xref: /openbmc/linux/net/ipv4/ip_output.c (revision b593bce5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) output module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <Alan.Cox@linux.org>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *		Hirokazu Takahashi, <taka@valinux.co.jp>
18  *
19  *	See ip_input.c for original log
20  *
21  *	Fixes:
22  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
23  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
24  *		Bradford Johnson:	Fix faulty handling of some frames when
25  *					no route is found.
26  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
27  *					(in case if packet not accepted by
28  *					output firewall rules)
29  *		Mike McLagan	:	Routing by source
30  *		Alexey Kuznetsov:	use new route cache
31  *		Andi Kleen:		Fix broken PMTU recovery and remove
32  *					some redundant tests.
33  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
34  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
35  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
36  *					for decreased register pressure on x86
37  *					and more readibility.
38  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
39  *					silently drop skb instead of failing with -EPERM.
40  *		Detlev Wengorz	:	Copy protocol for fragments.
41  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
42  *					datagrams.
43  *		Hirokazu Takahashi:	sendfile() on UDP works now.
44  */
45 
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55 
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65 
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <net/lwtunnel.h>
78 #include <linux/bpf-cgroup.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
84 
85 static int
86 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
87 	    unsigned int mtu,
88 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
89 
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr *iph)
92 {
93 	iph->check = 0;
94 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 }
96 EXPORT_SYMBOL(ip_send_check);
97 
98 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
99 {
100 	struct iphdr *iph = ip_hdr(skb);
101 
102 	iph->tot_len = htons(skb->len);
103 	ip_send_check(iph);
104 
105 	/* if egress device is enslaved to an L3 master device pass the
106 	 * skb to its handler for processing
107 	 */
108 	skb = l3mdev_ip_out(sk, skb);
109 	if (unlikely(!skb))
110 		return 0;
111 
112 	skb->protocol = htons(ETH_P_IP);
113 
114 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
115 		       net, sk, skb, NULL, skb_dst(skb)->dev,
116 		       dst_output);
117 }
118 
119 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
120 {
121 	int err;
122 
123 	err = __ip_local_out(net, sk, skb);
124 	if (likely(err == 1))
125 		err = dst_output(net, sk, skb);
126 
127 	return err;
128 }
129 EXPORT_SYMBOL_GPL(ip_local_out);
130 
131 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
132 {
133 	int ttl = inet->uc_ttl;
134 
135 	if (ttl < 0)
136 		ttl = ip4_dst_hoplimit(dst);
137 	return ttl;
138 }
139 
140 /*
141  *		Add an ip header to a skbuff and send it out.
142  *
143  */
144 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
145 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
146 {
147 	struct inet_sock *inet = inet_sk(sk);
148 	struct rtable *rt = skb_rtable(skb);
149 	struct net *net = sock_net(sk);
150 	struct iphdr *iph;
151 
152 	/* Build the IP header. */
153 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
154 	skb_reset_network_header(skb);
155 	iph = ip_hdr(skb);
156 	iph->version  = 4;
157 	iph->ihl      = 5;
158 	iph->tos      = inet->tos;
159 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
160 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
161 	iph->saddr    = saddr;
162 	iph->protocol = sk->sk_protocol;
163 	if (ip_dont_fragment(sk, &rt->dst)) {
164 		iph->frag_off = htons(IP_DF);
165 		iph->id = 0;
166 	} else {
167 		iph->frag_off = 0;
168 		__ip_select_ident(net, iph, 1);
169 	}
170 
171 	if (opt && opt->opt.optlen) {
172 		iph->ihl += opt->opt.optlen>>2;
173 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
174 	}
175 
176 	skb->priority = sk->sk_priority;
177 	if (!skb->mark)
178 		skb->mark = sk->sk_mark;
179 
180 	/* Send it out. */
181 	return ip_local_out(net, skb->sk, skb);
182 }
183 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
184 
185 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
186 {
187 	struct dst_entry *dst = skb_dst(skb);
188 	struct rtable *rt = (struct rtable *)dst;
189 	struct net_device *dev = dst->dev;
190 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
191 	struct neighbour *neigh;
192 	bool is_v6gw = false;
193 
194 	if (rt->rt_type == RTN_MULTICAST) {
195 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
196 	} else if (rt->rt_type == RTN_BROADCAST)
197 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
198 
199 	/* Be paranoid, rather than too clever. */
200 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
201 		struct sk_buff *skb2;
202 
203 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
204 		if (!skb2) {
205 			kfree_skb(skb);
206 			return -ENOMEM;
207 		}
208 		if (skb->sk)
209 			skb_set_owner_w(skb2, skb->sk);
210 		consume_skb(skb);
211 		skb = skb2;
212 	}
213 
214 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
215 		int res = lwtunnel_xmit(skb);
216 
217 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
218 			return res;
219 	}
220 
221 	rcu_read_lock_bh();
222 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
223 	if (!IS_ERR(neigh)) {
224 		int res;
225 
226 		sock_confirm_neigh(skb, neigh);
227 		/* if crossing protocols, can not use the cached header */
228 		res = neigh_output(neigh, skb, is_v6gw);
229 		rcu_read_unlock_bh();
230 		return res;
231 	}
232 	rcu_read_unlock_bh();
233 
234 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
235 			    __func__);
236 	kfree_skb(skb);
237 	return -EINVAL;
238 }
239 
240 static int ip_finish_output_gso(struct net *net, struct sock *sk,
241 				struct sk_buff *skb, unsigned int mtu)
242 {
243 	netdev_features_t features;
244 	struct sk_buff *segs;
245 	int ret = 0;
246 
247 	/* common case: seglen is <= mtu
248 	 */
249 	if (skb_gso_validate_network_len(skb, mtu))
250 		return ip_finish_output2(net, sk, skb);
251 
252 	/* Slowpath -  GSO segment length exceeds the egress MTU.
253 	 *
254 	 * This can happen in several cases:
255 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
256 	 *  - Forwarding of an skb that arrived on a virtualization interface
257 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
258 	 *    stack.
259 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
260 	 *    interface with a smaller MTU.
261 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
262 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
263 	 *    insufficent MTU.
