1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The Internet Protocol (IP) output module. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Donald Becker, <becker@super.org> 11 * Alan Cox, <Alan.Cox@linux.org> 12 * Richard Underwood 13 * Stefan Becker, <stefanb@yello.ping.de> 14 * Jorge Cwik, <jorge@laser.satlink.net> 15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 16 * Hirokazu Takahashi, <taka@valinux.co.jp> 17 * 18 * See ip_input.c for original log 19 * 20 * Fixes: 21 * Alan Cox : Missing nonblock feature in ip_build_xmit. 22 * Mike Kilburn : htons() missing in ip_build_xmit. 23 * Bradford Johnson: Fix faulty handling of some frames when 24 * no route is found. 25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 26 * (in case if packet not accepted by 27 * output firewall rules) 28 * Mike McLagan : Routing by source 29 * Alexey Kuznetsov: use new route cache 30 * Andi Kleen: Fix broken PMTU recovery and remove 31 * some redundant tests. 32 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 33 * Andi Kleen : Replace ip_reply with ip_send_reply. 34 * Andi Kleen : Split fast and slow ip_build_xmit path 35 * for decreased register pressure on x86 36 * and more readibility. 37 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 38 * silently drop skb instead of failing with -EPERM. 39 * Detlev Wengorz : Copy protocol for fragments. 40 * Hirokazu Takahashi: HW checksumming for outgoing UDP 41 * datagrams. 42 * Hirokazu Takahashi: sendfile() on UDP works now. 43 */ 44 45 #include <linux/uaccess.h> 46 #include <linux/module.h> 47 #include <linux/types.h> 48 #include <linux/kernel.h> 49 #include <linux/mm.h> 50 #include <linux/string.h> 51 #include <linux/errno.h> 52 #include <linux/highmem.h> 53 #include <linux/slab.h> 54 55 #include <linux/socket.h> 56 #include <linux/sockios.h> 57 #include <linux/in.h> 58 #include <linux/inet.h> 59 #include <linux/netdevice.h> 60 #include <linux/etherdevice.h> 61 #include <linux/proc_fs.h> 62 #include <linux/stat.h> 63 #include <linux/init.h> 64 65 #include <net/snmp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/xfrm.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <net/arp.h> 73 #include <net/icmp.h> 74 #include <net/checksum.h> 75 #include <net/inetpeer.h> 76 #include <net/lwtunnel.h> 77 #include <linux/bpf-cgroup.h> 78 #include <linux/igmp.h> 79 #include <linux/netfilter_ipv4.h> 80 #include <linux/netfilter_bridge.h> 81 #include <linux/netlink.h> 82 #include <linux/tcp.h> 83 84 static int 85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 86 unsigned int mtu, 87 int (*output)(struct net *, struct sock *, struct sk_buff *)); 88 89 /* Generate a checksum for an outgoing IP datagram. */ 90 void ip_send_check(struct iphdr *iph) 91 { 92 iph->check = 0; 93 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 94 } 95 EXPORT_SYMBOL(ip_send_check); 96 97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 98 { 99 struct iphdr *iph = ip_hdr(skb); 100 101 iph->tot_len = htons(skb->len); 102 ip_send_check(iph); 103 104 /* if egress device is enslaved to an L3 master device pass the 105 * skb to its handler for processing 106 */ 107 skb = l3mdev_ip_out(sk, skb); 108 if (unlikely(!skb)) 109 return 0; 110 111 skb->protocol = htons(ETH_P_IP); 112 113 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 114 net, sk, skb, NULL, skb_dst(skb)->dev, 115 dst_output); 116 } 117 118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 119 { 120 int err; 121 122 err = __ip_local_out(net, sk, skb); 123 if (likely(err == 1)) 124 err = dst_output(net, sk, skb); 125 126 return err; 127 } 128 EXPORT_SYMBOL_GPL(ip_local_out); 129 130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 131 { 132 int ttl = inet->uc_ttl; 133 134 if (ttl < 0) 135 ttl = ip4_dst_hoplimit(dst); 136 return ttl; 137 } 138 139 /* 140 * Add an ip header to a skbuff and send it out. 141 * 142 */ 143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 144 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 145 { 146 struct inet_sock *inet = inet_sk(sk); 147 struct rtable *rt = skb_rtable(skb); 148 struct net *net = sock_net(sk); 149 struct iphdr *iph; 150 151 /* Build the IP header. */ 152 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 153 skb_reset_network_header(skb); 154 iph = ip_hdr(skb); 155 iph->version = 4; 156 iph->ihl = 5; 157 iph->tos = inet->tos; 158 iph->ttl = ip_select_ttl(inet, &rt->dst); 159 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 160 iph->saddr = saddr; 161 iph->protocol = sk->sk_protocol; 162 if (ip_dont_fragment(sk, &rt->dst)) { 163 iph->frag_off = htons(IP_DF); 164 iph->id = 0; 165 } else { 166 iph->frag_off = 0; 167 __ip_select_ident(net, iph, 1); 168 } 169 170 if (opt && opt->opt.optlen) { 171 iph->ihl += opt->opt.optlen>>2; 172 ip_options_build(skb, &opt->opt, daddr, rt, 0); 173 } 174 175 skb->priority = sk->sk_priority; 176 if (!skb->mark) 177 skb->mark = sk->sk_mark; 178 179 /* Send it out. */ 180 return ip_local_out(net, skb->sk, skb); 181 } 182 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 183 184 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 185 { 186 struct dst_entry *dst = skb_dst(skb); 187 struct rtable *rt = (struct rtable *)dst; 188 struct net_device *dev = dst->dev; 189 unsigned int hh_len = LL_RESERVED_SPACE(dev); 190 struct neighbour *neigh; 191 bool is_v6gw = false; 192 193 if (rt->rt_type == RTN_MULTICAST) { 194 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 195 } else if (rt->rt_type == RTN_BROADCAST) 