xref: /openbmc/linux/net/ipv4/ip_output.c (revision b60a5b8d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <linux/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/bpf-cgroup.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
83 
84 static int
85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
86 	    unsigned int mtu,
87 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
88 
89 /* Generate a checksum for an outgoing IP datagram. */
90 void ip_send_check(struct iphdr *iph)
91 {
92 	iph->check = 0;
93 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
94 }
95 EXPORT_SYMBOL(ip_send_check);
96 
97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
98 {
99 	struct iphdr *iph = ip_hdr(skb);
100 
101 	iph->tot_len = htons(skb->len);
102 	ip_send_check(iph);
103 
104 	/* if egress device is enslaved to an L3 master device pass the
105 	 * skb to its handler for processing
106 	 */
107 	skb = l3mdev_ip_out(sk, skb);
108 	if (unlikely(!skb))
109 		return 0;
110 
111 	skb->protocol = htons(ETH_P_IP);
112 
113 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
114 		       net, sk, skb, NULL, skb_dst(skb)->dev,
115 		       dst_output);
116 }
117 
118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
119 {
120 	int err;
121 
122 	err = __ip_local_out(net, sk, skb);
123 	if (likely(err == 1))
124 		err = dst_output(net, sk, skb);
125 
126 	return err;
127 }
128 EXPORT_SYMBOL_GPL(ip_local_out);
129 
130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
131 {
132 	int ttl = inet->uc_ttl;
133 
134 	if (ttl < 0)
135 		ttl = ip4_dst_hoplimit(dst);
136 	return ttl;
137 }
138 
139 /*
140  *		Add an ip header to a skbuff and send it out.
141  *
142  */
143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
144 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
145 {
146 	struct inet_sock *inet = inet_sk(sk);
147 	struct rtable *rt = skb_rtable(skb);
148 	struct net *net = sock_net(sk);
149 	struct iphdr *iph;
150 
151 	/* Build the IP header. */
152 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
153 	skb_reset_network_header(skb);
154 	iph = ip_hdr(skb);
155 	iph->version  = 4;
156 	iph->ihl      = 5;
157 	iph->tos      = inet->tos;
158 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
159 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
160 	iph->saddr    = saddr;
161 	iph->protocol = sk->sk_protocol;
162 	if (ip_dont_fragment(sk, &rt->dst)) {
163 		iph->frag_off = htons(IP_DF);
164 		iph->id = 0;
165 	} else {
166 		iph->frag_off = 0;
167 		__ip_select_ident(net, iph, 1);
168 	}
169 
170 	if (opt && opt->opt.optlen) {
171 		iph->ihl += opt->opt.optlen>>2;
172 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
173 	}
174 
175 	skb->priority = sk->sk_priority;
176 	if (!skb->mark)
177 		skb->mark = sk->sk_mark;
178 
179 	/* Send it out. */
180 	return ip_local_out(net, skb->sk, skb);
181 }
182 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
183 
184 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
185 {
186 	struct dst_entry *dst = skb_dst(skb);
187 	struct rtable *rt = (struct rtable *)dst;
188 	struct net_device *dev = dst->dev;
189 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
190 	struct neighbour *neigh;
191 	u32 nexthop;
192 
193 	if (rt->rt_type == RTN_MULTICAST) {
194 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
195 	} else if (rt->rt_type == RTN_BROADCAST)
196 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
197 
198 	/* Be paranoid, rather than too clever. */
199 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
200 		struct sk_buff *skb2;
201 
202 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
203 		if (!skb2) {
204 			kfree_skb(skb);
205 			return -ENOMEM;
206 		}
207 		if (skb->sk)
208 			skb_set_owner_w(skb2, skb->sk);
209 		consume_skb(skb);
210 		skb = skb2;
211 	}
212 
213 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
214 		int res = lwtunnel_xmit(skb);
215 
216 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
217 			return res;
218 	}
219 
220 	rcu_read_lock_bh();
221 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
222 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
223 	if (unlikely(!neigh))
224 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
225 	if (!IS_ERR(neigh)) {
226 		int res;
227 
228 		sock_confirm_neigh(skb, neigh);
229 		res = neigh_output(neigh, skb);
230 
231 		rcu_read_unlock_bh();
232 		return res;
233 	}
234 	rcu_read_unlock_bh();
235 
236 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
237 			    __func__);
238 	kfree_skb(skb);
239 	return -EINVAL;
240 }
241 
242 static int ip_finish_output_gso(struct net *net, struct sock *sk,
243 				struct sk_buff *skb, unsigned int mtu)
244 {
245 	netdev_features_t features;
246 	struct sk_buff *segs;
247 	int ret = 0;
248 
249 	/* common case: seglen is <= mtu
250 	 */
251 	if (skb_gso_validate_network_len(skb, mtu))
252 		return ip_finish_output2(net, sk, skb);
253 
254 	/* Slowpath -  GSO segment length exceeds the egress MTU.
255 	 *
256 	 * This can happen in several cases:
257 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
258 	 *  - Forwarding of an skb that arrived on a virtualization interface
259 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
260 	 *    stack.
261 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
262 	 *    interface with a smaller MTU.
263 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
264 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
265 	 *    insufficent MTU.