264 	 */
265 	features = netif_skb_features(skb);
266 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
267 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
268 	if (IS_ERR_OR_NULL(segs)) {
269 		kfree_skb(skb);
270 		return -ENOMEM;
271 	}
272 
273 	consume_skb(skb);
274 
275 	do {
276 		struct sk_buff *nskb = segs->next;
277 		int err;
278 
279 		skb_mark_not_on_list(segs);
280 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
281 
282 		if (err && ret == 0)
283 			ret = err;
284 		segs = nskb;
285 	} while (segs);
286 
287 	return ret;
288 }
289 
290 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
291 {
292 	unsigned int mtu;
293 
294 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
295 	/* Policy lookup after SNAT yielded a new policy */
296 	if (skb_dst(skb)->xfrm) {
297 		IPCB(skb)->flags |= IPSKB_REROUTED;
298 		return dst_output(net, sk, skb);
299 	}
300 #endif
301 	mtu = ip_skb_dst_mtu(sk, skb);
302 	if (skb_is_gso(skb))
303 		return ip_finish_output_gso(net, sk, skb, mtu);
304 
305 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
306 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
307 
308 	return ip_finish_output2(net, sk, skb);
309 }
310 
311 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
312 {
313 	int ret;
314 
315 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
316 	switch (ret) {
317 	case NET_XMIT_SUCCESS:
318 		return __ip_finish_output(net, sk, skb);
319 	case NET_XMIT_CN:
320 		return __ip_finish_output(net, sk, skb) ? : ret;
321 	default:
322 		kfree_skb(skb);
323 		return ret;
324 	}
325 }
326 
327 static int ip_mc_finish_output(struct net *net, struct sock *sk,
328 			       struct sk_buff *skb)
329 {
330 	struct rtable *new_rt;
331 	bool do_cn = false;
332 	int ret, err;
333 
334 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
335 	switch (ret) {
336 	case NET_XMIT_CN:
337 		do_cn = true;
338 		/* fall through */
339 	case NET_XMIT_SUCCESS:
340 		break;
341 	default:
342 		kfree_skb(skb);
343 		return ret;
344 	}
345 
346 	/* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
347 	 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
348 	 * see ipv4_pktinfo_prepare().
349 	 */
350 	new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
351 	if (new_rt) {
352 		new_rt->rt_iif = 0;
353 		skb_dst_drop(skb);
354 		skb_dst_set(skb, &new_rt->dst);
355 	}
356 
357 	err = dev_loopback_xmit(net, sk, skb);
358 	return (do_cn && err) ? ret : err;
359 }
360 
361 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
362 {
363 	struct rtable *rt = skb_rtable(skb);
364 	struct net_device *dev = rt->dst.dev;
365 
366 	/*
367 	 *	If the indicated interface is up and running, send the packet.
368 	 */
369 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
370 
371 	skb->dev = dev;
372 	skb->protocol = htons(ETH_P_IP);
373 
374 	/*
375 	 *	Multicasts are looped back for other local users
376 	 */
377 
378 	if (rt->rt_flags&RTCF_MULTICAST) {
379 		if (sk_mc_loop(sk)
380 #ifdef CONFIG_IP_MROUTE
381 		/* Small optimization: do not loopback not local frames,
382 		   which returned after forwarding; they will be  dropped
383 		   by ip_mr_input in any case.
384 		   Note, that local frames are looped back to be delivered
385 		   to local recipients.
386 
387 		   This check is duplicated in ip_mr_input at the moment.
388 		 */
389 		    &&
390 		    ((rt->rt_flags & RTCF_LOCAL) ||
391 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
392 #endif
393 		   ) {
394 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
395 			if (newskb)
396 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
397 					net, sk, newskb, NULL, newskb->dev,
398 					ip_mc_finish_output);
399 		}
400 
401 		/* Multicasts with ttl 0 must not go beyond the host */
402 
403 		if (ip_hdr(skb)->ttl == 0) {
404 			kfree_skb(skb);
405 			return 0;
406 		}
407 	}
408 
409 	if (rt->rt_flags&RTCF_BROADCAST) {
410 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
411 		if (newskb)
412 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
413 				net, sk, newskb, NULL, newskb->dev,
414 				ip_mc_finish_output);
415 	}
416 
417 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
418 			    net, sk, skb, NULL, skb->dev,
419 			    ip_finish_output,
420 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
421 }
422 
423 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
424 {
425 	struct net_device *dev = skb_dst(skb)->dev;
426 
427 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
428 
429 	skb->dev = dev;
430 	skb->protocol = htons(ETH_P_IP);
431 
432 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
433 			    net, sk, skb, NULL, dev,
434 			    ip_finish_output,
435 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
436 }
437 
438 /*
439  * copy saddr and daddr, possibly using 64bit load/stores
440  * Equivalent to :
441  *   iph->saddr = fl4->saddr;
442  *   iph->daddr = fl4->daddr;
443  */
444 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
445 {
446 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
447 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
448 	memcpy(&iph->saddr, &fl4->saddr,
449 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
450 }
451 
452 /* Note: skb->sk can be different from sk, in case of tunnels */
453 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
454 		    __u8 tos)
455 {
456 	struct inet_sock *inet = inet_sk(sk);
457 	struct net *net = sock_net(sk);
458 	struct ip_options_rcu *inet_opt;
459 	struct flowi4 *fl4;
460 	struct rtable *rt;
461 	struct iphdr *iph;
462 	int res;
463 
464 	/* Skip all of this if the packet is already routed,
465 	 * f.e. by something like SCTP.
466 	 */
467 	rcu_read_lock();
468 	inet_opt = rcu_dereference(inet->inet_opt);
469 	fl4 = &fl->u.ip4;
470 	rt = skb_rtable(skb);
471 	if (rt)
472 		goto packet_routed;
473 
474 	/* Make sure we can route this packet. */
475 	rt = (struct rtable *)__sk_dst_check(sk, 0);
476 	if (!rt) {
477 		__be32 daddr;
478 
479 		/* Use correct destination address if we have options. */
480 		daddr = inet->inet_daddr;
481 		if (inet_opt && inet_opt->opt.srr)
482 			daddr = inet_opt->opt.faddr;
483 
484 		/* If this fails, retransmit mechanism of transport layer will
485 		 * keep trying until route appears or the connection times
486 		 * itself out.
