1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The Internet Protocol (IP) output module. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Donald Becker, <becker@super.org> 12 * Alan Cox, <Alan.Cox@linux.org> 13 * Richard Underwood 14 * Stefan Becker, <stefanb@yello.ping.de> 15 * Jorge Cwik, <jorge@laser.satlink.net> 16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 17 * Hirokazu Takahashi, <taka@valinux.co.jp> 18 * 19 * See ip_input.c for original log 20 * 21 * Fixes: 22 * Alan Cox : Missing nonblock feature in ip_build_xmit. 23 * Mike Kilburn : htons() missing in ip_build_xmit. 24 * Bradford Johnson: Fix faulty handling of some frames when 25 * no route is found. 26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 27 * (in case if packet not accepted by 28 * output firewall rules) 29 * Mike McLagan : Routing by source 30 * Alexey Kuznetsov: use new route cache 31 * Andi Kleen: Fix broken PMTU recovery and remove 32 * some redundant tests. 33 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 34 * Andi Kleen : Replace ip_reply with ip_send_reply. 35 * Andi Kleen : Split fast and slow ip_build_xmit path 36 * for decreased register pressure on x86 37 * and more readibility. 38 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 39 * silently drop skb instead of failing with -EPERM. 40 * Detlev Wengorz : Copy protocol for fragments. 41 * Hirokazu Takahashi: HW checksumming for outgoing UDP 42 * datagrams. 43 * Hirokazu Takahashi: sendfile() on UDP works now. 44 */ 45 46 #include <linux/uaccess.h> 47 #include <linux/module.h> 48 #include <linux/types.h> 49 #include <linux/kernel.h> 50 #include <linux/mm.h> 51 #include <linux/string.h> 52 #include <linux/errno.h> 53 #include <linux/highmem.h> 54 #include <linux/slab.h> 55 56 #include <linux/socket.h> 57 #include <linux/sockios.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/etherdevice.h> 62 #include <linux/proc_fs.h> 63 #include <linux/stat.h> 64 #include <linux/init.h> 65 66 #include <net/snmp.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <net/route.h> 70 #include <net/xfrm.h> 71 #include <linux/skbuff.h> 72 #include <net/sock.h> 73 #include <net/arp.h> 74 #include <net/icmp.h> 75 #include <net/checksum.h> 76 #include <net/inetpeer.h> 77 #include <net/inet_ecn.h> 78 #include <net/lwtunnel.h> 79 #include <linux/bpf-cgroup.h> 80 #include <linux/igmp.h> 81 #include <linux/netfilter_ipv4.h> 82 #include <linux/netfilter_bridge.h> 83 #include <linux/netlink.h> 84 #include <linux/tcp.h> 85 86 static int 87 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 88 unsigned int mtu, 89 int (*output)(struct net *, struct sock *, struct sk_buff *)); 90 91 /* Generate a checksum for an outgoing IP datagram. */ 92 void ip_send_check(struct iphdr *iph) 93 { 94 iph->check = 0; 95 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 96 } 97 EXPORT_SYMBOL(ip_send_check); 98 99 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 100 { 101 struct iphdr *iph = ip_hdr(skb); 102 103 iph->tot_len = htons(skb->len); 104 ip_send_check(iph); 105 106 /* if egress device is enslaved to an L3 master device pass the 107 * skb to its handler for processing 108 */ 109 skb = l3mdev_ip_out(sk, skb); 110 if (unlikely(!skb)) 111 return 0; 112 113 skb->protocol = htons(ETH_P_IP); 114 115 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 116 net, sk, skb, NULL, skb_dst(skb)->dev, 117 dst_output); 118 } 119 120 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 121 { 122 int err; 123 124 err = __ip_local_out(net, sk, skb); 125 if (likely(err == 1)) 126 err = dst_output(net, sk, skb); 127 128 return err; 129 } 130 EXPORT_SYMBOL_GPL(ip_local_out); 131 132 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 133 { 134 int ttl = inet->uc_ttl; 135 136 if (ttl < 0) 137 ttl = ip4_dst_hoplimit(dst); 138 return ttl; 139 } 140 141 /* 142 * Add an ip header to a skbuff and send it out. 143 * 144 */ 145 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 146 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 147 { 148 struct inet_sock *inet = inet_sk(sk); 149 struct rtable *rt = skb_rtable(skb); 150 struct net *net = sock_net(sk); 151 struct iphdr *iph; 152 153 /* Build the IP header. */ 154 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 155 skb_reset_network_header(skb); 156 iph = ip_hdr(skb); 157 iph->version = 4; 158 iph->ihl = 5; 159 iph->tos = inet->tos; 160 iph->ttl = ip_select_ttl(inet, &rt->dst); 161 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 162 iph->saddr = saddr; 163 iph->protocol = sk->sk_protocol; 164 if (ip_dont_fragment(sk, &rt->dst)) { 165 iph->frag_off = htons(IP_DF); 166 iph->id = 0; 167 } else { 168 iph->frag_off = 0; 169 __ip_select_ident(net, iph, 1); 170 } 171 172 if (opt && opt->opt.optlen) { 173 iph->ihl += opt->opt.optlen>>2; 174 ip_options_build(skb, &opt->opt, daddr, rt, 0); 175 } 176 177 skb->priority = sk->sk_priority; 178 if (!skb->mark) 179 skb->mark = sk->sk_mark; 180 181 /* Send it out. */ 182 return ip_local_out(net, skb->sk, skb); 183 } 184 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 185 186 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 187 { 188 struct dst_entry *dst = skb_dst(skb); 189 struct rtable *rt = (struct rtable *)dst; 190 struct net_device *dev = dst->dev; 191 unsigned int hh_len = LL_RESERVED_SPACE(dev); 192 struct neighbour *neigh; 193 bool is_v6gw = false; 194 195 if (rt->rt_type == RTN_MULTICAST) { 196 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 197 } else if (rt->rt_type == RTN_BROADCAST) 198 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 199 200 /* Be paranoid, rather than too clever. */ 201 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 202 struct sk_buff *skb2; 203 204 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 205 if (!skb2) { 206 kfree_skb(skb); 207 return -ENOMEM; 208 } 209 if (skb->sk) 210 skb_set_owner_w(skb2, skb->sk); 211 