266 	 */
267 	features = netif_skb_features(skb);
268 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
269 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
270 	if (IS_ERR_OR_NULL(segs)) {
271 		kfree_skb(skb);
272 		return -ENOMEM;
273 	}
274 
275 	consume_skb(skb);
276 
277 	do {
278 		struct sk_buff *nskb = segs->next;
279 		int err;
280 
281 		skb_mark_not_on_list(segs);
282 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
283 
284 		if (err && ret == 0)
285 			ret = err;
286 		segs = nskb;
287 	} while (segs);
288 
289 	return ret;
290 }
291 
292 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
293 {
294 	unsigned int mtu;
295 	int ret;
296 
297 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
298 	if (ret) {
299 		kfree_skb(skb);
300 		return ret;
301 	}
302 
303 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
304 	/* Policy lookup after SNAT yielded a new policy */
305 	if (skb_dst(skb)->xfrm) {
306 		IPCB(skb)->flags |= IPSKB_REROUTED;
307 		return dst_output(net, sk, skb);
308 	}
309 #endif
310 	mtu = ip_skb_dst_mtu(sk, skb);
311 	if (skb_is_gso(skb))
312 		return ip_finish_output_gso(net, sk, skb, mtu);
313 
314 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
315 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
316 
317 	return ip_finish_output2(net, sk, skb);
318 }
319 
320 static int ip_mc_finish_output(struct net *net, struct sock *sk,
321 			       struct sk_buff *skb)
322 {
323 	int ret;
324 
325 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
326 	if (ret) {
327 		kfree_skb(skb);
328 		return ret;
329 	}
330 
331 	return dev_loopback_xmit(net, sk, skb);
332 }
333 
334 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
335 {
336 	struct rtable *rt = skb_rtable(skb);
337 	struct net_device *dev = rt->dst.dev;
338 
339 	/*
340 	 *	If the indicated interface is up and running, send the packet.
341 	 */
342 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
343 
344 	skb->dev = dev;
345 	skb->protocol = htons(ETH_P_IP);
346 
347 	/*
348 	 *	Multicasts are looped back for other local users
349 	 */
350 
351 	if (rt->rt_flags&RTCF_MULTICAST) {
352 		if (sk_mc_loop(sk)
353 #ifdef CONFIG_IP_MROUTE
354 		/* Small optimization: do not loopback not local frames,
355 		   which returned after forwarding; they will be  dropped
356 		   by ip_mr_input in any case.
357 		   Note, that local frames are looped back to be delivered
358 		   to local recipients.
359 
360 		   This check is duplicated in ip_mr_input at the moment.
361 		 */
362 		    &&
363 		    ((rt->rt_flags & RTCF_LOCAL) ||
364 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
365 #endif
366 		   ) {
367 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
368 			if (newskb)
369 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
370 					net, sk, newskb, NULL, newskb->dev,
371 					ip_mc_finish_output);
372 		}
373 
374 		/* Multicasts with ttl 0 must not go beyond the host */
375 
376 		if (ip_hdr(skb)->ttl == 0) {
377 			kfree_skb(skb);
378 			return 0;
379 		}
380 	}
381 
382 	if (rt->rt_flags&RTCF_BROADCAST) {
383 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
384 		if (newskb)
385 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
386 				net, sk, newskb, NULL, newskb->dev,
387 				ip_mc_finish_output);
388 	}
389 
390 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
391 			    net, sk, skb, NULL, skb->dev,
392 			    ip_finish_output,
393 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
394 }
395 
396 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
397 {
398 	struct net_device *dev = skb_dst(skb)->dev;
399 
400 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
401 
402 	skb->dev = dev;
403 	skb->protocol = htons(ETH_P_IP);
404 
405 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
406 			    net, sk, skb, NULL, dev,
407 			    ip_finish_output,
408 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
409 }
410 
411 /*
412  * copy saddr and daddr, possibly using 64bit load/stores
413  * Equivalent to :
414  *   iph->saddr = fl4->saddr;
415  *   iph->daddr = fl4->daddr;
416  */
417 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
418 {
419 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
420 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
421 	memcpy(&iph->saddr, &fl4->saddr,
422 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
423 }
424 
425 /* Note: skb->sk can be different from sk, in case of tunnels */
426 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
427 		    __u8 tos)
428 {
429 	struct inet_sock *inet = inet_sk(sk);
430 	struct net *net = sock_net(sk);
431 	struct ip_options_rcu *inet_opt;
432 	struct flowi4 *fl4;
433 	struct rtable *rt;
434 	struct iphdr *iph;
435 	int res;
436 
437 	/* Skip all of this if the packet is already routed,
438 	 * f.e. by something like SCTP.
439 	 */
440 	rcu_read_lock();
441 	inet_opt = rcu_dereference(inet->inet_opt);
442 	fl4 = &fl->u.ip4;
443 	rt = skb_rtable(skb);
444 	if (rt)
445 		goto packet_routed;
446 
447 	/* Make sure we can route this packet. */
448 	rt = (struct rtable *)__sk_dst_check(sk, 0);
449 	if (!rt) {
450 		__be32 daddr;
451 
452 		/* Use correct destination address if we have options. */
453 		daddr = inet->inet_daddr;
454 		if (inet_opt && inet_opt->opt.srr)
455 			daddr = inet_opt->opt.faddr;
456 
457 		/* If this fails, retransmit mechanism of transport layer will
458 		 * keep trying until route appears or the connection times
459 		 * itself out.
