xref: /openbmc/linux/net/ipv4/ip_output.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <linux/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/bpf-cgroup.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
83 
84 static int
85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
86 	    unsigned int mtu,
87 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
88 
89 /* Generate a checksum for an outgoing IP datagram. */
90 void ip_send_check(struct iphdr *iph)
91 {
92 	iph->check = 0;
93 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
94 }
95 EXPORT_SYMBOL(ip_send_check);
96 
97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
98 {
99 	struct iphdr *iph = ip_hdr(skb);
100 
101 	iph->tot_len = htons(skb->len);
102 	ip_send_check(iph);
103 
104 	/* if egress device is enslaved to an L3 master device pass the
105 	 * skb to its handler for processing
106 	 */
107 	skb = l3mdev_ip_out(sk, skb);
108 	if (unlikely(!skb))
109 		return 0;
110 
111 	skb->protocol = htons(ETH_P_IP);
112 
113 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
114 		       net, sk, skb, NULL, skb_dst(skb)->dev,
115 		       dst_output);
116 }
117 
118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
119 {
120 	int err;
121 
122 	err = __ip_local_out(net, sk, skb);
123 	if (likely(err == 1))
124 		err = dst_output(net, sk, skb);
125 
126 	return err;
127 }
128 EXPORT_SYMBOL_GPL(ip_local_out);
129 
130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
131 {
132 	int ttl = inet->uc_ttl;
133 
134 	if (ttl < 0)
135 		ttl = ip4_dst_hoplimit(dst);
136 	return ttl;
137 }
138 
139 /*
140  *		Add an ip header to a skbuff and send it out.
141  *
142  */
143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
144 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
145 {
146 	struct inet_sock *inet = inet_sk(sk);
147 	struct rtable *rt = skb_rtable(skb);
148 	struct net *net = sock_net(sk);
149 	struct iphdr *iph;
150 
151 	/* Build the IP header. */
152 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
153 	skb_reset_network_header(skb);
154 	iph = ip_hdr(skb);
155 	iph->version  = 4;
156 	iph->ihl      = 5;
157 	iph->tos      = inet->tos;
158 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
159 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
160 	iph->saddr    = saddr;
161 	iph->protocol = sk->sk_protocol;
162 	if (ip_dont_fragment(sk, &rt->dst)) {
163 		iph->frag_off = htons(IP_DF);
164 		iph->id = 0;
165 	} else {
166 		iph->frag_off = 0;
167 		__ip_select_ident(net, iph, 1);
168 	}
169 
170 	if (opt && opt->opt.optlen) {
171 		iph->ihl += opt->opt.optlen>>2;
172 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
173 	}
174 
175 	skb->priority = sk->sk_priority;
176 	if (!skb->mark)
177 		skb->mark = sk->sk_mark;
178 
179 	/* Send it out. */
180 	return ip_local_out(net, skb->sk, skb);
181 }
182 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
183 
184 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
185 {
186 	struct dst_entry *dst = skb_dst(skb);
187 	struct rtable *rt = (struct rtable *)dst;
188 	struct net_device *dev = dst->dev;
189 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
190 	struct neighbour *neigh;
191 	u32 nexthop;
192 
193 	if (rt->rt_type == RTN_MULTICAST) {
194 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
195 	} else if (rt->rt_type == RTN_BROADCAST)
196 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
197 
198 	/* Be paranoid, rather than too clever. */
199 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
200 		struct sk_buff *skb2;
201 
202 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
203 		if (!skb2) {
204 			kfree_skb(skb);
205 			return -ENOMEM;
206 		}
207 		if (skb->sk)
208 			skb_set_owner_w(skb2, skb->sk);
209 		consume_skb(skb);
210 		skb = skb2;
211 	}
212 
213 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
214 		int res = lwtunnel_xmit(skb);
215 
216 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
217 			return res;
218 	}
219 
220 	rcu_read_lock_bh();
221 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
222 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
223 	if (unlikely(!neigh))
224 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
225 	if (!IS_ERR(neigh)) {
226 		int res;
227 
228 		sock_confirm_neigh(skb, neigh);
229 		res = neigh_output(neigh, skb);
230 
231 		rcu_read_unlock_bh();
232 		return res;
233 	}
234 	rcu_read_unlock_bh();
235 
236 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
237 			    __func__);
238 	kfree_skb(skb);
239 	return -EINVAL;
240 }
241 
242 static int ip_finish_output_gso(struct net *net, struct sock *sk,
243 				struct sk_buff *skb, unsigned int mtu)
244 {
245 	netdev_features_t features;
246 	struct sk_buff *segs;
247 	int ret = 0;
248 
249 	/* common case: seglen is <= mtu
250 	 */
251 	if (skb_gso_validate_network_len(skb, mtu))
252 		return ip_finish_output2(net, sk, skb);
253 
254 	/* Slowpath -  GSO segment length exceeds the egress MTU.
255 	 *
256 	 * This can happen in several cases:
257 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
258 	 *  - Forwarding of an skb that arrived on a virtualization interface
259 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
260 	 *    stack.
261 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
262 	 *    interface with a smaller MTU.
263 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
264 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
265 	 *    insufficent MTU.