487 		 */
488 		rt = ip_route_output_ports(net, fl4, sk,
489 					   daddr, inet->inet_saddr,
490 					   inet->inet_dport,
491 					   inet->inet_sport,
492 					   sk->sk_protocol,
493 					   RT_CONN_FLAGS_TOS(sk, tos),
494 					   sk->sk_bound_dev_if);
495 		if (IS_ERR(rt))
496 			goto no_route;
497 		sk_setup_caps(sk, &rt->dst);
498 	}
499 	skb_dst_set_noref(skb, &rt->dst);
500 
501 packet_routed:
502 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_gw_family)
503 		goto no_route;
504 
505 	/* OK, we know where to send it, allocate and build IP header. */
506 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
507 	skb_reset_network_header(skb);
508 	iph = ip_hdr(skb);
509 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
510 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
511 		iph->frag_off = htons(IP_DF);
512 	else
513 		iph->frag_off = 0;
514 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
515 	iph->protocol = sk->sk_protocol;
516 	ip_copy_addrs(iph, fl4);
517 
518 	/* Transport layer set skb->h.foo itself. */
519 
520 	if (inet_opt && inet_opt->opt.optlen) {
521 		iph->ihl += inet_opt->opt.optlen >> 2;
522 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
523 	}
524 
525 	ip_select_ident_segs(net, skb, sk,
526 			     skb_shinfo(skb)->gso_segs ?: 1);
527 
528 	/* TODO : should we use skb->sk here instead of sk ? */
529 	skb->priority = sk->sk_priority;
530 	skb->mark = sk->sk_mark;
531 
532 	res = ip_local_out(net, sk, skb);
533 	rcu_read_unlock();
534 	return res;
535 
536 no_route:
537 	rcu_read_unlock();
538 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
539 	kfree_skb(skb);
540 	return -EHOSTUNREACH;
541 }
542 EXPORT_SYMBOL(__ip_queue_xmit);
543 
544 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
545 {
546 	to->pkt_type = from->pkt_type;
547 	to->priority = from->priority;
548 	to->protocol = from->protocol;
549 	to->skb_iif = from->skb_iif;
550 	skb_dst_drop(to);
551 	skb_dst_copy(to, from);
552 	to->dev = from->dev;
553 	to->mark = from->mark;
554 
555 	skb_copy_hash(to, from);
556 
557 #ifdef CONFIG_NET_SCHED
558 	to->tc_index = from->tc_index;
559 #endif
560 	nf_copy(to, from);
561 	skb_ext_copy(to, from);
562 #if IS_ENABLED(CONFIG_IP_VS)
563 	to->ipvs_property = from->ipvs_property;
564 #endif
565 	skb_copy_secmark(to, from);
566 }
567 
568 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
569 		       unsigned int mtu,
570 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
571 {
572 	struct iphdr *iph = ip_hdr(skb);
573 
574 	if ((iph->frag_off & htons(IP_DF)) == 0)
575 		return ip_do_fragment(net, sk, skb, output);
576 
577 	if (unlikely(!skb->ignore_df ||
578 		     (IPCB(skb)->frag_max_size &&
579 		      IPCB(skb)->frag_max_size > mtu))) {
580 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
581 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
582 			  htonl(mtu));
583 		kfree_skb(skb);
584 		return -EMSGSIZE;
585 	}
586 
587 	return ip_do_fragment(net, sk, skb, output);
588 }
589 
590 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
591 		      unsigned int hlen, struct ip_fraglist_iter *iter)
592 {
593 	unsigned int first_len = skb_pagelen(skb);
594 
595 	iter->frag = skb_shinfo(skb)->frag_list;
596 	skb_frag_list_init(skb);
597 
598 	iter->offset = 0;
599 	iter->iph = iph;
600 	iter->hlen = hlen;
601 
602 	skb->data_len = first_len - skb_headlen(skb);
603 	skb->len = first_len;
604 	iph->tot_len = htons(first_len);
605 	iph->frag_off = htons(IP_MF);
606 	ip_send_check(iph);
607 }
608 EXPORT_SYMBOL(ip_fraglist_init);
609 
610 static void ip_fraglist_ipcb_prepare(struct sk_buff *skb,
611 				     struct ip_fraglist_iter *iter)
612 {
613 	struct sk_buff *to = iter->frag;
614 
615 	/* Copy the flags to each fragment. */
616 	IPCB(to)->flags = IPCB(skb)->flags;
617 
618 	if (iter->offset == 0)
619 		ip_options_fragment(to);
620 }
621 
622 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
623 {
624 	unsigned int hlen = iter->hlen;
625 	struct iphdr *iph = iter->iph;
626 	struct sk_buff *frag;
627 
628 	frag = iter->frag;
629 	frag->ip_summed = CHECKSUM_NONE;
630 	skb_reset_transport_header(frag);
631 	__skb_push(frag, hlen);
632 	skb_reset_network_header(frag);
633 	memcpy(skb_network_header(frag), iph, hlen);
634 	iter->iph = ip_hdr(frag);
635 	iph = iter->iph;
636 	iph->tot_len = htons(frag->len);
637 	ip_copy_metadata(frag, skb);
638 	iter->offset += skb->len - hlen;
639 	iph->frag_off = htons(iter->offset >> 3);
640 	if (frag->next)
641 		iph->frag_off |= htons(IP_MF);
642 	/* Ready, complete checksum */
643 	ip_send_check(iph);
644 }
645 EXPORT_SYMBOL(ip_fraglist_prepare);
646 
647 void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
648 		  unsigned int ll_rs, unsigned int mtu,
649 		  struct ip_frag_state *state)
650 {
651 	struct iphdr *iph = ip_hdr(skb);
652 
653 	state->hlen = hlen;
654 	state->ll_rs = ll_rs;
655 	state->mtu = mtu;
656 
657 	state->left = skb->len - hlen;	/* Space per frame */
658 	state->ptr = hlen;		/* Where to start from */
659 
660 	state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
661 	state->not_last_frag = iph->frag_off & htons(IP_MF);
662 }
663 EXPORT_SYMBOL(ip_frag_init);
664 
665 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
666 			 bool first_frag, struct ip_frag_state *state)
667 {
668 	/* Copy the flags to each fragment. */
669 	IPCB(to)->flags = IPCB(from)->flags;
670 
671 	if (IPCB(from)->flags & IPSKB_FRAG_PMTU)
672 		state->iph->frag_off |= htons(IP_DF);
673 
674 	/* ANK: dirty, but effective trick. Upgrade options only if
675 	 * the segment to be fragmented was THE FIRST (otherwise,
676 	 * options are already fixed) and make it ONCE
677 	 * on the initial skb, so that all the following fragments
678 	 * will inherit fixed options.