460 		 */
461 		rt = ip_route_output_ports(net, fl4, sk,
462 					   daddr, inet->inet_saddr,
463 					   inet->inet_dport,
464 					   inet->inet_sport,
465 					   sk->sk_protocol,
466 					   RT_CONN_FLAGS_TOS(sk, tos),
467 					   sk->sk_bound_dev_if);
468 		if (IS_ERR(rt))
469 			goto no_route;
470 		sk_setup_caps(sk, &rt->dst);
471 	}
472 	skb_dst_set_noref(skb, &rt->dst);
473 
474 packet_routed:
475 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
476 		goto no_route;
477 
478 	/* OK, we know where to send it, allocate and build IP header. */
479 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
480 	skb_reset_network_header(skb);
481 	iph = ip_hdr(skb);
482 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
483 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
484 		iph->frag_off = htons(IP_DF);
485 	else
486 		iph->frag_off = 0;
487 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
488 	iph->protocol = sk->sk_protocol;
489 	ip_copy_addrs(iph, fl4);
490 
491 	/* Transport layer set skb->h.foo itself. */
492 
493 	if (inet_opt && inet_opt->opt.optlen) {
494 		iph->ihl += inet_opt->opt.optlen >> 2;
495 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
496 	}
497 
498 	ip_select_ident_segs(net, skb, sk,
499 			     skb_shinfo(skb)->gso_segs ?: 1);
500 
501 	/* TODO : should we use skb->sk here instead of sk ? */
502 	skb->priority = sk->sk_priority;
503 	skb->mark = sk->sk_mark;
504 
505 	res = ip_local_out(net, sk, skb);
506 	rcu_read_unlock();
507 	return res;
508 
509 no_route:
510 	rcu_read_unlock();
511 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
512 	kfree_skb(skb);
513 	return -EHOSTUNREACH;
514 }
515 EXPORT_SYMBOL(__ip_queue_xmit);
516 
517 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
518 {
519 	to->pkt_type = from->pkt_type;
520 	to->priority = from->priority;
521 	to->protocol = from->protocol;
522 	skb_dst_drop(to);
523 	skb_dst_copy(to, from);
524 	to->dev = from->dev;
525 	to->mark = from->mark;
526 
527 	skb_copy_hash(to, from);
528 
529 	/* Copy the flags to each fragment. */
530 	IPCB(to)->flags = IPCB(from)->flags;
531 
532 #ifdef CONFIG_NET_SCHED
533 	to->tc_index = from->tc_index;
534 #endif
535 	nf_copy(to, from);
536 	skb_ext_copy(to, from);
537 #if IS_ENABLED(CONFIG_IP_VS)
538 	to->ipvs_property = from->ipvs_property;
539 #endif
540 	skb_copy_secmark(to, from);
541 }
542 
543 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
544 		       unsigned int mtu,
545 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
546 {
547 	struct iphdr *iph = ip_hdr(skb);
548 
549 	if ((iph->frag_off & htons(IP_DF)) == 0)
550 		return ip_do_fragment(net, sk, skb, output);
551 
552 	if (unlikely(!skb->ignore_df ||
553 		     (IPCB(skb)->frag_max_size &&
554 		      IPCB(skb)->frag_max_size > mtu))) {
555 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
556 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
557 			  htonl(mtu));
558 		kfree_skb(skb);
559 		return -EMSGSIZE;
560 	}
561 
562 	return ip_do_fragment(net, sk, skb, output);
563 }
564 
565 /*
566  *	This IP datagram is too large to be sent in one piece.  Break it up into
567  *	smaller pieces (each of size equal to IP header plus
568  *	a block of the data of the original IP data part) that will yet fit in a
569  *	single device frame, and queue such a frame for sending.
570  */
571 
572 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
573 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
574 {
575 	struct iphdr *iph;
576 	int ptr;
577 	struct sk_buff *skb2;
578 	unsigned int mtu, hlen, left, len, ll_rs;
579 	int offset;
580 	__be16 not_last_frag;
581 	struct rtable *rt = skb_rtable(skb);
582 	int err = 0;
583 
584 	/* for offloaded checksums cleanup checksum before fragmentation */
585 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
586 	    (err = skb_checksum_help(skb)))
587 		goto fail;
588 
589 	/*
590 	 *	Point into the IP datagram header.
591 	 */
592 
593 	iph = ip_hdr(skb);
594 
595 	mtu = ip_skb_dst_mtu(sk, skb);
596 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
597 		mtu = IPCB(skb)->frag_max_size;
598 
599 	/*
600 	 *	Setup starting values.
601 	 */
602 
603 	hlen = iph->ihl * 4;
604 	mtu = mtu - hlen;	/* Size of data space */
605 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
606 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
607 
608 	/* When frag_list is given, use it. First, check its validity:
609 	 * some transformers could create wrong frag_list or break existing
610 	 * one, it is not prohibited. In this case fall back to copying.
611 	 *
612 	 * LATER: this step can be merged to real generation of fragments,
613 	 * we can switch to copy when see the first bad fragment.
614 	 */
615 	if (skb_has_frag_list(skb)) {
616 		struct sk_buff *frag, *frag2;
617 		unsigned int first_len = skb_pagelen(skb);
618 
619 		if (first_len - hlen > mtu ||
620 		    ((first_len - hlen) & 7) ||
621 		    ip_is_fragment(iph) ||
622 		    skb_cloned(skb) ||
623 		    skb_headroom(skb) < ll_rs)
624 			goto slow_path;
625 
626 		skb_walk_frags(skb, frag) {
627 			/* Correct geometry. */
628 			if (frag->len > mtu ||
629 			    ((frag->len & 7) && frag->next) ||
630 			    skb_headroom(frag) < hlen + ll_rs)
631 				goto slow_path_clean;
632 
633 			/* Partially cloned skb? */
634 			if (skb_shared(frag))
635 				goto slow_path_clean;
636 
637 			BUG_ON(frag->sk);
638 			if (skb->sk) {
639 				frag->sk = skb->sk;
640 				frag->destructor = sock_wfree;
641 			}
642 			skb->truesize -= frag->truesize;
643 		}
644 
645 		/* Everything is OK. Generate! */
646 
647 		err = 0;
648 		offset = 0;
649 		frag = skb_shinfo(skb)->frag_list;
650 		skb_frag_list_init(skb);
651 		skb->data_len = first_len - skb_headlen(skb);
652 		skb->len = first_len;
653 		iph->tot_len = htons(first_len);
654 		iph->frag_off = htons(IP_MF);
655 		ip_send_check(iph);
656 
657 		for (;;) {
658 			/* Prepare header of the next frame,
659 			 * before previous one went down. */
660 			if (frag) {
661 				frag->ip_summed = CHECKSUM_NONE;
662 				skb_reset_transport_header(frag);
663 				__skb_push(frag, hlen);
664 				skb_reset_network_header(frag);
665 				memcpy(skb_network_header(frag), iph, hlen);
666 				iph = ip_hdr(frag);
667 				iph->tot_len = htons(frag->len);
668 				ip_copy_metadata(frag, skb);
669 				if (offset == 0)
670 					ip_options_fragment(frag);
671 				offset += skb->len - hlen;
672 				iph->frag_off = htons(offset>>3);
673 				if (frag->next)
674 					iph->frag_off |= htons(IP_MF);
675 				/* Ready, complete checksum */
676 				ip_send_check(iph);
677 			}
678 
679 			err = output(net, sk, skb);
680 
681 			if (!err)
682 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
683 			if (err || !frag)
684 				break;
685 
686 			skb = frag;
687 			frag = skb->next;
688 			skb_mark_not_on_list(skb);
689 		}
690 
691 		if (err == 0) {
692 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
693 			return 0;
694 		}
695 
696 		while (frag) {
697 			skb = frag->next;
698 			kfree_skb(frag);
699 			frag = skb;
700 		}
701 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
702 		return err;
703 
704 slow_path_clean:
705 		skb_walk_frags(skb, frag2) {
706 			if (frag2 == frag)
707 				break;
708 			frag2->sk = NULL;
709 			frag2->destructor = NULL;
710 			skb->truesize += frag2->truesize;
711 		}
712 	}
713 
714 slow_path:
715 	iph = ip_hdr(skb);
716 
717 	left = skb->len - hlen;		/* Space per frame */
718 	ptr = hlen;		/* Where to start from */
719 
720 	/*
721 	 *	Fragment the datagram.