266 	 */
267 	features = netif_skb_features(skb);
268 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
269 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
270 	if (IS_ERR_OR_NULL(segs)) {
271 		kfree_skb(skb);
272 		return -ENOMEM;
273 	}
274 
275 	consume_skb(skb);
276 
277 	do {
278 		struct sk_buff *nskb = segs->next;
279 		int err;
280 
281 		segs->next = NULL;
282 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
283 
284 		if (err && ret == 0)
285 			ret = err;
286 		segs = nskb;
287 	} while (segs);
288 
289 	return ret;
290 }
291 
292 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
293 {
294 	unsigned int mtu;
295 	int ret;
296 
297 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
298 	if (ret) {
299 		kfree_skb(skb);
300 		return ret;
301 	}
302 
303 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
304 	/* Policy lookup after SNAT yielded a new policy */
305 	if (skb_dst(skb)->xfrm) {
306 		IPCB(skb)->flags |= IPSKB_REROUTED;
307 		return dst_output(net, sk, skb);
308 	}
309 #endif
310 	mtu = ip_skb_dst_mtu(sk, skb);
311 	if (skb_is_gso(skb))
312 		return ip_finish_output_gso(net, sk, skb, mtu);
313 
314 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
315 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
316 
317 	return ip_finish_output2(net, sk, skb);
318 }
319 
320 static int ip_mc_finish_output(struct net *net, struct sock *sk,
321 			       struct sk_buff *skb)
322 {
323 	int ret;
324 
325 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
326 	if (ret) {
327 		kfree_skb(skb);
328 		return ret;
329 	}
330 
331 	return dev_loopback_xmit(net, sk, skb);
332 }
333 
334 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
335 {
336 	struct rtable *rt = skb_rtable(skb);
337 	struct net_device *dev = rt->dst.dev;
338 
339 	/*
340 	 *	If the indicated interface is up and running, send the packet.
341 	 */
342 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
343 
344 	skb->dev = dev;
345 	skb->protocol = htons(ETH_P_IP);
346 
347 	/*
348 	 *	Multicasts are looped back for other local users
349 	 */
350 
351 	if (rt->rt_flags&RTCF_MULTICAST) {
352 		if (sk_mc_loop(sk)
353 #ifdef CONFIG_IP_MROUTE
354 		/* Small optimization: do not loopback not local frames,
355 		   which returned after forwarding; they will be  dropped
356 		   by ip_mr_input in any case.
357 		   Note, that local frames are looped back to be delivered
358 		   to local recipients.
359 
360 		   This check is duplicated in ip_mr_input at the moment.
361 		 */
362 		    &&
363 		    ((rt->rt_flags & RTCF_LOCAL) ||
364 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
365 #endif
366 		   ) {
367 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
368 			if (newskb)
369 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
370 					net, sk, newskb, NULL, newskb->dev,
371 					ip_mc_finish_output);
372 		}
373 
374 		/* Multicasts with ttl 0 must not go beyond the host */
375 
376 		if (ip_hdr(skb)->ttl == 0) {
377 			kfree_skb(skb);
378 			return 0;
379 		}
380 	}
381 
382 	if (rt->rt_flags&RTCF_BROADCAST) {
383 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
384 		if (newskb)
385 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
386 				net, sk, newskb, NULL, newskb->dev,
387 				ip_mc_finish_output);
388 	}
389 
390 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
391 			    net, sk, skb, NULL, skb->dev,
392 			    ip_finish_output,
393 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
394 }
395 
396 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
397 {
398 	struct net_device *dev = skb_dst(skb)->dev;
399 
400 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
401 
402 	skb->dev = dev;
403 	skb->protocol = htons(ETH_P_IP);
404 
405 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
406 			    net, sk, skb, NULL, dev,
407 			    ip_finish_output,
408 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
409 }
410 
411 /*
412  * copy saddr and daddr, possibly using 64bit load/stores
413  * Equivalent to :
414  *   iph->saddr = fl4->saddr;
415  *   iph->daddr = fl4->daddr;
416  */
417 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
418 {
419 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
420 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
421 	memcpy(&iph->saddr, &fl4->saddr,
422 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
423 }
424 
425 /* Note: skb->sk can be different from sk, in case of tunnels */
426 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
427 {
428 	struct inet_sock *inet = inet_sk(sk);
429 	struct net *net = sock_net(sk);
430 	struct ip_options_rcu *inet_opt;
431 	struct flowi4 *fl4;
432 	struct rtable *rt;
433 	struct iphdr *iph;
434 	int res;
435 
436 	/* Skip all of this if the packet is already routed,
437 	 * f.e. by something like SCTP.
438 	 */
439 	rcu_read_lock();
440 	inet_opt = rcu_dereference(inet->inet_opt);
441 	fl4 = &fl->u.ip4;
442 	rt = skb_rtable(skb);
443 	if (rt)
444 		goto packet_routed;
445 
446 	/* Make sure we can route this packet. */
447 	rt = (struct rtable *)__sk_dst_check(sk, 0);
448 	if (!rt) {
449 		__be32 daddr;
450 
451 		/* Use correct destination address if we have options. */
452 		daddr = inet->inet_daddr;
453 		if (inet_opt && inet_opt->opt.srr)
454 			daddr = inet_opt->opt.faddr;
455 
456 		/* If this fails, retransmit mechanism of transport layer will
457 		 * keep trying until route appears or the connection times
458 		 * itself out.