consume_skb(skb); 212 skb = skb2; 213 } 214 215 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 216 int res = lwtunnel_xmit(skb); 217 218 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 219 return res; 220 } 221 222 rcu_read_lock_bh(); 223 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 224 if (!IS_ERR(neigh)) { 225 int res; 226 227 sock_confirm_neigh(skb, neigh); 228 /* if crossing protocols, can not use the cached header */ 229 res = neigh_output(neigh, skb, is_v6gw); 230 rcu_read_unlock_bh(); 231 return res; 232 } 233 rcu_read_unlock_bh(); 234 235 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 236 __func__); 237 kfree_skb(skb); 238 return -EINVAL; 239 } 240 241 static int ip_finish_output_gso(struct net *net, struct sock *sk, 242 struct sk_buff *skb, unsigned int mtu) 243 { 244 struct sk_buff *segs, *nskb; 245 netdev_features_t features; 246 int ret = 0; 247 248 /* common case: seglen is <= mtu 249 */ 250 if (skb_gso_validate_network_len(skb, mtu)) 251 return ip_finish_output2(net, sk, skb); 252 253 /* Slowpath - GSO segment length exceeds the egress MTU. 254 * 255 * This can happen in several cases: 256 * - Forwarding of a TCP GRO skb, when DF flag is not set. 257 * - Forwarding of an skb that arrived on a virtualization interface 258 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 259 * stack. 260 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 261 * interface with a smaller MTU. 262 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 263 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 264 * insufficent MTU. 265 */ 266 features = netif_skb_features(skb); 267 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET); 268 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 269 if (IS_ERR_OR_NULL(segs)) { 270 kfree_skb(skb); 271 return -ENOMEM; 272 } 273 274 consume_skb(skb); 275 276 skb_list_walk_safe(segs, segs, nskb) { 277 int err; 278 279 skb_mark_not_on_list(segs); 280 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 281 282 if (err && ret == 0) 283 ret = err; 284 } 285 286 return ret; 287 } 288 289 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 290 { 291 unsigned int mtu; 292 293 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 294 /* Policy lookup after SNAT yielded a new policy */ 295 if (skb_dst(skb)->xfrm) { 296 IPCB(skb)->flags |= IPSKB_REROUTED; 297 return dst_output(net, sk, skb); 298 } 299 #endif 300 mtu = ip_skb_dst_mtu(sk, skb); 301 if (skb_is_gso(skb)) 302 return ip_finish_output_gso(net, sk, skb, mtu); 303 304 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 305 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 306 307 return ip_finish_output2(net, sk, skb); 308 } 309 310 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 311 { 312 int ret; 313 314 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 315 switch (ret) { 316 case NET_XMIT_SUCCESS: 317 return __ip_finish_output(net, sk, skb); 318 case NET_XMIT_CN: 319 return __ip_finish_output(net, sk, skb) ? : ret; 320 default: 321 kfree_skb(skb); 322 return ret; 323 } 324 } 325 326 static int ip_mc_finish_output(struct net *net, struct sock *sk, 327 struct sk_buff *skb) 328 { 329 struct rtable *new_rt; 330 bool do_cn = false; 331 int ret, err; 332 333 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 334 switch (ret) { 335 case NET_XMIT_CN: 336 do_cn = true; 337 fallthrough; 338 case NET_XMIT_SUCCESS: 339 break; 340 default: 341 kfree_skb(skb); 342 return ret; 343 } 344 345 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting 346 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten, 347 * see ipv4_pktinfo_prepare(). 348 */ 349 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb)); 350 if (new_rt) { 351 new_rt->rt_iif = 0; 352 skb_dst_drop(skb); 353 skb_dst_set(skb, &new_rt->dst); 354 } 355 356 err = dev_loopback_xmit(net, sk, skb); 357 return (do_cn && err) ? ret : err; 358 } 359 360 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 361 { 362 struct rtable *rt = skb_rtable(skb); 363 struct net_device *dev = rt->dst.dev; 364 365 /* 366 * If the indicated interface is up and running, send the packet. 367 */ 368 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 369 370 skb->dev = dev; 371 skb->protocol = htons(ETH_P_IP); 372 373 /* 374 * Multicasts are looped back for other local users 375 */ 376 377 if (rt->rt_flags&RTCF_MULTICAST) { 378 if (sk_mc_loop(sk) 379 #ifdef CONFIG_IP_MROUTE 380 /* Small optimization: do not loopback not local frames, 381 which returned after forwarding; they will be dropped 382 by ip_mr_input in any case. 383 Note, that local frames are looped back to be delivered 384 to local recipients. 385 386 This check is duplicated in ip_mr_input at the moment. 387 */ 388 && 389 ((rt->rt_flags & RTCF_LOCAL) || 390 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 391 #endif 392 ) { 393 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 394 if (newskb) 395 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 396 net, sk, newskb, NULL, newskb->dev, 397 ip_mc_finish_output); 398 } 399 400 /* Multicasts with ttl 0 must not go beyond the host */ 401 402 if (ip_hdr(skb)->ttl == 0) { 403 kfree_skb(skb); 404 return 0; 405 } 406 } 407 408 if (rt->rt_flags&RTCF_BROADCAST) { 409 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 410 if (newskb) 411 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 412 net, sk, newskb, NULL, newskb->dev, 413 ip_mc_finish_output); 414 } 415 416 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 417 net, sk, skb, NULL, skb->dev, 418 ip_finish_output, 419 !(IPCB(skb)->flags & IPSKB_REROUTED)); 420 } 421 422 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 423 { 424 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev; 425 426 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 427 428 skb->dev = dev; 429 skb->protocol = htons(ETH_P_IP); 430 431 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 432 net, sk, skb, indev, dev, 433 ip_finish_output, 434 !