 1165 void *from, int length, int transhdrlen, 1166 struct ipcm_cookie *ipc, struct rtable **rtp, 1167 unsigned int flags) 1168 { 1169 struct inet_sock *inet = inet_sk(sk); 1170 int err; 1171 1172 if (flags&MSG_PROBE) 1173 return 0; 1174 1175 if (skb_queue_empty(&sk->sk_write_queue)) { 1176 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1177 if (err) 1178 return err; 1179 } else { 1180 transhdrlen = 0; 1181 } 1182 1183 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1184 sk_page_frag(sk), getfrag, 1185 from, length, transhdrlen, flags); 1186 } 1187 1188 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1189 int offset, size_t size, int flags) 1190 { 1191 struct inet_sock *inet = inet_sk(sk); 1192 struct sk_buff *skb; 1193 struct rtable *rt; 1194 struct ip_options *opt = NULL; 1195 struct inet_cork *cork; 1196 int hh_len; 1197 int mtu; 1198 int len; 1199 int err; 1200 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1201 1202 if (inet->hdrincl) 1203 return -EPERM; 1204 1205 if (flags&MSG_PROBE) 1206 return 0; 1207 1208 if (skb_queue_empty(&sk->sk_write_queue)) 1209 return -EINVAL; 1210 1211 cork = &inet->cork.base; 1212 rt = (struct rtable *)cork->dst; 1213 if (cork->flags & IPCORK_OPT) 1214 opt = cork->opt; 1215 1216 if (!(rt->dst.dev->features&NETIF_F_SG)) 1217 return -EOPNOTSUPP; 1218 1219 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1220 mtu = cork->fragsize; 1221 1222 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1223 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1224 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1225 1226 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1227 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1228 mtu - (opt ? opt->optlen : 0)); 1229 return -EMSGSIZE; 1230 } 1231 1232 skb = skb_peek_tail(&sk->sk_write_queue); 1233 if (!skb) 1234 return -EINVAL; 1235 1236 cork->length += size; 1237 if ((size + skb->len > mtu) && 1238 (sk->sk_protocol == IPPROTO_UDP) && 1239 (rt->dst.dev->features & NETIF_F_UFO)) { 1240 skb_shinfo(skb)->gso_size = mtu - fragheaderlen; 1241 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 1242 } 1243 1244 while (size > 0) { 1245 if (skb_is_gso(skb)) { 1246 len = size; 1247 } else { 1248 1249 /* Check if the remaining data fits into current packet. */ 1250 len = mtu - skb->len; 1251 if (len < size) 1252 len = maxfraglen - skb->len; 1253 } 1254 if (len <= 0) { 1255 struct sk_buff *skb_prev; 1256 int alloclen; 1257 1258 skb_prev = skb; 1259 fraggap = skb_prev->len - maxfraglen; 1260 1261 alloclen = fragheaderlen + hh_len + fraggap + 15; 1262 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1263 if (unlikely(!skb)) { 1264 err = -ENOBUFS; 1265 goto error; 1266 } 1267 1268 /* 1269 * Fill in the control structures 1270 */ 1271 skb->ip_summed = CHECKSUM_NONE; 1272 skb->csum = 0; 1273 skb_reserve(skb, hh_len); 1274 1275 /* 1276 * Find where to start putting bytes. 1277 */ 1278 skb_put(skb, fragheaderlen + fraggap); 1279 skb_reset_network_header(skb); 1280 skb->transport_header = (skb->network_header + 1281 fragheaderlen); 1282 if (fraggap) { 1283 skb->csum = skb_copy_and_csum_bits(skb_prev, 1284 maxfraglen, 1285 skb_transport_header(skb), 1286 fraggap, 0); 1287 skb_prev->csum = csum_sub(skb_prev->csum, 1288 skb->csum); 1289 pskb_trim_unique(skb_prev, maxfraglen); 1290 } 1291 1292 /* 1293 * Put the packet on the pending queue. 