459 		 */
460 		rt = ip_route_output_ports(net, fl4, sk,
461 					   daddr, inet->inet_saddr,
462 					   inet->inet_dport,
463 					   inet->inet_sport,
464 					   sk->sk_protocol,
465 					   RT_CONN_FLAGS(sk),
466 					   sk->sk_bound_dev_if);
467 		if (IS_ERR(rt))
468 			goto no_route;
469 		sk_setup_caps(sk, &rt->dst);
470 	}
471 	skb_dst_set_noref(skb, &rt->dst);
472 
473 packet_routed:
474 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
475 		goto no_route;
476 
477 	/* OK, we know where to send it, allocate and build IP header. */
478 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
479 	skb_reset_network_header(skb);
480 	iph = ip_hdr(skb);
481 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
482 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
483 		iph->frag_off = htons(IP_DF);
484 	else
485 		iph->frag_off = 0;
486 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
487 	iph->protocol = sk->sk_protocol;
488 	ip_copy_addrs(iph, fl4);
489 
490 	/* Transport layer set skb->h.foo itself. */
491 
492 	if (inet_opt && inet_opt->opt.optlen) {
493 		iph->ihl += inet_opt->opt.optlen >> 2;
494 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
495 	}
496 
497 	ip_select_ident_segs(net, skb, sk,
498 			     skb_shinfo(skb)->gso_segs ?: 1);
499 
500 	/* TODO : should we use skb->sk here instead of sk ? */
501 	skb->priority = sk->sk_priority;
502 	skb->mark = sk->sk_mark;
503 
504 	res = ip_local_out(net, sk, skb);
505 	rcu_read_unlock();
506 	return res;
507 
508 no_route:
509 	rcu_read_unlock();
510 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
511 	kfree_skb(skb);
512 	return -EHOSTUNREACH;
513 }
514 EXPORT_SYMBOL(ip_queue_xmit);
515 
516 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
517 {
518 	to->pkt_type = from->pkt_type;
519 	to->priority = from->priority;
520 	to->protocol = from->protocol;
521 	skb_dst_drop(to);
522 	skb_dst_copy(to, from);
523 	to->dev = from->dev;
524 	to->mark = from->mark;
525 
526 	/* Copy the flags to each fragment. */
527 	IPCB(to)->flags = IPCB(from)->flags;
528 
529 #ifdef CONFIG_NET_SCHED
530 	to->tc_index = from->tc_index;
531 #endif
532 	nf_copy(to, from);
533 #if IS_ENABLED(CONFIG_IP_VS)
534 	to->ipvs_property = from->ipvs_property;
535 #endif
536 	skb_copy_secmark(to, from);
537 }
538 
539 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
540 		       unsigned int mtu,
541 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
542 {
543 	struct iphdr *iph = ip_hdr(skb);
544 
545 	if ((iph->frag_off & htons(IP_DF)) == 0)
546 		return ip_do_fragment(net, sk, skb, output);
547 
548 	if (unlikely(!skb->ignore_df ||
549 		     (IPCB(skb)->frag_max_size &&
550 		      IPCB(skb)->frag_max_size > mtu))) {
551 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
552 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
553 			  htonl(mtu));
554 		kfree_skb(skb);
555 		return -EMSGSIZE;
556 	}
557 
558 	return ip_do_fragment(net, sk, skb, output);
559 }
560 
561 /*
562  *	This IP datagram is too large to be sent in one piece.  Break it up into
563  *	smaller pieces (each of size equal to IP header plus
564  *	a block of the data of the original IP data part) that will yet fit in a
565  *	single device frame, and queue such a frame for sending.
566  */
567 
568 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
569 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
570 {
571 	struct iphdr *iph;
572 	int ptr;
573 	struct sk_buff *skb2;
574 	unsigned int mtu, hlen, left, len, ll_rs;
575 	int offset;
576 	__be16 not_last_frag;
577 	struct rtable *rt = skb_rtable(skb);
578 	int err = 0;
579 
580 	/* for offloaded checksums cleanup checksum before fragmentation */
581 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
582 	    (err = skb_checksum_help(skb)))
583 		goto fail;
584 
585 	/*
586 	 *	Point into the IP datagram header.
587 	 */
588 
589 	iph = ip_hdr(skb);
590 
591 	mtu = ip_skb_dst_mtu(sk, skb);
592 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
593 		mtu = IPCB(skb)->frag_max_size;
594 
595 	/*
596 	 *	Setup starting values.
597 	 */
598 
599 	hlen = iph->ihl * 4;
600 	mtu = mtu - hlen;	/* Size of data space */
601 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
602 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
603 
604 	/* When frag_list is given, use it. First, check its validity:
605 	 * some transformers could create wrong frag_list or break existing
606 	 * one, it is not prohibited. In this case fall back to copying.
607 	 *
608 	 * LATER: this step can be merged to real generation of fragments,
609 	 * we can switch to copy when see the first bad fragment.