196 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 197 198 /* Be paranoid, rather than too clever. */ 199 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 200 struct sk_buff *skb2; 201 202 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 203 if (!skb2) { 204 kfree_skb(skb); 205 return -ENOMEM; 206 } 207 if (skb->sk) 208 skb_set_owner_w(skb2, skb->sk); 209 consume_skb(skb); 210 skb = skb2; 211 } 212 213 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 214 int res = lwtunnel_xmit(skb); 215 216 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 217 return res; 218 } 219 220 rcu_read_lock_bh(); 221 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 222 if (!IS_ERR(neigh)) { 223 int res; 224 225 sock_confirm_neigh(skb, neigh); 226 /* if crossing protocols, can not use the cached header */ 227 res = neigh_output(neigh, skb, is_v6gw); 228 rcu_read_unlock_bh(); 229 return res; 230 } 231 rcu_read_unlock_bh(); 232 233 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 234 __func__); 235 kfree_skb(skb); 236 return -EINVAL; 237 } 238 239 static int ip_finish_output_gso(struct net *net, struct sock *sk, 240 struct sk_buff *skb, unsigned int mtu) 241 { 242 netdev_features_t features; 243 struct sk_buff *segs; 244 int ret = 0; 245 246 /* common case: seglen is <= mtu 247 */ 248 if (skb_gso_validate_network_len(skb, mtu)) 249 return ip_finish_output2(net, sk, skb); 250 251 /* Slowpath - GSO segment length exceeds the egress MTU. 252 * 253 * This can happen in several cases: 254 * - Forwarding of a TCP GRO skb, when DF flag is not set. 255 * - Forwarding of an skb that arrived on a virtualization interface 256 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 257 * stack. 258 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 259 * interface with a smaller MTU. 260 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 261 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 262 * insufficent MTU. 263 */ 264 features = netif_skb_features(skb); 265 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET); 266 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 267 if (IS_ERR_OR_NULL(segs)) { 268 kfree_skb(skb); 269 return -ENOMEM; 270 } 271 272 consume_skb(skb); 273 274 do { 275 struct sk_buff *nskb = segs->next; 276 int err; 277 278 skb_mark_not_on_list(segs); 279 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 280 281 if (err && ret == 0) 282 ret = err; 283 segs = nskb; 284 } while (segs); 285 286 return ret; 287 } 288 289 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 290 { 291 unsigned int mtu; 292 int ret; 293 294 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 295 if (ret) { 296 kfree_skb(skb); 297 return ret; 298 } 299 300 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 301 /* Policy lookup after SNAT yielded a new policy */ 302 if (skb_dst(skb)->xfrm) { 303 IPCB(skb)->flags |= IPSKB_REROUTED; 304 return dst_output(net, sk, skb); 305 } 306 #endif 307 mtu = ip_skb_dst_mtu(sk, skb); 308 if (skb_is_gso(skb)) 309 return ip_finish_output_gso(net, sk, skb, mtu); 310 311 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 312 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 313 314 return ip_finish_output2(net, sk, skb); 315 } 316 317 static int ip_mc_finish_output(struct net *net, struct sock *sk, 318 struct sk_buff *skb) 319 { 320 int ret; 321 322 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 323 if (ret) { 324 kfree_skb(skb); 325 return ret; 326 } 327 328 return dev_loopback_xmit(net, sk, skb); 329 } 330 331 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 332 { 333 struct rtable *rt = skb_rtable(skb); 334 struct net_device *dev = rt->dst.dev; 335 336 /* 337 * If the indicated interface is up and running, send the packet. 338 */ 339 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 340 341 skb->dev = dev; 342 skb->protocol = htons(ETH_P_IP); 343 344 /* 345 * Multicasts are looped back for other local users 346 */ 347 348 if (rt->rt_flags&RTCF_MULTICAST) { 349 if (sk_mc_loop(sk) 350 #ifdef CONFIG_IP_MROUTE 351 /* Small optimization: do not loopback not local frames, 352 which returned after forwarding; they will be dropped 353 by ip_mr_input in any case. 354 Note, that local frames are looped back to be delivered 355 to local recipients. 356 357 This check is duplicated in ip_mr_input at the moment. 358 */ 359 && 360 ((rt->rt_flags & RTCF_LOCAL) || 361 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 362 #endif 363 ) { 364 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 365 if (newskb) 366 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 367 net, sk, newskb, NULL, newskb->dev, 368 ip_mc_finish_output); 369 } 370 371 /* Multicasts with ttl 0 must not go beyond the host */ 372 373 if (ip_hdr(skb)->ttl == 0) { 374 kfree_skb(skb); 375 return 0; 376 } 377 } 378 379 if (rt->rt_flags&RTCF_BROADCAST) { 380 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 381 if (newskb) 382 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 383 net, sk, newskb, NULL, newskb->dev, 384 ip_mc_finish_output); 385 } 386 387 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 388 net, sk, skb, NULL, skb->dev, 389 ip_finish_output, 390 !(IPCB(skb)->flags & IPSKB_REROUTED)); 391 } 392 393 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 394 { 395 struct net_device *dev = skb_dst(skb)->dev; 396 397 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 398 399 skb->dev = dev; 400 skb->protocol = htons(ETH_P_IP); 401 402 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 403 net, sk, skb, NULL, dev, 404 ip_finish_output, 405 !