1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The Internet Protocol (IP) output module. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Donald Becker, <becker@super.org> 11 * Alan Cox, <Alan.Cox@linux.org> 12 * Richard Underwood 13 * Stefan Becker, <stefanb@yello.ping.de> 14 * Jorge Cwik, <jorge@laser.satlink.net> 15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 16 * Hirokazu Takahashi, <taka@valinux.co.jp> 17 * 18 * See ip_input.c for original log 19 * 20 * Fixes: 21 * Alan Cox : Missing nonblock feature in ip_build_xmit. 22 * Mike Kilburn : htons() missing in ip_build_xmit. 23 * Bradford Johnson: Fix faulty handling of some frames when 24 * no route is found. 25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 26 * (in case if packet not accepted by 27 * output firewall rules) 28 * Mike McLagan : Routing by source 29 * Alexey Kuznetsov: use new route cache 30 * Andi Kleen: Fix broken PMTU recovery and remove 31 * some redundant tests. 32 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 33 * Andi Kleen : Replace ip_reply with ip_send_reply. 34 * Andi Kleen : Split fast and slow ip_build_xmit path 35 * for decreased register pressure on x86 36 * and more readibility. 37 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 38 * silently drop skb instead of failing with -EPERM. 39 * Detlev Wengorz : Copy protocol for fragments. 40 * Hirokazu Takahashi: HW checksumming for outgoing UDP 41 * datagrams. 42 * Hirokazu Takahashi: sendfile() on UDP works now. 43 */ 44 45 #include <linux/uaccess.h> 46 #include <linux/module.h> 47 #include <linux/types.h> 48 #include <linux/kernel.h> 49 #include <linux/mm.h> 50 #include <linux/string.h> 51 #include <linux/errno.h> 52 #include <linux/highmem.h> 53 #include <linux/slab.h> 54 55 #include <linux/socket.h> 56 #include <linux/sockios.h> 57 #include <linux/in.h> 58 #include <linux/inet.h> 59 #include <linux/netdevice.h> 60 #include <linux/etherdevice.h> 61 #include <linux/proc_fs.h> 62 #include <linux/stat.h> 63 #include <linux/init.h> 64 65 #include <net/snmp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/xfrm.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <net/arp.h> 73 #include <net/icmp.h> 74 #include <net/checksum.h> 75 #include <net/inetpeer.h> 76 #include <net/lwtunnel.h> 77 #include <linux/bpf-cgroup.h> 78 #include <linux/igmp.h> 79 #include <linux/netfilter_ipv4.h> 80 #include <linux/netfilter_bridge.h> 81 #include <linux/netlink.h> 82 #include <linux/tcp.h> 83 84 static int 85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 86 unsigned int mtu, 87 int (*output)(struct net *, struct sock *, struct sk_buff *)); 88 89 /* Generate a checksum for an outgoing IP datagram. */ 90 void ip_send_check(struct iphdr *iph) 91 { 92 iph->check = 0; 93 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 94 } 95 EXPORT_SYMBOL(ip_send_check); 96 97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 98 { 99 struct iphdr *iph = ip_hdr(skb); 100 101 iph->tot_len = htons(skb->len); 102 ip_send_check(iph); 103 104 /* if egress device is enslaved to an L3 master device pass the 105 * skb to its handler for processing 106 */ 107 skb = l3mdev_ip_out(sk, skb); 108 if (unlikely(!skb)) 109 return 0; 110 111 skb->protocol = htons(ETH_P_IP); 112 113 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 114 net, sk, skb, NULL, skb_dst(skb)->dev, 115 dst_output); 116 } 117 118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 119 { 120 int err; 121 122 err = __ip_local_out(net, sk, skb); 123 if (likely(err == 1)) 124 err = dst_output(net, sk, skb); 125 126 return err; 127 } 128 EXPORT_SYMBOL_GPL(ip_local_out); 129 130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 131 { 132 int ttl = inet->uc_ttl; 133 134 if (ttl < 0) 135 ttl = ip4_dst_hoplimit(dst); 136 return ttl; 137 } 138 139 /* 140 * Add an ip header to a skbuff and send it out. 141 * 142 */ 143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 144 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 145 { 146 struct inet_sock *inet = inet_sk(sk); 147 struct rtable *rt = skb_rtable(skb); 148 struct net *net = sock_net(sk); 149 struct iphdr *iph; 150 151 /* Build the IP header. */ 152 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 153 skb_reset_network_header(skb); 154 iph = ip_hdr(skb); 155 iph->version = 4; 156 iph->ihl = 5; 157 iph->tos = inet->tos; 158 iph->ttl = ip_select_ttl(inet, &rt->dst); 159 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 160 iph->saddr = saddr; 161 iph->protocol = sk->sk_protocol; 162 if (ip_dont_fragment(sk, &rt->dst)) { 163 iph->frag_off = htons(IP_DF); 164 iph->id = 0; 165 } else { 166 iph->frag_off = 0; 167 __ip_select_ident(net, iph, 1); 168 } 169 170 if (opt && opt->opt.optlen) { 171 iph->ihl += opt->opt.optlen>>2; 172 ip_options_build(skb, &opt->opt, daddr, rt, 0); 173 } 174 175 skb->priority = sk->sk_priority; 176 if (!skb->mark) 177 skb->mark = sk->sk_mark; 178 179 /* Send it out. */ 180 return ip_local_out(net, skb->sk, skb); 181 } 182 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 183 184 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 185 { 186 struct dst_entry *dst = skb_dst(skb); 187 struct rtable *rt = (struct rtable *)dst; 188 struct net_device *dev = dst->dev; 189 unsigned int hh_len = LL_RESERVED_SPACE(dev); 190 struct neighbour *neigh; 191 u32 nexthop; 192 193 if (rt->rt_type == RTN_MULTICAST) { 194 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 195 } else if (rt->rt_type == RTN_BROADCAST) 196 