610 	 */
611 	if (skb_has_frag_list(skb)) {
612 		struct sk_buff *frag, *frag2;
613 		unsigned int first_len = skb_pagelen(skb);
614 
615 		if (first_len - hlen > mtu ||
616 		    ((first_len - hlen) & 7) ||
617 		    ip_is_fragment(iph) ||
618 		    skb_cloned(skb) ||
619 		    skb_headroom(skb) < ll_rs)
620 			goto slow_path;
621 
622 		skb_walk_frags(skb, frag) {
623 			/* Correct geometry. */
624 			if (frag->len > mtu ||
625 			    ((frag->len & 7) && frag->next) ||
626 			    skb_headroom(frag) < hlen + ll_rs)
627 				goto slow_path_clean;
628 
629 			/* Partially cloned skb? */
630 			if (skb_shared(frag))
631 				goto slow_path_clean;
632 
633 			BUG_ON(frag->sk);
634 			if (skb->sk) {
635 				frag->sk = skb->sk;
636 				frag->destructor = sock_wfree;
637 			}
638 			skb->truesize -= frag->truesize;
639 		}
640 
641 		/* Everything is OK. Generate! */
642 
643 		err = 0;
644 		offset = 0;
645 		frag = skb_shinfo(skb)->frag_list;
646 		skb_frag_list_init(skb);
647 		skb->data_len = first_len - skb_headlen(skb);
648 		skb->len = first_len;
649 		iph->tot_len = htons(first_len);
650 		iph->frag_off = htons(IP_MF);
651 		ip_send_check(iph);
652 
653 		for (;;) {
654 			/* Prepare header of the next frame,
655 			 * before previous one went down. */
656 			if (frag) {
657 				frag->ip_summed = CHECKSUM_NONE;
658 				skb_reset_transport_header(frag);
659 				__skb_push(frag, hlen);
660 				skb_reset_network_header(frag);
661 				memcpy(skb_network_header(frag), iph, hlen);
662 				iph = ip_hdr(frag);
663 				iph->tot_len = htons(frag->len);
664 				ip_copy_metadata(frag, skb);
665 				if (offset == 0)
666 					ip_options_fragment(frag);
667 				offset += skb->len - hlen;
668 				iph->frag_off = htons(offset>>3);
669 				if (frag->next)
670 					iph->frag_off |= htons(IP_MF);
671 				/* Ready, complete checksum */
672 				ip_send_check(iph);
673 			}
674 
675 			err = output(net, sk, skb);
676 
677 			if (!err)
678 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
679 			if (err || !frag)
680 				break;
681 
682 			skb = frag;
683 			frag = skb->next;
684 			skb->next = NULL;
685 		}
686 
687 		if (err == 0) {
688 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
689 			return 0;
690 		}
691 
692 		while (frag) {
693 			skb = frag->next;
694 			kfree_skb(frag);
695 			frag = skb;
696 		}
697 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
698 		return err;
699 
700 slow_path_clean:
701 		skb_walk_frags(skb, frag2) {
702 			if (frag2 == frag)
703 				break;
704 			frag2->sk = NULL;
705 			frag2->destructor = NULL;
706 			skb->truesize += frag2->truesize;
707 		}
708 	}
709 
710 slow_path:
711 	iph = ip_hdr(skb);
712 
713 	left = skb->len - hlen;		/* Space per frame */
714 	ptr = hlen;		/* Where to start from */
715 
716 	/*
717 	 *	Fragment the datagram.
718 	 */
719 
720 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
721 	not_last_frag = iph->frag_off & htons(IP_MF);
722 
723 	/*
724 	 *	Keep copying data until we run out.
725 	 */
726 
727 	while (left > 0) {
728 		len = left;
729 		/* IF: it doesn't fit, use 'mtu' - the data space left */
730 		if (len > mtu)
731 			len = mtu;
732 		/* IF: we are not sending up to and including the packet end
733 		   then align the next start on an eight byte boundary */
734 		if (len < left)	{
735 			len &= ~7;
736 		}
737 
738 		/* Allocate buffer */
739 		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
740 		if (!skb2) {
741 			err = -ENOMEM;
742 			goto fail;
743 		}
744 
745 		/*
746 		 *	Set up data on packet
747 		 */
748 
749 		ip_copy_metadata(skb2, skb);
750 		skb_reserve(skb2, ll_rs);
751 		skb_put(skb2, len + hlen);
752 		skb_reset_network_header(skb2);
753 		skb2->transport_header = skb2->network_header + hlen;
754 
755 		/*
756 		 *	Charge the memory for the fragment to any owner
757 		 *	it might possess
758 		 */
759 
760 		if (skb->sk)
761 			skb_set_owner_w(skb2, skb->sk);
762 
763 		/*
764 		 *	Copy the packet header into the new buffer.
765 		 */
766 
767 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
768 
769 		/*
770 		 *	Copy a block of the IP datagram.
771 		 */
772 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
773 			BUG();
774 		left -= len;
775 
776 		/*
777 		 *	Fill in the new header fields.
778 		 */
779 		iph = ip_hdr(skb2);
780 		iph->frag_off = htons((offset >> 3));
781 
782 		if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
783 			iph->frag_off |= htons(IP_DF);
784 
785 		/* ANK: dirty, but effective trick. Upgrade options only if
786 		 * the segment to be fragmented was THE FIRST (otherwise,
787 		 * options are already fixed) and make it ONCE
788 		 * on the initial skb, so that all the following fragments
789 		 * will inherit fixed options.
790 		 */
791 		if (offset == 0)
792 			ip_options_fragment(skb);
793 
794 		/*
795 		 *	Added AC : If we are fragmenting a fragment that's not the
796 		 *		   last fragment then keep MF on each bit
797 		 */
798 		if (left > 0 || not_last_frag)
799 			iph->frag_off |= htons(IP_MF);
800 		ptr += len;
801 		offset += len;
802 
803 		/*
804 		 *	Put this fragment into the sending queue.