679 	 */
680 	if (first_frag)
681 		ip_options_fragment(from);
682 }
683 
684 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
685 {
686 	unsigned int len = state->left;
687 	struct sk_buff *skb2;
688 	struct iphdr *iph;
689 
690 	len = state->left;
691 	/* IF: it doesn't fit, use 'mtu' - the data space left */
692 	if (len > state->mtu)
693 		len = state->mtu;
694 	/* IF: we are not sending up to and including the packet end
695 	   then align the next start on an eight byte boundary */
696 	if (len < state->left)	{
697 		len &= ~7;
698 	}
699 
700 	/* Allocate buffer */
701 	skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
702 	if (!skb2)
703 		return ERR_PTR(-ENOMEM);
704 
705 	/*
706 	 *	Set up data on packet
707 	 */
708 
709 	ip_copy_metadata(skb2, skb);
710 	skb_reserve(skb2, state->ll_rs);
711 	skb_put(skb2, len + state->hlen);
712 	skb_reset_network_header(skb2);
713 	skb2->transport_header = skb2->network_header + state->hlen;
714 
715 	/*
716 	 *	Charge the memory for the fragment to any owner
717 	 *	it might possess
718 	 */
719 
720 	if (skb->sk)
721 		skb_set_owner_w(skb2, skb->sk);
722 
723 	/*
724 	 *	Copy the packet header into the new buffer.
725 	 */
726 
727 	skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
728 
729 	/*
730 	 *	Copy a block of the IP datagram.
731 	 */
732 	if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
733 		BUG();
734 	state->left -= len;
735 
736 	/*
737 	 *	Fill in the new header fields.
738 	 */
739 	iph = ip_hdr(skb2);
740 	iph->frag_off = htons((state->offset >> 3));
741 
742 	/*
743 	 *	Added AC : If we are fragmenting a fragment that's not the
744 	 *		   last fragment then keep MF on each bit
745 	 */
746 	if (state->left > 0 || state->not_last_frag)
747 		iph->frag_off |= htons(IP_MF);
748 	state->ptr += len;
749 	state->offset += len;
750 
751 	iph->tot_len = htons(len + state->hlen);
752 
753 	ip_send_check(iph);
754 
755 	return skb2;
756 }
757 EXPORT_SYMBOL(ip_frag_next);
758 
759 /*
760  *	This IP datagram is too large to be sent in one piece.  Break it up into
761  *	smaller pieces (each of size equal to IP header plus
762  *	a block of the data of the original IP data part) that will yet fit in a
763  *	single device frame, and queue such a frame for sending.
764  */
765 
766 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
767 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
768 {
769 	struct iphdr *iph;
770 	struct sk_buff *skb2;
771 	struct rtable *rt = skb_rtable(skb);
772 	unsigned int mtu, hlen, ll_rs;
773 	struct ip_fraglist_iter iter;
774 	struct ip_frag_state state;
775 	int err = 0;
776 
777 	/* for offloaded checksums cleanup checksum before fragmentation */
778 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
779 	    (err = skb_checksum_help(skb)))
780 		goto fail;
781 
782 	/*
783 	 *	Point into the IP datagram header.
784 	 */
785 
786 	iph = ip_hdr(skb);
787 
788 	mtu = ip_skb_dst_mtu(sk, skb);
789 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
790 		mtu = IPCB(skb)->frag_max_size;
791 
792 	/*
793 	 *	Setup starting values.
794 	 */
795 
796 	hlen = iph->ihl * 4;
797 	mtu = mtu - hlen;	/* Size of data space */
798 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
799 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
800 
801 	/* When frag_list is given, use it. First, check its validity:
802 	 * some transformers could create wrong frag_list or break existing
803 	 * one, it is not prohibited. In this case fall back to copying.
804 	 *
805 	 * LATER: this step can be merged to real generation of fragments,
806 	 * we can switch to copy when see the first bad fragment.
807 	 */
808 	if (skb_has_frag_list(skb)) {
809 		struct sk_buff *frag, *frag2;
810 		unsigned int first_len = skb_pagelen(skb);
811 
812 		if (first_len - hlen > mtu ||
813 		    ((first_len - hlen) & 7) ||
814 		    ip_is_fragment(iph) ||
815 		    skb_cloned(skb) ||
816 		    skb_headroom(skb) < ll_rs)
817 			goto slow_path;
818 
819 		skb_walk_frags(skb, frag) {
820 			/* Correct geometry. */
821 			if (frag->len > mtu ||
822 			    ((frag->len & 7) && frag->next) ||
823 			    skb_headroom(frag) < hlen + ll_rs)
824 				goto slow_path_clean;
825 
826 			/* Partially cloned skb? */
827 			if (skb_shared(frag))
828 				goto slow_path_clean;
829 
830 			BUG_ON(frag->sk);
831 			if (skb->sk) {
832 				frag->sk = skb->sk;
833 				frag->destructor = sock_wfree;
834 			}
835 			skb->truesize -= frag->truesize;
836 		}
837 
838 		/* Everything is OK. Generate! */
839 		ip_fraglist_init(skb, iph, hlen, &iter);
840 
841 		for (;;) {
842 			/* Prepare header of the next frame,
843 			 * before previous one went down. */
844 			if (iter.frag) {
845 				ip_fraglist_ipcb_prepare(skb, &iter);
846 				ip_fraglist_prepare(skb, &iter);
847 			}
848 
849 			err = output(net, sk, skb);
850 
851 			if (!err)
852 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
853 			if (err || !iter.frag)
854 				break;
855 
856 			skb = ip_fraglist_next(&iter);
857 		}
858 
859 		if (err == 0) {
860 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
861 			return 0;
862 		}
863 
864 		kfree_skb_list(iter.frag);
865 
866 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
867 		return err;
868 
869 slow_path_clean:
870 		skb_walk_frags(skb, frag2) {
871 			if (frag2 == frag)
872 				break;
873 			frag2->sk = NULL;
874 			frag2->destructor = NULL;
875 			skb->truesize += frag2->truesize;
876 		}
877 	}
878 
879 slow_path:
880 	/*
881 	 *	Fragment the datagram.
882 	 */
883 
884 	ip_frag_init(skb, hlen, ll_rs, mtu, &state);
885 
886 	/*
887 	 *	Keep copying data until we run out.
888 	 */
889 
890 	while (state.left > 0) {
891 		bool first_frag = (state.offset == 0);
892 
893 		skb2 = ip_frag_next(skb, &state);
894 		if (IS_ERR(skb2)) {
895 			err = PTR_ERR(skb2);
896 			goto fail;
897 		}
898 		ip_frag_ipcb(skb, skb2, first_frag, &state);
899 
900 		/*
901 		 *	Put this fragment into the sending queue.