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 197 198 /* Be paranoid, rather than too clever. */ 199 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 200 struct sk_buff *skb2; 201 202 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 203 if (!skb2) { 204 kfree_skb(skb); 205 return -ENOMEM; 206 } 207 if (skb->sk) 208 skb_set_owner_w(skb2, skb->sk); 209 consume_skb(skb); 210 skb = skb2; 211 } 212 213 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 214 int res = lwtunnel_xmit(skb); 215 216 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 217 return res; 218 } 219 220 rcu_read_lock_bh(); 221 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr); 222 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 223 if (unlikely(!neigh)) 224 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 225 if (!IS_ERR(neigh)) { 226 int res; 227 228 sock_confirm_neigh(skb, neigh); 229 res = neigh_output(neigh, skb); 230 231 rcu_read_unlock_bh(); 232 return res; 233 } 234 rcu_read_unlock_bh(); 235 236 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 237 __func__); 238 kfree_skb(skb); 239 return -EINVAL; 240 } 241 242 static int ip_finish_output_gso(struct net *net, struct sock *sk, 243 struct sk_buff *skb, unsigned int mtu) 244 { 245 netdev_features_t features; 246 struct sk_buff *segs; 247 int ret = 0; 248 249 /* common case: seglen is <= mtu 250 */ 251 if (skb_gso_validate_network_len(skb, mtu)) 252 return ip_finish_output2(net, sk, skb); 253 254 /* Slowpath - GSO segment length exceeds the egress MTU. 255 * 256 * This can happen in several cases: 257 * - Forwarding of a TCP GRO skb, when DF flag is not set. 258 * - Forwarding of an skb that arrived on a virtualization interface 259 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 260 * stack. 261 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 262 * interface with a smaller MTU. 263 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 264 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 265 * insufficent MTU. 266 */ 267 features = netif_skb_features(skb); 268 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET); 269 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 270 if (IS_ERR_OR_NULL(segs)) { 271 kfree_skb(skb); 272 return -ENOMEM; 273 } 274 275 consume_skb(skb); 276 277 do { 278 struct sk_buff *nskb = segs->next; 279 int err; 280 281 skb_mark_not_on_list(segs); 282 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 283 284 if (err && ret == 0) 285 ret = err; 286 segs = nskb; 287 } while (segs); 288 289 return ret; 290 } 291 292 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 293 { 294 unsigned int mtu; 295 int ret; 296 297 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 298 if (ret) { 299 kfree_skb(skb); 300 return ret; 301 } 302 303 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 304 /* Policy lookup after SNAT yielded a new policy */ 305 if (skb_dst(skb)->xfrm) { 306 IPCB(skb)->flags |= IPSKB_REROUTED; 307 return dst_output(net, sk, skb); 308 } 309 #endif 310 mtu = ip_skb_dst_mtu(sk, skb); 311 if (skb_is_gso(skb)) 312 return ip_finish_output_gso(net, sk, skb, mtu); 313 314 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 315 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 316 317 return ip_finish_output2(net, sk, skb); 318 } 319 320 static int ip_mc_finish_output(struct net *net, struct sock *sk, 321 struct sk_buff *skb) 322 { 323 int ret; 324 325 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 326 if (ret) { 327 kfree_skb(skb); 328 return ret; 329 } 330 331 return dev_loopback_xmit(net, sk, skb); 332 } 333 334 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 335 { 336 struct rtable *rt = skb_rtable(skb); 337 struct net_device *dev = rt->dst.dev; 338 339 /* 340 * If the indicated interface is up and running, send the packet. 341 */ 342 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 343 344 skb->dev = dev; 345 skb->protocol = htons(ETH_P_IP); 346 347 /* 348 * Multicasts are looped back for other local users 349 */ 350 351 if (rt->rt_flags&RTCF_MULTICAST) { 352 if (sk_mc_loop(sk) 353 #ifdef CONFIG_IP_MROUTE 354 /* Small optimization: do not loopback not local frames, 355 which returned after forwarding; they will be dropped 356 by ip_mr_input in any case. 357 Note, that local frames are looped back to be delivered 358 to local recipients. 359 360 This check is duplicated in ip_mr_input at the moment. 361 */ 362 && 363 ((rt->rt_flags & RTCF_LOCAL) || 364 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 365 #endif 366 ) { 367 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 368 if (newskb) 369 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 370 net, sk, newskb, NULL, newskb->dev, 371 ip_mc_finish_output); 372 } 373 374 /* Multicasts with ttl 0 must not go beyond the host */ 375 376 if (ip_hdr(skb)->ttl == 0) { 377 kfree_skb(skb); 378 return 0; 379 } 380 } 381 382 if (rt->rt_flags&RTCF_BROADCAST) { 383 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 384 if (newskb) 385 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 386 net, sk, newskb, NULL, newskb->dev, 387 ip_mc_finish_output); 388 } 389 390 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 391 net, sk, skb, NULL, skb->dev, 392 ip_finish_output, 393 !(IPCB(skb)->flags & IPSKB_REROUTED)); 394 } 395 396 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 397 { 398 struct net_device *dev = skb_dst(skb)->dev; 399 400 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 401 402 skb->dev = dev; 403 skb->protocol = htons(ETH_P_IP); 404 405 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 406 net, sk, skb, NULL, dev, 407 ip_finish_output, 408 !