(IPCB(skb)->flags & IPSKB_REROUTED)); 435 } 436 437 /* 438 * copy saddr and daddr, possibly using 64bit load/stores 439 * Equivalent to : 440 * iph->saddr = fl4->saddr; 441 * iph->daddr = fl4->daddr; 442 */ 443 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 444 { 445 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 446 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 447 memcpy(&iph->saddr, &fl4->saddr, 448 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 449 } 450 451 /* Note: skb->sk can be different from sk, in case of tunnels */ 452 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, 453 __u8 tos) 454 { 455 struct inet_sock *inet = inet_sk(sk); 456 struct net *net = sock_net(sk); 457 struct ip_options_rcu *inet_opt; 458 struct flowi4 *fl4; 459 struct rtable *rt; 460 struct iphdr *iph; 461 int res; 462 463 /* Skip all of this if the packet is already routed, 464 * f.e. by something like SCTP. 465 */ 466 rcu_read_lock(); 467 inet_opt = rcu_dereference(inet->inet_opt); 468 fl4 = &fl->u.ip4; 469 rt = skb_rtable(skb); 470 if (rt) 471 goto packet_routed; 472 473 /* Make sure we can route this packet. */ 474 rt = (struct rtable *)__sk_dst_check(sk, 0); 475 if (!rt) { 476 __be32 daddr; 477 478 /* Use correct destination address if we have options. */ 479 daddr = inet->inet_daddr; 480 if (inet_opt && inet_opt->opt.srr) 481 daddr = inet_opt->opt.faddr; 482 483 /* If this fails, retransmit mechanism of transport layer will 484 * keep trying until route appears or the connection times 485 * itself out. 486 */ 487 rt = ip_route_output_ports(net, fl4, sk, 488 daddr, inet->inet_saddr, 489 inet->inet_dport, 490 inet->inet_sport, 491 sk->sk_protocol, 492 RT_CONN_FLAGS_TOS(sk, tos), 493 sk->sk_bound_dev_if); 494 if (IS_ERR(rt)) 495 goto no_route; 496 sk_setup_caps(sk, &rt->dst); 497 } 498 skb_dst_set_noref(skb, &rt->dst); 499 500 packet_routed: 501 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 502 goto no_route; 503 504 /* OK, we know where to send it, allocate and build IP header. */ 505 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 506 skb_reset_network_header(skb); 507 iph = ip_hdr(skb); 508 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); 509 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 510 iph->frag_off = htons(IP_DF); 511 else 512 iph->frag_off = 0; 513 iph->ttl = ip_select_ttl(inet, &rt->dst); 514 iph->protocol = sk->sk_protocol; 515 ip_copy_addrs(iph, fl4); 516 517 /* Transport layer set skb->h.foo itself. */ 518 519 if (inet_opt && inet_opt->opt.optlen) { 520 iph->ihl += inet_opt->opt.optlen >> 2; 521 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 522 } 523 524 ip_select_ident_segs(net, skb, sk, 525 skb_shinfo(skb)->gso_segs ?: 1); 526 527 /* TODO : should we use skb->sk here instead of sk ? */ 528 skb->priority = sk->sk_priority; 529 skb->mark = sk->sk_mark; 530 531 res = ip_local_out(net, sk, skb); 532 rcu_read_unlock(); 533 return res; 534 535 no_route: 536 rcu_read_unlock(); 537 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 538 kfree_skb(skb); 539 return -EHOSTUNREACH; 540 } 541 EXPORT_SYMBOL(__ip_queue_xmit); 542 543 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 544 { 545 return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos); 546 } 547 EXPORT_SYMBOL(ip_queue_xmit); 548 549 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 550 { 551 to->pkt_type = from->pkt_type; 552 to->priority = from->priority; 553 to->protocol = from->protocol; 554 to->skb_iif = from->skb_iif; 555 skb_dst_drop(to); 556 skb_dst_copy(to, from); 557 to->dev = from->dev; 558 to->mark = from->mark; 559 560 skb_copy_hash(to, from); 561 562 #ifdef CONFIG_NET_SCHED 563 to->tc_index = from->tc_index; 564 #endif 565 nf_copy(to, from); 566 skb_ext_copy(to, from); 567 #if IS_ENABLED(CONFIG_IP_VS) 568 to->ipvs_property = from->ipvs_property; 569 #endif 570 skb_copy_secmark(to, from); 571 } 572 573 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 574 unsigned int mtu, 575 int (*output)(struct net *, struct sock *, struct sk_buff *)) 576 { 577 struct iphdr *iph = ip_hdr(skb); 578 579 if ((iph->frag_off & htons(IP_DF)) == 0) 580 return ip_do_fragment(net, sk, skb, output); 581 582 if (unlikely(!skb->ignore_df || 583 (IPCB(skb)->frag_max_size && 584 IPCB(skb)->frag_max_size > mtu))) { 585 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 586 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 587 htonl(mtu)); 588 kfree_skb(skb); 589 return -EMSGSIZE; 590 } 591 592 return ip_do_fragment(net, sk, skb, output); 593 } 594 595 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, 596 unsigned int hlen, struct ip_fraglist_iter *iter) 597 { 598 unsigned int first_len = skb_pagelen(skb); 599 600 iter->frag = skb_shinfo(skb)->frag_list; 601 skb_frag_list_init(skb); 602 603 iter->offset = 0; 604 iter->iph = iph; 605 iter->hlen = hlen; 606 607 skb->data_len = first_len - skb_headlen(skb); 608 skb->len = first_len; 609 iph->tot_len = htons(first_len); 610 iph->frag_off = htons(IP_MF); 611 ip_send_check(iph); 612 } 613 EXPORT_SYMBOL(ip_fraglist_init); 614 615 static void ip_fraglist_ipcb_prepare(struct sk_buff *skb, 616 struct ip_fraglist_iter *iter) 617 { 618 struct sk_buff *to = iter->frag; 619 620 /* Copy the flags to each fragment. */ 621 IPCB(to)->flags = IPCB(skb)->flags; 622 623 if (iter->offset == 0) 624 ip_options_fragment(to); 625 } 626 627 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter) 628 { 629 unsigned int hlen = iter->hlen; 630 struct iphdr *iph = iter->iph; 631 struct sk_buff *frag; 632 633 frag = iter->frag; 634 frag->ip_summed = CHECKSUM_NONE; 635 skb_reset_transport_header(frag); 636 __skb_push(frag, hlen); 637 skb_reset_network_header(frag); 638 memcpy(skb_network_header(frag), iph, hlen); 639 iter->iph = ip_hdr(frag); 640 iph = iter->iph; 641 