902 		 */
903 		err = output(net, sk, skb2);
904 		if (err)
905 			goto fail;
906 
907 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
908 	}
909 	consume_skb(skb);
910 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
911 	return err;
912 
913 fail:
914 	kfree_skb(skb);
915 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
916 	return err;
917 }
918 EXPORT_SYMBOL(ip_do_fragment);
919 
920 int
921 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
922 {
923 	struct msghdr *msg = from;
924 
925 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
926 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
927 			return -EFAULT;
928 	} else {
929 		__wsum csum = 0;
930 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
931 			return -EFAULT;
932 		skb->csum = csum_block_add(skb->csum, csum, odd);
933 	}
934 	return 0;
935 }
936 EXPORT_SYMBOL(ip_generic_getfrag);
937 
938 static inline __wsum
939 csum_page(struct page *page, int offset, int copy)
940 {
941 	char *kaddr;
942 	__wsum csum;
943 	kaddr = kmap(page);
944 	csum = csum_partial(kaddr + offset, copy, 0);
945 	kunmap(page);
946 	return csum;
947 }
948 
949 static int __ip_append_data(struct sock *sk,
950 			    struct flowi4 *fl4,
951 			    struct sk_buff_head *queue,
952 			    struct inet_cork *cork,
953 			    struct page_frag *pfrag,
954 			    int getfrag(void *from, char *to, int offset,
955 					int len, int odd, struct sk_buff *skb),
956 			    void *from, int length, int transhdrlen,
957 			    unsigned int flags)
958 {
959 	struct inet_sock *inet = inet_sk(sk);
960 	struct ubuf_info *uarg = NULL;
961 	struct sk_buff *skb;
962 
963 	struct ip_options *opt = cork->opt;
964 	int hh_len;
965 	int exthdrlen;
966 	int mtu;
967 	int copy;
968 	int err;
969 	int offset = 0;
970 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
971 	int csummode = CHECKSUM_NONE;
972 	struct rtable *rt = (struct rtable *)cork->dst;
973 	unsigned int wmem_alloc_delta = 0;
974 	bool paged, extra_uref = false;
975 	u32 tskey = 0;
976 
977 	skb = skb_peek_tail(queue);
978 
979 	exthdrlen = !skb ? rt->dst.header_len : 0;
980 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
981 	paged = !!cork->gso_size;
982 
983 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
984 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
985 		tskey = sk->sk_tskey++;
986 
987 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
988 
989 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
990 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
991 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
992 
993 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
994 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
995 			       mtu - (opt ? opt->optlen : 0));
996 		return -EMSGSIZE;
997 	}
998 
999 	/*
1000 	 * transhdrlen > 0 means that this is the first fragment and we wish
1001 	 * it won't be fragmented in the future.
1002 	 */
1003 	if (transhdrlen &&
1004 	    length + fragheaderlen <= mtu &&
1005 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1006 	    (!(flags & MSG_MORE) || cork->gso_size) &&
1007 	    (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1008 		csummode = CHECKSUM_PARTIAL;
1009 
1010 	if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
1011 		uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
1012 		if (!uarg)
1013 			return -ENOBUFS;
1014 		extra_uref = !skb_zcopy(skb);	/* only ref on new uarg */
1015 		if (rt->dst.dev->features & NETIF_F_SG &&
1016 		    csummode == CHECKSUM_PARTIAL) {
1017 			paged = true;
1018 		} else {
1019 			uarg->zerocopy = 0;
1020 			skb_zcopy_set(skb, uarg, &extra_uref);
1021 		}
1022 	}
1023 
1024 	cork->length += length;
1025 
1026 	/* So, what's going on in the loop below?
1027 	 *
1028 	 * We use calculated fragment length to generate chained skb,
1029 	 * each of segments is IP fragment ready for sending to network after
1030 	 * adding appropriate IP header.
1031 	 */
1032 
1033 	if (!skb)
1034 		goto alloc_new_skb;
1035 
1036 	while (length > 0) {
1037 		/* Check if the remaining data fits into current packet. */
1038 		copy = mtu - skb->len;
1039 		if (copy < length)
1040 			copy = maxfraglen - skb->len;
1041 		if (copy <= 0) {
1042 			char *data;
1043 			unsigned int datalen;
1044 			unsigned int fraglen;
1045 			unsigned int fraggap;
1046 			unsigned int alloclen;
1047 			unsigned int pagedlen;
1048 			struct sk_buff *skb_prev;
1049 alloc_new_skb:
1050 			skb_prev = skb;
1051 			if (skb_prev)
1052 				fraggap = skb_prev->len - maxfraglen;
1053 			else
1054 				fraggap = 0;
1055 
1056 			/*
1057 			 * If remaining data exceeds the mtu,
1058 			 * we know we need more fragment(s).
1059 			 */
1060 			datalen = length + fraggap;
1061 			if (datalen > mtu - fragheaderlen)
1062 				datalen = maxfraglen - fragheaderlen;
1063 			fraglen = datalen + fragheaderlen;
1064 			pagedlen = 0;
1065 
1066 			if ((flags & MSG_MORE) &&
1067 			    !(rt->dst.dev->features&NETIF_F_SG))
1068 				alloclen = mtu;
1069 			else if (!paged)
1070 				alloclen = fraglen;
1071 			else {
1072 				alloclen = min_t(int, fraglen, MAX_HEADER);
1073 				pagedlen = fraglen - alloclen;
1074 			}
1075 
1076 			alloclen += exthdrlen;
1077 
1078 			/* The last fragment gets additional space at tail.
1079 			 * Note, with MSG_MORE we overallocate on fragments,
1080 			 * because we have no idea what fragment will be
1081 			 * the last.
1082 			 */
1083 			if (datalen == length + fraggap)
1084 				alloclen += rt->dst.trailer_len;
1085 
1086 			if (transhdrlen) {
1087 				skb = sock_alloc_send_skb(sk,
1088 						alloclen + hh_len + 15,
1089 						(flags & MSG_DONTWAIT), &err);
1090 			} else {
1091 				skb = NULL;
1092 				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1093 				    2 * sk->sk_sndbuf)
1094 					skb = alloc_skb(alloclen + hh_len + 15,
1095 							sk->sk_allocation);
1096 				if (unlikely(!skb))
1097 					err = -ENOBUFS;
1098 			}
1099 			if (!skb)
1100 				goto error;
1101 
1102 			/*
1103 			 *	Fill in the control structures
1104 			 */
1105 			skb->ip_summed = csummode;
1106 			skb->csum = 0;
1107 			skb_reserve(skb, hh_len);
1108 
1109 			/*
1110 			 *	Find where to start putting bytes.