(IPCB(skb)->flags & IPSKB_REROUTED)); 409 } 410 411 /* 412 * copy saddr and daddr, possibly using 64bit load/stores 413 * Equivalent to : 414 * iph->saddr = fl4->saddr; 415 * iph->daddr = fl4->daddr; 416 */ 417 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 418 { 419 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 420 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 421 memcpy(&iph->saddr, &fl4->saddr, 422 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 423 } 424 425 /* Note: skb->sk can be different from sk, in case of tunnels */ 426 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, 427 __u8 tos) 428 { 429 struct inet_sock *inet = inet_sk(sk); 430 struct net *net = sock_net(sk); 431 struct ip_options_rcu *inet_opt; 432 struct flowi4 *fl4; 433 struct rtable *rt; 434 struct iphdr *iph; 435 int res; 436 437 /* Skip all of this if the packet is already routed, 438 * f.e. by something like SCTP. 439 */ 440 rcu_read_lock(); 441 inet_opt = rcu_dereference(inet->inet_opt); 442 fl4 = &fl->u.ip4; 443 rt = skb_rtable(skb); 444 if (rt) 445 goto packet_routed; 446 447 /* Make sure we can route this packet. */ 448 rt = (struct rtable *)__sk_dst_check(sk, 0); 449 if (!rt) { 450 __be32 daddr; 451 452 /* Use correct destination address if we have options. */ 453 daddr = inet->inet_daddr; 454 if (inet_opt && inet_opt->opt.srr) 455 daddr = inet_opt->opt.faddr; 456 457 /* If this fails, retransmit mechanism of transport layer will 458 * keep trying until route appears or the connection times 459 * itself out. 460 */ 461 rt = ip_route_output_ports(net, fl4, sk, 462 daddr, inet->inet_saddr, 463 inet->inet_dport, 464 inet->inet_sport, 465 sk->sk_protocol, 466 RT_CONN_FLAGS_TOS(sk, tos), 467 sk->sk_bound_dev_if); 468 if (IS_ERR(rt)) 469 goto no_route; 470 sk_setup_caps(sk, &rt->dst); 471 } 472 skb_dst_set_noref(skb, &rt->dst); 473 474 packet_routed: 475 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 476 goto no_route; 477 478 /* OK, we know where to send it, allocate and build IP header. */ 479 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 480 skb_reset_network_header(skb); 481 iph = ip_hdr(skb); 482 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); 483 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 484 iph->frag_off = htons(IP_DF); 485 else 486 iph->frag_off = 0; 487 iph->ttl = ip_select_ttl(inet, &rt->dst); 488 iph->protocol = sk->sk_protocol; 489 ip_copy_addrs(iph, fl4); 490 491 /* Transport layer set skb->h.foo itself. */ 492 493 if (inet_opt && inet_opt->opt.optlen) { 494 iph->ihl += inet_opt->opt.optlen >> 2; 495 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 496 } 497 498 ip_select_ident_segs(net, skb, sk, 499 skb_shinfo(skb)->gso_segs ?: 1); 500 501 /* TODO : should we use skb->sk here instead of sk ? */ 502 skb->priority = sk->sk_priority; 503 skb->mark = sk->sk_mark; 504 505 res = ip_local_out(net, sk, skb); 506 rcu_read_unlock(); 507 return res; 508 509 no_route: 510 rcu_read_unlock(); 511 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 512 kfree_skb(skb); 513 return -EHOSTUNREACH; 514 } 515 EXPORT_SYMBOL(__ip_queue_xmit); 516 517 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 518 { 519 to->pkt_type = from->pkt_type; 520 to->priority = from->priority; 521 to->protocol = from->protocol; 522 skb_dst_drop(to); 523 skb_dst_copy(to, from); 524 to->dev = from->dev; 525 to->mark = from->mark; 526 527 skb_copy_hash(to, from); 528 529 /* Copy the flags to each fragment. */ 530 IPCB(to)->flags = IPCB(from)->flags; 531 532 #ifdef CONFIG_NET_SCHED 533 to->tc_index = from->tc_index; 534 #endif 535 nf_copy(to, from); 536 skb_ext_copy(to, from); 537 #if IS_ENABLED(CONFIG_IP_VS) 538 to->ipvs_property = from->ipvs_property; 539 #endif 540 skb_copy_secmark(to, from); 541 } 542 543 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 544 unsigned int mtu, 545 int (*output)(struct net *, struct sock *, struct sk_buff *)) 546 { 547 struct iphdr *iph = ip_hdr(skb); 548 549 if ((iph->frag_off & htons(IP_DF)) == 0) 550 return ip_do_fragment(net, sk, skb, output); 551 552 if (unlikely(!skb->ignore_df || 553 (IPCB(skb)->frag_max_size && 554 IPCB(skb)->frag_max_size > mtu))) { 555 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 556 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 557 htonl(mtu)); 558 kfree_skb(skb); 559 return -EMSGSIZE; 560 } 561 562 return ip_do_fragment(net, sk, skb, output); 563 } 564 565 /* 566 * This IP datagram is too large to be sent in one piece. Break it up into 567 * smaller pieces (each of size equal to IP header plus 568 * a block of the data of the original IP data part) that will yet fit in a 569 * single device frame, and queue such a frame for sending. 570 */ 571 572 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 573 int (*output)(struct net *, struct sock *, struct sk_buff *)) 574 { 575 struct iphdr *iph; 576 int ptr; 577 struct sk_buff *skb2; 578 unsigned int mtu, hlen, left, len, ll_rs; 579 int offset; 580 __be16 not_last_frag; 581 struct rtable *rt = skb_rtable(skb); 582 int err = 0; 583 584 /* for offloaded checksums cleanup checksum before fragmentation */ 585 if (skb->ip_summed == CHECKSUM_PARTIAL && 586 (err = skb_checksum_help(skb))) 587 goto fail; 588 589 /* 590 * Point into the IP datagram header. 