xref: /openbmc/linux/net/ipv4/ip_output.c (revision c88773dc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) output module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <Alan.Cox@linux.org>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *		Hirokazu Takahashi, <taka@valinux.co.jp>
18  *
19  *	See ip_input.c for original log
20  *
21  *	Fixes:
22  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
23  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
24  *		Bradford Johnson:	Fix faulty handling of some frames when
25  *					no route is found.
26  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
27  *					(in case if packet not accepted by
28  *					output firewall rules)
29  *		Mike McLagan	:	Routing by source
30  *		Alexey Kuznetsov:	use new route cache
31  *		Andi Kleen:		Fix broken PMTU recovery and remove
32  *					some redundant tests.
33  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
34  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
35  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
36  *					for decreased register pressure on x86
37  *					and more readibility.
38  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
39  *					silently drop skb instead of failing with -EPERM.
40  *		Detlev Wengorz	:	Copy protocol for fragments.
41  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
42  *					datagrams.
43  *		Hirokazu Takahashi:	sendfile() on UDP works now.
44  */
45 
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55 
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65 
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <net/inet_ecn.h>
78 #include <net/lwtunnel.h>
79 #include <linux/bpf-cgroup.h>
80 #include <linux/igmp.h>
81 #include <linux/netfilter_ipv4.h>
82 #include <linux/netfilter_bridge.h>
83 #include <linux/netlink.h>
84 #include <linux/tcp.h>
85 
86 static int
87 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
88 	    unsigned int mtu,
89 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
90 
91 /* Generate a checksum for an outgoing IP datagram. */
92 void ip_send_check(struct iphdr *iph)
93 {
94 	iph->check = 0;
95 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
96 }
97 EXPORT_SYMBOL(ip_send_check);
98 
99 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
100 {
101 	struct iphdr *iph = ip_hdr(skb);
102 
103 	iph->tot_len = htons(skb->len);
104 	ip_send_check(iph);
105 
106 	/* if egress device is enslaved to an L3 master device pass the
107 	 * skb to its handler for processing
108 	 */
109 	skb = l3mdev_ip_out(sk, skb);
110 	if (unlikely(!skb))
111 		return 0;
112 
113 	skb->protocol = htons(ETH_P_IP);
114 
115 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
116 		       net, sk, skb, NULL, skb_dst(skb)->dev,
117 		       dst_output);
118 }
119 
120 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
121 {
122 	int err;
123 
124 	err = __ip_local_out(net, sk, skb);
125 	if (likely(err == 1))
126 		err = dst_output(net, sk, skb);
127 
128 	return err;
129 }
130 EXPORT_SYMBOL_GPL(ip_local_out);
131 
132 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
133 {
134 	int ttl = inet->uc_ttl;
135 
136 	if (ttl < 0)
137 		ttl = ip4_dst_hoplimit(dst);
138 	return ttl;
139 }
140 
141 /*
142  *		Add an ip header to a skbuff and send it out.
143  *
144  */
145 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
146 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
147 {
148 	struct inet_sock *inet = inet_sk(sk);
149 	struct rtable *rt = skb_rtable(skb);
150 	struct net *net = sock_net(sk);
151 	struct iphdr *iph;
152 
153 	/* Build the IP header. */
154 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
155 	skb_reset_network_header(skb);
156 	iph = ip_hdr(skb);
157 	iph->version  = 4;
158 	iph->ihl      = 5;
159 	iph->tos      = inet->tos;
160 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
161 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
162 	iph->saddr    = saddr;
163 	iph->protocol = sk->sk_protocol;
164 	if (ip_dont_fragment(sk, &rt->dst)) {
165 		iph->frag_off = htons(IP_DF);
166 		iph->id = 0;
167 	} else {
168 		iph->frag_off = 0;
169 		__ip_select_ident(net, iph, 1);
170 	}
171 
172 	if (opt && opt->opt.optlen) {
173 		iph->ihl += opt->opt.optlen>>2;
174 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
175 	}
176 
177 	skb->priority = sk->sk_priority;
178 	if (!skb->mark)
179 		skb->mark = sk->sk_mark;
180 
181 	/* Send it out. */
182 	return ip_local_out(net, skb->sk, skb);
183 }
184 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
185 
186 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
187 {
188 	struct dst_entry *dst = skb_dst(skb);
189 	struct rtable *rt = (struct rtable *)dst;
190 	struct net_device *dev = dst->dev;
191 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
192 	struct neighbour *neigh;
193 	bool is_v6gw = false;
194 
195 	if (rt->rt_type == RTN_MULTICAST) {
196 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
197 	} else if (rt->rt_type == RTN_BROADCAST)
198 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
199 
200 	/* Be paranoid, rather than too clever. */
201 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
202 		struct sk_buff *skb2;
203 
204 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
205 		if (!skb2) {
206 			kfree_skb(skb);
207 			return -ENOMEM;
208 		}
209 		if (skb->sk)
210 			skb_set_owner_w(skb2, skb->sk);
211 		consume_skb(skb);
212 		skb = skb2;
213 	}
214 
215 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
216 		int res = lwtunnel_xmit(skb);
217 
218 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
219 			return res;
220 	}
221 
222 	rcu_read_lock_bh();
223 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
224 	if (!IS_ERR(neigh)) {
225 		int res;
226 
227 		sock_confirm_neigh(skb, neigh);
228 		/* if crossing protocols, can not use the cached header */
229 		res = neigh_output(neigh, skb, is_v6gw);
230 		rcu_read_unlock_bh();
231 		return res;
232 	}
233 	rcu_read_unlock_bh();
234 
235 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
236 			    __func__);
237 	kfree_skb(skb);
238 	return -EINVAL;
239 }
240 
241 static int ip_finish_output_gso(struct net *net, struct sock *sk,
242 				struct sk_buff *skb, unsigned int mtu)
243 {
244 	struct sk_buff *segs, *nskb;
245 	netdev_features_t features;
246 	int ret = 0;
247 
248 	/* common case: seglen is <= mtu
249 	 */
250 	if (skb_gso_validate_network_len(skb, mtu))
251 		return ip_finish_output2(net, sk, skb);
252 
253 	/* Slowpath -  GSO segment length exceeds the egress MTU.
254 	 *
255 	 * This can happen in several cases:
256 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
257 	 *  - Forwarding of an skb that arrived on a virtualization interface
258 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
259 	 *    stack.
260 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
261 	 *    interface with a smaller MTU.
262 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
263 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
264 	 *    insufficent MTU.