(IPCB(skb)->flags & IPSKB_REROUTED)); 406 } 407 408 /* 409 * copy saddr and daddr, possibly using 64bit load/stores 410 * Equivalent to : 411 * iph->saddr = fl4->saddr; 412 * iph->daddr = fl4->daddr; 413 */ 414 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 415 { 416 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 417 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 418 memcpy(&iph->saddr, &fl4->saddr, 419 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 420 } 421 422 /* Note: skb->sk can be different from sk, in case of tunnels */ 423 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, 424 __u8 tos) 425 { 426 struct inet_sock *inet = inet_sk(sk); 427 struct net *net = sock_net(sk); 428 struct ip_options_rcu *inet_opt; 429 struct flowi4 *fl4; 430 struct rtable *rt; 431 struct iphdr *iph; 432 int res; 433 434 /* Skip all of this if the packet is already routed, 435 * f.e. by something like SCTP. 436 */ 437 rcu_read_lock(); 438 inet_opt = rcu_dereference(inet->inet_opt); 439 fl4 = &fl->u.ip4; 440 rt = skb_rtable(skb); 441 if (rt) 442 goto packet_routed; 443 444 /* Make sure we can route this packet. */ 445 rt = (struct rtable *)__sk_dst_check(sk, 0); 446 if (!rt) { 447 __be32 daddr; 448 449 /* Use correct destination address if we have options. */ 450 daddr = inet->inet_daddr; 451 if (inet_opt && inet_opt->opt.srr) 452 daddr = inet_opt->opt.faddr; 453 454 /* If this fails, retransmit mechanism of transport layer will 455 * keep trying until route appears or the connection times 456 * itself out. 457 */ 458 rt = ip_route_output_ports(net, fl4, sk, 459 daddr, inet->inet_saddr, 460 inet->inet_dport, 461 inet->inet_sport, 462 sk->sk_protocol, 463 RT_CONN_FLAGS_TOS(sk, tos), 464 sk->sk_bound_dev_if); 465 if (IS_ERR(rt)) 466 goto no_route; 467 sk_setup_caps(sk, &rt->dst); 468 } 469 skb_dst_set_noref(skb, &rt->dst); 470 471 packet_routed: 472 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_gw_family) 473 goto no_route; 474 475 /* OK, we know where to send it, allocate and build IP header. */ 476 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 477 skb_reset_network_header(skb); 478 iph = ip_hdr(skb); 479 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); 480 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 481 iph->frag_off = htons(IP_DF); 482 else 483 iph->frag_off = 0; 484 iph->ttl = ip_select_ttl(inet, &rt->dst); 485 iph->protocol = sk->sk_protocol; 486 ip_copy_addrs(iph, fl4); 487 488 /* Transport layer set skb->h.foo itself. */ 489 490 if (inet_opt && inet_opt->opt.optlen) { 491 iph->ihl += inet_opt->opt.optlen >> 2; 492 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 493 } 494 495 ip_select_ident_segs(net, skb, sk, 496 skb_shinfo(skb)->gso_segs ?: 1); 497 498 /* TODO : should we use skb->sk here instead of sk ? */ 499 skb->priority = sk->sk_priority; 500 skb->mark = sk->sk_mark; 501 502 res = ip_local_out(net, sk, skb); 503 rcu_read_unlock(); 504 return res; 505 506 no_route: 507 rcu_read_unlock(); 508 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 509 kfree_skb(skb); 510 return -EHOSTUNREACH; 511 } 512 EXPORT_SYMBOL(__ip_queue_xmit); 513 514 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 515 { 516 to->pkt_type = from->pkt_type; 517 to->priority = from->priority; 518 to->protocol = from->protocol; 519 to->skb_iif = from->skb_iif; 520 skb_dst_drop(to); 521 skb_dst_copy(to, from); 522 to->dev = from->dev; 523 to->mark = from->mark; 524 525 skb_copy_hash(to, from); 526 527 /* Copy the flags to each fragment. */ 528 IPCB(to)->flags = IPCB(from)->flags; 529 530 #ifdef CONFIG_NET_SCHED 531 to->tc_index = from->tc_index; 532 #endif 533 nf_copy(to, from); 534 skb_ext_copy(to, from); 535 #if IS_ENABLED(CONFIG_IP_VS) 536 to->ipvs_property = from->ipvs_property; 537 #endif 538 skb_copy_secmark(to, from); 539 } 540 541 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 542 unsigned int mtu, 543 int (*output)(struct net *, struct sock *, struct sk_buff *)) 544 { 545 struct iphdr *iph = ip_hdr(skb); 546 547 if ((iph->frag_off & htons(IP_DF)) == 0) 548 return ip_do_fragment(net, sk, skb, output); 549 550 if (unlikely(!skb->ignore_df || 551 (IPCB(skb)->frag_max_size && 552 IPCB(skb)->frag_max_size > mtu))) { 553 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 554 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 555 htonl(mtu)); 556 kfree_skb(skb); 557 return -EMSGSIZE; 558 } 559 560 return ip_do_fragment(net, sk, skb, output); 561 } 562 563 /* 564 * This IP datagram is too large to be sent in one piece. Break it up into 565 * smaller pieces (each of size equal to IP header plus 566 * a block of the data of the original IP data part) that will yet fit in a 567 * single device frame, and queue such a frame for sending. 568 */ 569 570 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 571 int (*output)(struct net *, struct sock *, struct sk_buff *)) 572 { 573 struct iphdr *iph; 574 int ptr; 575 struct sk_buff *skb2; 576 unsigned int mtu, hlen, left, len, ll_rs; 577 int offset; 578 __be16 not_last_frag; 579 struct rtable *rt = skb_rtable(skb); 580 int err = 0; 581 582 /* for offloaded checksums cleanup checksum before fragmentation */ 583 if (skb->ip_summed == CHECKSUM_PARTIAL && 584 (err = skb_checksum_help(skb))) 585 goto fail; 586 587 /* 588 * Point into the IP datagram header. 