iph->tot_len = htons(frag->len); 642 ip_copy_metadata(frag, skb); 643 iter->offset += skb->len - hlen; 644 iph->frag_off = htons(iter->offset >> 3); 645 if (frag->next) 646 iph->frag_off |= htons(IP_MF); 647 /* Ready, complete checksum */ 648 ip_send_check(iph); 649 } 650 EXPORT_SYMBOL(ip_fraglist_prepare); 651 652 void ip_frag_init(struct sk_buff *skb, unsigned int hlen, 653 unsigned int ll_rs, unsigned int mtu, bool DF, 654 struct ip_frag_state *state) 655 { 656 struct iphdr *iph = ip_hdr(skb); 657 658 state->DF = DF; 659 state->hlen = hlen; 660 state->ll_rs = ll_rs; 661 state->mtu = mtu; 662 663 state->left = skb->len - hlen; /* Space per frame */ 664 state->ptr = hlen; /* Where to start from */ 665 666 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 667 state->not_last_frag = iph->frag_off & htons(IP_MF); 668 } 669 EXPORT_SYMBOL(ip_frag_init); 670 671 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to, 672 bool first_frag, struct ip_frag_state *state) 673 { 674 /* Copy the flags to each fragment. */ 675 IPCB(to)->flags = IPCB(from)->flags; 676 677 /* ANK: dirty, but effective trick. Upgrade options only if 678 * the segment to be fragmented was THE FIRST (otherwise, 679 * options are already fixed) and make it ONCE 680 * on the initial skb, so that all the following fragments 681 * will inherit fixed options. 682 */ 683 if (first_frag) 684 ip_options_fragment(from); 685 } 686 687 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state) 688 { 689 unsigned int len = state->left; 690 struct sk_buff *skb2; 691 struct iphdr *iph; 692 693 len = state->left; 694 /* IF: it doesn't fit, use 'mtu' - the data space left */ 695 if (len > state->mtu) 696 len = state->mtu; 697 /* IF: we are not sending up to and including the packet end 698 then align the next start on an eight byte boundary */ 699 if (len < state->left) { 700 len &= ~7; 701 } 702 703 /* Allocate buffer */ 704 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC); 705 if (!skb2) 706 return ERR_PTR(-ENOMEM); 707 708 /* 709 * Set up data on packet 710 */ 711 712 ip_copy_metadata(skb2, skb); 713 skb_reserve(skb2, state->ll_rs); 714 skb_put(skb2, len + state->hlen); 715 skb_reset_network_header(skb2); 716 skb2->transport_header = skb2->network_header + state->hlen; 717 718 /* 719 * Charge the memory for the fragment to any owner 720 * it might possess 721 */ 722 723 if (skb->sk) 724 skb_set_owner_w(skb2, skb->sk); 725 726 /* 727 * Copy the packet header into the new buffer. 728 */ 729 730 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen); 731 732 /* 733 * Copy a block of the IP datagram. 734 */ 735 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len)) 736 BUG(); 737 state->left -= len; 738 739 /* 740 * Fill in the new header fields. 741 */ 742 iph = ip_hdr(skb2); 743 iph->frag_off = htons((state->offset >> 3)); 744 if (state->DF) 745 iph->frag_off |= htons(IP_DF); 746 747 /* 748 * Added AC : If we are fragmenting a fragment that's not the 749 * last fragment then keep MF on each bit 750 */ 751 if (state->left > 0 || state->not_last_frag) 752 iph->frag_off |= htons(IP_MF); 753 state->ptr += len; 754 state->offset += len; 755 756 iph->tot_len = htons(len + state->hlen); 757 758 ip_send_check(iph); 759 760 return skb2; 761 } 762 EXPORT_SYMBOL(ip_frag_next); 763 764 /* 765 * This IP datagram is too large to be sent in one piece. Break it up into 766 * smaller pieces (each of size equal to IP header plus 767 * a block of the data of the original IP data part) that will yet fit in a 768 * single device frame, and queue such a frame for sending. 769 */ 770 771 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 772 int (*output)(struct net *, struct sock *, struct sk_buff *)) 773 { 774 struct iphdr *iph; 775 struct sk_buff *skb2; 776 struct rtable *rt = skb_rtable(skb); 777 unsigned int mtu, hlen, ll_rs; 778 struct ip_fraglist_iter iter; 779 ktime_t tstamp = skb->tstamp; 780 struct ip_frag_state state; 781 int err = 0; 782 783 /* for offloaded checksums cleanup checksum before fragmentation */ 784 if (skb->ip_summed == CHECKSUM_PARTIAL && 785 (err = skb_checksum_help(skb))) 786 goto fail; 787 788 /* 789 * Point into the IP datagram header. 790 */ 791 792 iph = ip_hdr(skb); 793 794 mtu = ip_skb_dst_mtu(sk, skb); 795 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 796 mtu = IPCB(skb)->frag_max_size; 797 798 /* 799 * Setup starting values. 800 */ 801 802 hlen = iph->ihl * 4; 803 mtu = mtu - hlen; /* Size of data space */ 804 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 805 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 806 807 /* When frag_list is given, use it. First, check its validity: 808 * some transformers could create wrong frag_list or break existing 809 * one, it is not prohibited. In this case fall back to copying. 810 * 811 * LATER: this step can be merged to real generation of fragments, 812 * we can switch to copy when see the first bad fragment. 813 */ 814 if (skb_has_frag_list(skb)) { 815 struct sk_buff *frag, *frag2; 816 unsigned int first_len = skb_pagelen(skb); 817 818 if (first_len - hlen > mtu || 819 ((first_len - hlen) & 7) || 820 ip_is_fragment(iph) || 821 skb_cloned(skb) || 822 skb_headroom(skb) < ll_rs) 823 goto slow_path; 824 825 skb_walk_frags(skb, frag) { 826 /* Correct geometry. */ 827 if (frag->len > mtu || 828 ((frag->len & 7) && frag->next) || 829 skb_headroom(frag) < hlen + ll_rs) 830 goto slow_path_clean; 831 832 /* Partially cloned skb? */ 833 if (skb_shared(frag)) 834 goto slow_path_clean; 835 836 BUG_ON(frag->sk); 837 if (skb->sk) { 838 frag->sk = skb->sk; 839 frag->destructor = sock_wfree; 840 } 841 skb->truesize -= frag->truesize; 842 } 843 844 /* Everything is OK. Generate! */ 845 ip_fraglist_init(skb, iph, hlen, &iter); 846 847 for (;;) { 848 /* Prepare header of the next frame, 849 * before previous one went down. */ 850 if (iter.frag) { 851 ip_fraglist_ipcb_prepare(skb, &iter); 852 ip_fraglist_prepare(skb, &iter); 853 } 854 855 skb->tstamp = tstamp; 856 err = output(net, sk, skb); 857 858 if (!err) 859 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 860 if (err || !iter.frag) 861 break; 862 863 skb = ip_fraglist_next(&iter); 864 } 865 866 if (err == 0) { 867 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 868 return 0; 869 } 870 871 kfree_skb_list(iter.frag); 872 873 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 874 return err; 875 876 slow_path_clean: 877 skb_walk_frags(skb, frag2) { 878 if (frag2 == frag) 879 break; 880 frag2->sk = NULL; 881 frag2->destructor = NULL; 882 skb->truesize += frag2->truesize; 883 } 884 } 885 886 slow_path: 887 /* 888 * Fragment the datagram. 