265 	 */
266 	features = netif_skb_features(skb);
267 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET);
268 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
269 	if (IS_ERR_OR_NULL(segs)) {
270 		kfree_skb(skb);
271 		return -ENOMEM;
272 	}
273 
274 	consume_skb(skb);
275 
276 	skb_list_walk_safe(segs, segs, nskb) {
277 		int err;
278 
279 		skb_mark_not_on_list(segs);
280 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
281 
282 		if (err && ret == 0)
283 			ret = err;
284 	}
285 
286 	return ret;
287 }
288 
289 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
290 {
291 	unsigned int mtu;
292 
293 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
294 	/* Policy lookup after SNAT yielded a new policy */
295 	if (skb_dst(skb)->xfrm) {
296 		IPCB(skb)->flags |= IPSKB_REROUTED;
297 		return dst_output(net, sk, skb);
298 	}
299 #endif
300 	mtu = ip_skb_dst_mtu(sk, skb);
301 	if (skb_is_gso(skb))
302 		return ip_finish_output_gso(net, sk, skb, mtu);
303 
304 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
305 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
306 
307 	return ip_finish_output2(net, sk, skb);
308 }
309 
310 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
311 {
312 	int ret;
313 
314 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
315 	switch (ret) {
316 	case NET_XMIT_SUCCESS:
317 		return __ip_finish_output(net, sk, skb);
318 	case NET_XMIT_CN:
319 		return __ip_finish_output(net, sk, skb) ? : ret;
320 	default:
321 		kfree_skb(skb);
322 		return ret;
323 	}
324 }
325 
326 static int ip_mc_finish_output(struct net *net, struct sock *sk,
327 			       struct sk_buff *skb)
328 {
329 	struct rtable *new_rt;
330 	bool do_cn = false;
331 	int ret, err;
332 
333 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
334 	switch (ret) {
335 	case NET_XMIT_CN:
336 		do_cn = true;
337 		fallthrough;
338 	case NET_XMIT_SUCCESS:
339 		break;
340 	default:
341 		kfree_skb(skb);
342 		return ret;
343 	}
344 
345 	/* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
346 	 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
347 	 * see ipv4_pktinfo_prepare().
348 	 */
349 	new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
350 	if (new_rt) {
351 		new_rt->rt_iif = 0;
352 		skb_dst_drop(skb);
353 		skb_dst_set(skb, &new_rt->dst);
354 	}
355 
356 	err = dev_loopback_xmit(net, sk, skb);
357 	return (do_cn && err) ? ret : err;
358 }
359 
360 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
361 {
362 	struct rtable *rt = skb_rtable(skb);
363 	struct net_device *dev = rt->dst.dev;
364 
365 	/*
366 	 *	If the indicated interface is up and running, send the packet.
367 	 */
368 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
369 
370 	skb->dev = dev;
371 	skb->protocol = htons(ETH_P_IP);
372 
373 	/*
374 	 *	Multicasts are looped back for other local users
375 	 */
376 
377 	if (rt->rt_flags&RTCF_MULTICAST) {
378 		if (sk_mc_loop(sk)
379 #ifdef CONFIG_IP_MROUTE
380 		/* Small optimization: do not loopback not local frames,
381 		   which returned after forwarding; they will be  dropped
382 		   by ip_mr_input in any case.
383 		   Note, that local frames are looped back to be delivered
384 		   to local recipients.
385 
386 		   This check is duplicated in ip_mr_input at the moment.
387 		 */
388 		    &&
389 		    ((rt->rt_flags & RTCF_LOCAL) ||
390 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
391 #endif
392 		   ) {
393 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
394 			if (newskb)
395 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
396 					net, sk, newskb, NULL, newskb->dev,
397 					ip_mc_finish_output);
398 		}
399 
400 		/* Multicasts with ttl 0 must not go beyond the host */
401 
402 		if (ip_hdr(skb)->ttl == 0) {
403 			kfree_skb(skb);
404 			return 0;
405 		}
406 	}
407 
408 	if (rt->rt_flags&RTCF_BROADCAST) {
409 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
410 		if (newskb)
411 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
412 				net, sk, newskb, NULL, newskb->dev,
413 				ip_mc_finish_output);
414 	}
415 
416 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
417 			    net, sk, skb, NULL, skb->dev,
418 			    ip_finish_output,
419 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
420 }
421 
422 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
423 {
424 	struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev;
425 
426 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
427 
428 	skb->dev = dev;
429 	skb->protocol = htons(ETH_P_IP);
430 
431 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
432 			    net, sk, skb, indev, dev,
433 			    ip_finish_output,
434 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
435 }
436 
437 /*
438  * copy saddr and daddr, possibly using 64bit load/stores
439  * Equivalent to :
440  *   iph->saddr = fl4->saddr;
441  *   iph->daddr = fl4->daddr;
442  */
443 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
444 {
445 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
446 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
447 	memcpy(&iph->saddr, &fl4->saddr,
448 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
449 }
450 
451 /* Note: skb->sk can be different from sk, in case of tunnels */
452 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
453 		    __u8 tos)
454 {
455 	struct inet_sock *inet = inet_sk(sk);
456 	struct net *net = sock_net(sk);
457 	struct ip_options_rcu *inet_opt;
458 	struct flowi4 *fl4;
459 	struct rtable *rt;
460 	struct iphdr *iph;
461 	int res;
462 
463 	/* Skip all of this if the packet is already routed,
464 	 * f.e. by something like SCTP.
465 	 */
466 	rcu_read_lock();
467 	inet_opt = rcu_dereference(inet->inet_opt);
468 	fl4 = &fl->u.ip4;
469 	rt = skb_rtable(skb);
470 	if (rt)
471 		goto packet_routed;
472 
473 	/* Make sure we can route this packet. */
474 	rt = (struct rtable *)__sk_dst_check(sk, 0);
475 	if (!rt) {
476 		__be32 daddr;
477 
478 		/* Use correct destination address if we have options. */
479 		daddr = inet->inet_daddr;
480 		if (inet_opt && inet_opt->opt.srr)
481 			daddr = inet_opt->opt.faddr;
482 
483 		/* If this fails, retransmit mechanism of transport layer will
484 		 * keep trying until route appears or the connection times
485 		 * itself out.