722 	 */
723 
724 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
725 	not_last_frag = iph->frag_off & htons(IP_MF);
726 
727 	/*
728 	 *	Keep copying data until we run out.
729 	 */
730 
731 	while (left > 0) {
732 		len = left;
733 		/* IF: it doesn't fit, use 'mtu' - the data space left */
734 		if (len > mtu)
735 			len = mtu;
736 		/* IF: we are not sending up to and including the packet end
737 		   then align the next start on an eight byte boundary */
738 		if (len < left)	{
739 			len &= ~7;
740 		}
741 
742 		/* Allocate buffer */
743 		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
744 		if (!skb2) {
745 			err = -ENOMEM;
746 			goto fail;
747 		}
748 
749 		/*
750 		 *	Set up data on packet
751 		 */
752 
753 		ip_copy_metadata(skb2, skb);
754 		skb_reserve(skb2, ll_rs);
755 		skb_put(skb2, len + hlen);
756 		skb_reset_network_header(skb2);
757 		skb2->transport_header = skb2->network_header + hlen;
758 
759 		/*
760 		 *	Charge the memory for the fragment to any owner
761 		 *	it might possess
762 		 */
763 
764 		if (skb->sk)
765 			skb_set_owner_w(skb2, skb->sk);
766 
767 		/*
768 		 *	Copy the packet header into the new buffer.
769 		 */
770 
771 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
772 
773 		/*
774 		 *	Copy a block of the IP datagram.
775 		 */
776 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
777 			BUG();
778 		left -= len;
779 
780 		/*
781 		 *	Fill in the new header fields.
782 		 */
783 		iph = ip_hdr(skb2);
784 		iph->frag_off = htons((offset >> 3));
785 
786 		if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
787 			iph->frag_off |= htons(IP_DF);
788 
789 		/* ANK: dirty, but effective trick. Upgrade options only if
790 		 * the segment to be fragmented was THE FIRST (otherwise,
791 		 * options are already fixed) and make it ONCE
792 		 * on the initial skb, so that all the following fragments
793 		 * will inherit fixed options.
794 		 */
795 		if (offset == 0)
796 			ip_options_fragment(skb);
797 
798 		/*
799 		 *	Added AC : If we are fragmenting a fragment that's not the
800 		 *		   last fragment then keep MF on each bit
801 		 */
802 		if (left > 0 || not_last_frag)
803 			iph->frag_off |= htons(IP_MF);
804 		ptr += len;
805 		offset += len;
806 
807 		/*
808 		 *	Put this fragment into the sending queue.
809 		 */
810 		iph->tot_len = htons(len + hlen);
811 
812 		ip_send_check(iph);
813 
814 		err = output(net, sk, skb2);
815 		if (err)
816 			goto fail;
817 
818 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
819 	}
820 	consume_skb(skb);
821 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
822 	return err;
823 
824 fail:
825 	kfree_skb(skb);
826 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
827 	return err;
828 }
829 EXPORT_SYMBOL(ip_do_fragment);
830 
831 int
832 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
833 {
834 	struct msghdr *msg = from;
835 
836 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
837 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
838 			return -EFAULT;
839 	} else {
840 		__wsum csum = 0;
841 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
842 			return -EFAULT;
843 		skb->csum = csum_block_add(skb->csum, csum, odd);
844 	}
845 	return 0;
846 }
847 EXPORT_SYMBOL(ip_generic_getfrag);
848 
849 static inline __wsum
850 csum_page(struct page *page, int offset, int copy)
851 {
852 	char *kaddr;
853 	__wsum csum;
854 	kaddr = kmap(page);
855 	csum = csum_partial(kaddr + offset, copy, 0);
856 	kunmap(page);
857 	return csum;
858 }
859 
860 static int __ip_append_data(struct sock *sk,
861 			    struct flowi4 *fl4,
862 			    struct sk_buff_head *queue,
863 			    struct inet_cork *cork,
864 			    struct page_frag *pfrag,
865 			    int getfrag(void *from, char *to, int offset,
866 					int len, int odd, struct sk_buff *skb),
867 			    void *from, int length, int transhdrlen,
868 			    unsigned int flags)
869 {
870 	struct inet_sock *inet = inet_sk(sk);
871 	struct ubuf_info *uarg = NULL;
872 	struct sk_buff *skb;
873 
874 	struct ip_options *opt = cork->opt;
875 	int hh_len;
876 	int exthdrlen;
877 	int mtu;
878 	int copy;
879 	int err;
880 	int offset = 0;
881 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
882 	int csummode = CHECKSUM_NONE;
883 	struct rtable *rt = (struct rtable *)cork->dst;
884 	unsigned int wmem_alloc_delta = 0;
885 	bool paged, extra_uref;
886 	u32 tskey = 0;
887 
888 	skb = skb_peek_tail(queue);
889 
890 	exthdrlen = !skb ? rt->dst.header_len : 0;
891 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
892 	paged = !!cork->gso_size;
893 
894 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
895 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
896 		tskey = sk->sk_tskey++;
897 
898 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
899 
900 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
901 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
902 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
903 
904 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
905 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
906 			       mtu - (opt ? opt->optlen : 0));
907 		return -EMSGSIZE;
908 	}
909 
910 	/*
911 	 * transhdrlen > 0 means that this is the first fragment and we wish
912 	 * it won't be fragmented in the future.