591 */ 592 593 iph = ip_hdr(skb); 594 595 mtu = ip_skb_dst_mtu(sk, skb); 596 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 597 mtu = IPCB(skb)->frag_max_size; 598 599 /* 600 * Setup starting values. 601 */ 602 603 hlen = iph->ihl * 4; 604 mtu = mtu - hlen; /* Size of data space */ 605 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 606 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 607 608 /* When frag_list is given, use it. First, check its validity: 609 * some transformers could create wrong frag_list or break existing 610 * one, it is not prohibited. In this case fall back to copying. 611 * 612 * LATER: this step can be merged to real generation of fragments, 613 * we can switch to copy when see the first bad fragment. 614 */ 615 if (skb_has_frag_list(skb)) { 616 struct sk_buff *frag, *frag2; 617 unsigned int first_len = skb_pagelen(skb); 618 619 if (first_len - hlen > mtu || 620 ((first_len - hlen) & 7) || 621 ip_is_fragment(iph) || 622 skb_cloned(skb) || 623 skb_headroom(skb) < ll_rs) 624 goto slow_path; 625 626 skb_walk_frags(skb, frag) { 627 /* Correct geometry. */ 628 if (frag->len > mtu || 629 ((frag->len & 7) && frag->next) || 630 skb_headroom(frag) < hlen + ll_rs) 631 goto slow_path_clean; 632 633 /* Partially cloned skb? */ 634 if (skb_shared(frag)) 635 goto slow_path_clean; 636 637 BUG_ON(frag->sk); 638 if (skb->sk) { 639 frag->sk = skb->sk; 640 frag->destructor = sock_wfree; 641 } 642 skb->truesize -= frag->truesize; 643 } 644 645 /* Everything is OK. Generate! */ 646 647 err = 0; 648 offset = 0; 649 frag = skb_shinfo(skb)->frag_list; 650 skb_frag_list_init(skb); 651 skb->data_len = first_len - skb_headlen(skb); 652 skb->len = first_len; 653 iph->tot_len = htons(first_len); 654 iph->frag_off = htons(IP_MF); 655 ip_send_check(iph); 656 657 for (;;) { 658 /* Prepare header of the next frame, 659 * before previous one went down. */ 660 if (frag) { 661 frag->ip_summed = CHECKSUM_NONE; 662 skb_reset_transport_header(frag); 663 __skb_push(frag, hlen); 664 skb_reset_network_header(frag); 665 memcpy(skb_network_header(frag), iph, hlen); 666 iph = ip_hdr(frag); 667 iph->tot_len = htons(frag->len); 668 ip_copy_metadata(frag, skb); 669 if (offset == 0) 670 ip_options_fragment(frag); 671 offset += skb->len - hlen; 672 iph->frag_off = htons(offset>>3); 673 if (frag->next) 674 iph->frag_off |= htons(IP_MF); 675 /* Ready, complete checksum */ 676 ip_send_check(iph); 677 } 678 679 err = output(net, sk, skb); 680 681 if (!err) 682 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 683 if (err || !frag) 684 break; 685 686 skb = frag; 687 frag = skb->next; 688 skb_mark_not_on_list(skb); 689 } 690 691 if (err == 0) { 692 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 693 return 0; 694 } 695 696 while (frag) { 697 skb = frag->next; 698 kfree_skb(frag); 699 frag = skb; 700 } 701 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 702 return err; 703 704 slow_path_clean: 705 skb_walk_frags(skb, frag2) { 706 if (frag2 == frag) 707 break; 708 frag2->sk = NULL; 709 frag2->destructor = NULL; 710 skb->truesize += frag2->truesize; 711 } 712 } 713 714 slow_path: 715 iph = ip_hdr(skb); 716 717 left = skb->len - hlen; /* Space per frame */ 718 ptr = hlen; /* Where to start from */ 719 720 /* 721 * Fragment the datagram. 722 */ 723 724 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 725 not_last_frag = iph->frag_off & htons(IP_MF); 726 727 /* 728 * Keep copying data until we run out. 729 */ 730 731 while (left > 0) { 732 len = left; 733 /* IF: it doesn't fit, use 'mtu' - the data space left */ 734 if (len > mtu) 735 len = mtu; 736 /* IF: we are not sending up to and including the packet end 737 then align the next start on an eight byte boundary */ 738 if (len < left) { 739 len &= ~7; 740 } 741 742 /* Allocate buffer */ 743 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 744 if (!skb2) { 745 err = -ENOMEM; 746 goto fail; 747 } 748 749 /* 750 * Set up data on packet 751 */ 752 753 ip_copy_metadata(skb2, skb); 754 skb_reserve(skb2, ll_rs); 755 skb_put(skb2, len + hlen); 756 skb_reset_network_header(skb2); 757 skb2->transport_header = skb2->network_header + hlen; 758 759 /* 760 * Charge the memory for the fragment to any owner 761 * it might possess 762 */ 763 764 if (skb->sk) 765 skb_set_owner_w(skb2, skb->sk); 766 767 /* 768 * Copy the packet header into the new buffer. 769 */ 770 771 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 772 773 /* 774 * Copy a block of the IP datagram. 775 */ 776 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 777 BUG(); 778 left -= len; 779 780 /* 781 * Fill in the new header fields. 782 */ 783 iph = ip_hdr(skb2); 784 iph->frag_off = htons((offset >> 3)); 785 786 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 787 iph->frag_off |= htons(IP_DF); 788 789 /* ANK: dirty, but effective trick. Upgrade options only if 790 * the segment to be fragmented was THE FIRST (otherwise, 791 * options are already fixed) and make it ONCE 792 * on the initial skb, so that all the following fragments 793 * will inherit fixed options. 794 */ 795 if (offset == 0) 796 ip_options_fragment(skb); 797 798 /* 799 * Added AC : If we are fragmenting a fragment that's not the 800 * last fragment then keep MF on each bit 801 */ 802 if (left > 0 || not_last_frag) 803 iph->frag_off |= htons(IP_MF); 804 ptr += len; 805 offset += len; 806 807 /* 808 * Put this fragment into the sending queue. 