486 		 */
487 		rt = ip_route_output_ports(net, fl4, sk,
488 					   daddr, inet->inet_saddr,
489 					   inet->inet_dport,
490 					   inet->inet_sport,
491 					   sk->sk_protocol,
492 					   RT_CONN_FLAGS_TOS(sk, tos),
493 					   sk->sk_bound_dev_if);
494 		if (IS_ERR(rt))
495 			goto no_route;
496 		sk_setup_caps(sk, &rt->dst);
497 	}
498 	skb_dst_set_noref(skb, &rt->dst);
499 
500 packet_routed:
501 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
502 		goto no_route;
503 
504 	/* OK, we know where to send it, allocate and build IP header. */
505 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
506 	skb_reset_network_header(skb);
507 	iph = ip_hdr(skb);
508 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
509 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
510 		iph->frag_off = htons(IP_DF);
511 	else
512 		iph->frag_off = 0;
513 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
514 	iph->protocol = sk->sk_protocol;
515 	ip_copy_addrs(iph, fl4);
516 
517 	/* Transport layer set skb->h.foo itself. */
518 
519 	if (inet_opt && inet_opt->opt.optlen) {
520 		iph->ihl += inet_opt->opt.optlen >> 2;
521 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
522 	}
523 
524 	ip_select_ident_segs(net, skb, sk,
525 			     skb_shinfo(skb)->gso_segs ?: 1);
526 
527 	/* TODO : should we use skb->sk here instead of sk ? */
528 	skb->priority = sk->sk_priority;
529 	skb->mark = sk->sk_mark;
530 
531 	res = ip_local_out(net, sk, skb);
532 	rcu_read_unlock();
533 	return res;
534 
535 no_route:
536 	rcu_read_unlock();
537 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
538 	kfree_skb(skb);
539 	return -EHOSTUNREACH;
540 }
541 EXPORT_SYMBOL(__ip_queue_xmit);
542 
543 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
544 {
545 	return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos);
546 }
547 EXPORT_SYMBOL(ip_queue_xmit);
548 
549 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
550 {
551 	to->pkt_type = from->pkt_type;
552 	to->priority = from->priority;
553 	to->protocol = from->protocol;
554 	to->skb_iif = from->skb_iif;
555 	skb_dst_drop(to);
556 	skb_dst_copy(to, from);
557 	to->dev = from->dev;
558 	to->mark = from->mark;
559 
560 	skb_copy_hash(to, from);
561 
562 #ifdef CONFIG_NET_SCHED
563 	to->tc_index = from->tc_index;
564 #endif
565 	nf_copy(to, from);
566 	skb_ext_copy(to, from);
567 #if IS_ENABLED(CONFIG_IP_VS)
568 	to->ipvs_property = from->ipvs_property;
569 #endif
570 	skb_copy_secmark(to, from);
571 }
572 
573 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
574 		       unsigned int mtu,
575 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
576 {
577 	struct iphdr *iph = ip_hdr(skb);
578 
579 	if ((iph->frag_off & htons(IP_DF)) == 0)
580 		return ip_do_fragment(net, sk, skb, output);
581 
582 	if (unlikely(!skb->ignore_df ||
583 		     (IPCB(skb)->frag_max_size &&
584 		      IPCB(skb)->frag_max_size > mtu))) {
585 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
586 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
587 			  htonl(mtu));
588 		kfree_skb(skb);
589 		return -EMSGSIZE;
590 	}
591 
592 	return ip_do_fragment(net, sk, skb, output);
593 }
594 
595 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
596 		      unsigned int hlen, struct ip_fraglist_iter *iter)
597 {
598 	unsigned int first_len = skb_pagelen(skb);
599 
600 	iter->frag = skb_shinfo(skb)->frag_list;
601 	skb_frag_list_init(skb);
602 
603 	iter->offset = 0;
604 	iter->iph = iph;
605 	iter->hlen = hlen;
606 
607 	skb->data_len = first_len - skb_headlen(skb);
608 	skb->len = first_len;
609 	iph->tot_len = htons(first_len);
610 	iph->frag_off = htons(IP_MF);
611 	ip_send_check(iph);
612 }
613 EXPORT_SYMBOL(ip_fraglist_init);
614 
615 static void ip_fraglist_ipcb_prepare(struct sk_buff *skb,
616 				     struct ip_fraglist_iter *iter)
617 {
618 	struct sk_buff *to = iter->frag;
619 
620 	/* Copy the flags to each fragment. */
621 	IPCB(to)->flags = IPCB(skb)->flags;
622 
623 	if (iter->offset == 0)
624 		ip_options_fragment(to);
625 }
626 
627 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
628 {
629 	unsigned int hlen = iter->hlen;
630 	struct iphdr *iph = iter->iph;
631 	struct sk_buff *frag;
632 
633 	frag = iter->frag;
634 	frag->ip_summed = CHECKSUM_NONE;
635 	skb_reset_transport_header(frag);
636 	__skb_push(frag, hlen);
637 	skb_reset_network_header(frag);
638 	memcpy(skb_network_header(frag), iph, hlen);
639 	iter->iph = ip_hdr(frag);
640 	iph = iter->iph;
641 	iph->tot_len = htons(frag->len);
642 	ip_copy_metadata(frag, skb);
643 	iter->offset += skb->len - hlen;
644 	iph->frag_off = htons(iter->offset >> 3);
645 	if (frag->next)
646 		iph->frag_off |= htons(IP_MF);
647 	/* Ready, complete checksum */
648 	ip_send_check(iph);
649 }
650 EXPORT_SYMBOL(ip_fraglist_prepare);
651 
652 void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
653 		  unsigned int ll_rs, unsigned int mtu, bool DF,
654 		  struct ip_frag_state *state)
655 {
656 	struct iphdr *iph = ip_hdr(skb);
657 
658 	state->DF = DF;
659 	state->hlen = hlen;
660 	state->ll_rs = ll_rs;
661 	state->mtu = mtu;
662 
663 	state->left = skb->len - hlen;	/* Space per frame */
664 	state->ptr = hlen;		/* Where to start from */
665 
666 	state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
667 	state->not_last_frag = iph->frag_off & htons(IP_MF);
668 }
669 EXPORT_SYMBOL(ip_frag_init);
670 
671 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
672 			 bool first_frag, struct ip_frag_state *state)
673 {
674 	/* Copy the flags to each fragment. */
675 	IPCB(to)->flags = IPCB(from)->flags;
676 
677 	/* ANK: dirty, but effective trick. Upgrade options only if
678 	 * the segment to be fragmented was THE FIRST (otherwise,
679 	 * options are already fixed) and make it ONCE
680 	 * on the initial skb, so that all the following fragments
681 	 * will inherit fixed options.