805 		 */
806 		iph->tot_len = htons(len + hlen);
807 
808 		ip_send_check(iph);
809 
810 		err = output(net, sk, skb2);
811 		if (err)
812 			goto fail;
813 
814 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
815 	}
816 	consume_skb(skb);
817 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
818 	return err;
819 
820 fail:
821 	kfree_skb(skb);
822 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
823 	return err;
824 }
825 EXPORT_SYMBOL(ip_do_fragment);
826 
827 int
828 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
829 {
830 	struct msghdr *msg = from;
831 
832 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
833 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
834 			return -EFAULT;
835 	} else {
836 		__wsum csum = 0;
837 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
838 			return -EFAULT;
839 		skb->csum = csum_block_add(skb->csum, csum, odd);
840 	}
841 	return 0;
842 }
843 EXPORT_SYMBOL(ip_generic_getfrag);
844 
845 static inline __wsum
846 csum_page(struct page *page, int offset, int copy)
847 {
848 	char *kaddr;
849 	__wsum csum;
850 	kaddr = kmap(page);
851 	csum = csum_partial(kaddr + offset, copy, 0);
852 	kunmap(page);
853 	return csum;
854 }
855 
856 static int __ip_append_data(struct sock *sk,
857 			    struct flowi4 *fl4,
858 			    struct sk_buff_head *queue,
859 			    struct inet_cork *cork,
860 			    struct page_frag *pfrag,
861 			    int getfrag(void *from, char *to, int offset,
862 					int len, int odd, struct sk_buff *skb),
863 			    void *from, int length, int transhdrlen,
864 			    unsigned int flags)
865 {
866 	struct inet_sock *inet = inet_sk(sk);
867 	struct sk_buff *skb;
868 
869 	struct ip_options *opt = cork->opt;
870 	int hh_len;
871 	int exthdrlen;
872 	int mtu;
873 	int copy;
874 	int err;
875 	int offset = 0;
876 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
877 	int csummode = CHECKSUM_NONE;
878 	struct rtable *rt = (struct rtable *)cork->dst;
879 	unsigned int wmem_alloc_delta = 0;
880 	u32 tskey = 0;
881 
882 	skb = skb_peek_tail(queue);
883 
884 	exthdrlen = !skb ? rt->dst.header_len : 0;
885 	mtu = cork->fragsize;
886 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
887 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
888 		tskey = sk->sk_tskey++;
889 
890 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
891 
892 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
893 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
894 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
895 
896 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
897 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
898 			       mtu - (opt ? opt->optlen : 0));
899 		return -EMSGSIZE;
900 	}
901 
902 	/*
903 	 * transhdrlen > 0 means that this is the first fragment and we wish
904 	 * it won't be fragmented in the future.
905 	 */
906 	if (transhdrlen &&
907 	    length + fragheaderlen <= mtu &&
908 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
909 	    !(flags & MSG_MORE) &&
910 	    !exthdrlen)
911 		csummode = CHECKSUM_PARTIAL;
912 
913 	cork->length += length;
914 
915 	/* So, what's going on in the loop below?
916 	 *
917 	 * We use calculated fragment length to generate chained skb,
918 	 * each of segments is IP fragment ready for sending to network after
919 	 * adding appropriate IP header.
920 	 */
921 
922 	if (!skb)
923 		goto alloc_new_skb;
924 
925 	while (length > 0) {
926 		/* Check if the remaining data fits into current packet. */
927 		copy = mtu - skb->len;
928 		if (copy < length)
929 			copy = maxfraglen - skb->len;
930 		if (copy <= 0) {
931 			char *data;
932 			unsigned int datalen;
933 			unsigned int fraglen;
934 			unsigned int fraggap;
935 			unsigned int alloclen;
936 			struct sk_buff *skb_prev;
937 alloc_new_skb:
938 			skb_prev = skb;
939 			if (skb_prev)
940 				fraggap = skb_prev->len - maxfraglen;
941 			else
942 				fraggap = 0;
943 
944 			/*
945 			 * If remaining data exceeds the mtu,
946 			 * we know we need more fragment(s).
947 			 */
948 			datalen = length + fraggap;
949 			if (datalen > mtu - fragheaderlen)
950 				datalen = maxfraglen - fragheaderlen;
951 			fraglen = datalen + fragheaderlen;
952 
953 			if ((flags & MSG_MORE) &&
954 			    !(rt->dst.dev->features&NETIF_F_SG))
955 				alloclen = mtu;
956 			else
957 				alloclen = fraglen;
958 
959 			alloclen += exthdrlen;
960 
961 			/* The last fragment gets additional space at tail.
962 			 * Note, with MSG_MORE we overallocate on fragments,
963 			 * because we have no idea what fragment will be
964 			 * the last.
965 			 */
966 			if (datalen == length + fraggap)
967 				alloclen += rt->dst.trailer_len;
968 
969 			if (transhdrlen) {
970 				skb = sock_alloc_send_skb(sk,
971 						alloclen + hh_len + 15,
972 						(flags & MSG_DONTWAIT), &err);
973 			} else {
974 				skb = NULL;
975 				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
976 				    2 * sk->sk_sndbuf)
977 					skb = alloc_skb(alloclen + hh_len + 15,
978 							sk->sk_allocation);
979 				if (unlikely(!skb))
980 					err = -ENOBUFS;
981 			}
982 			if (!skb)
983 				goto error;
984 
985 			/*
986 			 *	Fill in the control structures
987 			 */
988 			skb->ip_summed = csummode;
989 			skb->csum = 0;
990 			skb_reserve(skb, hh_len);
991 
992 			/* only the initial fragment is time stamped */
993 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
994 			cork->tx_flags = 0;
995 			skb_shinfo(skb)->tskey = tskey;
996 			tskey = 0;
997 
998 			/*
999 			 *	Find where to start putting bytes.