913 	 */
914 	if (transhdrlen &&
915 	    length + fragheaderlen <= mtu &&
916 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
917 	    (!(flags & MSG_MORE) || cork->gso_size) &&
918 	    (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
919 		csummode = CHECKSUM_PARTIAL;
920 
921 	if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
922 		uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
923 		if (!uarg)
924 			return -ENOBUFS;
925 		extra_uref = true;
926 		if (rt->dst.dev->features & NETIF_F_SG &&
927 		    csummode == CHECKSUM_PARTIAL) {
928 			paged = true;
929 		} else {
930 			uarg->zerocopy = 0;
931 			skb_zcopy_set(skb, uarg, &extra_uref);
932 		}
933 	}
934 
935 	cork->length += length;
936 
937 	/* So, what's going on in the loop below?
938 	 *
939 	 * We use calculated fragment length to generate chained skb,
940 	 * each of segments is IP fragment ready for sending to network after
941 	 * adding appropriate IP header.
942 	 */
943 
944 	if (!skb)
945 		goto alloc_new_skb;
946 
947 	while (length > 0) {
948 		/* Check if the remaining data fits into current packet. */
949 		copy = mtu - skb->len;
950 		if (copy < length)
951 			copy = maxfraglen - skb->len;
952 		if (copy <= 0) {
953 			char *data;
954 			unsigned int datalen;
955 			unsigned int fraglen;
956 			unsigned int fraggap;
957 			unsigned int alloclen;
958 			unsigned int pagedlen;
959 			struct sk_buff *skb_prev;
960 alloc_new_skb:
961 			skb_prev = skb;
962 			if (skb_prev)
963 				fraggap = skb_prev->len - maxfraglen;
964 			else
965 				fraggap = 0;
966 
967 			/*
968 			 * If remaining data exceeds the mtu,
969 			 * we know we need more fragment(s).
970 			 */
971 			datalen = length + fraggap;
972 			if (datalen > mtu - fragheaderlen)
973 				datalen = maxfraglen - fragheaderlen;
974 			fraglen = datalen + fragheaderlen;
975 			pagedlen = 0;
976 
977 			if ((flags & MSG_MORE) &&
978 			    !(rt->dst.dev->features&NETIF_F_SG))
979 				alloclen = mtu;
980 			else if (!paged)
981 				alloclen = fraglen;
982 			else {
983 				alloclen = min_t(int, fraglen, MAX_HEADER);
984 				pagedlen = fraglen - alloclen;
985 			}
986 
987 			alloclen += exthdrlen;
988 
989 			/* The last fragment gets additional space at tail.
990 			 * Note, with MSG_MORE we overallocate on fragments,
991 			 * because we have no idea what fragment will be
992 			 * the last.
993 			 */
994 			if (datalen == length + fraggap)
995 				alloclen += rt->dst.trailer_len;
996 
997 			if (transhdrlen) {
998 				skb = sock_alloc_send_skb(sk,
999 						alloclen + hh_len + 15,
1000 						(flags & MSG_DONTWAIT), &err);
1001 			} else {
1002 				skb = NULL;
1003 				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1004 				    2 * sk->sk_sndbuf)
1005 					skb = alloc_skb(alloclen + hh_len + 15,
1006 							sk->sk_allocation);
1007 				if (unlikely(!skb))
1008 					err = -ENOBUFS;
1009 			}
1010 			if (!skb)
1011 				goto error;
1012 
1013 			/*
1014 			 *	Fill in the control structures
1015 			 */
1016 			skb->ip_summed = csummode;
1017 			skb->csum = 0;
1018 			skb_reserve(skb, hh_len);
1019 
1020 			/*
1021 			 *	Find where to start putting bytes.
1022 			 */
1023 			data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1024 			skb_set_network_header(skb, exthdrlen);
1025 			skb->transport_header = (skb->network_header +
1026 						 fragheaderlen);
1027 			data += fragheaderlen + exthdrlen;
1028 
1029 			if (fraggap) {
1030 				skb->csum = skb_copy_and_csum_bits(
1031 					skb_prev, maxfraglen,
1032 					data + transhdrlen, fraggap, 0);
1033 				skb_prev->csum = csum_sub(skb_prev->csum,
1034 							  skb->csum);
1035 				data += fraggap;
1036 				pskb_trim_unique(skb_prev, maxfraglen);
1037 			}
1038 
1039 			copy = datalen - transhdrlen - fraggap - pagedlen;
1040 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1041 				err = -EFAULT;
1042 				kfree_skb(skb);
1043 				goto error;
1044 			}
1045 
1046 			offset += copy;
1047 			length -= copy + transhdrlen;
1048 			transhdrlen = 0;
1049 			exthdrlen = 0;
1050 			csummode = CHECKSUM_NONE;
1051 
1052 			/* only the initial fragment is time stamped */
1053 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1054 			cork->tx_flags = 0;
1055 			skb_shinfo(skb)->tskey = tskey;
1056 			tskey = 0;
1057 			skb_zcopy_set(skb, uarg, &extra_uref);
1058 
1059 			if ((flags & MSG_CONFIRM) && !skb_prev)
1060 				skb_set_dst_pending_confirm(skb, 1);
1061 
1062 			/*
1063 			 * Put the packet on the pending queue.