682 	 */
683 	if (first_frag)
684 		ip_options_fragment(from);
685 }
686 
687 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
688 {
689 	unsigned int len = state->left;
690 	struct sk_buff *skb2;
691 	struct iphdr *iph;
692 
693 	len = state->left;
694 	/* IF: it doesn't fit, use 'mtu' - the data space left */
695 	if (len > state->mtu)
696 		len = state->mtu;
697 	/* IF: we are not sending up to and including the packet end
698 	   then align the next start on an eight byte boundary */
699 	if (len < state->left)	{
700 		len &= ~7;
701 	}
702 
703 	/* Allocate buffer */
704 	skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
705 	if (!skb2)
706 		return ERR_PTR(-ENOMEM);
707 
708 	/*
709 	 *	Set up data on packet
710 	 */
711 
712 	ip_copy_metadata(skb2, skb);
713 	skb_reserve(skb2, state->ll_rs);
714 	skb_put(skb2, len + state->hlen);
715 	skb_reset_network_header(skb2);
716 	skb2->transport_header = skb2->network_header + state->hlen;
717 
718 	/*
719 	 *	Charge the memory for the fragment to any owner
720 	 *	it might possess
721 	 */
722 
723 	if (skb->sk)
724 		skb_set_owner_w(skb2, skb->sk);
725 
726 	/*
727 	 *	Copy the packet header into the new buffer.
728 	 */
729 
730 	skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
731 
732 	/*
733 	 *	Copy a block of the IP datagram.
734 	 */
735 	if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
736 		BUG();
737 	state->left -= len;
738 
739 	/*
740 	 *	Fill in the new header fields.
741 	 */
742 	iph = ip_hdr(skb2);
743 	iph->frag_off = htons((state->offset >> 3));
744 	if (state->DF)
745 		iph->frag_off |= htons(IP_DF);
746 
747 	/*
748 	 *	Added AC : If we are fragmenting a fragment that's not the
749 	 *		   last fragment then keep MF on each bit
750 	 */
751 	if (state->left > 0 || state->not_last_frag)
752 		iph->frag_off |= htons(IP_MF);
753 	state->ptr += len;
754 	state->offset += len;
755 
756 	iph->tot_len = htons(len + state->hlen);
757 
758 	ip_send_check(iph);
759 
760 	return skb2;
761 }
762 EXPORT_SYMBOL(ip_frag_next);
763 
764 /*
765  *	This IP datagram is too large to be sent in one piece.  Break it up into
766  *	smaller pieces (each of size equal to IP header plus
767  *	a block of the data of the original IP data part) that will yet fit in a
768  *	single device frame, and queue such a frame for sending.
769  */
770 
771 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
772 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
773 {
774 	struct iphdr *iph;
775 	struct sk_buff *skb2;
776 	struct rtable *rt = skb_rtable(skb);
777 	unsigned int mtu, hlen, ll_rs;
778 	struct ip_fraglist_iter iter;
779 	ktime_t tstamp = skb->tstamp;
780 	struct ip_frag_state state;
781 	int err = 0;
782 
783 	/* for offloaded checksums cleanup checksum before fragmentation */
784 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
785 	    (err = skb_checksum_help(skb)))
786 		goto fail;
787 
788 	/*
789 	 *	Point into the IP datagram header.
790 	 */
791 
792 	iph = ip_hdr(skb);
793 
794 	mtu = ip_skb_dst_mtu(sk, skb);
795 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
796 		mtu = IPCB(skb)->frag_max_size;
797 
798 	/*
799 	 *	Setup starting values.
800 	 */
801 
802 	hlen = iph->ihl * 4;
803 	mtu = mtu - hlen;	/* Size of data space */
804 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
805 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
806 
807 	/* When frag_list is given, use it. First, check its validity:
808 	 * some transformers could create wrong frag_list or break existing
809 	 * one, it is not prohibited. In this case fall back to copying.
810 	 *
811 	 * LATER: this step can be merged to real generation of fragments,
812 	 * we can switch to copy when see the first bad fragment.
813 	 */
814 	if (skb_has_frag_list(skb)) {
815 		struct sk_buff *frag, *frag2;
816 		unsigned int first_len = skb_pagelen(skb);
817 
818 		if (first_len - hlen > mtu ||
819 		    ((first_len - hlen) & 7) ||
820 		    ip_is_fragment(iph) ||
821 		    skb_cloned(skb) ||
822 		    skb_headroom(skb) < ll_rs)
823 			goto slow_path;
824 
825 		skb_walk_frags(skb, frag) {
826 			/* Correct geometry. */
827 			if (frag->len > mtu ||
828 			    ((frag->len & 7) && frag->next) ||
829 			    skb_headroom(frag) < hlen + ll_rs)
830 				goto slow_path_clean;
831 
832 			/* Partially cloned skb? */
833 			if (skb_shared(frag))
834 				goto slow_path_clean;
835 
836 			BUG_ON(frag->sk);
837 			if (skb->sk) {
838 				frag->sk = skb->sk;
839 				frag->destructor = sock_wfree;
840 			}
841 			skb->truesize -= frag->truesize;
842 		}
843 
844 		/* Everything is OK. Generate! */
845 		ip_fraglist_init(skb, iph, hlen, &iter);
846 
847 		for (;;) {
848 			/* Prepare header of the next frame,
849 			 * before previous one went down. */
850 			if (iter.frag) {
851 				ip_fraglist_ipcb_prepare(skb, &iter);
852 				ip_fraglist_prepare(skb, &iter);
853 			}
854 
855 			skb->tstamp = tstamp;
856 			err = output(net, sk, skb);
857 
858 			if (!err)
859 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
860 			if (err || !iter.frag)
861 				break;
862 
863 			skb = ip_fraglist_next(&iter);
864 		}
865 
866 		if (err == 0) {
867 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
868 			return 0;
869 		}
870 
871 		kfree_skb_list(iter.frag);
872 
873 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
874 		return err;
875 
876 slow_path_clean:
877 		skb_walk_frags(skb, frag2) {
878 			if (frag2 == frag)
879 				break;
880 			frag2->sk = NULL;
881 			frag2->destructor = NULL;
882 			skb->truesize += frag2->truesize;
883 		}
884 	}
885 
886 slow_path:
887 	/*
888 	 *	Fragment the datagram.
889 	 */
890 
891 	ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
892 		     &state);
893 
894 	/*
895 	 *	Keep copying data until we run out.
896 	 */
897 
898 	while (state.left > 0) {
899 		bool first_frag = (state.offset == 0);
900 
901 		skb2 = ip_frag_next(skb, &state);
902 		if (IS_ERR(skb2)) {
903 			err = PTR_ERR(skb2);
904 			goto fail;
905 		}
906 		ip_frag_ipcb(skb, skb2, first_frag, &state);
907 
908 		/*
909 		 *	Put this fragment into the sending queue.