809 */ 810 iph->tot_len = htons(len + hlen); 811 812 ip_send_check(iph); 813 814 err = output(net, sk, skb2); 815 if (err) 816 goto fail; 817 818 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 819 } 820 consume_skb(skb); 821 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 822 return err; 823 824 fail: 825 kfree_skb(skb); 826 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 827 return err; 828 } 829 EXPORT_SYMBOL(ip_do_fragment); 830 831 int 832 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 833 { 834 struct msghdr *msg = from; 835 836 if (skb->ip_summed == CHECKSUM_PARTIAL) { 837 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 838 return -EFAULT; 839 } else { 840 __wsum csum = 0; 841 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 842 return -EFAULT; 843 skb->csum = csum_block_add(skb->csum, csum, odd); 844 } 845 return 0; 846 } 847 EXPORT_SYMBOL(ip_generic_getfrag); 848 849 static inline __wsum 850 csum_page(struct page *page, int offset, int copy) 851 { 852 char *kaddr; 853 __wsum csum; 854 kaddr = kmap(page); 855 csum = csum_partial(kaddr + offset, copy, 0); 856 kunmap(page); 857 return csum; 858 } 859 860 static int __ip_append_data(struct sock *sk, 861 struct flowi4 *fl4, 862 struct sk_buff_head *queue, 863 struct inet_cork *cork, 864 struct page_frag *pfrag, 865 int getfrag(void *from, char *to, int offset, 866 int len, int odd, struct sk_buff *skb), 867 void *from, int length, int transhdrlen, 868 unsigned int flags) 869 { 870 struct inet_sock *inet = inet_sk(sk); 871 struct ubuf_info *uarg = NULL; 872 struct sk_buff *skb; 873 874 struct ip_options *opt = cork->opt; 875 int hh_len; 876 int exthdrlen; 877 int mtu; 878 int copy; 879 int err; 880 int offset = 0; 881 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 882 int csummode = CHECKSUM_NONE; 883 struct rtable *rt = (struct rtable *)cork->dst; 884 unsigned int wmem_alloc_delta = 0; 885 bool paged, extra_uref; 886 u32 tskey = 0; 887 888 skb = skb_peek_tail(queue); 889 890 exthdrlen = !skb ? rt->dst.header_len : 0; 891 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 892 paged = !!cork->gso_size; 893 894 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 895 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 896 tskey = sk->sk_tskey++; 897 898 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 899 900 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 901 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 902 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 903 904 if (cork->length + length > maxnonfragsize - fragheaderlen) { 905 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 906 mtu - (opt ? opt->optlen : 0)); 907 return -EMSGSIZE; 908 } 909 910 /* 911 * transhdrlen > 0 means that this is the first fragment and we wish 912 * it won't be fragmented in the future. 913 */ 914 if (transhdrlen && 915 length + fragheaderlen <= mtu && 916 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 917 (!(flags & MSG_MORE) || cork->gso_size) && 918 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 919 csummode = CHECKSUM_PARTIAL; 920 921 if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) { 922 uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb)); 923 if (!uarg) 924 return -ENOBUFS; 925 extra_uref = true; 926 if (rt->dst.dev->features & NETIF_F_SG && 927 csummode == CHECKSUM_PARTIAL) { 928 paged = true; 929 } else { 930 uarg->zerocopy = 0; 931 skb_zcopy_set(skb, uarg, &extra_uref); 932 } 933 } 934 935 cork->length += length; 936 937 /* So, what's going on in the loop below? 938 * 939 * We use calculated fragment length to generate chained skb, 940 * each of segments is IP fragment ready for sending to network after 941 * adding appropriate IP header. 942 */ 943 944 if (!skb) 945 goto alloc_new_skb; 946 947 while (length > 0) { 948 /* Check if the remaining data fits into current packet. */ 949 copy = mtu - skb->len; 950 if (copy < length) 951 copy = maxfraglen - skb->len; 952 if (copy <= 0) { 953 char *data; 954 unsigned int datalen; 955 unsigned int fraglen; 956 unsigned int fraggap; 957 unsigned int alloclen; 958 unsigned int pagedlen; 959 struct sk_buff *skb_prev; 960 alloc_new_skb: 961 skb_prev = skb; 962 if (skb_prev) 963 fraggap = skb_prev->len - maxfraglen; 964 else 965 fraggap = 0; 966 967 /* 968 * If remaining data exceeds the mtu, 969 * we know we need more fragment(s). 970 */ 971 datalen = length + fraggap; 972 if (datalen > mtu - fragheaderlen) 973 datalen = maxfraglen - fragheaderlen; 974 fraglen = datalen + fragheaderlen; 975 pagedlen = 0; 976 977 if ((flags & MSG_MORE) && 978 !(rt->dst.dev->features&NETIF_F_SG)) 979 alloclen = mtu; 980 else if (!paged) 981 alloclen = fraglen; 982 else { 983 alloclen = min_t(int, fraglen, MAX_HEADER); 984 pagedlen = fraglen - alloclen; 985 } 986 987 alloclen += exthdrlen; 988 989 /* The last fragment gets additional space at tail. 990 * Note, with MSG_MORE we overallocate on fragments, 991 * because we have no idea what fragment will be 992 * the last. 993 */ 994 if (datalen == length + fraggap) 995 alloclen += rt->dst.trailer_len; 996 997 if (transhdrlen) { 998 skb = sock_alloc_send_skb(sk, 999 alloclen + hh_len + 15, 1000 (flags & MSG_DONTWAIT), &err); 1001 } else { 1002 skb = NULL; 1003 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 1004 2 * sk->sk_sndbuf) 1005 skb = alloc_skb(alloclen + hh_len + 15, 1006 sk->sk_allocation); 1007 if (unlikely(!skb)) 1008 err = -ENOBUFS; 1009 } 1010 if (!skb) 1011 goto error; 1012 1013 /* 1014 * Fill in the control structures 1015 */ 1016 skb->ip_summed = csummode; 1017 skb->csum = 0; 1018 skb_reserve(skb, hh_len); 1019 1020 /* 1021 * Find where to start putting bytes. 