1064 			 */
1065 			if (!skb->destructor) {
1066 				skb->destructor = sock_wfree;
1067 				skb->sk = sk;
1068 				wmem_alloc_delta += skb->truesize;
1069 			}
1070 			__skb_queue_tail(queue, skb);
1071 			continue;
1072 		}
1073 
1074 		if (copy > length)
1075 			copy = length;
1076 
1077 		if (!(rt->dst.dev->features&NETIF_F_SG) &&
1078 		    skb_tailroom(skb) >= copy) {
1079 			unsigned int off;
1080 
1081 			off = skb->len;
1082 			if (getfrag(from, skb_put(skb, copy),
1083 					offset, copy, off, skb) < 0) {
1084 				__skb_trim(skb, off);
1085 				err = -EFAULT;
1086 				goto error;
1087 			}
1088 		} else if (!uarg || !uarg->zerocopy) {
1089 			int i = skb_shinfo(skb)->nr_frags;
1090 
1091 			err = -ENOMEM;
1092 			if (!sk_page_frag_refill(sk, pfrag))
1093 				goto error;
1094 
1095 			if (!skb_can_coalesce(skb, i, pfrag->page,
1096 					      pfrag->offset)) {
1097 				err = -EMSGSIZE;
1098 				if (i == MAX_SKB_FRAGS)
1099 					goto error;
1100 
1101 				__skb_fill_page_desc(skb, i, pfrag->page,
1102 						     pfrag->offset, 0);
1103 				skb_shinfo(skb)->nr_frags = ++i;
1104 				get_page(pfrag->page);
1105 			}
1106 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1107 			if (getfrag(from,
1108 				    page_address(pfrag->page) + pfrag->offset,
1109 				    offset, copy, skb->len, skb) < 0)
1110 				goto error_efault;
1111 
1112 			pfrag->offset += copy;
1113 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1114 			skb->len += copy;
1115 			skb->data_len += copy;
1116 			skb->truesize += copy;
1117 			wmem_alloc_delta += copy;
1118 		} else {
1119 			err = skb_zerocopy_iter_dgram(skb, from, copy);
1120 			if (err < 0)
1121 				goto error;
1122 		}
1123 		offset += copy;
1124 		length -= copy;
1125 	}
1126 
1127 	if (wmem_alloc_delta)
1128 		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1129 	return 0;
1130 
1131 error_efault:
1132 	err = -EFAULT;
1133 error:
1134 	if (uarg)
1135 		sock_zerocopy_put_abort(uarg, extra_uref);
1136 	cork->length -= length;
1137 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1138 	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1139 	return err;
1140 }
1141 
1142 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1143 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1144 {
1145 	struct ip_options_rcu *opt;
1146 	struct rtable *rt;
1147 
1148 	rt = *rtp;
1149 	if (unlikely(!rt))
1150 		return -EFAULT;
1151 
1152 	/*
1153 	 * setup for corking.
1154 	 */
1155 	opt = ipc->opt;
1156 	if (opt) {
1157 		if (!cork->opt) {
1158 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1159 					    sk->sk_allocation);
1160 			if (unlikely(!cork->opt))
1161 				return -ENOBUFS;
1162 		}
1163 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1164 		cork->flags |= IPCORK_OPT;
1165 		cork->addr = ipc->addr;
1166 	}
1167 
1168 	/*
1169 	 * We steal reference to this route, caller should not release it
1170 	 */
1171 	*rtp = NULL;
1172 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1173 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1174 
1175 	cork->gso_size = ipc->gso_size;
1176 	cork->dst = &rt->dst;
1177 	cork->length = 0;
1178 	cork->ttl = ipc->ttl;
1179 	cork->tos = ipc->tos;
1180 	cork->priority = ipc->priority;
1181 	cork->transmit_time = ipc->sockc.transmit_time;
1182 	cork->tx_flags = 0;
1183 	sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1184 
1185 	return 0;
1186 }
1187 
1188 /*
1189  *	ip_append_data() and ip_append_page() can make one large IP datagram
1190  *	from many pieces of data. Each pieces will be holded on the socket
1191  *	until ip_push_pending_frames() is called. Each piece can be a page
1192  *	or non-page data.
1193  *
1194  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1195  *	this interface potentially.
1196  *
1197  *	LATER: length must be adjusted by pad at tail, when it is required.
1198  */
1199 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1200 		   int getfrag(void *from, char *to, int offset, int len,
1201 			       int odd, struct sk_buff *skb),
1202 		   void *from, int length, int transhdrlen,
1203 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1204 		   unsigned int flags)
1205 {
1206 	struct inet_sock *inet = inet_sk(sk);
1207 	int err;
1208 
1209 	if (flags&MSG_PROBE)
1210 		return 0;
1211 
1212 	if (skb_queue_empty(&sk->sk_write_queue)) {
1213 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1214 		if (err)
1215 			return err;
1216 	} else {
1217 		transhdrlen = 0;
1218 	}
1219 
1220 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1221 				sk_page_frag(sk), getfrag,
1222 				from, length, transhdrlen, flags);
1223 }
1224 
1225 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1226 		       int offset, size_t size, int flags)
1227 {
1228 	struct inet_sock *inet = inet_sk(sk);
1229 	struct sk_buff *skb;
1230 	struct rtable *rt;
1231 	struct ip_options *opt = NULL;
1232 	struct inet_cork *cork;
1233 	int hh_len;
1234 	int mtu;
1235 	int len;
1236 	int err;
1237 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1238 
1239 	if (inet->hdrincl)
1240 		return -EPERM;
1241 
1242 	if (flags&MSG_PROBE)
1243 		return 0;
1244 
1245 	if (skb_queue_empty(&sk->sk_write_queue))
1246 		return -EINVAL;
1247 
1248 	cork = &inet->cork.base;
1249 	rt = (struct rtable *)cork->dst;
1250 	if (cork->flags & IPCORK_OPT)
1251 		opt = cork->opt;
1252 
1253 	if (!(rt->dst.dev->features&NETIF_F_SG))
1254 		return -EOPNOTSUPP;
1255 
1256 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1257 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1258 
1259 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1260 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1261 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1262 
1263 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1264 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1265 			       mtu - (opt ? opt->optlen : 0));
1266 		return -EMSGSIZE;
1267 	}
1268 
1269 	skb = skb_peek_tail(&sk->sk_write_queue);
1270 	if (!skb)
1271 		return -EINVAL;
1272 
1273 	cork->length += size;
1274 
1275 	while (size > 0) {
1276 		/* Check if the remaining data fits into current packet. */
1277 		len = mtu - skb->len;
1278 		if (len < size)
1279 			len = maxfraglen - skb->len;
1280 
1281 		if (len <= 0) {
1282 			struct sk_buff *skb_prev;
1283 			int alloclen;
1284 
1285 			skb_prev = skb;
1286 			fraggap = skb_prev->len - maxfraglen;
1287 
1288 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1289 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1290 			if (unlikely(!skb)) {
1291 				err = -ENOBUFS;
1292 				goto error;
1293 			}
1294 
1295 			/*
1296 			 *	Fill in the control structures
1297 			 */
1298 			skb->ip_summed = CHECKSUM_NONE;
1299 			skb->csum = 0;
1300 			skb_reserve(skb, hh_len);
1301 
1302 			/*
1303 			 *	Find where to start putting bytes.