1111 			 */
1112 			data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1113 			skb_set_network_header(skb, exthdrlen);
1114 			skb->transport_header = (skb->network_header +
1115 						 fragheaderlen);
1116 			data += fragheaderlen + exthdrlen;
1117 
1118 			if (fraggap) {
1119 				skb->csum = skb_copy_and_csum_bits(
1120 					skb_prev, maxfraglen,
1121 					data + transhdrlen, fraggap, 0);
1122 				skb_prev->csum = csum_sub(skb_prev->csum,
1123 							  skb->csum);
1124 				data += fraggap;
1125 				pskb_trim_unique(skb_prev, maxfraglen);
1126 			}
1127 
1128 			copy = datalen - transhdrlen - fraggap - pagedlen;
1129 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1130 				err = -EFAULT;
1131 				kfree_skb(skb);
1132 				goto error;
1133 			}
1134 
1135 			offset += copy;
1136 			length -= copy + transhdrlen;
1137 			transhdrlen = 0;
1138 			exthdrlen = 0;
1139 			csummode = CHECKSUM_NONE;
1140 
1141 			/* only the initial fragment is time stamped */
1142 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1143 			cork->tx_flags = 0;
1144 			skb_shinfo(skb)->tskey = tskey;
1145 			tskey = 0;
1146 			skb_zcopy_set(skb, uarg, &extra_uref);
1147 
1148 			if ((flags & MSG_CONFIRM) && !skb_prev)
1149 				skb_set_dst_pending_confirm(skb, 1);
1150 
1151 			/*
1152 			 * Put the packet on the pending queue.
1153 			 */
1154 			if (!skb->destructor) {
1155 				skb->destructor = sock_wfree;
1156 				skb->sk = sk;
1157 				wmem_alloc_delta += skb->truesize;
1158 			}
1159 			__skb_queue_tail(queue, skb);
1160 			continue;
1161 		}
1162 
1163 		if (copy > length)
1164 			copy = length;
1165 
1166 		if (!(rt->dst.dev->features&NETIF_F_SG) &&
1167 		    skb_tailroom(skb) >= copy) {
1168 			unsigned int off;
1169 
1170 			off = skb->len;
1171 			if (getfrag(from, skb_put(skb, copy),
1172 					offset, copy, off, skb) < 0) {
1173 				__skb_trim(skb, off);
1174 				err = -EFAULT;
1175 				goto error;
1176 			}
1177 		} else if (!uarg || !uarg->zerocopy) {
1178 			int i = skb_shinfo(skb)->nr_frags;
1179 
1180 			err = -ENOMEM;
1181 			if (!sk_page_frag_refill(sk, pfrag))
1182 				goto error;
1183 
1184 			if (!skb_can_coalesce(skb, i, pfrag->page,
1185 					      pfrag->offset)) {
1186 				err = -EMSGSIZE;
1187 				if (i == MAX_SKB_FRAGS)
1188 					goto error;
1189 
1190 				__skb_fill_page_desc(skb, i, pfrag->page,
1191 						     pfrag->offset, 0);
1192 				skb_shinfo(skb)->nr_frags = ++i;
1193 				get_page(pfrag->page);
1194 			}
1195 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1196 			if (getfrag(from,
1197 				    page_address(pfrag->page) + pfrag->offset,
1198 				    offset, copy, skb->len, skb) < 0)
1199 				goto error_efault;
1200 
1201 			pfrag->offset += copy;
1202 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1203 			skb->len += copy;
1204 			skb->data_len += copy;
1205 			skb->truesize += copy;
1206 			wmem_alloc_delta += copy;
1207 		} else {
1208 			err = skb_zerocopy_iter_dgram(skb, from, copy);
1209 			if (err < 0)
1210 				goto error;
1211 		}
1212 		offset += copy;
1213 		length -= copy;
1214 	}
1215 
1216 	if (wmem_alloc_delta)
1217 		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1218 	return 0;
1219 
1220 error_efault:
1221 	err = -EFAULT;
1222 error:
1223 	if (uarg)
1224 		sock_zerocopy_put_abort(uarg, extra_uref);
1225 	cork->length -= length;
1226 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1227 	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1228 	return err;
1229 }
1230 
1231 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1232 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1233 {
1234 	struct ip_options_rcu *opt;
1235 	struct rtable *rt;
1236 
1237 	rt = *rtp;
1238 	if (unlikely(!rt))
1239 		return -EFAULT;
1240 
1241 	/*
1242 	 * setup for corking.
1243 	 */
1244 	opt = ipc->opt;
1245 	if (opt) {
1246 		if (!cork->opt) {
1247 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1248 					    sk->sk_allocation);
1249 			if (unlikely(!cork->opt))
1250 				return -ENOBUFS;
1251 		}
1252 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1253 		cork->flags |= IPCORK_OPT;
1254 		cork->addr = ipc->addr;
1255 	}
1256 
1257 	/*
1258 	 * We steal reference to this route, caller should not release it
1259 	 */
1260 	*rtp = NULL;
1261 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1262 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1263 
1264 	cork->gso_size = ipc->gso_size;
1265 	cork->dst = &rt->dst;
1266 	cork->length = 0;
1267 	cork->ttl = ipc->ttl;
1268 	cork->tos = ipc->tos;
1269 	cork->priority = ipc->priority;
1270 	cork->transmit_time = ipc->sockc.transmit_time;
1271 	cork->tx_flags = 0;
1272 	sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1273 
1274 	return 0;
1275 }
1276 
1277 /*
1278  *	ip_append_data() and ip_append_page() can make one large IP datagram
1279  *	from many pieces of data. Each pieces will be holded on the socket
1280  *	until ip_push_pending_frames() is called. Each piece can be a page
1281  *	or non-page data.
1282  *
1283  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1284  *	this interface potentially.
1285  *
1286  *	LATER: length must be adjusted by pad at tail, when it is required.