1022 */ 1023 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1024 skb_set_network_header(skb, exthdrlen); 1025 skb->transport_header = (skb->network_header + 1026 fragheaderlen); 1027 data += fragheaderlen + exthdrlen; 1028 1029 if (fraggap) { 1030 skb->csum = skb_copy_and_csum_bits( 1031 skb_prev, maxfraglen, 1032 data + transhdrlen, fraggap, 0); 1033 skb_prev->csum = csum_sub(skb_prev->csum, 1034 skb->csum); 1035 data += fraggap; 1036 pskb_trim_unique(skb_prev, maxfraglen); 1037 } 1038 1039 copy = datalen - transhdrlen - fraggap - pagedlen; 1040 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1041 err = -EFAULT; 1042 kfree_skb(skb); 1043 goto error; 1044 } 1045 1046 offset += copy; 1047 length -= copy + transhdrlen; 1048 transhdrlen = 0; 1049 exthdrlen = 0; 1050 csummode = CHECKSUM_NONE; 1051 1052 /* only the initial fragment is time stamped */ 1053 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1054 cork->tx_flags = 0; 1055 skb_shinfo(skb)->tskey = tskey; 1056 tskey = 0; 1057 skb_zcopy_set(skb, uarg, &extra_uref); 1058 1059 if ((flags & MSG_CONFIRM) && !skb_prev) 1060 skb_set_dst_pending_confirm(skb, 1); 1061 1062 /* 1063 * Put the packet on the pending queue. 1064 */ 1065 if (!skb->destructor) { 1066 skb->destructor = sock_wfree; 1067 skb->sk = sk; 1068 wmem_alloc_delta += skb->truesize; 1069 } 1070 __skb_queue_tail(queue, skb); 1071 continue; 1072 } 1073 1074 if (copy > length) 1075 copy = length; 1076 1077 if (!(rt->dst.dev->features&NETIF_F_SG) && 1078 skb_tailroom(skb) >= copy) { 1079 unsigned int off; 1080 1081 off = skb->len; 1082 if (getfrag(from, skb_put(skb, copy), 1083 offset, copy, off, skb) < 0) { 1084 __skb_trim(skb, off); 1085 err = -EFAULT; 1086 goto error; 1087 } 1088 } else if (!uarg || !uarg->zerocopy) { 1089 int i = skb_shinfo(skb)->nr_frags; 1090 1091 err = -ENOMEM; 1092 if (!sk_page_frag_refill(sk, pfrag)) 1093 goto error; 1094 1095 if (!skb_can_coalesce(skb, i, pfrag->page, 1096 pfrag->offset)) { 1097 err = -EMSGSIZE; 1098 if (i == MAX_SKB_FRAGS) 1099 goto error; 1100 1101 __skb_fill_page_desc(skb, i, pfrag->page, 1102 pfrag->offset, 0); 1103 skb_shinfo(skb)->nr_frags = ++i; 1104 get_page(pfrag->page); 1105 } 1106 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1107 if (getfrag(from, 1108 page_address(pfrag->page) + pfrag->offset, 1109 offset, copy, skb->len, skb) < 0) 1110 goto error_efault; 1111 1112 pfrag->offset += copy; 1113 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1114 skb->len += copy; 1115 skb->data_len += copy; 1116 skb->truesize += copy; 1117 wmem_alloc_delta += copy; 1118 } else { 1119 err = skb_zerocopy_iter_dgram(skb, from, copy); 1120 if (err < 0) 1121 goto error; 1122 } 1123 offset += copy; 1124 length -= copy; 1125 } 1126 1127 if (wmem_alloc_delta) 1128 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1129 return 0; 1130 1131 error_efault: 1132 err = -EFAULT; 1133 error: 1134 if (uarg) 1135 sock_zerocopy_put_abort(uarg, extra_uref); 1136 cork->length -= length; 1137 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1138 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1139 return err; 1140 } 1141 1142 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1143 struct ipcm_cookie *ipc, struct rtable **rtp) 1144 { 1145 struct ip_options_rcu *opt; 1146 struct rtable *rt; 1147 1148 rt = *rtp; 1149 if (unlikely(!rt)) 1150 return -EFAULT; 1151 1152 /* 1153 * setup for corking. 1154 */ 1155 opt = ipc->opt; 1156 if (opt) { 1157 if (!cork->opt) { 1158 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1159 sk->sk_allocation); 1160 if (unlikely(!cork->opt)) 1161 return -ENOBUFS; 1162 } 1163 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1164 cork->flags |= IPCORK_OPT; 1165 cork->addr = ipc->addr; 1166 } 1167 1168 /* 1169 * We steal reference to this route, caller should not release it 1170 */ 1171 *rtp = NULL; 1172 cork->fragsize = ip_sk_use_pmtu(sk) ? 1173 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1174 1175 cork->gso_size = ipc->gso_size; 1176 cork->dst = &rt->dst; 1177 cork->length = 0; 1178 cork->ttl = ipc->ttl; 1179 cork->tos = ipc->tos; 1180 cork->priority = ipc->priority; 1181 cork->transmit_time = ipc->sockc.transmit_time; 1182 cork->tx_flags = 0; 1183 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); 1184 1185 return 0; 1186 } 1187 1188 /* 1189 * ip_append_data() and ip_append_page() can make one large IP datagram 1190 * from many pieces of data. Each pieces will be holded on the socket 1191 * until ip_push_pending_frames() is called. Each piece can be a page 1192 * or non-page data. 1193 * 1194 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1195 * this interface potentially. 1196 * 1197 * LATER: length must be adjusted by pad at tail, when it is required. 1198 */ 1199 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1200 int getfrag(void *from, char *to, int offset, int len, 1201 int odd, struct sk_buff *skb), 1202 void *from, int length, int transhdrlen, 1203 struct ipcm_cookie *ipc, struct rtable **rtp, 1204 unsigned int flags) 1205 { 1206 struct inet_sock *inet = inet_sk(sk); 1207 int err; 1208 1209 if (flags&MSG_PROBE) 1210 return 0; 1211 1212 if (skb_queue_empty(&sk->sk_write_queue)) { 1213 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1214 if (err) 1215 return err; 1216 } else { 1217 transhdrlen = 0; 1218 } 1219 1220 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1221 sk_page_frag(sk), getfrag, 1222 from, length, transhdrlen, flags); 1223 } 1224 1225 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1226 int offset, size_t size, int flags) 1227 { 1228 struct inet_sock *inet = inet_sk(sk); 1229 struct sk_buff *skb; 1230 struct rtable *rt; 1231 struct ip_options *opt = NULL; 1232 struct inet_cork *cork; 1233 int hh_len; 1234 int mtu; 1235 int len; 1236 int err; 1237 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1238 1239 if (inet->hdrincl) 1240 return -EPERM; 1241 1242 if (flags&MSG_PROBE) 1243 return 0; 1244 1245 if (skb_queue_empty(&sk->sk_write_queue)) 1246 return -EINVAL; 1247 1248 cork = &inet->cork.base; 1249 rt = (struct rtable *)cork->dst; 1250 if (cork->flags & IPCORK_OPT) 1251 opt = cork->opt; 1252 1253 if (!