1304 			 */
1305 			skb_put(skb, fragheaderlen + fraggap);
1306 			skb_reset_network_header(skb);
1307 			skb->transport_header = (skb->network_header +
1308 						 fragheaderlen);
1309 			if (fraggap) {
1310 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1311 								   maxfraglen,
1312 						    skb_transport_header(skb),
1313 								   fraggap, 0);
1314 				skb_prev->csum = csum_sub(skb_prev->csum,
1315 							  skb->csum);
1316 				pskb_trim_unique(skb_prev, maxfraglen);
1317 			}
1318 
1319 			/*
1320 			 * Put the packet on the pending queue.
1321 			 */
1322 			__skb_queue_tail(&sk->sk_write_queue, skb);
1323 			continue;
1324 		}
1325 
1326 		if (len > size)
1327 			len = size;
1328 
1329 		if (skb_append_pagefrags(skb, page, offset, len)) {
1330 			err = -EMSGSIZE;
1331 			goto error;
1332 		}
1333 
1334 		if (skb->ip_summed == CHECKSUM_NONE) {
1335 			__wsum csum;
1336 			csum = csum_page(page, offset, len);
1337 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1338 		}
1339 
1340 		skb->len += len;
1341 		skb->data_len += len;
1342 		skb->truesize += len;
1343 		refcount_add(len, &sk->sk_wmem_alloc);
1344 		offset += len;
1345 		size -= len;
1346 	}
1347 	return 0;
1348 
1349 error:
1350 	cork->length -= size;
1351 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1352 	return err;
1353 }
1354 
1355 static void ip_cork_release(struct inet_cork *cork)
1356 {
1357 	cork->flags &= ~IPCORK_OPT;
1358 	kfree(cork->opt);
1359 	cork->opt = NULL;
1360 	dst_release(cork->dst);
1361 	cork->dst = NULL;
1362 }
1363 
1364 /*
1365  *	Combined all pending IP fragments on the socket as one IP datagram
1366  *	and push them out.
1367  */
1368 struct sk_buff *__ip_make_skb(struct sock *sk,
1369 			      struct flowi4 *fl4,
1370 			      struct sk_buff_head *queue,
1371 			      struct inet_cork *cork)
1372 {
1373 	struct sk_buff *skb, *tmp_skb;
1374 	struct sk_buff **tail_skb;
1375 	struct inet_sock *inet = inet_sk(sk);
1376 	struct net *net = sock_net(sk);
1377 	struct ip_options *opt = NULL;
1378 	struct rtable *rt = (struct rtable *)cork->dst;
1379 	struct iphdr *iph;
1380 	__be16 df = 0;
1381 	__u8 ttl;
1382 
1383 	skb = __skb_dequeue(queue);
1384 	if (!skb)
1385 		goto out;
1386 	tail_skb = &(skb_shinfo(skb)->frag_list);
1387 
1388 	/* move skb->data to ip header from ext header */
1389 	if (skb->data < skb_network_header(skb))
1390 		__skb_pull(skb, skb_network_offset(skb));
1391 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1392 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1393 		*tail_skb = tmp_skb;
1394 		tail_skb = &(tmp_skb->next);
1395 		skb->len += tmp_skb->len;
1396 		skb->data_len += tmp_skb->len;
1397 		skb->truesize += tmp_skb->truesize;
1398 		tmp_skb->destructor = NULL;
1399 		tmp_skb->sk = NULL;
1400 	}
1401 
1402 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1403 	 * to fragment the frame generated here. No matter, what transforms
1404 	 * how transforms change size of the packet, it will come out.
1405 	 */
1406 	skb->ignore_df = ip_sk_ignore_df(sk);
1407 
1408 	/* DF bit is set when we want to see DF on outgoing frames.
1409 	 * If ignore_df is set too, we still allow to fragment this frame
1410 	 * locally. */
1411 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1412 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1413 	    (skb->len <= dst_mtu(&rt->dst) &&
1414 	     ip_dont_fragment(sk, &rt->dst)))
1415 		df = htons(IP_DF);
1416 
1417 	if (cork->flags & IPCORK_OPT)
1418 		opt = cork->opt;
1419 
1420 	if (cork->ttl != 0)
1421 		ttl = cork->ttl;
1422 	else if (rt->rt_type == RTN_MULTICAST)
1423 		ttl = inet->mc_ttl;
1424 	else
1425 		ttl = ip_select_ttl(inet, &rt->dst);
1426 
1427 	iph = ip_hdr(skb);
1428 	iph->version = 4;
1429 	iph->ihl = 5;
1430 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1431 	iph->frag_off = df;
1432 	iph->ttl = ttl;
1433 	iph->protocol = sk->sk_protocol;
1434 	ip_copy_addrs(iph, fl4);
1435 	ip_select_ident(net, skb, sk);
1436 
1437 	if (opt) {
1438 		iph->ihl += opt->optlen>>2;
1439 		ip_options_build(skb, opt, cork->addr, rt, 0);
1440 	}
1441 
1442 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1443 	skb->mark = sk->sk_mark;
1444 	skb->tstamp = cork->transmit_time;
1445 	/*
1446 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1447 	 * on dst refcount
1448 	 */
1449 	cork->dst = NULL;
1450 	skb_dst_set(skb, &rt->dst);
1451 
1452 	if (iph->protocol == IPPROTO_ICMP)
1453 		icmp_out_count(net, ((struct icmphdr *)
1454 			skb_transport_header(skb))->type);
1455 
1456 	ip_cork_release(cork);
1457 out:
1458 	return skb;
1459 }
1460 
1461 int ip_send_skb(struct net *net, struct sk_buff *skb)
1462 {
1463 	int err;
1464 
1465 	err = ip_local_out(net, skb->sk, skb);
1466 	if (err) {
1467 		if (err > 0)
1468 			err = net_xmit_errno(err);
1469 		if (err)
1470 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1471 	}
1472 
1473 	return err;
1474 }
1475 
1476 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1477 {
1478 	struct sk_buff *skb;
1479 
1480 	skb = ip_finish_skb(sk, fl4);
1481 	if (!skb)
1482 		return 0;
1483 
1484 	/* Netfilter gets whole the not fragmented skb. */
1485 	return ip_send_skb(sock_net(sk), skb);
1486 }
1487 
1488 /*
1489  *	Throw away all pending data on the socket.