1000 			 */
1001 			data = skb_put(skb, fraglen + exthdrlen);
1002 			skb_set_network_header(skb, exthdrlen);
1003 			skb->transport_header = (skb->network_header +
1004 						 fragheaderlen);
1005 			data += fragheaderlen + exthdrlen;
1006 
1007 			if (fraggap) {
1008 				skb->csum = skb_copy_and_csum_bits(
1009 					skb_prev, maxfraglen,
1010 					data + transhdrlen, fraggap, 0);
1011 				skb_prev->csum = csum_sub(skb_prev->csum,
1012 							  skb->csum);
1013 				data += fraggap;
1014 				pskb_trim_unique(skb_prev, maxfraglen);
1015 			}
1016 
1017 			copy = datalen - transhdrlen - fraggap;
1018 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1019 				err = -EFAULT;
1020 				kfree_skb(skb);
1021 				goto error;
1022 			}
1023 
1024 			offset += copy;
1025 			length -= datalen - fraggap;
1026 			transhdrlen = 0;
1027 			exthdrlen = 0;
1028 			csummode = CHECKSUM_NONE;
1029 
1030 			if ((flags & MSG_CONFIRM) && !skb_prev)
1031 				skb_set_dst_pending_confirm(skb, 1);
1032 
1033 			/*
1034 			 * Put the packet on the pending queue.
1035 			 */
1036 			if (!skb->destructor) {
1037 				skb->destructor = sock_wfree;
1038 				skb->sk = sk;
1039 				wmem_alloc_delta += skb->truesize;
1040 			}
1041 			__skb_queue_tail(queue, skb);
1042 			continue;
1043 		}
1044 
1045 		if (copy > length)
1046 			copy = length;
1047 
1048 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
1049 			unsigned int off;
1050 
1051 			off = skb->len;
1052 			if (getfrag(from, skb_put(skb, copy),
1053 					offset, copy, off, skb) < 0) {
1054 				__skb_trim(skb, off);
1055 				err = -EFAULT;
1056 				goto error;
1057 			}
1058 		} else {
1059 			int i = skb_shinfo(skb)->nr_frags;
1060 
1061 			err = -ENOMEM;
1062 			if (!sk_page_frag_refill(sk, pfrag))
1063 				goto error;
1064 
1065 			if (!skb_can_coalesce(skb, i, pfrag->page,
1066 					      pfrag->offset)) {
1067 				err = -EMSGSIZE;
1068 				if (i == MAX_SKB_FRAGS)
1069 					goto error;
1070 
1071 				__skb_fill_page_desc(skb, i, pfrag->page,
1072 						     pfrag->offset, 0);
1073 				skb_shinfo(skb)->nr_frags = ++i;
1074 				get_page(pfrag->page);
1075 			}
1076 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1077 			if (getfrag(from,
1078 				    page_address(pfrag->page) + pfrag->offset,
1079 				    offset, copy, skb->len, skb) < 0)
1080 				goto error_efault;
1081 
1082 			pfrag->offset += copy;
1083 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1084 			skb->len += copy;
1085 			skb->data_len += copy;
1086 			skb->truesize += copy;
1087 			wmem_alloc_delta += copy;
1088 		}
1089 		offset += copy;
1090 		length -= copy;
1091 	}
1092 
1093 	if (wmem_alloc_delta)
1094 		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1095 	return 0;
1096 
1097 error_efault:
1098 	err = -EFAULT;
1099 error:
1100 	cork->length -= length;
1101 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1102 	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1103 	return err;
1104 }
1105 
1106 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1107 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1108 {
1109 	struct ip_options_rcu *opt;
1110 	struct rtable *rt;
1111 
1112 	/*
1113 	 * setup for corking.
1114 	 */
1115 	opt = ipc->opt;
1116 	if (opt) {
1117 		if (!cork->opt) {
1118 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1119 					    sk->sk_allocation);
1120 			if (unlikely(!cork->opt))
1121 				return -ENOBUFS;
1122 		}
1123 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1124 		cork->flags |= IPCORK_OPT;
1125 		cork->addr = ipc->addr;
1126 	}
1127 	rt = *rtp;
1128 	if (unlikely(!rt))
1129 		return -EFAULT;
1130 	/*
1131 	 * We steal reference to this route, caller should not release it
1132 	 */
1133 	*rtp = NULL;
1134 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1135 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1136 	cork->dst = &rt->dst;
1137 	cork->length = 0;
1138 	cork->ttl = ipc->ttl;
1139 	cork->tos = ipc->tos;
1140 	cork->priority = ipc->priority;
1141 	cork->tx_flags = ipc->tx_flags;
1142 
1143 	return 0;
1144 }
1145 
1146 /*
1147  *	ip_append_data() and ip_append_page() can make one large IP datagram
1148  *	from many pieces of data. Each pieces will be holded on the socket
1149  *	until ip_push_pending_frames() is called. Each piece can be a page
1150  *	or non-page data.
1151  *
1152  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1153  *	this interface potentially.
1154  *
1155  *	LATER: length must be adjusted by pad at tail, when it is required.