(rt->dst.dev->features&NETIF_F_SG)) 1254 return -EOPNOTSUPP; 1255 1256 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1257 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 1258 1259 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1260 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1261 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1262 1263 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1264 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1265 mtu - (opt ? opt->optlen : 0)); 1266 return -EMSGSIZE; 1267 } 1268 1269 skb = skb_peek_tail(&sk->sk_write_queue); 1270 if (!skb) 1271 return -EINVAL; 1272 1273 cork->length += size; 1274 1275 while (size > 0) { 1276 /* Check if the remaining data fits into current packet. */ 1277 len = mtu - skb->len; 1278 if (len < size) 1279 len = maxfraglen - skb->len; 1280 1281 if (len <= 0) { 1282 struct sk_buff *skb_prev; 1283 int alloclen; 1284 1285 skb_prev = skb; 1286 fraggap = skb_prev->len - maxfraglen; 1287 1288 alloclen = fragheaderlen + hh_len + fraggap + 15; 1289 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1290 if (unlikely(!skb)) { 1291 err = -ENOBUFS; 1292 goto error; 1293 } 1294 1295 /* 1296 * Fill in the control structures 1297 */ 1298 skb->ip_summed = CHECKSUM_NONE; 1299 skb->csum = 0; 1300 skb_reserve(skb, hh_len); 1301 1302 /* 1303 * Find where to start putting bytes. 1304 */ 1305 skb_put(skb, fragheaderlen + fraggap); 1306 skb_reset_network_header(skb); 1307 skb->transport_header = (skb->network_header + 1308 fragheaderlen); 1309 if (fraggap) { 1310 skb->csum = skb_copy_and_csum_bits(skb_prev, 1311 maxfraglen, 1312 skb_transport_header(skb), 1313 fraggap, 0); 1314 skb_prev->csum = csum_sub(skb_prev->csum, 1315 skb->csum); 1316 pskb_trim_unique(skb_prev, maxfraglen); 1317 } 1318 1319 /* 1320 * Put the packet on the pending queue. 1321 */ 1322 __skb_queue_tail(&sk->sk_write_queue, skb); 1323 continue; 1324 } 1325 1326 if (len > size) 1327 len = size; 1328 1329 if (skb_append_pagefrags(skb, page, offset, len)) { 1330 err = -EMSGSIZE; 1331 goto error; 1332 } 1333 1334 if (skb->ip_summed == CHECKSUM_NONE) { 1335 __wsum csum; 1336 csum = csum_page(page, offset, len); 1337 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1338 } 1339 1340 skb->len += len; 1341 skb->data_len += len; 1342 skb->truesize += len; 1343 refcount_add(len, &sk->sk_wmem_alloc); 1344 offset += len; 1345 size -= len; 1346 } 1347 return 0; 1348 1349 error: 1350 cork->length -= size; 1351 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1352 return err; 1353 } 1354 1355 static void ip_cork_release(struct inet_cork *cork) 1356 { 1357 cork->flags &= ~IPCORK_OPT; 1358 kfree(cork->opt); 1359 cork->opt = NULL; 1360 dst_release(cork->dst); 1361 cork->dst = NULL; 1362 } 1363 1364 /* 1365 * Combined all pending IP fragments on the socket as one IP datagram 1366 * and push them out. 1367 */ 1368 struct sk_buff *__ip_make_skb(struct sock *sk, 1369 struct flowi4 *fl4, 1370 struct sk_buff_head *queue, 1371 struct inet_cork *cork) 1372 { 1373 struct sk_buff *skb, *tmp_skb; 1374 struct sk_buff **tail_skb; 1375 struct inet_sock *inet = inet_sk(sk); 1376 struct net *net = sock_net(sk); 1377 struct ip_options *opt = NULL; 1378 struct rtable *rt = (struct rtable *)cork->dst; 1379 struct iphdr *iph; 1380 __be16 df = 0; 1381 __u8 ttl; 1382 1383 skb = __skb_dequeue(queue); 1384 if (!skb) 1385 goto out; 1386 tail_skb = &(skb_shinfo(skb)->frag_list); 1387 1388 /* move skb->data to ip header from ext header */ 1389 if (skb->data < skb_network_header(skb)) 1390 __skb_pull(skb, skb_network_offset(skb)); 1391 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1392 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1393 *tail_skb = tmp_skb; 1394 tail_skb = &(tmp_skb->next); 1395 skb->len += tmp_skb->len; 1396 skb->data_len += tmp_skb->len; 1397 skb->truesize += tmp_skb->truesize; 1398 tmp_skb->destructor = NULL; 1399 tmp_skb->sk = NULL; 1400 } 1401 1402 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1403 * to fragment the frame generated here. No matter, what transforms 1404 * how transforms change size of the packet, it will come out. 1405 */ 1406 skb->ignore_df = ip_sk_ignore_df(sk); 1407 1408 /* DF bit is set when we want to see DF on outgoing frames. 