910 		 */
911 		skb2->tstamp = tstamp;
912 		err = output(net, sk, skb2);
913 		if (err)
914 			goto fail;
915 
916 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
917 	}
918 	consume_skb(skb);
919 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
920 	return err;
921 
922 fail:
923 	kfree_skb(skb);
924 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
925 	return err;
926 }
927 EXPORT_SYMBOL(ip_do_fragment);
928 
929 int
930 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
931 {
932 	struct msghdr *msg = from;
933 
934 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
935 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
936 			return -EFAULT;
937 	} else {
938 		__wsum csum = 0;
939 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
940 			return -EFAULT;
941 		skb->csum = csum_block_add(skb->csum, csum, odd);
942 	}
943 	return 0;
944 }
945 EXPORT_SYMBOL(ip_generic_getfrag);
946 
947 static inline __wsum
948 csum_page(struct page *page, int offset, int copy)
949 {
950 	char *kaddr;
951 	__wsum csum;
952 	kaddr = kmap(page);
953 	csum = csum_partial(kaddr + offset, copy, 0);
954 	kunmap(page);
955 	return csum;
956 }
957 
958 static int __ip_append_data(struct sock *sk,
959 			    struct flowi4 *fl4,
960 			    struct sk_buff_head *queue,
961 			    struct inet_cork *cork,
962 			    struct page_frag *pfrag,
963 			    int getfrag(void *from, char *to, int offset,
964 					int len, int odd, struct sk_buff *skb),
965 			    void *from, int length, int transhdrlen,
966 			    unsigned int flags)
967 {
968 	struct inet_sock *inet = inet_sk(sk);
969 	struct ubuf_info *uarg = NULL;
970 	struct sk_buff *skb;
971 
972 	struct ip_options *opt = cork->opt;
973 	int hh_len;
974 	int exthdrlen;
975 	int mtu;
976 	int copy;
977 	int err;
978 	int offset = 0;
979 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
980 	int csummode = CHECKSUM_NONE;
981 	struct rtable *rt = (struct rtable *)cork->dst;
982 	unsigned int wmem_alloc_delta = 0;
983 	bool paged, extra_uref = false;
984 	u32 tskey = 0;
985 
986 	skb = skb_peek_tail(queue);
987 
988 	exthdrlen = !skb ? rt->dst.header_len : 0;
989 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
990 	paged = !!cork->gso_size;
991 
992 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
993 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
994 		tskey = sk->sk_tskey++;
995 
996 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
997 
998 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
999 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1000 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1001 
1002 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
1003 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1004 			       mtu - (opt ? opt->optlen : 0));
1005 		return -EMSGSIZE;
1006 	}
1007 
1008 	/*
1009 	 * transhdrlen > 0 means that this is the first fragment and we wish
1010 	 * it won't be fragmented in the future.
1011 	 */
1012 	if (transhdrlen &&
1013 	    length + fragheaderlen <= mtu &&
1014 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1015 	    (!(flags & MSG_MORE) || cork->gso_size) &&
1016 	    (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1017 		csummode = CHECKSUM_PARTIAL;
1018 
1019 	if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
1020 		uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
1021 		if (!uarg)
1022 			return -ENOBUFS;
1023 		extra_uref = !skb_zcopy(skb);	/* only ref on new uarg */
1024 		if (rt->dst.dev->features & NETIF_F_SG &&
1025 		    csummode == CHECKSUM_PARTIAL) {
1026 			paged = true;
1027 		} else {
1028 			uarg->zerocopy = 0;
1029 			skb_zcopy_set(skb, uarg, &extra_uref);
1030 		}
1031 	}
1032 
1033 	cork->length += length;
1034 
1035 	/* So, what's going on in the loop below?
1036 	 *
1037 	 * We use calculated fragment length to generate chained skb,
1038 	 * each of segments is IP fragment ready for sending to network after
1039 	 * adding appropriate IP header.
1040 	 */
1041 
1042 	if (!skb)
1043 		goto alloc_new_skb;
1044 
1045 	while (length > 0) {
1046 		/* Check if the remaining data fits into current packet. */
1047 		copy = mtu - skb->len;
1048 		if (copy < length)
1049 			copy = maxfraglen - skb->len;
1050 		if (copy <= 0) {
1051 			char *data;
1052 			unsigned int datalen;
1053 			unsigned int fraglen;
1054 			unsigned int fraggap;
1055 			unsigned int alloclen;
1056 			unsigned int pagedlen;
1057 			struct sk_buff *skb_prev;
1058 alloc_new_skb:
1059 			skb_prev = skb;
1060 			if (skb_prev)
1061 				fraggap = skb_prev->len - maxfraglen;
1062 			else
1063 				fraggap = 0;
1064 
1065 			/*
1066 			 * If remaining data exceeds the mtu,
1067 			 * we know we need more fragment(s).
1068 			 */
1069 			datalen = length + fraggap;
1070 			if (datalen > mtu - fragheaderlen)
1071 				datalen = maxfraglen - fragheaderlen;
1072 			fraglen = datalen + fragheaderlen;
1073 			pagedlen = 0;
1074 
1075 			if ((flags & MSG_MORE) &&
1076 			    !(rt->dst.dev->features&NETIF_F_SG))
1077 				alloclen = mtu;
1078 			else if (!paged)
1079 				alloclen = fraglen;
1080 			else {
1081 				alloclen = min_t(int, fraglen, MAX_HEADER);
1082 				pagedlen = fraglen - alloclen;
1083 			}
1084 
1085 			alloclen += exthdrlen;
1086 
1087 			/* The last fragment gets additional space at tail.
1088 			 * Note, with MSG_MORE we overallocate on fragments,
1089 			 * because we have no idea what fragment will be
1090 			 * the last.
1091 			 */
1092 			if (datalen == length + fraggap)
1093 				alloclen += rt->dst.trailer_len;
1094 
1095 			if (transhdrlen) {
1096 				skb = sock_alloc_send_skb(sk,
1097 						alloclen + hh_len + 15,
1098 						(flags & MSG_DONTWAIT), &err);
1099 			} else {
1100 				skb = NULL;
1101 				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1102 				    2 * sk->sk_sndbuf)
1103 					skb = alloc_skb(alloclen + hh_len + 15,
1104 							sk->sk_allocation);
1105 				if (unlikely(!skb))
1106 					err = -ENOBUFS;
1107 			}
1108 			if (!skb)
1109 				goto error;
1110 
1111 			/*
1112 			 *	Fill in the control structures
1113 			 */
1114 			skb->ip_summed = csummode;
1115 			skb->csum = 0;
1116 			skb_reserve(skb, hh_len);
1117 
1118 			/*
1119 			 *	Find where to start putting bytes.