1156  */
1157 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1158 		   int getfrag(void *from, char *to, int offset, int len,
1159 			       int odd, struct sk_buff *skb),
1160 		   void *from, int length, int transhdrlen,
1161 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1162 		   unsigned int flags)
1163 {
1164 	struct inet_sock *inet = inet_sk(sk);
1165 	int err;
1166 
1167 	if (flags&MSG_PROBE)
1168 		return 0;
1169 
1170 	if (skb_queue_empty(&sk->sk_write_queue)) {
1171 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1172 		if (err)
1173 			return err;
1174 	} else {
1175 		transhdrlen = 0;
1176 	}
1177 
1178 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1179 				sk_page_frag(sk), getfrag,
1180 				from, length, transhdrlen, flags);
1181 }
1182 
1183 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1184 		       int offset, size_t size, int flags)
1185 {
1186 	struct inet_sock *inet = inet_sk(sk);
1187 	struct sk_buff *skb;
1188 	struct rtable *rt;
1189 	struct ip_options *opt = NULL;
1190 	struct inet_cork *cork;
1191 	int hh_len;
1192 	int mtu;
1193 	int len;
1194 	int err;
1195 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1196 
1197 	if (inet->hdrincl)
1198 		return -EPERM;
1199 
1200 	if (flags&MSG_PROBE)
1201 		return 0;
1202 
1203 	if (skb_queue_empty(&sk->sk_write_queue))
1204 		return -EINVAL;
1205 
1206 	cork = &inet->cork.base;
1207 	rt = (struct rtable *)cork->dst;
1208 	if (cork->flags & IPCORK_OPT)
1209 		opt = cork->opt;
1210 
1211 	if (!(rt->dst.dev->features&NETIF_F_SG))
1212 		return -EOPNOTSUPP;
1213 
1214 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1215 	mtu = cork->fragsize;
1216 
1217 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1218 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1219 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1220 
1221 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1222 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1223 			       mtu - (opt ? opt->optlen : 0));
1224 		return -EMSGSIZE;
1225 	}
1226 
1227 	skb = skb_peek_tail(&sk->sk_write_queue);
1228 	if (!skb)
1229 		return -EINVAL;
1230 
1231 	cork->length += size;
1232 
1233 	while (size > 0) {
1234 		/* Check if the remaining data fits into current packet. */
1235 		len = mtu - skb->len;
1236 		if (len < size)
1237 			len = maxfraglen - skb->len;
1238 
1239 		if (len <= 0) {
1240 			struct sk_buff *skb_prev;
1241 			int alloclen;
1242 
1243 			skb_prev = skb;
1244 			fraggap = skb_prev->len - maxfraglen;
1245 
1246 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1247 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1248 			if (unlikely(!skb)) {
1249 				err = -ENOBUFS;
1250 				goto error;
1251 			}
1252 
1253 			/*
1254 			 *	Fill in the control structures
1255 			 */
1256 			skb->ip_summed = CHECKSUM_NONE;
1257 			skb->csum = 0;
1258 			skb_reserve(skb, hh_len);
1259 
1260 			/*
1261 			 *	Find where to start putting bytes.
1262 			 */
1263 			skb_put(skb, fragheaderlen + fraggap);
1264 			skb_reset_network_header(skb);
1265 			skb->transport_header = (skb->network_header +
1266 						 fragheaderlen);
1267 			if (fraggap) {
1268 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1269 								   maxfraglen,
1270 						    skb_transport_header(skb),
1271 								   fraggap, 0);
1272 				skb_prev->csum = csum_sub(skb_prev->csum,
1273 							  skb->csum);
1274 				pskb_trim_unique(skb_prev, maxfraglen);
1275 			}
1276 
1277 			/*
1278 			 * Put the packet on the pending queue.
1279 			 */
1280 			__skb_queue_tail(&sk->sk_write_queue, skb);
1281 			continue;
1282 		}
1283 
1284 		if (len > size)
1285 			len = size;
1286 
1287 		if (skb_append_pagefrags(skb, page, offset, len)) {
1288 			err = -EMSGSIZE;
1289 			goto error;
1290 		}
1291 
1292 		if (skb->ip_summed == CHECKSUM_NONE) {
1293 			__wsum csum;
1294 			csum = csum_page(page, offset, len);
1295 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1296 		}
1297 
1298 		skb->len += len;
1299 		skb->data_len += len;
1300 		skb->truesize += len;
1301 		refcount_add(len, &sk->sk_wmem_alloc);
1302 		offset += len;
1303 		size -= len;
1304 	}
1305 	return 0;
1306 
1307 error:
1308 	cork->length -= size;
1309 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1310 	return err;
1311 }
1312 
1313 static void ip_cork_release(struct inet_cork *cork)
1314 {
1315 	cork->flags &= ~IPCORK_OPT;
1316 	kfree(cork->opt);
1317 	cork->opt = NULL;
1318 	dst_release(cork->dst);
1319 	cork->dst = NULL;
1320 }
1321 
1322 /*
1323  *	Combined all pending IP fragments on the socket as one IP datagram
1324  *	and push them out.