1490  */
1491 static void __ip_flush_pending_frames(struct sock *sk,
1492 				      struct sk_buff_head *queue,
1493 				      struct inet_cork *cork)
1494 {
1495 	struct sk_buff *skb;
1496 
1497 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1498 		kfree_skb(skb);
1499 
1500 	ip_cork_release(cork);
1501 }
1502 
1503 void ip_flush_pending_frames(struct sock *sk)
1504 {
1505 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1506 }
1507 
1508 struct sk_buff *ip_make_skb(struct sock *sk,
1509 			    struct flowi4 *fl4,
1510 			    int getfrag(void *from, char *to, int offset,
1511 					int len, int odd, struct sk_buff *skb),
1512 			    void *from, int length, int transhdrlen,
1513 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1514 			    struct inet_cork *cork, unsigned int flags)
1515 {
1516 	struct sk_buff_head queue;
1517 	int err;
1518 
1519 	if (flags & MSG_PROBE)
1520 		return NULL;
1521 
1522 	__skb_queue_head_init(&queue);
1523 
1524 	cork->flags = 0;
1525 	cork->addr = 0;
1526 	cork->opt = NULL;
1527 	err = ip_setup_cork(sk, cork, ipc, rtp);
1528 	if (err)
1529 		return ERR_PTR(err);
1530 
1531 	err = __ip_append_data(sk, fl4, &queue, cork,
1532 			       &current->task_frag, getfrag,
1533 			       from, length, transhdrlen, flags);
1534 	if (err) {
1535 		__ip_flush_pending_frames(sk, &queue, cork);
1536 		return ERR_PTR(err);
1537 	}
1538 
1539 	return __ip_make_skb(sk, fl4, &queue, cork);
1540 }
1541 
1542 /*
1543  *	Fetch data from kernel space and fill in checksum if needed.
1544  */
1545 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1546 			      int len, int odd, struct sk_buff *skb)
1547 {
1548 	__wsum csum;
1549 
1550 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1551 	skb->csum = csum_block_add(skb->csum, csum, odd);
1552 	return 0;
1553 }
1554 
1555 /*
1556  *	Generic function to send a packet as reply to another packet.
1557  *	Used to send some TCP resets/acks so far.
1558  */
1559 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1560 			   const struct ip_options *sopt,
1561 			   __be32 daddr, __be32 saddr,
1562 			   const struct ip_reply_arg *arg,
1563 			   unsigned int len)
1564 {
1565 	struct ip_options_data replyopts;
1566 	struct ipcm_cookie ipc;
1567 	struct flowi4 fl4;
1568 	struct rtable *rt = skb_rtable(skb);
1569 	struct net *net = sock_net(sk);
1570 	struct sk_buff *nskb;
1571 	int err;
1572 	int oif;
1573 
1574 	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1575 		return;
1576 
1577 	ipcm_init(&ipc);
1578 	ipc.addr = daddr;
1579 
1580 	if (replyopts.opt.opt.optlen) {
1581 		ipc.opt = &replyopts.opt;
1582 
1583 		if (replyopts.opt.opt.srr)
1584 			daddr = replyopts.opt.opt.faddr;
1585 	}
1586 
1587 	oif = arg->bound_dev_if;
1588 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1589 		oif = skb->skb_iif;
1590 
1591 	flowi4_init_output(&fl4, oif,
1592 			   IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1593 			   RT_TOS(arg->tos),
1594 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1595 			   ip_reply_arg_flowi_flags(arg),
1596 			   daddr, saddr,
1597 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1598 			   arg->uid);
1599 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1600 	rt = ip_route_output_key(net, &fl4);
1601 	if (IS_ERR(rt))
1602 		return;
1603 
1604 	inet_sk(sk)->tos = arg->tos;
1605 
1606 	sk->sk_priority = skb->priority;
1607 	sk->sk_protocol = ip_hdr(skb)->protocol;
1608 	sk->sk_bound_dev_if = arg->bound_dev_if;
1609 	sk->sk_sndbuf = sysctl_wmem_default;
1610 	sk->sk_mark = fl4.flowi4_mark;
1611 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1612 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1613 	if (unlikely(err)) {
1614 		ip_flush_pending_frames(sk);
1615 		goto out;
1616 	}
1617 
1618 	nskb = skb_peek(&sk->sk_write_queue);
1619 	if (nskb) {
1620 		if (arg->csumoffset >= 0)
1621 			*((__sum16 *)skb_transport_header(nskb) +
1622 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1623 								arg->csum));
1624 		nskb->ip_summed = CHECKSUM_NONE;
1625 		ip_push_pending_frames(sk, &fl4);
1626 	}
1627 out:
1628 	ip_rt_put(rt);
1629 }
1630 
1631 void __init ip_init(void)
1632 {
1633 	ip_rt_init();
1634 	inet_initpeers();
1635 
1636 #if defined(CONFIG_IP_MULTICAST)
1637 	igmp_mc_init();
1638 #endif
1639 }
1640