1120 			 */
1121 			data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1122 			skb_set_network_header(skb, exthdrlen);
1123 			skb->transport_header = (skb->network_header +
1124 						 fragheaderlen);
1125 			data += fragheaderlen + exthdrlen;
1126 
1127 			if (fraggap) {
1128 				skb->csum = skb_copy_and_csum_bits(
1129 					skb_prev, maxfraglen,
1130 					data + transhdrlen, fraggap);
1131 				skb_prev->csum = csum_sub(skb_prev->csum,
1132 							  skb->csum);
1133 				data += fraggap;
1134 				pskb_trim_unique(skb_prev, maxfraglen);
1135 			}
1136 
1137 			copy = datalen - transhdrlen - fraggap - pagedlen;
1138 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1139 				err = -EFAULT;
1140 				kfree_skb(skb);
1141 				goto error;
1142 			}
1143 
1144 			offset += copy;
1145 			length -= copy + transhdrlen;
1146 			transhdrlen = 0;
1147 			exthdrlen = 0;
1148 			csummode = CHECKSUM_NONE;
1149 
1150 			/* only the initial fragment is time stamped */
1151 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1152 			cork->tx_flags = 0;
1153 			skb_shinfo(skb)->tskey = tskey;
1154 			tskey = 0;
1155 			skb_zcopy_set(skb, uarg, &extra_uref);
1156 
1157 			if ((flags & MSG_CONFIRM) && !skb_prev)
1158 				skb_set_dst_pending_confirm(skb, 1);
1159 
1160 			/*
1161 			 * Put the packet on the pending queue.
1162 			 */
1163 			if (!skb->destructor) {
1164 				skb->destructor = sock_wfree;
1165 				skb->sk = sk;
1166 				wmem_alloc_delta += skb->truesize;
1167 			}
1168 			__skb_queue_tail(queue, skb);
1169 			continue;
1170 		}
1171 
1172 		if (copy > length)
1173 			copy = length;
1174 
1175 		if (!(rt->dst.dev->features&NETIF_F_SG) &&
1176 		    skb_tailroom(skb) >= copy) {
1177 			unsigned int off;
1178 
1179 			off = skb->len;
1180 			if (getfrag(from, skb_put(skb, copy),
1181 					offset, copy, off, skb) < 0) {
1182 				__skb_trim(skb, off);
1183 				err = -EFAULT;
1184 				goto error;
1185 			}
1186 		} else if (!uarg || !uarg->zerocopy) {
1187 			int i = skb_shinfo(skb)->nr_frags;
1188 
1189 			err = -ENOMEM;
1190 			if (!sk_page_frag_refill(sk, pfrag))
1191 				goto error;
1192 
1193 			if (!skb_can_coalesce(skb, i, pfrag->page,
1194 					      pfrag->offset)) {
1195 				err = -EMSGSIZE;
1196 				if (i == MAX_SKB_FRAGS)
1197 					goto error;
1198 
1199 				__skb_fill_page_desc(skb, i, pfrag->page,
1200 						     pfrag->offset, 0);
1201 				skb_shinfo(skb)->nr_frags = ++i;
1202 				get_page(pfrag->page);
1203 			}
1204 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1205 			if (getfrag(from,
1206 				    page_address(pfrag->page) + pfrag->offset,
1207 				    offset, copy, skb->len, skb) < 0)
1208 				goto error_efault;
1209 
1210 			pfrag->offset += copy;
1211 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1212 			skb->len += copy;
1213 			skb->data_len += copy;
1214 			skb->truesize += copy;
1215 			wmem_alloc_delta += copy;
1216 		} else {
1217 			err = skb_zerocopy_iter_dgram(skb, from, copy);
1218 			if (err < 0)
1219 				goto error;
1220 		}
1221 		offset += copy;
1222 		length -= copy;
1223 	}
1224 
1225 	if (wmem_alloc_delta)
1226 		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1227 	return 0;
1228 
1229 error_efault:
1230 	err = -EFAULT;
1231 error:
1232 	if (uarg)
1233 		sock_zerocopy_put_abort(uarg, extra_uref);
1234 	cork->length -= length;
1235 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1236 	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1237 	return err;
1238 }
1239 
1240 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1241 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1242 {
1243 	struct ip_options_rcu *opt;
1244 	struct rtable *rt;
1245 
1246 	rt = *rtp;
1247 	if (unlikely(!rt))
1248 		return -EFAULT;
1249 
1250 	/*
1251 	 * setup for corking.
1252 	 */
1253 	opt = ipc->opt;
1254 	if (opt) {
1255 		if (!cork->opt) {
1256 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1257 					    sk->sk_allocation);
1258 			if (unlikely(!cork->opt))
1259 				return -ENOBUFS;
1260 		}
1261 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1262 		cork->flags |= IPCORK_OPT;
1263 		cork->addr = ipc->addr;
1264 	}
1265 
1266 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1267 			 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
1268 
1269 	if (!inetdev_valid_mtu(cork->fragsize))
1270 		return -ENETUNREACH;
1271 
1272 	cork->gso_size = ipc->gso_size;
1273 
1274 	cork->dst = &rt->dst;
1275 	/* We stole this route, caller should not release it. */
1276 	*rtp = NULL;
1277 
1278 	cork->length = 0;
1279 	cork->ttl = ipc->ttl;
1280 	cork->tos = ipc->tos;
1281 	cork->mark = ipc->sockc.mark;
1282 	cork->priority = ipc->priority;
1283 	cork->transmit_time = ipc->sockc.transmit_time;
1284 	cork->tx_flags = 0;
1285 	sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1286 
1287 	return 0;
1288 }
1289 
1290 /*
1291  *	ip_append_data() and ip_append_page() can make one large IP datagram
1292  *	from many pieces of data. Each pieces will be holded on the socket
1293  *	until ip_push_pending_frames() is called. Each piece can be a page
1294  *	or non-page data.
1295  *
1296  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1297  *	this interface potentially.
1298  *
1299  *	LATER: length must be adjusted by pad at tail, when it is required.