1294 */ 1295 __skb_queue_tail(&sk->sk_write_queue, skb); 1296 continue; 1297 } 1298 1299 if (len > size) 1300 len = size; 1301 1302 if (skb_append_pagefrags(skb, page, offset, len)) { 1303 err = -EMSGSIZE; 1304 goto error; 1305 } 1306 1307 if (skb->ip_summed == CHECKSUM_NONE) { 1308 __wsum csum; 1309 csum = csum_page(page, offset, len); 1310 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1311 } 1312 1313 skb->len += len; 1314 skb->data_len += len; 1315 skb->truesize += len; 1316 atomic_add(len, &sk->sk_wmem_alloc); 1317 offset += len; 1318 size -= len; 1319 } 1320 return 0; 1321 1322 error: 1323 cork->length -= size; 1324 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1325 return err; 1326 } 1327 1328 static void ip_cork_release(struct inet_cork *cork) 1329 { 1330 cork->flags &= ~IPCORK_OPT; 1331 kfree(cork->opt); 1332 cork->opt = NULL; 1333 dst_release(cork->dst); 1334 cork->dst = NULL; 1335 } 1336 1337 /* 1338 * Combined all pending IP fragments on the socket as one IP datagram 1339 * and push them out. 1340 */ 1341 struct sk_buff *__ip_make_skb(struct sock *sk, 1342 struct flowi4 *fl4, 1343 struct sk_buff_head *queue, 1344 struct inet_cork *cork) 1345 { 1346 struct sk_buff *skb, *tmp_skb; 1347 struct sk_buff **tail_skb; 1348 struct inet_sock *inet = inet_sk(sk); 1349 struct net *net = sock_net(sk); 1350 struct ip_options *opt = NULL; 1351 struct rtable *rt = (struct rtable *)cork->dst; 1352 struct iphdr *iph; 1353 __be16 df = 0; 1354 __u8 ttl; 1355 1356 skb = __skb_dequeue(queue); 1357 if (!skb) 1358 goto out; 1359 tail_skb = &(skb_shinfo(skb)->frag_list); 1360 1361 /* move skb->data to ip header from ext header */ 1362 if (skb->data < skb_network_header(skb)) 1363 __skb_pull(skb, skb_network_offset(skb)); 1364 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1365 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1366 *tail_skb = tmp_skb; 1367 tail_skb = &(tmp_skb->next); 1368 skb->len += tmp_skb->len; 1369 skb->data_len += tmp_skb->len; 1370 skb->truesize += tmp_skb->truesize; 1371 tmp_skb->destructor = NULL; 1372 tmp_skb->sk = NULL; 1373 } 1374 1375 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1376 * to fragment the frame generated here. No matter, what transforms 1377 * how transforms change size of the packet, it will come out. 1378 */ 1379 skb->ignore_df = ip_sk_ignore_df(sk); 1380 1381 /* DF bit is set when we want to see DF on outgoing frames. 1382 * If ignore_df is set too, we still allow to fragment this frame 1383 * locally. */ 1384 if (inet->pmtudisc == IP_PMTUDISC_DO || 1385 inet->pmtudisc == IP_PMTUDISC_PROBE || 1386 (skb->len <= dst_mtu(&rt->dst) && 1387 ip_dont_fragment(sk, &rt->dst))) 1388 df = htons(IP_DF); 1389 1390 if (cork->flags & IPCORK_OPT) 1391 opt = cork->opt; 1392 1393 if (cork->ttl != 0) 1394 ttl = cork->ttl; 1395 else if (rt->rt_type == RTN_MULTICAST) 1396 ttl = inet->mc_ttl; 1397 else 1398 ttl = ip_select_ttl(inet, &rt->dst); 1399 1400 iph = ip_hdr(skb); 1401 iph->version = 4; 1402 iph->ihl = 5; 1403 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1404 iph->frag_off = df; 1405 iph->ttl = ttl; 1406 iph->protocol = sk->sk_protocol; 1407 ip_copy_addrs(iph, fl4); 1408 ip_select_ident(net, skb, sk); 1409 1410 if (opt) { 1411 iph->ihl += opt->optlen>>2; 1412 ip_options_build(skb, opt, cork->addr, rt, 0); 1413 } 1414 1415 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1416 skb->mark = sk->sk_mark; 1417 /* 1418 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1419 * on dst refcount 1420 */ 1421 cork->dst = NULL; 1422 skb_dst_set(skb, &rt->dst); 1423 1424 if (iph->protocol == IPPROTO_ICMP) 1425 icmp_out_count(net, ((struct icmphdr *) 1426 skb_transport_header(skb))->type); 1427 1428 ip_cork_release(cork); 1429 out: 1430 return skb; 1431 } 1432 1433 int ip_send_skb(struct net *net, struct sk_buff *skb) 1434 { 1435 int err; 1436 1437 err = ip_local_out(skb); 1438 if (err) { 1439 if (err > 0) 1440 err = net_xmit_errno(err); 1441 if (err) 1442 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1443 } 1444 1445 return err; 1446 } 1447 1448 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1449 { 1450 struct sk_buff *skb; 1451 1452 skb = ip_finish_skb(sk, fl4); 1453 if (!skb) 1454 return 0; 1455 1456 /* Netfilter gets whole the not fragmented skb. */ 1457 return ip_send_skb(sock_net(sk), skb); 1458 } 1459 1460 /* 1461 * Throw away all pending data on the socket. 