1287  */
1288 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1289 		   int getfrag(void *from, char *to, int offset, int len,
1290 			       int odd, struct sk_buff *skb),
1291 		   void *from, int length, int transhdrlen,
1292 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1293 		   unsigned int flags)
1294 {
1295 	struct inet_sock *inet = inet_sk(sk);
1296 	int err;
1297 
1298 	if (flags&MSG_PROBE)
1299 		return 0;
1300 
1301 	if (skb_queue_empty(&sk->sk_write_queue)) {
1302 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1303 		if (err)
1304 			return err;
1305 	} else {
1306 		transhdrlen = 0;
1307 	}
1308 
1309 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1310 				sk_page_frag(sk), getfrag,
1311 				from, length, transhdrlen, flags);
1312 }
1313 
1314 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1315 		       int offset, size_t size, int flags)
1316 {
1317 	struct inet_sock *inet = inet_sk(sk);
1318 	struct sk_buff *skb;
1319 	struct rtable *rt;
1320 	struct ip_options *opt = NULL;
1321 	struct inet_cork *cork;
1322 	int hh_len;
1323 	int mtu;
1324 	int len;
1325 	int err;
1326 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1327 
1328 	if (inet->hdrincl)
1329 		return -EPERM;
1330 
1331 	if (flags&MSG_PROBE)
1332 		return 0;
1333 
1334 	if (skb_queue_empty(&sk->sk_write_queue))
1335 		return -EINVAL;
1336 
1337 	cork = &inet->cork.base;
1338 	rt = (struct rtable *)cork->dst;
1339 	if (cork->flags & IPCORK_OPT)
1340 		opt = cork->opt;
1341 
1342 	if (!(rt->dst.dev->features&NETIF_F_SG))
1343 		return -EOPNOTSUPP;
1344 
1345 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1346 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1347 
1348 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1349 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1350 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1351 
1352 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1353 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1354 			       mtu - (opt ? opt->optlen : 0));
1355 		return -EMSGSIZE;
1356 	}
1357 
1358 	skb = skb_peek_tail(&sk->sk_write_queue);
1359 	if (!skb)
1360 		return -EINVAL;
1361 
1362 	cork->length += size;
1363 
1364 	while (size > 0) {
1365 		/* Check if the remaining data fits into current packet. */
1366 		len = mtu - skb->len;
1367 		if (len < size)
1368 			len = maxfraglen - skb->len;
1369 
1370 		if (len <= 0) {
1371 			struct sk_buff *skb_prev;
1372 			int alloclen;
1373 
1374 			skb_prev = skb;
1375 			fraggap = skb_prev->len - maxfraglen;
1376 
1377 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1378 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1379 			if (unlikely(!skb)) {
1380 				err = -ENOBUFS;
1381 				goto error;
1382 			}
1383 
1384 			/*
1385 			 *	Fill in the control structures
1386 			 */
1387 			skb->ip_summed = CHECKSUM_NONE;
1388 			skb->csum = 0;
1389 			skb_reserve(skb, hh_len);
1390 
1391 			/*
1392 			 *	Find where to start putting bytes.
1393 			 */
1394 			skb_put(skb, fragheaderlen + fraggap);
1395 			skb_reset_network_header(skb);
1396 			skb->transport_header = (skb->network_header +
1397 						 fragheaderlen);
1398 			if (fraggap) {
1399 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1400 								   maxfraglen,
1401 						    skb_transport_header(skb),
1402 								   fraggap, 0);
1403 				skb_prev->csum = csum_sub(skb_prev->csum,
1404 							  skb->csum);
1405 				pskb_trim_unique(skb_prev, maxfraglen);
1406 			}
1407 
1408 			/*
1409 			 * Put the packet on the pending queue.
1410 			 */
1411 			__skb_queue_tail(&sk->sk_write_queue, skb);
1412 			continue;
1413 		}
1414 
1415 		if (len > size)
1416 			len = size;
1417 
1418 		if (skb_append_pagefrags(skb, page, offset, len)) {
1419 			err = -EMSGSIZE;
1420 			goto error;
1421 		}
1422 
1423 		if (skb->ip_summed == CHECKSUM_NONE) {
1424 			__wsum csum;
1425 			csum = csum_page(page, offset, len);
1426 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1427 		}
1428 
1429 		skb->len += len;
1430 		skb->data_len += len;
1431 		skb->truesize += len;
1432 		refcount_add(len, &sk->sk_wmem_alloc);
1433 		offset += len;
1434 		size -= len;
1435 	}
1436 	return 0;
1437 
1438 error:
1439 	cork->length -= size;
1440 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1441 	return err;
1442 }
1443 
1444 static void ip_cork_release(struct inet_cork *cork)
1445 {
1446 	cork->flags &= ~IPCORK_OPT;
1447 	kfree(cork->opt);
1448 	cork->opt = NULL;
1449 	dst_release(cork->dst);
1450 	cork->dst = NULL;
1451 }
1452 
1453 /*
1454  *	Combined all pending IP fragments on the socket as one IP datagram
1455  *	and push them out.
1456  */
1457 struct sk_buff *__ip_make_skb(struct sock *sk,
1458 			      struct flowi4 *fl4,
1459 			      struct sk_buff_head *queue,
1460 			      struct inet_cork *cork)
1461 {
1462 	struct sk_buff *skb, *tmp_skb;
1463 	struct sk_buff **tail_skb;
1464 	struct inet_sock *inet = inet_sk(sk);
1465 	struct net *net = sock_net(sk);
1466 	struct ip_options *opt = NULL;
1467 	struct rtable *rt = (struct rtable *)cork->dst;
1468 	struct iphdr *iph;
1469 	__be16 df = 0;
1470 	__u8 ttl;
1471 
1472 	skb = __skb_dequeue(queue);
1473 	if (!skb)
1474 		goto out;
1475 	tail_skb = &(skb_shinfo(skb)->frag_list);
1476 
1477 	/* move skb->data to ip header from ext header */
1478 	if (skb->data < skb_network_header(skb))
1479 		__skb_pull(skb, skb_network_offset(skb));
1480 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1481 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1482 		*tail_skb = tmp_skb;
1483 		tail_skb = &(tmp_skb->next);
1484 		skb->len += tmp_skb->len;
1485 		skb->data_len += tmp_skb->len;
1486 		skb->truesize += tmp_skb->truesize;
1487 		tmp_skb->destructor = NULL;
1488 		tmp_skb->sk = NULL;
1489 	}
1490 
1491 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1492 	 * to fragment the frame generated here. No matter, what transforms
1493 	 * how transforms change size of the packet, it will come out.
1494 	 */
1495 	skb->ignore_df = ip_sk_ignore_df(sk);
1496 
1497 	/* DF bit is set when we want to see DF on outgoing frames.