889 */ 890 891 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU, 892 &state); 893 894 /* 895 * Keep copying data until we run out. 896 */ 897 898 while (state.left > 0) { 899 bool first_frag = (state.offset == 0); 900 901 skb2 = ip_frag_next(skb, &state); 902 if (IS_ERR(skb2)) { 903 err = PTR_ERR(skb2); 904 goto fail; 905 } 906 ip_frag_ipcb(skb, skb2, first_frag, &state); 907 908 /* 909 * Put this fragment into the sending queue. 910 */ 911 skb2->tstamp = tstamp; 912 err = output(net, sk, skb2); 913 if (err) 914 goto fail; 915 916 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 917 } 918 consume_skb(skb); 919 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 920 return err; 921 922 fail: 923 kfree_skb(skb); 924 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 925 return err; 926 } 927 EXPORT_SYMBOL(ip_do_fragment); 928 929 int 930 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 931 { 932 struct msghdr *msg = from; 933 934 if (skb->ip_summed == CHECKSUM_PARTIAL) { 935 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 936 return -EFAULT; 937 } else { 938 __wsum csum = 0; 939 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 940 return -EFAULT; 941 skb->csum = csum_block_add(skb->csum, csum, odd); 942 } 943 return 0; 944 } 945 EXPORT_SYMBOL(ip_generic_getfrag); 946 947 static inline __wsum 948 csum_page(struct page *page, int offset, int copy) 949 { 950 char *kaddr; 951 __wsum csum; 952 kaddr = kmap(page); 953 csum = csum_partial(kaddr + offset, copy, 0); 954 kunmap(page); 955 return csum; 956 } 957 958 static int __ip_append_data(struct sock *sk, 959 struct flowi4 *fl4, 960 struct sk_buff_head *queue, 961 struct inet_cork *cork, 962 struct page_frag *pfrag, 963 int getfrag(void *from, char *to, int offset, 964 int len, int odd, struct sk_buff *skb), 965 void *from, int length, int transhdrlen, 966 unsigned int flags) 967 { 968 struct inet_sock *inet = inet_sk(sk); 969 struct ubuf_info *uarg = NULL; 970 struct sk_buff *skb; 971 972 struct ip_options *opt = cork->opt; 973 int hh_len; 974 int exthdrlen; 975 int mtu; 976 int copy; 977 int err; 978 int offset = 0; 979 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 980 int csummode = CHECKSUM_NONE; 981 struct rtable *rt = (struct rtable *)cork->dst; 982 unsigned int wmem_alloc_delta = 0; 983 bool paged, extra_uref = false; 984 u32 tskey = 0; 985 986 skb = skb_peek_tail(queue); 987 988 exthdrlen = !skb ? rt->dst.header_len : 0; 989 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 990 paged = !!cork->gso_size; 991 992 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 993 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 994 tskey = sk->sk_tskey++; 995 996 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 997 998 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 999 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1000 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1001 1002 if (cork->length + length > maxnonfragsize - fragheaderlen) { 1003 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1004 mtu - (opt ? opt->optlen : 0)); 1005 return -EMSGSIZE; 1006 } 1007 1008 /* 1009 * transhdrlen > 0 means that this is the first fragment and we wish 1010 * it won't be fragmented in the future. 1011 */ 1012 if (transhdrlen && 1013 length + fragheaderlen <= mtu && 1014 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 1015 (!(flags & MSG_MORE) || cork->gso_size) && 1016 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 1017 csummode = CHECKSUM_PARTIAL; 1018 1019 if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) { 1020 uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb)); 1021 if (!uarg) 1022 return -ENOBUFS; 1023 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ 1024 if (rt->dst.dev->features & NETIF_F_SG && 1025 csummode == CHECKSUM_PARTIAL) { 1026 paged = true; 1027 } else { 1028 uarg->zerocopy = 0; 1029 skb_zcopy_set(skb, uarg, &extra_uref); 1030 } 1031 } 1032 1033 cork->length += length; 1034 1035 /* So, what's going on in the loop below? 1036 * 1037 * We use calculated fragment length to generate chained skb, 1038 * each of segments is IP fragment ready for sending to network after 1039 * adding appropriate IP header. 1040 */ 1041 1042 if (!skb) 1043 goto alloc_new_skb; 1044 1045 while (length > 0) { 1046 /* Check if the remaining data fits into current packet. */ 1047 copy = mtu - skb->len; 1048 if (copy < length) 1049 copy = maxfraglen - skb->len; 1050 if (copy <= 0) { 1051 char *data; 1052 unsigned int datalen; 1053 unsigned int fraglen; 1054 unsigned int fraggap; 1055 unsigned int alloclen; 1056 unsigned int pagedlen; 1057 struct sk_buff *skb_prev; 1058 alloc_new_skb: 1059 skb_prev = skb; 1060 if (skb_prev) 1061 fraggap = skb_prev->len - maxfraglen; 1062 else 1063 fraggap = 0; 1064 1065 /* 1066 * If remaining data exceeds the mtu, 1067 * we know we need more fragment(s). 1068 */ 1069 datalen = length + fraggap; 1070 if (datalen > mtu - fragheaderlen) 1071 datalen = maxfraglen - fragheaderlen; 1072 fraglen = datalen + fragheaderlen; 1073 pagedlen = 0; 1074 1075 if ((flags & MSG_MORE) && 1076 !