1462 */ 1463 static void __ip_flush_pending_frames(struct sock *sk, 1464 struct sk_buff_head *queue, 1465 struct inet_cork *cork) 1466 { 1467 struct sk_buff *skb; 1468 1469 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1470 kfree_skb(skb); 1471 1472 ip_cork_release(cork); 1473 } 1474 1475 void ip_flush_pending_frames(struct sock *sk) 1476 { 1477 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1478 } 1479 1480 struct sk_buff *ip_make_skb(struct sock *sk, 1481 struct flowi4 *fl4, 1482 int getfrag(void *from, char *to, int offset, 1483 int len, int odd, struct sk_buff *skb), 1484 void *from, int length, int transhdrlen, 1485 struct ipcm_cookie *ipc, struct rtable **rtp, 1486 unsigned int flags) 1487 { 1488 struct inet_cork cork; 1489 struct sk_buff_head queue; 1490 int err; 1491 1492 if (flags & MSG_PROBE) 1493 return NULL; 1494 1495 __skb_queue_head_init(&queue); 1496 1497 cork.flags = 0; 1498 cork.addr = 0; 1499 cork.opt = NULL; 1500 err = ip_setup_cork(sk, &cork, ipc, rtp); 1501 if (err) 1502 return ERR_PTR(err); 1503 1504 err = __ip_append_data(sk, fl4, &queue, &cork, 1505 ¤t->task_frag, getfrag, 1506 from, length, transhdrlen, flags); 1507 if (err) { 1508 __ip_flush_pending_frames(sk, &queue, &cork); 1509 return ERR_PTR(err); 1510 } 1511 1512 return __ip_make_skb(sk, fl4, &queue, &cork); 1513 } 1514 1515 /* 1516 * Fetch data from kernel space and fill in checksum if needed. 1517 */ 1518 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1519 int len, int odd, struct sk_buff *skb) 1520 { 1521 __wsum csum; 1522 1523 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1524 skb->csum = csum_block_add(skb->csum, csum, odd); 1525 return 0; 1526 } 1527 1528 /* 1529 * Generic function to send a packet as reply to another packet. 1530 * Used to send some TCP resets/acks so far. 1531 */ 1532 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1533 const struct ip_options *sopt, 1534 __be32 daddr, __be32 saddr, 1535 const struct ip_reply_arg *arg, 1536 unsigned int len) 1537 { 1538 struct ip_options_data replyopts; 1539 struct ipcm_cookie ipc; 1540 struct flowi4 fl4; 1541 struct rtable *rt = skb_rtable(skb); 1542 struct net *net = sock_net(sk); 1543 struct sk_buff *nskb; 1544 int err; 1545 1546 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt)) 1547 return; 1548 1549 ipc.addr = daddr; 1550 ipc.opt = NULL; 1551 ipc.tx_flags = 0; 1552 ipc.ttl = 0; 1553 ipc.tos = -1; 1554 1555 if (replyopts.opt.opt.optlen) { 1556 ipc.opt = &replyopts.opt; 1557 1558 if (replyopts.opt.opt.srr) 1559 daddr = replyopts.opt.opt.faddr; 1560 } 1561 1562 flowi4_init_output(&fl4, arg->bound_dev_if, 1563 IP4_REPLY_MARK(net, skb->mark), 1564 RT_TOS(arg->tos), 1565 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1566 ip_reply_arg_flowi_flags(arg), 1567 daddr, saddr, 1568 tcp_hdr(skb)->source, tcp_hdr(skb)->dest); 1569 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1570 rt = ip_route_output_key(net, &fl4); 1571 if (IS_ERR(rt)) 1572 return; 1573 1574 inet_sk(sk)->tos = arg->tos; 1575 1576 sk->sk_priority = skb->priority; 1577 sk->sk_protocol = ip_hdr(skb)->protocol; 1578 sk->sk_bound_dev_if = arg->bound_dev_if; 1579 sk->sk_sndbuf = sysctl_wmem_default; 1580 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1581 len, 0, &ipc, &rt, MSG_DONTWAIT); 1582 if (unlikely(err)) { 1583 ip_flush_pending_frames(sk); 1584 goto out; 1585 } 1586 1587 nskb = skb_peek(&sk->sk_write_queue); 1588 if (nskb) { 1589 if (arg->csumoffset >= 0) 1590 *((__sum16 *)skb_transport_header(nskb) + 1591 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1592 arg->csum)); 1593 nskb->ip_summed = CHECKSUM_NONE; 1594 skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb)); 1595 ip_push_pending_frames(sk, &fl4); 1596 } 1597 out: 1598 ip_rt_put(rt); 1599 } 1600 1601 void __init ip_init(void) 1602 { 1603 ip_rt_init(); 1604 inet_initpeers(); 1605 1606 #if defined(CONFIG_IP_MULTICAST) 1607 igmp_mc_init(); 1608 #endif 1609 } 1610