589 */ 590 591 iph = ip_hdr(skb); 592 593 mtu = ip_skb_dst_mtu(sk, skb); 594 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 595 mtu = IPCB(skb)->frag_max_size; 596 597 /* 598 * Setup starting values. 599 */ 600 601 hlen = iph->ihl * 4; 602 mtu = mtu - hlen; /* Size of data space */ 603 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 604 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 605 606 /* When frag_list is given, use it. First, check its validity: 607 * some transformers could create wrong frag_list or break existing 608 * one, it is not prohibited. In this case fall back to copying. 609 * 610 * LATER: this step can be merged to real generation of fragments, 611 * we can switch to copy when see the first bad fragment. 612 */ 613 if (skb_has_frag_list(skb)) { 614 struct sk_buff *frag, *frag2; 615 unsigned int first_len = skb_pagelen(skb); 616 617 if (first_len - hlen > mtu || 618 ((first_len - hlen) & 7) || 619 ip_is_fragment(iph) || 620 skb_cloned(skb) || 621 skb_headroom(skb) < ll_rs) 622 goto slow_path; 623 624 skb_walk_frags(skb, frag) { 625 /* Correct geometry. */ 626 if (frag->len > mtu || 627 ((frag->len & 7) && frag->next) || 628 skb_headroom(frag) < hlen + ll_rs) 629 goto slow_path_clean; 630 631 /* Partially cloned skb? */ 632 if (skb_shared(frag)) 633 goto slow_path_clean; 634 635 BUG_ON(frag->sk); 636 if (skb->sk) { 637 frag->sk = skb->sk; 638 frag->destructor = sock_wfree; 639 } 640 skb->truesize -= frag->truesize; 641 } 642 643 /* Everything is OK. Generate! */ 644 645 err = 0; 646 offset = 0; 647 frag = skb_shinfo(skb)->frag_list; 648 skb_frag_list_init(skb); 649 skb->data_len = first_len - skb_headlen(skb); 650 skb->len = first_len; 651 iph->tot_len = htons(first_len); 652 iph->frag_off = htons(IP_MF); 653 ip_send_check(iph); 654 655 for (;;) { 656 /* Prepare header of the next frame, 657 * before previous one went down. */ 658 if (frag) { 659 frag->ip_summed = CHECKSUM_NONE; 660 skb_reset_transport_header(frag); 661 __skb_push(frag, hlen); 662 skb_reset_network_header(frag); 663 memcpy(skb_network_header(frag), iph, hlen); 664 iph = ip_hdr(frag); 665 iph->tot_len = htons(frag->len); 666 ip_copy_metadata(frag, skb); 667 if (offset == 0) 668 ip_options_fragment(frag); 669 offset += skb->len - hlen; 670 iph->frag_off = htons(offset>>3); 671 if (frag->next) 672 iph->frag_off |= htons(IP_MF); 673 /* Ready, complete checksum */ 674 ip_send_check(iph); 675 } 676 677 err = output(net, sk, skb); 678 679 if (!err) 680 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 681 if (err || !frag) 682 break; 683 684 skb = frag; 685 frag = skb->next; 686 skb_mark_not_on_list(skb); 687 } 688 689 if (err == 0) { 690 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 691 return 0; 692 } 693 694 kfree_skb_list(frag); 695 696 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 697 return err; 698 699 slow_path_clean: 700 skb_walk_frags(skb, frag2) { 701 if (frag2 == frag) 702 break; 703 frag2->sk = NULL; 704 frag2->destructor = NULL; 705 skb->truesize += frag2->truesize; 706 } 707 } 708 709 slow_path: 710 iph = ip_hdr(skb); 711 712 left = skb->len - hlen; /* Space per frame */ 713 ptr = hlen; /* Where to start from */ 714 715 /* 716 * Fragment the datagram. 717 */ 718 719 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 720 not_last_frag = iph->frag_off & htons(IP_MF); 721 722 /* 723 * Keep copying data until we run out. 724 */ 725 726 while (left > 0) { 727 len = left; 728 /* IF: it doesn't fit, use 'mtu' - the data space left */ 729 if (len > mtu) 730 len = mtu; 731 /* IF: we are not sending up to and including the packet end 732 then align the next start on an eight byte boundary */ 733 if (len < left) { 734 len &= ~7; 735 } 736 737 /* Allocate buffer */ 738 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 739 if (!skb2) { 740 err = -ENOMEM; 741 goto fail; 742 } 743 744 /* 745 * Set up data on packet 746 */ 747 748 ip_copy_metadata(skb2, skb); 749 skb_reserve(skb2, ll_rs); 750 skb_put(skb2, len + hlen); 751 skb_reset_network_header(skb2); 752 skb2->transport_header = skb2->network_header + hlen; 753 754 /* 755 * Charge the memory for the fragment to any owner 756 * it might possess 757 */ 758 759 if (skb->sk) 760 skb_set_owner_w(skb2, skb->sk); 761 762 /* 763 * Copy the packet header into the new buffer. 764 */ 765 766 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 767 768 /* 769 * Copy a block of the IP datagram. 770 */ 771 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 772 BUG(); 773 left -= len; 774 775 /* 776 * Fill in the new header fields. 777 */ 778 iph = ip_hdr(skb2); 779 iph->frag_off = htons((offset >> 3)); 780 781 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 782 iph->frag_off |= htons(IP_DF); 783 784 /* ANK: dirty, but effective trick. Upgrade options only if 785 * the segment to be fragmented was THE FIRST (otherwise, 786 * options are already fixed) and make it ONCE 787 * on the initial skb, so that all the following fragments 788 * will inherit fixed options. 789 */ 790 if (offset == 0) 791 ip_options_fragment(skb); 792 793 /* 794 * Added AC : If we are fragmenting a fragment that's not the 795 * last fragment then keep MF on each bit 796 */ 797 if (left > 0 || not_last_frag) 798 iph->frag_off |= htons(IP_MF); 799 ptr += len; 800 offset += len; 801 802 /* 803 * Put this fragment into the sending queue. 