(rt->dst.dev->features&NETIF_F_SG)) 1077 alloclen = mtu; 1078 else if (!paged) 1079 alloclen = fraglen; 1080 else { 1081 alloclen = min_t(int, fraglen, MAX_HEADER); 1082 pagedlen = fraglen - alloclen; 1083 } 1084 1085 alloclen += exthdrlen; 1086 1087 /* The last fragment gets additional space at tail. 1088 * Note, with MSG_MORE we overallocate on fragments, 1089 * because we have no idea what fragment will be 1090 * the last. 1091 */ 1092 if (datalen == length + fraggap) 1093 alloclen += rt->dst.trailer_len; 1094 1095 if (transhdrlen) { 1096 skb = sock_alloc_send_skb(sk, 1097 alloclen + hh_len + 15, 1098 (flags & MSG_DONTWAIT), &err); 1099 } else { 1100 skb = NULL; 1101 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 1102 2 * sk->sk_sndbuf) 1103 skb = alloc_skb(alloclen + hh_len + 15, 1104 sk->sk_allocation); 1105 if (unlikely(!skb)) 1106 err = -ENOBUFS; 1107 } 1108 if (!skb) 1109 goto error; 1110 1111 /* 1112 * Fill in the control structures 1113 */ 1114 skb->ip_summed = csummode; 1115 skb->csum = 0; 1116 skb_reserve(skb, hh_len); 1117 1118 /* 1119 * Find where to start putting bytes. 1120 */ 1121 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1122 skb_set_network_header(skb, exthdrlen); 1123 skb->transport_header = (skb->network_header + 1124 fragheaderlen); 1125 data += fragheaderlen + exthdrlen; 1126 1127 if (fraggap) { 1128 skb->csum = skb_copy_and_csum_bits( 1129 skb_prev, maxfraglen, 1130 data + transhdrlen, fraggap); 1131 skb_prev->csum = csum_sub(skb_prev->csum, 1132 skb->csum); 1133 data += fraggap; 1134 pskb_trim_unique(skb_prev, maxfraglen); 1135 } 1136 1137 copy = datalen - transhdrlen - fraggap - pagedlen; 1138 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1139 err = -EFAULT; 1140 kfree_skb(skb); 1141 goto error; 1142 } 1143 1144 offset += copy; 1145 length -= copy + transhdrlen; 1146 transhdrlen = 0; 1147 exthdrlen = 0; 1148 csummode = CHECKSUM_NONE; 1149 1150 /* only the initial fragment is time stamped */ 1151 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1152 cork->tx_flags = 0; 1153 skb_shinfo(skb)->tskey = tskey; 1154 tskey = 0; 1155 skb_zcopy_set(skb, uarg, &extra_uref); 1156 1157 if ((flags & MSG_CONFIRM) && !skb_prev) 1158 skb_set_dst_pending_confirm(skb, 1); 1159 1160 /* 1161 * Put the packet on the pending queue. 1162 */ 1163 if (!skb->destructor) { 1164 skb->destructor = sock_wfree; 1165 skb->sk = sk; 1166 wmem_alloc_delta += skb->truesize; 1167 } 1168 __skb_queue_tail(queue, skb); 1169 continue; 1170 } 1171 1172 if (copy > length) 1173 copy = length; 1174 1175 if (!(rt->dst.dev->features&NETIF_F_SG) && 1176 skb_tailroom(skb) >= copy) { 1177 unsigned int off; 1178 1179 off = skb->len; 1180 if (getfrag(from, skb_put(skb, copy), 1181 offset, copy, off, skb) < 0) { 1182 __skb_trim(skb, off); 1183 err = -EFAULT; 1184 goto error; 1185 } 1186 } else if (!uarg || !uarg->zerocopy) { 1187 int i = skb_shinfo(skb)->nr_frags; 1188 1189 err = -ENOMEM; 1190 if (!sk_page_frag_refill(sk, pfrag)) 1191 goto error; 1192 1193 if (!skb_can_coalesce(skb, i, pfrag->page, 1194 pfrag->offset)) { 1195 err = -EMSGSIZE; 1196 if (i == MAX_SKB_FRAGS) 1197 goto error; 1198 1199 __skb_fill_page_desc(skb, i, pfrag->page, 1200 pfrag->offset, 0); 1201 skb_shinfo(skb)->nr_frags = ++i; 1202 get_page(pfrag->page); 1203 } 1204 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1205 if (getfrag(from, 1206 page_address(pfrag->page) + pfrag->offset, 1207 offset, copy, skb->len, skb) < 0) 1208 goto error_efault; 1209 1210 pfrag->offset += copy; 1211 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1212 skb->len += copy; 1213 skb->data_len += copy; 1214 skb->truesize += copy; 1215 wmem_alloc_delta += copy; 1216 } else { 1217 err = skb_zerocopy_iter_dgram(skb, from, copy); 1218 if (err < 0) 1219 goto error; 1220 } 1221 offset += copy; 1222 length -= copy; 1223 } 1224 1225 if (wmem_alloc_delta) 1226 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1227 return 0; 1228 1229 error_efault: 1230 err = -EFAULT; 1231 error: 1232 if (uarg) 1233 sock_zerocopy_put_abort(uarg, extra_uref); 1234 cork->length -= length; 1235 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1236 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1237 return err; 1238 } 1239 1240 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1241 struct ipcm_cookie *ipc, struct rtable **rtp) 1242 { 1243 struct ip_options_rcu *opt; 1244 struct rtable *rt; 1245 1246 rt = *rtp; 1247 if (unlikely(!rt)) 1248 return -EFAULT; 1249 1250 /* 1251 * setup for corking. 1252 */ 1253 opt = ipc->opt; 1254 if (opt) { 1255 if (!cork->opt) { 1256 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1257 sk->sk_allocation); 1258 if (unlikely(!cork->opt)) 1259 return -ENOBUFS; 1260 } 1261 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1262 cork->flags |= IPCORK_OPT; 1263 cork->addr = ipc->addr; 1264 } 1265 1266 cork->fragsize = ip_sk_use_pmtu(sk) ? 1267 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu); 1268 1269 if (!inetdev_valid_mtu(cork->fragsize)) 1270 return -ENETUNREACH; 1271 1272 cork->gso_size = ipc->gso_size; 1273 1274 cork->dst = &rt->dst; 1275 /* We stole this route, caller should not release it. */ 1276 *rtp = NULL; 1277 1278 cork->length = 0; 1279 cork->ttl = ipc->ttl; 1280 cork->tos = ipc->tos; 1281 cork->mark = ipc->sockc.mark; 1282 cork->priority = ipc->priority; 1283 cork->transmit_time = ipc->sockc.transmit_time; 1284 cork->tx_flags = 0; 1285 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); 1286 1287 return 0; 1288 } 1289 1290 /* 1291 * ip_append_data() and ip_append_page() can make one large IP datagram 1292 * from many pieces of data. Each pieces will be holded on the socket 1293 * until ip_push_pending_frames() is called. Each piece can be a page 1294 * or non-page data. 1295 * 1296 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1297 * this interface potentially. 1298 * 1299 * LATER: length must be adjusted by pad at tail, when it is required. 