1498 	 * If ignore_df is set too, we still allow to fragment this frame
1499 	 * locally. */
1500 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1501 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1502 	    (skb->len <= dst_mtu(&rt->dst) &&
1503 	     ip_dont_fragment(sk, &rt->dst)))
1504 		df = htons(IP_DF);
1505 
1506 	if (cork->flags & IPCORK_OPT)
1507 		opt = cork->opt;
1508 
1509 	if (cork->ttl != 0)
1510 		ttl = cork->ttl;
1511 	else if (rt->rt_type == RTN_MULTICAST)
1512 		ttl = inet->mc_ttl;
1513 	else
1514 		ttl = ip_select_ttl(inet, &rt->dst);
1515 
1516 	iph = ip_hdr(skb);
1517 	iph->version = 4;
1518 	iph->ihl = 5;
1519 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1520 	iph->frag_off = df;
1521 	iph->ttl = ttl;
1522 	iph->protocol = sk->sk_protocol;
1523 	ip_copy_addrs(iph, fl4);
1524 	ip_select_ident(net, skb, sk);
1525 
1526 	if (opt) {
1527 		iph->ihl += opt->optlen>>2;
1528 		ip_options_build(skb, opt, cork->addr, rt, 0);
1529 	}
1530 
1531 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1532 	skb->mark = sk->sk_mark;
1533 	skb->tstamp = cork->transmit_time;
1534 	/*
1535 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1536 	 * on dst refcount
1537 	 */
1538 	cork->dst = NULL;
1539 	skb_dst_set(skb, &rt->dst);
1540 
1541 	if (iph->protocol == IPPROTO_ICMP)
1542 		icmp_out_count(net, ((struct icmphdr *)
1543 			skb_transport_header(skb))->type);
1544 
1545 	ip_cork_release(cork);
1546 out:
1547 	return skb;
1548 }
1549 
1550 int ip_send_skb(struct net *net, struct sk_buff *skb)
1551 {
1552 	int err;
1553 
1554 	err = ip_local_out(net, skb->sk, skb);
1555 	if (err) {
1556 		if (err > 0)
1557 			err = net_xmit_errno(err);
1558 		if (err)
1559 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1560 	}
1561 
1562 	return err;
1563 }
1564 
1565 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1566 {
1567 	struct sk_buff *skb;
1568 
1569 	skb = ip_finish_skb(sk, fl4);
1570 	if (!skb)
1571 		return 0;
1572 
1573 	/* Netfilter gets whole the not fragmented skb. */
1574 	return ip_send_skb(sock_net(sk), skb);
1575 }
1576 
1577 /*
1578  *	Throw away all pending data on the socket.
1579  */
1580 static void __ip_flush_pending_frames(struct sock *sk,
1581 				      struct sk_buff_head *queue,
1582 				      struct inet_cork *cork)
1583 {
1584 	struct sk_buff *skb;
1585 
1586 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1587 		kfree_skb(skb);
1588 
1589 	ip_cork_release(cork);
1590 }
1591 
1592 void ip_flush_pending_frames(struct sock *sk)
1593 {
1594 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1595 }
1596 
1597 struct sk_buff *ip_make_skb(struct sock *sk,
1598 			    struct flowi4 *fl4,
1599 			    int getfrag(void *from, char *to, int offset,
1600 					int len, int odd, struct sk_buff *skb),
1601 			    void *from, int length, int transhdrlen,
1602 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1603 			    struct inet_cork *cork, unsigned int flags)
1604 {
1605 	struct sk_buff_head queue;
1606 	int err;
1607 
1608 	if (flags & MSG_PROBE)
1609 		return NULL;
1610 
1611 	__skb_queue_head_init(&queue);
1612 
1613 	cork->flags = 0;
1614 	cork->addr = 0;
1615 	cork->opt = NULL;
1616 	err = ip_setup_cork(sk, cork, ipc, rtp);
1617 	if (err)
1618 		return ERR_PTR(err);
1619 
1620 	err = __ip_append_data(sk, fl4, &queue, cork,
1621 			       &current->task_frag, getfrag,
1622 			       from, length, transhdrlen, flags);
1623 	if (err) {
1624 		__ip_flush_pending_frames(sk, &queue, cork);
1625 		return ERR_PTR(err);
1626 	}
1627 
1628 	return __ip_make_skb(sk, fl4, &queue, cork);
1629 }
1630 
1631 /*
1632  *	Fetch data from kernel space and fill in checksum if needed.
1633  */
1634 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1635 			      int len, int odd, struct sk_buff *skb)
1636 {
1637 	__wsum csum;
1638 
1639 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1640 	skb->csum = csum_block_add(skb->csum, csum, odd);
1641 	return 0;
1642 }
1643 
1644 /*
1645  *	Generic function to send a packet as reply to another packet.
1646  *	Used to send some TCP resets/acks so far.
1647  */
1648 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1649 			   const struct ip_options *sopt,
1650 			   __be32 daddr, __be32 saddr,
1651 			   const struct ip_reply_arg *arg,
1652 			   unsigned int len, u64 transmit_time)
1653 {
1654 	struct ip_options_data replyopts;
1655 	struct ipcm_cookie ipc;
1656 	struct flowi4 fl4;
1657 	struct rtable *rt = skb_rtable(skb);
1658 	struct net *net = sock_net(sk);
1659 	struct sk_buff *nskb;
1660 	int err;
1661 	int oif;
1662 
1663 	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1664 		return;
1665 
1666 	ipcm_init(&ipc);
1667 	ipc.addr = daddr;
1668 	ipc.sockc.transmit_time = transmit_time;
1669 
1670 	if (replyopts.opt.opt.optlen) {
1671 		ipc.opt = &replyopts.opt;
1672 
1673 		if (replyopts.opt.opt.srr)
1674 			daddr = replyopts.opt.opt.faddr;
1675 	}
1676 
1677 	oif = arg->bound_dev_if;
1678 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1679 		oif = skb->skb_iif;
1680 
1681 	flowi4_init_output(&fl4, oif,
1682 			   IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1683 			   RT_TOS(arg->tos),
1684 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1685 			   ip_reply_arg_flowi_flags(arg),
1686 			   daddr, saddr,
1687 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1688 			   arg->uid);
1689 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1690 	rt = ip_route_output_key(net, &fl4);
1691 	if (IS_ERR(rt))
1692 		return;
1693 
1694 	inet_sk(sk)->tos = arg->tos;
1695 
1696 	sk->sk_priority = skb->priority;
1697 	sk->sk_protocol = ip_hdr(skb)->protocol;
1698 	sk->sk_bound_dev_if = arg->bound_dev_if;
1699 	sk->sk_sndbuf = sysctl_wmem_default;
1700 	sk->sk_mark = fl4.flowi4_mark;
1701 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1702 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1703 	if (unlikely(err)) {
1704 		ip_flush_pending_frames(sk);
1705 		goto out;
1706 	}
1707 
1708 	nskb = skb_peek(&sk->sk_write_queue);
1709 	if (nskb) {
1710 		if (arg->csumoffset >= 0)
1711 			*((__sum16 *)skb_transport_header(nskb) +
1712 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1713 								arg->csum));
1714 		nskb->ip_summed = CHECKSUM_NONE;
1715 		ip_push_pending_frames(sk, &fl4);
1716 	}
1717 out:
1718 	ip_rt_put(rt);
1719 }
1720 
1721 void __init ip_init(void)
1722 {
1723 	ip_rt_init();
1724 	inet_initpeers();
1725 
1726 #if defined(CONFIG_IP_MULTICAST)
1727 	igmp_mc_init();
1728 #endif
1729 }
1730