804 */ 805 iph->tot_len = htons(len + hlen); 806 807 ip_send_check(iph); 808 809 err = output(net, sk, skb2); 810 if (err) 811 goto fail; 812 813 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 814 } 815 consume_skb(skb); 816 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 817 return err; 818 819 fail: 820 kfree_skb(skb); 821 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 822 return err; 823 } 824 EXPORT_SYMBOL(ip_do_fragment); 825 826 int 827 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 828 { 829 struct msghdr *msg = from; 830 831 if (skb->ip_summed == CHECKSUM_PARTIAL) { 832 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 833 return -EFAULT; 834 } else { 835 __wsum csum = 0; 836 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 837 return -EFAULT; 838 skb->csum = csum_block_add(skb->csum, csum, odd); 839 } 840 return 0; 841 } 842 EXPORT_SYMBOL(ip_generic_getfrag); 843 844 static inline __wsum 845 csum_page(struct page *page, int offset, int copy) 846 { 847 char *kaddr; 848 __wsum csum; 849 kaddr = kmap(page); 850 csum = csum_partial(kaddr + offset, copy, 0); 851 kunmap(page); 852 return csum; 853 } 854 855 static int __ip_append_data(struct sock *sk, 856 struct flowi4 *fl4, 857 struct sk_buff_head *queue, 858 struct inet_cork *cork, 859 struct page_frag *pfrag, 860 int getfrag(void *from, char *to, int offset, 861 int len, int odd, struct sk_buff *skb), 862 void *from, int length, int transhdrlen, 863 unsigned int flags) 864 { 865 struct inet_sock *inet = inet_sk(sk); 866 struct ubuf_info *uarg = NULL; 867 struct sk_buff *skb; 868 869 struct ip_options *opt = cork->opt; 870 int hh_len; 871 int exthdrlen; 872 int mtu; 873 int copy; 874 int err; 875 int offset = 0; 876 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 877 int csummode = CHECKSUM_NONE; 878 struct rtable *rt = (struct rtable *)cork->dst; 879 unsigned int wmem_alloc_delta = 0; 880 bool paged, extra_uref; 881 u32 tskey = 0; 882 883 skb = skb_peek_tail(queue); 884 885 exthdrlen = !skb ? rt->dst.header_len : 0; 886 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 887 paged = !!cork->gso_size; 888 889 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 890 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 891 tskey = sk->sk_tskey++; 892 893 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 894 895 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 896 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 897 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 898 899 if (cork->length + length > maxnonfragsize - fragheaderlen) { 900 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 901 mtu - (opt ? opt->optlen : 0)); 902 return -EMSGSIZE; 903 } 904 905 /* 906 * transhdrlen > 0 means that this is the first fragment and we wish 907 * it won't be fragmented in the future. 908 */ 909 if (transhdrlen && 910 length + fragheaderlen <= mtu && 911 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 912 (!(flags & MSG_MORE) || cork->gso_size) && 913 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 914 csummode = CHECKSUM_PARTIAL; 915 916 if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) { 917 uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb)); 918 if (!uarg) 919 return -ENOBUFS; 920 extra_uref = true; 921 if (rt->dst.dev->features & NETIF_F_SG && 922 csummode == CHECKSUM_PARTIAL) { 923 paged = true; 924 } else { 925 uarg->zerocopy = 0; 926 skb_zcopy_set(skb, uarg, &extra_uref); 927 } 928 } 929 930 cork->length += length; 931 932 /* So, what's going on in the loop below? 933 * 934 * We use calculated fragment length to generate chained skb, 935 * each of segments is IP fragment ready for sending to network after 936 * adding appropriate IP header. 937 */ 938 939 if (!skb) 940 goto alloc_new_skb; 941 942 while (length > 0) { 943 /* Check if the remaining data fits into current packet. */ 944 copy = mtu - skb->len; 945 if (copy < length) 946 copy = maxfraglen - skb->len; 947 if (copy <= 0) { 948 char *data; 949 unsigned int datalen; 950 unsigned int fraglen; 951 unsigned int fraggap; 952 unsigned int alloclen; 953 unsigned int pagedlen; 954 struct sk_buff *skb_prev; 955 alloc_new_skb: 956 skb_prev = skb; 957 if (skb_prev) 958 fraggap = skb_prev->len - maxfraglen; 959 else 960 fraggap = 0; 961 962 /* 963 * If remaining data exceeds the mtu, 964 * we know we need more fragment(s). 965 */ 966 datalen = length + fraggap; 967 if (datalen > mtu - fragheaderlen) 968 datalen = maxfraglen - fragheaderlen; 969 fraglen = datalen + fragheaderlen; 970 pagedlen = 0; 971 972 if ((flags & MSG_MORE) && 973 !(rt->dst.dev->features&NETIF_F_SG)) 974 alloclen = mtu; 975 else if (!paged) 976 alloclen = fraglen; 977 else { 978 alloclen = min_t(int, fraglen, MAX_HEADER); 979 pagedlen = fraglen - alloclen; 980 } 981 982 alloclen += exthdrlen; 983 984 /* The last fragment gets additional space at tail. 985 * Note, with MSG_MORE we overallocate on fragments, 986 * because we have no idea what fragment will be 987 * the last. 988 */ 989 if (datalen == length + fraggap) 990 alloclen += rt->dst.trailer_len; 991 992 if (transhdrlen) { 993 skb = sock_alloc_send_skb(sk, 994 alloclen + hh_len + 15, 995 (flags & MSG_DONTWAIT), &err); 996 } else { 997 skb = NULL; 998 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 999 2 * sk->sk_sndbuf) 1000 skb = alloc_skb(alloclen + hh_len + 15, 1001 sk->sk_allocation); 1002 if (unlikely(!skb)) 1003 err = -ENOBUFS; 1004 } 1005 if (!skb) 1006 goto error; 1007 1008 /* 1009 * Fill in the control structures 1010 */ 1011 skb->ip_summed = csummode; 1012 skb->csum = 0; 1013 skb_reserve(skb, hh_len); 1014 1015 /* 1016 * Find where to start putting bytes. 