1300  */
1301 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1302 		   int getfrag(void *from, char *to, int offset, int len,
1303 			       int odd, struct sk_buff *skb),
1304 		   void *from, int length, int transhdrlen,
1305 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1306 		   unsigned int flags)
1307 {
1308 	struct inet_sock *inet = inet_sk(sk);
1309 	int err;
1310 
1311 	if (flags&MSG_PROBE)
1312 		return 0;
1313 
1314 	if (skb_queue_empty(&sk->sk_write_queue)) {
1315 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1316 		if (err)
1317 			return err;
1318 	} else {
1319 		transhdrlen = 0;
1320 	}
1321 
1322 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1323 				sk_page_frag(sk), getfrag,
1324 				from, length, transhdrlen, flags);
1325 }
1326 
1327 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1328 		       int offset, size_t size, int flags)
1329 {
1330 	struct inet_sock *inet = inet_sk(sk);
1331 	struct sk_buff *skb;
1332 	struct rtable *rt;
1333 	struct ip_options *opt = NULL;
1334 	struct inet_cork *cork;
1335 	int hh_len;
1336 	int mtu;
1337 	int len;
1338 	int err;
1339 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1340 
1341 	if (inet->hdrincl)
1342 		return -EPERM;
1343 
1344 	if (flags&MSG_PROBE)
1345 		return 0;
1346 
1347 	if (skb_queue_empty(&sk->sk_write_queue))
1348 		return -EINVAL;
1349 
1350 	cork = &inet->cork.base;
1351 	rt = (struct rtable *)cork->dst;
1352 	if (cork->flags & IPCORK_OPT)
1353 		opt = cork->opt;
1354 
1355 	if (!(rt->dst.dev->features&NETIF_F_SG))
1356 		return -EOPNOTSUPP;
1357 
1358 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1359 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1360 
1361 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1362 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1363 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1364 
1365 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1366 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1367 			       mtu - (opt ? opt->optlen : 0));
1368 		return -EMSGSIZE;
1369 	}
1370 
1371 	skb = skb_peek_tail(&sk->sk_write_queue);
1372 	if (!skb)
1373 		return -EINVAL;
1374 
1375 	cork->length += size;
1376 
1377 	while (size > 0) {
1378 		/* Check if the remaining data fits into current packet. */
1379 		len = mtu - skb->len;
1380 		if (len < size)
1381 			len = maxfraglen - skb->len;
1382 
1383 		if (len <= 0) {
1384 			struct sk_buff *skb_prev;
1385 			int alloclen;
1386 
1387 			skb_prev = skb;
1388 			fraggap = skb_prev->len - maxfraglen;
1389 
1390 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1391 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1392 			if (unlikely(!skb)) {
1393 				err = -ENOBUFS;
1394 				goto error;
1395 			}
1396 
1397 			/*
1398 			 *	Fill in the control structures
1399 			 */
1400 			skb->ip_summed = CHECKSUM_NONE;
1401 			skb->csum = 0;
1402 			skb_reserve(skb, hh_len);
1403 
1404 			/*
1405 			 *	Find where to start putting bytes.
1406 			 */
1407 			skb_put(skb, fragheaderlen + fraggap);
1408 			skb_reset_network_header(skb);
1409 			skb->transport_header = (skb->network_header +
1410 						 fragheaderlen);
1411 			if (fraggap) {
1412 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1413 								   maxfraglen,
1414 						    skb_transport_header(skb),
1415 								   fraggap);
1416 				skb_prev->csum = csum_sub(skb_prev->csum,
1417 							  skb->csum);
1418 				pskb_trim_unique(skb_prev, maxfraglen);
1419 			}
1420 
1421 			/*
1422 			 * Put the packet on the pending queue.
1423 			 */
1424 			__skb_queue_tail(&sk->sk_write_queue, skb);
1425 			continue;
1426 		}
1427 
1428 		if (len > size)
1429 			len = size;
1430 
1431 		if (skb_append_pagefrags(skb, page, offset, len)) {
1432 			err = -EMSGSIZE;
1433 			goto error;
1434 		}
1435 
1436 		if (skb->ip_summed == CHECKSUM_NONE) {
1437 			__wsum csum;
1438 			csum = csum_page(page, offset, len);
1439 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1440 		}
1441 
1442 		skb->len += len;
1443 		skb->data_len += len;
1444 		skb->truesize += len;
1445 		refcount_add(len, &sk->sk_wmem_alloc);
1446 		offset += len;
1447 		size -= len;
1448 	}
1449 	return 0;
1450 
1451 error:
1452 	cork->length -= size;
1453 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1454 	return err;
1455 }
1456 
1457 static void ip_cork_release(struct inet_cork *cork)
1458 {
1459 	cork->flags &= ~IPCORK_OPT;
1460 	kfree(cork->opt);
1461 	cork->opt = NULL;
1462 	dst_release(cork->dst);
1463 	cork->dst = NULL;
1464 }
1465 
1466 /*
1467  *	Combined all pending IP fragments on the socket as one IP datagram
1468  *	and push them out.
1469  */
1470 struct sk_buff *__ip_make_skb(struct sock *sk,
1471 			      struct flowi4 *fl4,
1472 			      struct sk_buff_head *queue,
1473 			      struct inet_cork *cork)
1474 {
1475 	struct sk_buff *skb, *tmp_skb;
1476 	struct sk_buff **tail_skb;
1477 	struct inet_sock *inet = inet_sk(sk);
1478 	struct net *net = sock_net(sk);
1479 	struct ip_options *opt = NULL;
1480 	struct rtable *rt = (struct rtable *)cork->dst;
1481 	struct iphdr *iph;
1482 	__be16 df = 0;
1483 	__u8 ttl;
1484 
1485 	skb = __skb_dequeue(queue);
1486 	if (!skb)
1487 		goto out;
1488 	tail_skb = &(skb_shinfo(skb)->frag_list);
1489 
1490 	/* move skb->data to ip header from ext header */
1491 	if (skb->data < skb_network_header(skb))
1492 		__skb_pull(skb, skb_network_offset(skb));
1493 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1494 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1495 		*tail_skb = tmp_skb;
1496 		tail_skb = &(tmp_skb->next);
1497 		skb->len += tmp_skb->len;
1498 		skb->data_len += tmp_skb->len;
1499 		skb->truesize += tmp_skb->truesize;
1500 		tmp_skb->destructor = NULL;
1501 		tmp_skb->sk = NULL;
1502 	}
1503 
1504 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1505 	 * to fragment the frame generated here. No matter, what transforms
1506 	 * how transforms change size of the packet, it will come out.
1507 	 */
1508 	skb->ignore_df = ip_sk_ignore_df(sk);
1509 
1510 	/* DF bit is set when we want to see DF on outgoing frames.