1409 * If ignore_df is set too, we still allow to fragment this frame 1410 * locally. */ 1411 if (inet->pmtudisc == IP_PMTUDISC_DO || 1412 inet->pmtudisc == IP_PMTUDISC_PROBE || 1413 (skb->len <= dst_mtu(&rt->dst) && 1414 ip_dont_fragment(sk, &rt->dst))) 1415 df = htons(IP_DF); 1416 1417 if (cork->flags & IPCORK_OPT) 1418 opt = cork->opt; 1419 1420 if (cork->ttl != 0) 1421 ttl = cork->ttl; 1422 else if (rt->rt_type == RTN_MULTICAST) 1423 ttl = inet->mc_ttl; 1424 else 1425 ttl = ip_select_ttl(inet, &rt->dst); 1426 1427 iph = ip_hdr(skb); 1428 iph->version = 4; 1429 iph->ihl = 5; 1430 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1431 iph->frag_off = df; 1432 iph->ttl = ttl; 1433 iph->protocol = sk->sk_protocol; 1434 ip_copy_addrs(iph, fl4); 1435 ip_select_ident(net, skb, sk); 1436 1437 if (opt) { 1438 iph->ihl += opt->optlen>>2; 1439 ip_options_build(skb, opt, cork->addr, rt, 0); 1440 } 1441 1442 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1443 skb->mark = sk->sk_mark; 1444 skb->tstamp = cork->transmit_time; 1445 /* 1446 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1447 * on dst refcount 1448 */ 1449 cork->dst = NULL; 1450 skb_dst_set(skb, &rt->dst); 1451 1452 if (iph->protocol == IPPROTO_ICMP) 1453 icmp_out_count(net, ((struct icmphdr *) 1454 skb_transport_header(skb))->type); 1455 1456 ip_cork_release(cork); 1457 out: 1458 return skb; 1459 } 1460 1461 int ip_send_skb(struct net *net, struct sk_buff *skb) 1462 { 1463 int err; 1464 1465 err = ip_local_out(net, skb->sk, skb); 1466 if (err) { 1467 if (err > 0) 1468 err = net_xmit_errno(err); 1469 if (err) 1470 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1471 } 1472 1473 return err; 1474 } 1475 1476 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1477 { 1478 struct sk_buff *skb; 1479 1480 skb = ip_finish_skb(sk, fl4); 1481 if (!skb) 1482 return 0; 1483 1484 /* Netfilter gets whole the not fragmented skb. */ 1485 return ip_send_skb(sock_net(sk), skb); 1486 } 1487 1488 /* 1489 * Throw away all pending data on the socket. 1490 */ 1491 static void __ip_flush_pending_frames(struct sock *sk, 1492 struct sk_buff_head *queue, 1493 struct inet_cork *cork) 1494 { 1495 struct sk_buff *skb; 1496 1497 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1498 kfree_skb(skb); 1499 1500 ip_cork_release(cork); 1501 } 1502 1503 void ip_flush_pending_frames(struct sock *sk) 1504 { 1505 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1506 } 1507 1508 struct sk_buff *ip_make_skb(struct sock *sk, 1509 struct flowi4 *fl4, 1510 int getfrag(void *from, char *to, int offset, 1511 int len, int odd, struct sk_buff *skb), 1512 void *from, int length, int transhdrlen, 1513 struct ipcm_cookie *ipc, struct rtable **rtp, 1514 struct inet_cork *cork, unsigned int flags) 1515 { 1516 struct sk_buff_head queue; 1517 int err; 1518 1519 if (flags & MSG_PROBE) 1520 return NULL; 1521 1522 __skb_queue_head_init(&queue); 1523 1524 cork->flags = 0; 1525 cork->addr = 0; 1526 cork->opt = NULL; 1527 err = ip_setup_cork(sk, cork, ipc, rtp); 1528 if (err) 1529 return ERR_PTR(err); 1530 1531 err = __ip_append_data(sk, fl4, &queue, cork, 1532 ¤t->task_frag, getfrag, 1533 from, length, transhdrlen, flags); 1534 if (err) { 1535 __ip_flush_pending_frames(sk, &queue, cork); 1536 return ERR_PTR(err); 1537 } 1538 1539 return __ip_make_skb(sk, fl4, &queue, cork); 1540 } 1541 1542 /* 1543 * Fetch data from kernel space and fill in checksum if needed. 1544 */ 1545 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1546 int len, int odd, struct sk_buff *skb) 1547 { 1548 __wsum csum; 1549 1550 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1551 skb->csum = csum_block_add(skb->csum, csum, odd); 1552 return 0; 1553 } 1554 1555 /* 1556 * Generic function to send a packet as reply to another packet. 1557 * Used to send some TCP resets/acks so far. 1558 */ 1559 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1560 const struct ip_options *sopt, 1561 __be32 daddr, __be32 saddr, 1562 const struct ip_reply_arg *arg, 1563 unsigned int len) 1564 { 1565 struct ip_options_data replyopts; 1566 struct ipcm_cookie ipc; 1567 struct flowi4 fl4; 1568 struct rtable *rt = skb_rtable(skb); 1569 struct net *net = sock_net(sk); 1570 struct sk_buff *nskb; 1571 int err; 1572 int oif; 1573 1574 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1575 return; 1576 1577 ipcm_init(&ipc); 1578 ipc.addr = daddr; 1579 1580 if (replyopts.opt.opt.optlen) { 1581 ipc.opt = &replyopts.opt; 1582 1583 if (replyopts.opt.opt.srr) 1584 daddr = replyopts.opt.opt.faddr; 1585 } 1586 1587 oif = arg->bound_dev_if; 1588 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1589 oif = skb->skb_iif; 1590 1591 flowi4_init_output(&fl4, oif, 1592 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1593 RT_TOS(arg->tos), 1594 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1595 ip_reply_arg_flowi_flags(arg), 1596 daddr, saddr, 1597 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1598 arg->uid); 1599 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1600 rt = ip_route_output_key(net, &fl4); 1601 if (IS_ERR(rt)) 1602 return; 1603 1604 inet_sk(sk)->tos = arg->tos; 1605 1606 sk->sk_priority = skb->priority; 1607 sk->sk_protocol = ip_hdr(skb)->protocol; 1608 sk->sk_bound_dev_if = arg->bound_dev_if; 1609 sk->sk_sndbuf = sysctl_wmem_default; 1610 sk->sk_mark = fl4.flowi4_mark; 1611 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1612 len, 0, &ipc, &rt, MSG_DONTWAIT); 1613 if (unlikely(err)) { 1614 ip_flush_pending_frames(sk); 1615 goto out; 1616 } 1617 1618 nskb = skb_peek(&sk->sk_write_queue); 1619 if (nskb) { 1620 if (arg->csumoffset >= 0) 1621 *((__sum16 *)skb_transport_header(nskb) + 1622 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1623 arg->csum)); 1624 nskb->ip_summed = CHECKSUM_NONE; 1625 ip_push_pending_frames(sk, &fl4); 1626 } 1627 out: 1628 ip_rt_put(rt); 1629 } 1630 1631 void __init ip_init(void) 1632 { 1633 ip_rt_init(); 1634 inet_initpeers(); 1635 1636 #if defined(CONFIG_IP_MULTICAST) 1637 igmp_mc_init(); 1638 #endif 1639 } 1640