1300 */ 1301 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1302 int getfrag(void *from, char *to, int offset, int len, 1303 int odd, struct sk_buff *skb), 1304 void *from, int length, int transhdrlen, 1305 struct ipcm_cookie *ipc, struct rtable **rtp, 1306 unsigned int flags) 1307 { 1308 struct inet_sock *inet = inet_sk(sk); 1309 int err; 1310 1311 if (flags&MSG_PROBE) 1312 return 0; 1313 1314 if (skb_queue_empty(&sk->sk_write_queue)) { 1315 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1316 if (err) 1317 return err; 1318 } else { 1319 transhdrlen = 0; 1320 } 1321 1322 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1323 sk_page_frag(sk), getfrag, 1324 from, length, transhdrlen, flags); 1325 } 1326 1327 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1328 int offset, size_t size, int flags) 1329 { 1330 struct inet_sock *inet = inet_sk(sk); 1331 struct sk_buff *skb; 1332 struct rtable *rt; 1333 struct ip_options *opt = NULL; 1334 struct inet_cork *cork; 1335 int hh_len; 1336 int mtu; 1337 int len; 1338 int err; 1339 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1340 1341 if (inet->hdrincl) 1342 return -EPERM; 1343 1344 if (flags&MSG_PROBE) 1345 return 0; 1346 1347 if (skb_queue_empty(&sk->sk_write_queue)) 1348 return -EINVAL; 1349 1350 cork = &inet->cork.base; 1351 rt = (struct rtable *)cork->dst; 1352 if (cork->flags & IPCORK_OPT) 1353 opt = cork->opt; 1354 1355 if (!(rt->dst.dev->features&NETIF_F_SG)) 1356 return -EOPNOTSUPP; 1357 1358 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1359 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 1360 1361 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1362 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1363 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1364 1365 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1366 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1367 mtu - (opt ? opt->optlen : 0)); 1368 return -EMSGSIZE; 1369 } 1370 1371 skb = skb_peek_tail(&sk->sk_write_queue); 1372 if (!skb) 1373 return -EINVAL; 1374 1375 cork->length += size; 1376 1377 while (size > 0) { 1378 /* Check if the remaining data fits into current packet. */ 1379 len = mtu - skb->len; 1380 if (len < size) 1381 len = maxfraglen - skb->len; 1382 1383 if (len <= 0) { 1384 struct sk_buff *skb_prev; 1385 int alloclen; 1386 1387 skb_prev = skb; 1388 fraggap = skb_prev->len - maxfraglen; 1389 1390 alloclen = fragheaderlen + hh_len + fraggap + 15; 1391 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1392 if (unlikely(!skb)) { 1393 err = -ENOBUFS; 1394 goto error; 1395 } 1396 1397 /* 1398 * Fill in the control structures 1399 */ 1400 skb->ip_summed = CHECKSUM_NONE; 1401 skb->csum = 0; 1402 skb_reserve(skb, hh_len); 1403 1404 /* 1405 * Find where to start putting bytes. 1406 */ 1407 skb_put(skb, fragheaderlen + fraggap); 1408 skb_reset_network_header(skb); 1409 skb->transport_header = (skb->network_header + 1410 fragheaderlen); 1411 if (fraggap) { 1412 skb->csum = skb_copy_and_csum_bits(skb_prev, 1413 maxfraglen, 1414 skb_transport_header(skb), 1415 fraggap); 1416 skb_prev->csum = csum_sub(skb_prev->csum, 1417 skb->csum); 1418 pskb_trim_unique(skb_prev, maxfraglen); 1419 } 1420 1421 /* 1422 * Put the packet on the pending queue. 1423 */ 1424 __skb_queue_tail(&sk->sk_write_queue, skb); 1425 continue; 1426 } 1427 1428 if (len > size) 1429 len = size; 1430 1431 if (skb_append_pagefrags(skb, page, offset, len)) { 1432 err = -EMSGSIZE; 1433 goto error; 1434 } 1435 1436 if (skb->ip_summed == CHECKSUM_NONE) { 1437 __wsum csum; 1438 csum = csum_page(page, offset, len); 1439 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1440 } 1441 1442 skb->len += len; 1443 skb->data_len += len; 1444 skb->truesize += len; 1445 refcount_add(len, &sk->sk_wmem_alloc); 1446 offset += len; 1447 size -= len; 1448 } 1449 return 0; 1450 1451 error: 1452 cork->length -= size; 1453 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1454 return err; 1455 } 1456 1457 static void ip_cork_release(struct inet_cork *cork) 1458 { 1459 cork->flags &= ~IPCORK_OPT; 1460 kfree(cork->opt); 1461 cork->opt = NULL; 1462 dst_release(cork->dst); 1463 cork->dst = NULL; 1464 } 1465 1466 /* 1467 * Combined all pending IP fragments on the socket as one IP datagram 1468 * and push them out. 1469 */ 1470 struct sk_buff *__ip_make_skb(struct sock *sk, 1471 struct flowi4 *fl4, 1472 struct sk_buff_head *queue, 1473 struct inet_cork *cork) 1474 { 1475 struct sk_buff *skb, *tmp_skb; 1476 struct sk_buff **tail_skb; 1477 struct inet_sock *inet = inet_sk(sk); 1478 struct net *net = sock_net(sk); 1479 struct ip_options *opt = NULL; 1480 struct rtable *rt = (struct rtable *)cork->dst; 1481 struct iphdr *iph; 1482 __be16 df = 0; 1483 __u8 ttl; 1484 1485 skb = __skb_dequeue(queue); 1486 if (!skb) 1487 goto out; 1488 tail_skb = &(skb_shinfo(skb)->frag_list); 1489 1490 /* move skb->data to ip header from ext header */ 1491 if (skb->data < skb_network_header(skb)) 1492 __skb_pull(skb, skb_network_offset(skb)); 1493 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1494 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1495 *tail_skb = tmp_skb; 1496 tail_skb = &(tmp_skb->next); 1497 skb->len += tmp_skb->len; 1498 skb->data_len += tmp_skb->len; 1499 skb->truesize += tmp_skb->truesize; 1500 tmp_skb->destructor = NULL; 1501 tmp_skb->sk = NULL; 1502 } 1503 1504 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1505 * to fragment the frame generated here. No matter, what transforms 1506 * how transforms change size of the packet, it will come out. 1507 */ 1508 skb->ignore_df = ip_sk_ignore_df(sk); 1509 1510 /* DF bit is set when we want to see DF on outgoing frames. 