1017 */ 1018 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1019 skb_set_network_header(skb, exthdrlen); 1020 skb->transport_header = (skb->network_header + 1021 fragheaderlen); 1022 data += fragheaderlen + exthdrlen; 1023 1024 if (fraggap) { 1025 skb->csum = skb_copy_and_csum_bits( 1026 skb_prev, maxfraglen, 1027 data + transhdrlen, fraggap, 0); 1028 skb_prev->csum = csum_sub(skb_prev->csum, 1029 skb->csum); 1030 data += fraggap; 1031 pskb_trim_unique(skb_prev, maxfraglen); 1032 } 1033 1034 copy = datalen - transhdrlen - fraggap - pagedlen; 1035 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1036 err = -EFAULT; 1037 kfree_skb(skb); 1038 goto error; 1039 } 1040 1041 offset += copy; 1042 length -= copy + transhdrlen; 1043 transhdrlen = 0; 1044 exthdrlen = 0; 1045 csummode = CHECKSUM_NONE; 1046 1047 /* only the initial fragment is time stamped */ 1048 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1049 cork->tx_flags = 0; 1050 skb_shinfo(skb)->tskey = tskey; 1051 tskey = 0; 1052 skb_zcopy_set(skb, uarg, &extra_uref); 1053 1054 if ((flags & MSG_CONFIRM) && !skb_prev) 1055 skb_set_dst_pending_confirm(skb, 1); 1056 1057 /* 1058 * Put the packet on the pending queue. 1059 */ 1060 if (!skb->destructor) { 1061 skb->destructor = sock_wfree; 1062 skb->sk = sk; 1063 wmem_alloc_delta += skb->truesize; 1064 } 1065 __skb_queue_tail(queue, skb); 1066 continue; 1067 } 1068 1069 if (copy > length) 1070 copy = length; 1071 1072 if (!(rt->dst.dev->features&NETIF_F_SG) && 1073 skb_tailroom(skb) >= copy) { 1074 unsigned int off; 1075 1076 off = skb->len; 1077 if (getfrag(from, skb_put(skb, copy), 1078 offset, copy, off, skb) < 0) { 1079 __skb_trim(skb, off); 1080 err = -EFAULT; 1081 goto error; 1082 } 1083 } else if (!uarg || !uarg->zerocopy) { 1084 int i = skb_shinfo(skb)->nr_frags; 1085 1086 err = -ENOMEM; 1087 if (!sk_page_frag_refill(sk, pfrag)) 1088 goto error; 1089 1090 if (!skb_can_coalesce(skb, i, pfrag->page, 1091 pfrag->offset)) { 1092 err = -EMSGSIZE; 1093 if (i == MAX_SKB_FRAGS) 1094 goto error; 1095 1096 __skb_fill_page_desc(skb, i, pfrag->page, 1097 pfrag->offset, 0); 1098 skb_shinfo(skb)->nr_frags = ++i; 1099 get_page(pfrag->page); 1100 } 1101 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1102 if (getfrag(from, 1103 page_address(pfrag->page) + pfrag->offset, 1104 offset, copy, skb->len, skb) < 0) 1105 goto error_efault; 1106 1107 pfrag->offset += copy; 1108 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1109 skb->len += copy; 1110 skb->data_len += copy; 1111 skb->truesize += copy; 1112 wmem_alloc_delta += copy; 1113 } else { 1114 err = skb_zerocopy_iter_dgram(skb, from, copy); 1115 if (err < 0) 1116 goto error; 1117 } 1118 offset += copy; 1119 length -= copy; 1120 } 1121 1122 if (wmem_alloc_delta) 1123 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1124 return 0; 1125 1126 error_efault: 1127 err = -EFAULT; 1128 error: 1129 if (uarg) 1130 sock_zerocopy_put_abort(uarg, extra_uref); 1131 cork->length -= length; 1132 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1133 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1134 return err; 1135 } 1136 1137 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1138 struct ipcm_cookie *ipc, struct rtable **rtp) 1139 { 1140 struct ip_options_rcu *opt; 1141 struct rtable *rt; 1142 1143 rt = *rtp; 1144 if (unlikely(!rt)) 1145 return -EFAULT; 1146 1147 /* 1148 * setup for corking. 1149 */ 1150 opt = ipc->opt; 1151 if (opt) { 1152 if (!cork->opt) { 1153 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1154 sk->sk_allocation); 1155 if (unlikely(!cork->opt)) 1156 return -ENOBUFS; 1157 } 1158 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1159 cork->flags |= IPCORK_OPT; 1160 cork->addr = ipc->addr; 1161 } 1162 1163 /* 1164 * We steal reference to this route, caller should not release it 1165 */ 1166 *rtp = NULL; 1167 cork->fragsize = ip_sk_use_pmtu(sk) ? 1168 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1169 1170 cork->gso_size = ipc->gso_size; 1171 cork->dst = &rt->dst; 1172 cork->length = 0; 1173 cork->ttl = ipc->ttl; 1174 cork->tos = ipc->tos; 1175 cork->priority = ipc->priority; 1176 cork->transmit_time = ipc->sockc.transmit_time; 1177 cork->tx_flags = 0; 1178 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); 1179 1180 return 0; 1181 } 1182 1183 /* 1184 * ip_append_data() and ip_append_page() can make one large IP datagram 1185 * from many pieces of data. Each pieces will be holded on the socket 1186 * until ip_push_pending_frames() is called. Each piece can be a page 1187 * or non-page data. 1188 * 1189 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1190 * this interface potentially. 1191 * 1192 * LATER: length must be adjusted by pad at tail, when it is required. 1193 */ 1194 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1195 int getfrag(void *from, char *to, int offset, int len, 1196 int odd, struct sk_buff *skb), 1197 void *from, int length, int transhdrlen, 1198 struct ipcm_cookie *ipc, struct rtable **rtp, 1199 unsigned int flags) 1200 { 1201 struct inet_sock *inet = inet_sk(sk); 1202 int err; 1203 1204 if (flags&MSG_PROBE) 1205 return 0; 1206 1207 if (skb_queue_empty(&sk->sk_write_queue)) { 1208 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1209 if (err) 1210 return err; 1211 } else { 1212 transhdrlen = 0; 1213 } 1214 1215 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1216 sk_page_frag(sk), getfrag, 1217 from, length, transhdrlen, flags); 1218 } 1219 1220 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1221 int offset, size_t size, int flags) 1222 { 1223 struct inet_sock *inet = inet_sk(sk); 1224 struct sk_buff *skb; 1225 struct rtable *rt; 1226 struct ip_options *opt = NULL; 1227 struct inet_cork *cork; 1228 int hh_len; 1229 int mtu; 1230 int len; 1231 int err; 1232 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1233 1234 if (inet->hdrincl) 1235 return -EPERM; 1236 1237 if (flags&MSG_PROBE) 1238 return 0; 1239 1240 if (skb_queue_empty(&sk->sk_write_queue)) 1241 return -EINVAL; 1242 1243 cork = &inet->cork.base; 1244 rt = (struct rtable *)cork->dst; 1245 if (cork->flags & IPCORK_OPT) 1246 opt = cork->opt; 1247 1248 if (!