1511 	 * If ignore_df is set too, we still allow to fragment this frame
1512 	 * locally. */
1513 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1514 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1515 	    (skb->len <= dst_mtu(&rt->dst) &&
1516 	     ip_dont_fragment(sk, &rt->dst)))
1517 		df = htons(IP_DF);
1518 
1519 	if (cork->flags & IPCORK_OPT)
1520 		opt = cork->opt;
1521 
1522 	if (cork->ttl != 0)
1523 		ttl = cork->ttl;
1524 	else if (rt->rt_type == RTN_MULTICAST)
1525 		ttl = inet->mc_ttl;
1526 	else
1527 		ttl = ip_select_ttl(inet, &rt->dst);
1528 
1529 	iph = ip_hdr(skb);
1530 	iph->version = 4;
1531 	iph->ihl = 5;
1532 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1533 	iph->frag_off = df;
1534 	iph->ttl = ttl;
1535 	iph->protocol = sk->sk_protocol;
1536 	ip_copy_addrs(iph, fl4);
1537 	ip_select_ident(net, skb, sk);
1538 
1539 	if (opt) {
1540 		iph->ihl += opt->optlen>>2;
1541 		ip_options_build(skb, opt, cork->addr, rt, 0);
1542 	}
1543 
1544 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1545 	skb->mark = cork->mark;
1546 	skb->tstamp = cork->transmit_time;
1547 	/*
1548 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1549 	 * on dst refcount
1550 	 */
1551 	cork->dst = NULL;
1552 	skb_dst_set(skb, &rt->dst);
1553 
1554 	if (iph->protocol == IPPROTO_ICMP)
1555 		icmp_out_count(net, ((struct icmphdr *)
1556 			skb_transport_header(skb))->type);
1557 
1558 	ip_cork_release(cork);
1559 out:
1560 	return skb;
1561 }
1562 
1563 int ip_send_skb(struct net *net, struct sk_buff *skb)
1564 {
1565 	int err;
1566 
1567 	err = ip_local_out(net, skb->sk, skb);
1568 	if (err) {
1569 		if (err > 0)
1570 			err = net_xmit_errno(err);
1571 		if (err)
1572 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1573 	}
1574 
1575 	return err;
1576 }
1577 
1578 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1579 {
1580 	struct sk_buff *skb;
1581 
1582 	skb = ip_finish_skb(sk, fl4);
1583 	if (!skb)
1584 		return 0;
1585 
1586 	/* Netfilter gets whole the not fragmented skb. */
1587 	return ip_send_skb(sock_net(sk), skb);
1588 }
1589 
1590 /*
1591  *	Throw away all pending data on the socket.
1592  */
1593 static void __ip_flush_pending_frames(struct sock *sk,
1594 				      struct sk_buff_head *queue,
1595 				      struct inet_cork *cork)
1596 {
1597 	struct sk_buff *skb;
1598 
1599 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1600 		kfree_skb(skb);
1601 
1602 	ip_cork_release(cork);
1603 }
1604 
1605 void ip_flush_pending_frames(struct sock *sk)
1606 {
1607 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1608 }
1609 
1610 struct sk_buff *ip_make_skb(struct sock *sk,
1611 			    struct flowi4 *fl4,
1612 			    int getfrag(void *from, char *to, int offset,
1613 					int len, int odd, struct sk_buff *skb),
1614 			    void *from, int length, int transhdrlen,
1615 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1616 			    struct inet_cork *cork, unsigned int flags)
1617 {
1618 	struct sk_buff_head queue;
1619 	int err;
1620 
1621 	if (flags & MSG_PROBE)
1622 		return NULL;
1623 
1624 	__skb_queue_head_init(&queue);
1625 
1626 	cork->flags = 0;
1627 	cork->addr = 0;
1628 	cork->opt = NULL;
1629 	err = ip_setup_cork(sk, cork, ipc, rtp);
1630 	if (err)
1631 		return ERR_PTR(err);
1632 
1633 	err = __ip_append_data(sk, fl4, &queue, cork,
1634 			       &current->task_frag, getfrag,
1635 			       from, length, transhdrlen, flags);
1636 	if (err) {
1637 		__ip_flush_pending_frames(sk, &queue, cork);
1638 		return ERR_PTR(err);
1639 	}
1640 
1641 	return __ip_make_skb(sk, fl4, &queue, cork);
1642 }
1643 
1644 /*
1645  *	Fetch data from kernel space and fill in checksum if needed.
1646  */
1647 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1648 			      int len, int odd, struct sk_buff *skb)
1649 {
1650 	__wsum csum;
1651 
1652 	csum = csum_partial_copy_nocheck(dptr+offset, to, len);
1653 	skb->csum = csum_block_add(skb->csum, csum, odd);
1654 	return 0;
1655 }
1656 
1657 /*
1658  *	Generic function to send a packet as reply to another packet.
1659  *	Used to send some TCP resets/acks so far.
1660  */
1661 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1662 			   const struct ip_options *sopt,
1663 			   __be32 daddr, __be32 saddr,
1664 			   const struct ip_reply_arg *arg,
1665 			   unsigned int len, u64 transmit_time)
1666 {
1667 	struct ip_options_data replyopts;
1668 	struct ipcm_cookie ipc;
1669 	struct flowi4 fl4;
1670 	struct rtable *rt = skb_rtable(skb);
1671 	struct net *net = sock_net(sk);
1672 	struct sk_buff *nskb;
1673 	int err;
1674 	int oif;
1675 
1676 	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1677 		return;
1678 
1679 	ipcm_init(&ipc);
1680 	ipc.addr = daddr;
1681 	ipc.sockc.transmit_time = transmit_time;
1682 
1683 	if (replyopts.opt.opt.optlen) {
1684 		ipc.opt = &replyopts.opt;
1685 
1686 		if (replyopts.opt.opt.srr)
1687 			daddr = replyopts.opt.opt.faddr;
1688 	}
1689 
1690 	oif = arg->bound_dev_if;
1691 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1692 		oif = skb->skb_iif;
1693 
1694 	flowi4_init_output(&fl4, oif,
1695 			   IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1696 			   RT_TOS(arg->tos),
1697 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1698 			   ip_reply_arg_flowi_flags(arg),
1699 			   daddr, saddr,
1700 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1701 			   arg->uid);
1702 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1703 	rt = ip_route_output_key(net, &fl4);
1704 	if (IS_ERR(rt))
1705 		return;
1706 
1707 	inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK;
1708 
1709 	sk->sk_protocol = ip_hdr(skb)->protocol;
1710 	sk->sk_bound_dev_if = arg->bound_dev_if;
1711 	sk->sk_sndbuf = sysctl_wmem_default;
1712 	ipc.sockc.mark = fl4.flowi4_mark;
1713 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1714 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1715 	if (unlikely(err)) {
1716 		ip_flush_pending_frames(sk);
1717 		goto out;
1718 	}
1719 
1720 	nskb = skb_peek(&sk->sk_write_queue);
1721 	if (nskb) {
1722 		if (arg->csumoffset >= 0)
1723 			*((__sum16 *)skb_transport_header(nskb) +
1724 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1725 								arg->csum));
1726 		nskb->ip_summed = CHECKSUM_NONE;
1727 		ip_push_pending_frames(sk, &fl4);
1728 	}
1729 out:
1730 	ip_rt_put(rt);
1731 }
1732 
1733 void __init ip_init(void)
1734 {
1735 	ip_rt_init();
1736 	inet_initpeers();
1737 
1738 #if defined(CONFIG_IP_MULTICAST)
1739 	igmp_mc_init();
1740 #endif
1741 }
1742