1511 * If ignore_df is set too, we still allow to fragment this frame 1512 * locally. */ 1513 if (inet->pmtudisc == IP_PMTUDISC_DO || 1514 inet->pmtudisc == IP_PMTUDISC_PROBE || 1515 (skb->len <= dst_mtu(&rt->dst) && 1516 ip_dont_fragment(sk, &rt->dst))) 1517 df = htons(IP_DF); 1518 1519 if (cork->flags & IPCORK_OPT) 1520 opt = cork->opt; 1521 1522 if (cork->ttl != 0) 1523 ttl = cork->ttl; 1524 else if (rt->rt_type == RTN_MULTICAST) 1525 ttl = inet->mc_ttl; 1526 else 1527 ttl = ip_select_ttl(inet, &rt->dst); 1528 1529 iph = ip_hdr(skb); 1530 iph->version = 4; 1531 iph->ihl = 5; 1532 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1533 iph->frag_off = df; 1534 iph->ttl = ttl; 1535 iph->protocol = sk->sk_protocol; 1536 ip_copy_addrs(iph, fl4); 1537 ip_select_ident(net, skb, sk); 1538 1539 if (opt) { 1540 iph->ihl += opt->optlen>>2; 1541 ip_options_build(skb, opt, cork->addr, rt, 0); 1542 } 1543 1544 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1545 skb->mark = cork->mark; 1546 skb->tstamp = cork->transmit_time; 1547 /* 1548 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1549 * on dst refcount 1550 */ 1551 cork->dst = NULL; 1552 skb_dst_set(skb, &rt->dst); 1553 1554 if (iph->protocol == IPPROTO_ICMP) 1555 icmp_out_count(net, ((struct icmphdr *) 1556 skb_transport_header(skb))->type); 1557 1558 ip_cork_release(cork); 1559 out: 1560 return skb; 1561 } 1562 1563 int ip_send_skb(struct net *net, struct sk_buff *skb) 1564 { 1565 int err; 1566 1567 err = ip_local_out(net, skb->sk, skb); 1568 if (err) { 1569 if (err > 0) 1570 err = net_xmit_errno(err); 1571 if (err) 1572 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1573 } 1574 1575 return err; 1576 } 1577 1578 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1579 { 1580 struct sk_buff *skb; 1581 1582 skb = ip_finish_skb(sk, fl4); 1583 if (!skb) 1584 return 0; 1585 1586 /* Netfilter gets whole the not fragmented skb. */ 1587 return ip_send_skb(sock_net(sk), skb); 1588 } 1589 1590 /* 1591 * Throw away all pending data on the socket. 1592 */ 1593 static void __ip_flush_pending_frames(struct sock *sk, 1594 struct sk_buff_head *queue, 1595 struct inet_cork *cork) 1596 { 1597 struct sk_buff *skb; 1598 1599 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1600 kfree_skb(skb); 1601 1602 ip_cork_release(cork); 1603 } 1604 1605 void ip_flush_pending_frames(struct sock *sk) 1606 { 1607 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1608 } 1609 1610 struct sk_buff *ip_make_skb(struct sock *sk, 1611 struct flowi4 *fl4, 1612 int getfrag(void *from, char *to, int offset, 1613 int len, int odd, struct sk_buff *skb), 1614 void *from, int length, int transhdrlen, 1615 struct ipcm_cookie *ipc, struct rtable **rtp, 1616 struct inet_cork *cork, unsigned int flags) 1617 { 1618 struct sk_buff_head queue; 1619 int err; 1620 1621 if (flags & MSG_PROBE) 1622 return NULL; 1623 1624 __skb_queue_head_init(&queue); 1625 1626 cork->flags = 0; 1627 cork->addr = 0; 1628 cork->opt = NULL; 1629 err = ip_setup_cork(sk, cork, ipc, rtp); 1630 if (err) 1631 return ERR_PTR(err); 1632 1633 err = __ip_append_data(sk, fl4, &queue, cork, 1634 ¤t->task_frag, getfrag, 1635 from, length, transhdrlen, flags); 1636 if (err) { 1637 __ip_flush_pending_frames(sk, &queue, cork); 1638 return ERR_PTR(err); 1639 } 1640 1641 return __ip_make_skb(sk, fl4, &queue, cork); 1642 } 1643 1644 /* 1645 * Fetch data from kernel space and fill in checksum if needed. 1646 */ 1647 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1648 int len, int odd, struct sk_buff *skb) 1649 { 1650 __wsum csum; 1651 1652 csum = csum_partial_copy_nocheck(dptr+offset, to, len); 1653 skb->csum = csum_block_add(skb->csum, csum, odd); 1654 return 0; 1655 } 1656 1657 /* 1658 * Generic function to send a packet as reply to another packet. 1659 * Used to send some TCP resets/acks so far. 1660 */ 1661 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1662 const struct ip_options *sopt, 1663 __be32 daddr, __be32 saddr, 1664 const struct ip_reply_arg *arg, 1665 unsigned int len, u64 transmit_time) 1666 { 1667 struct ip_options_data replyopts; 1668 struct ipcm_cookie ipc; 1669 struct flowi4 fl4; 1670 struct rtable *rt = skb_rtable(skb); 1671 struct net *net = sock_net(sk); 1672 struct sk_buff *nskb; 1673 int err; 1674 int oif; 1675 1676 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1677 return; 1678 1679 ipcm_init(&ipc); 1680 ipc.addr = daddr; 1681 ipc.sockc.transmit_time = transmit_time; 1682 1683 if (replyopts.opt.opt.optlen) { 1684 ipc.opt = &replyopts.opt; 1685 1686 if (replyopts.opt.opt.srr) 1687 daddr = replyopts.opt.opt.faddr; 1688 } 1689 1690 oif = arg->bound_dev_if; 1691 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1692 oif = skb->skb_iif; 1693 1694 flowi4_init_output(&fl4, oif, 1695 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1696 RT_TOS(arg->tos), 1697 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1698 ip_reply_arg_flowi_flags(arg), 1699 daddr, saddr, 1700 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1701 arg->uid); 1702 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1703 rt = ip_route_output_key(net, &fl4); 1704 if (IS_ERR(rt)) 1705 return; 1706 1707 inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK; 1708 1709 sk->sk_protocol = ip_hdr(skb)->protocol; 1710 sk->sk_bound_dev_if = arg->bound_dev_if; 1711 sk->sk_sndbuf = sysctl_wmem_default; 1712 ipc.sockc.mark = fl4.flowi4_mark; 1713 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1714 len, 0, &ipc, &rt, MSG_DONTWAIT); 1715 if (unlikely(err)) { 1716 ip_flush_pending_frames(sk); 1717 goto out; 1718 } 1719 1720 nskb = skb_peek(&sk->sk_write_queue); 1721 if (nskb) { 1722 if (arg->csumoffset >= 0) 1723 *((__sum16 *)skb_transport_header(nskb) + 1724 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1725 arg->csum)); 1726 nskb->ip_summed = CHECKSUM_NONE; 1727 ip_push_pending_frames(sk, &fl4); 1728 } 1729 out: 1730 ip_rt_put(rt); 1731 } 1732 1733 void __init ip_init(void) 1734 { 1735 ip_rt_init(); 1736 inet_initpeers(); 1737 1738 #if defined(CONFIG_IP_MULTICAST) 1739 igmp_mc_init(); 1740 #endif 1741 } 1742