(rt->dst.dev->features&NETIF_F_SG)) 1249 return -EOPNOTSUPP; 1250 1251 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1252 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 1253 1254 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1255 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1256 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1257 1258 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1259 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1260 mtu - (opt ? opt->optlen : 0)); 1261 return -EMSGSIZE; 1262 } 1263 1264 skb = skb_peek_tail(&sk->sk_write_queue); 1265 if (!skb) 1266 return -EINVAL; 1267 1268 cork->length += size; 1269 1270 while (size > 0) { 1271 /* Check if the remaining data fits into current packet. */ 1272 len = mtu - skb->len; 1273 if (len < size) 1274 len = maxfraglen - skb->len; 1275 1276 if (len <= 0) { 1277 struct sk_buff *skb_prev; 1278 int alloclen; 1279 1280 skb_prev = skb; 1281 fraggap = skb_prev->len - maxfraglen; 1282 1283 alloclen = fragheaderlen + hh_len + fraggap + 15; 1284 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1285 if (unlikely(!skb)) { 1286 err = -ENOBUFS; 1287 goto error; 1288 } 1289 1290 /* 1291 * Fill in the control structures 1292 */ 1293 skb->ip_summed = CHECKSUM_NONE; 1294 skb->csum = 0; 1295 skb_reserve(skb, hh_len); 1296 1297 /* 1298 * Find where to start putting bytes. 1299 */ 1300 skb_put(skb, fragheaderlen + fraggap); 1301 skb_reset_network_header(skb); 1302 skb->transport_header = (skb->network_header + 1303 fragheaderlen); 1304 if (fraggap) { 1305 skb->csum = skb_copy_and_csum_bits(skb_prev, 1306 maxfraglen, 1307 skb_transport_header(skb), 1308 fraggap, 0); 1309 skb_prev->csum = csum_sub(skb_prev->csum, 1310 skb->csum); 1311 pskb_trim_unique(skb_prev, maxfraglen); 1312 } 1313 1314 /* 1315 * Put the packet on the pending queue. 1316 */ 1317 __skb_queue_tail(&sk->sk_write_queue, skb); 1318 continue; 1319 } 1320 1321 if (len > size) 1322 len = size; 1323 1324 if (skb_append_pagefrags(skb, page, offset, len)) { 1325 err = -EMSGSIZE; 1326 goto error; 1327 } 1328 1329 if (skb->ip_summed == CHECKSUM_NONE) { 1330 __wsum csum; 1331 csum = csum_page(page, offset, len); 1332 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1333 } 1334 1335 skb->len += len; 1336 skb->data_len += len; 1337 skb->truesize += len; 1338 refcount_add(len, &sk->sk_wmem_alloc); 1339 offset += len; 1340 size -= len; 1341 } 1342 return 0; 1343 1344 error: 1345 cork->length -= size; 1346 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1347 return err; 1348 } 1349 1350 static void ip_cork_release(struct inet_cork *cork) 1351 { 1352 cork->flags &= ~IPCORK_OPT; 1353 kfree(cork->opt); 1354 cork->opt = NULL; 1355 dst_release(cork->dst); 1356 cork->dst = NULL; 1357 } 1358 1359 /* 1360 * Combined all pending IP fragments on the socket as one IP datagram 1361 * and push them out. 1362 */ 1363 struct sk_buff *__ip_make_skb(struct sock *sk, 1364 struct flowi4 *fl4, 1365 struct sk_buff_head *queue, 1366 struct inet_cork *cork) 1367 { 1368 struct sk_buff *skb, *tmp_skb; 1369 struct sk_buff **tail_skb; 1370 struct inet_sock *inet = inet_sk(sk); 1371 struct net *net = sock_net(sk); 1372 struct ip_options *opt = NULL; 1373 struct rtable *rt = (struct rtable *)cork->dst; 1374 struct iphdr *iph; 1375 __be16 df = 0; 1376 __u8 ttl; 1377 1378 skb = __skb_dequeue(queue); 1379 if (!skb) 1380 goto out; 1381 tail_skb = &(skb_shinfo(skb)->frag_list); 1382 1383 /* move skb->data to ip header from ext header */ 1384 if (skb->data < skb_network_header(skb)) 1385 __skb_pull(skb, skb_network_offset(skb)); 1386 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1387 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1388 *tail_skb = tmp_skb; 1389 tail_skb = &(tmp_skb->next); 1390 skb->len += tmp_skb->len; 1391 skb->data_len += tmp_skb->len; 1392 skb->truesize += tmp_skb->truesize; 1393 tmp_skb->destructor = NULL; 1394 tmp_skb->sk = NULL; 1395 } 1396 1397 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1398 * to fragment the frame generated here. No matter, what transforms 1399 * how transforms change size of the packet, it will come out. 1400 */ 1401 skb->ignore_df = ip_sk_ignore_df(sk); 1402 1403 /* DF bit is set when we want to see DF on outgoing frames. 1404 * If ignore_df is set too, we still allow to fragment this frame 1405 * locally. */ 1406 if (inet->pmtudisc == IP_PMTUDISC_DO || 1407 inet->pmtudisc == IP_PMTUDISC_PROBE || 1408 (skb->len <= dst_mtu(&rt->dst) && 1409 ip_dont_fragment(sk, &rt->dst))) 1410 df = htons(IP_DF); 1411 1412 if (cork->flags & IPCORK_OPT) 1413 opt = cork->opt; 1414 1415 if (cork->ttl != 0) 1416 ttl = cork->ttl; 1417 else if (rt->rt_type == RTN_MULTICAST) 1418 ttl = inet->mc_ttl; 1419 else 1420 ttl = ip_select_ttl(inet, &rt->dst); 1421 1422 iph = ip_hdr(skb); 1423 iph->version = 4; 1424 iph->ihl = 5; 1425 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1426 iph->frag_off = df; 1427 iph->ttl = ttl; 1428 iph->protocol = sk->sk_protocol; 1429 ip_copy_addrs(iph, fl4); 1430 ip_select_ident(net, skb, sk); 1431 1432 if (opt) { 1433 iph->ihl += opt->optlen>>2; 1434 ip_options_build(skb, opt, cork->addr, rt, 0); 1435 } 1436 1437 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1438 skb->mark = sk->sk_mark; 1439 skb->tstamp = cork->transmit_time; 1440 /* 1441 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1442 * on dst refcount 1443 */ 1444 cork->dst = NULL; 1445 skb_dst_set(skb, &rt->dst); 1446 1447 if (iph->protocol == IPPROTO_ICMP) 1448 icmp_out_count(net, ((struct icmphdr *) 1449 skb_transport_header(skb))->type); 1450 1451 ip_cork_release(cork); 1452 out: 1453 return skb; 1454 } 1455 1456 int ip_send_skb(struct net *net, struct sk_buff *skb) 1457 { 1458 int err; 1459 1460 err = ip_local_out(net, skb->sk, skb); 1461 if (err) { 1462 if (err > 0) 1463 err = net_xmit_errno(err); 1464 if (err) 1465 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1466 } 1467 1468 return err; 1469 } 1470 1471 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1472 { 1473 struct sk_buff *skb; 1474 1475 skb = ip_finish_skb(sk, fl4); 1476 if (!skb) 1477 return 0; 1478 1479 /* Netfilter gets whole the not fragmented skb. */ 1480 return ip_send_skb(sock_net(sk), skb); 1481 } 1482 1483 /* 1484 * Throw away all pending data on the socket. 1485 */ 1486 static void __ip_flush_pending_frames(struct sock *sk, 1487 struct sk_buff_head *queue, 1488 struct inet_cork *cork) 1489 { 1490 struct sk_buff *skb; 1491 1492 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1493 kfree_skb(skb); 1494 1495 ip_cork_release(cork); 1496 } 1497 1498 void ip_flush_pending_frames(struct sock *sk) 1499 { 1500 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1501 } 1502 1503 struct sk_buff *ip_make_skb(struct sock *sk, 1504 struct flowi4 *fl4, 1505 int getfrag(void *from, char *to, int offset, 1506 int len, int odd, struct sk_buff *skb), 1507 void *from, int length, int transhdrlen, 1508 struct ipcm_cookie *ipc, struct rtable **rtp, 1509 struct inet_cork *cork, unsigned int flags) 1510 { 1511 struct sk_buff_head queue; 1512 int err; 1513 1514 if (flags & MSG_PROBE) 1515 return NULL; 1516 1517 __skb_queue_head_init(&queue); 1518 1519 cork->flags = 0; 1520 cork->addr = 0; 1521 cork->opt = NULL; 1522 err = ip_setup_cork(sk, cork, ipc, rtp); 1523 if (err) 1524 return ERR_PTR(err); 1525 1526 err = __ip_append_data(sk, fl4, &queue, cork, 1527 ¤t->task_frag, getfrag, 1528 from, length, transhdrlen, flags); 1529 if (err) { 1530 __ip_flush_pending_frames(sk, &queue, cork); 1531 return ERR_PTR(err); 1532 } 1533 1534 return __ip_make_skb(sk, fl4, &queue, cork); 1535 } 1536 1537 /* 1538 * Fetch data from kernel space and fill in checksum if needed. 1539 */ 1540 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1541 int len, int odd, struct sk_buff *skb) 1542 { 1543 __wsum csum; 1544 1545 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1546 skb->csum = csum_block_add(skb->csum, csum, odd); 1547 return 0; 1548 } 1549 1550 /* 1551 * Generic function to send a packet as reply to another packet. 1552 * Used to send some TCP resets/acks so far. 1553 */ 1554 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1555 const struct ip_options *sopt, 1556 __be32 daddr, __be32 saddr, 1557 const struct ip_reply_arg *arg, 1558 unsigned int len) 1559 { 1560 struct ip_options_data replyopts; 1561 struct ipcm_cookie ipc; 1562 struct flowi4 fl4; 1563 struct rtable *rt = skb_rtable(skb); 1564 struct net *net = sock_net(sk); 1565 struct sk_buff *nskb; 1566 int err; 1567 int oif; 1568 1569 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1570 return; 1571 1572 ipcm_init(&ipc); 1573 ipc.addr = daddr; 1574 1575 if (replyopts.opt.opt.optlen) { 1576 ipc.opt = &replyopts.opt; 1577 1578 if (replyopts.opt.opt.srr) 1579 daddr = replyopts.opt.opt.faddr; 1580 } 1581 1582 oif = arg->bound_dev_if; 1583 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1584 oif = skb->skb_iif; 1585 1586 flowi4_init_output(&fl4, oif, 1587 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1588 RT_TOS(arg->tos), 1589 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1590 ip_reply_arg_flowi_flags(arg), 1591 daddr, saddr, 1592 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1593 arg->uid); 1594 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1595 rt = ip_route_output_key(net, &fl4); 1596 if (IS_ERR(rt)) 1597 return; 1598 1599 inet_sk(sk)->tos = arg->tos; 1600 1601 sk->sk_priority = skb->priority; 1602 sk->sk_protocol = ip_hdr(skb)->protocol; 1603 sk->sk_bound_dev_if = arg->bound_dev_if; 1604 sk->sk_sndbuf = sysctl_wmem_default; 1605 sk->sk_mark = fl4.flowi4_mark; 1606 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1607 len, 0, &ipc, &rt, MSG_DONTWAIT); 1608 if (unlikely(err)) { 1609 ip_flush_pending_frames(sk); 1610 goto out; 1611 } 1612 1613 nskb = skb_peek(&sk->sk_write_queue); 1614 if (nskb) { 1615 if (arg->csumoffset >= 0) 1616 *((__sum16 *)skb_transport_header(nskb) + 1617 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1618 arg->csum)); 1619 nskb->ip_summed = CHECKSUM_NONE; 1620 ip_push_pending_frames(sk, &fl4); 1621 } 1622 out: 1623 ip_rt_put(rt); 1624 } 1625 1626 void __init ip_init(void) 1627 { 1628 ip_rt_init(); 1629 inet_initpeers(); 1630 1631 #if defined(CONFIG_IP_MULTICAST) 1632 igmp_mc_init(); 1633 #endif 1634 } 1635