1325  */
1326 struct sk_buff *__ip_make_skb(struct sock *sk,
1327 			      struct flowi4 *fl4,
1328 			      struct sk_buff_head *queue,
1329 			      struct inet_cork *cork)
1330 {
1331 	struct sk_buff *skb, *tmp_skb;
1332 	struct sk_buff **tail_skb;
1333 	struct inet_sock *inet = inet_sk(sk);
1334 	struct net *net = sock_net(sk);
1335 	struct ip_options *opt = NULL;
1336 	struct rtable *rt = (struct rtable *)cork->dst;
1337 	struct iphdr *iph;
1338 	__be16 df = 0;
1339 	__u8 ttl;
1340 
1341 	skb = __skb_dequeue(queue);
1342 	if (!skb)
1343 		goto out;
1344 	tail_skb = &(skb_shinfo(skb)->frag_list);
1345 
1346 	/* move skb->data to ip header from ext header */
1347 	if (skb->data < skb_network_header(skb))
1348 		__skb_pull(skb, skb_network_offset(skb));
1349 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1350 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1351 		*tail_skb = tmp_skb;
1352 		tail_skb = &(tmp_skb->next);
1353 		skb->len += tmp_skb->len;
1354 		skb->data_len += tmp_skb->len;
1355 		skb->truesize += tmp_skb->truesize;
1356 		tmp_skb->destructor = NULL;
1357 		tmp_skb->sk = NULL;
1358 	}
1359 
1360 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1361 	 * to fragment the frame generated here. No matter, what transforms
1362 	 * how transforms change size of the packet, it will come out.
1363 	 */
1364 	skb->ignore_df = ip_sk_ignore_df(sk);
1365 
1366 	/* DF bit is set when we want to see DF on outgoing frames.
1367 	 * If ignore_df is set too, we still allow to fragment this frame
1368 	 * locally. */
1369 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1370 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1371 	    (skb->len <= dst_mtu(&rt->dst) &&
1372 	     ip_dont_fragment(sk, &rt->dst)))
1373 		df = htons(IP_DF);
1374 
1375 	if (cork->flags & IPCORK_OPT)
1376 		opt = cork->opt;
1377 
1378 	if (cork->ttl != 0)
1379 		ttl = cork->ttl;
1380 	else if (rt->rt_type == RTN_MULTICAST)
1381 		ttl = inet->mc_ttl;
1382 	else
1383 		ttl = ip_select_ttl(inet, &rt->dst);
1384 
1385 	iph = ip_hdr(skb);
1386 	iph->version = 4;
1387 	iph->ihl = 5;
1388 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1389 	iph->frag_off = df;
1390 	iph->ttl = ttl;
1391 	iph->protocol = sk->sk_protocol;
1392 	ip_copy_addrs(iph, fl4);
1393 	ip_select_ident(net, skb, sk);
1394 
1395 	if (opt) {
1396 		iph->ihl += opt->optlen>>2;
1397 		ip_options_build(skb, opt, cork->addr, rt, 0);
1398 	}
1399 
1400 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1401 	skb->mark = sk->sk_mark;
1402 	/*
1403 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1404 	 * on dst refcount
1405 	 */
1406 	cork->dst = NULL;
1407 	skb_dst_set(skb, &rt->dst);
1408 
1409 	if (iph->protocol == IPPROTO_ICMP)
1410 		icmp_out_count(net, ((struct icmphdr *)
1411 			skb_transport_header(skb))->type);
1412 
1413 	ip_cork_release(cork);
1414 out:
1415 	return skb;
1416 }
1417 
1418 int ip_send_skb(struct net *net, struct sk_buff *skb)
1419 {
1420 	int err;
1421 
1422 	err = ip_local_out(net, skb->sk, skb);
1423 	if (err) {
1424 		if (err > 0)
1425 			err = net_xmit_errno(err);
1426 		if (err)
1427 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1428 	}
1429 
1430 	return err;
1431 }
1432 
1433 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1434 {
1435 	struct sk_buff *skb;
1436 
1437 	skb = ip_finish_skb(sk, fl4);
1438 	if (!skb)
1439 		return 0;
1440 
1441 	/* Netfilter gets whole the not fragmented skb. */
1442 	return ip_send_skb(sock_net(sk), skb);
1443 }
1444 
1445 /*
1446  *	Throw away all pending data on the socket.
1447  */
1448 static void __ip_flush_pending_frames(struct sock *sk,
1449 				      struct sk_buff_head *queue,
1450 				      struct inet_cork *cork)
1451 {
1452 	struct sk_buff *skb;
1453 
1454 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1455 		kfree_skb(skb);
1456 
1457 	ip_cork_release(cork);
1458 }
1459 
1460 void ip_flush_pending_frames(struct sock *sk)
1461 {
1462 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1463 }
1464 
1465 struct sk_buff *ip_make_skb(struct sock *sk,
1466 			    struct flowi4 *fl4,
1467 			    int getfrag(void *from, char *to, int offset,
1468 					int len, int odd, struct sk_buff *skb),
1469 			    void *from, int length, int transhdrlen,
1470 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1471 			    unsigned int flags)
1472 {
1473 	struct inet_cork cork;
1474 	struct sk_buff_head queue;
1475 	int err;
1476 
1477 	if (flags & MSG_PROBE)
1478 		return NULL;
1479 
1480 	__skb_queue_head_init(&queue);
1481 
1482 	cork.flags = 0;
1483 	cork.addr = 0;
1484 	cork.opt = NULL;
1485 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1486 	if (err)
1487 		return ERR_PTR(err);
1488 
1489 	err = __ip_append_data(sk, fl4, &queue, &cork,
1490 			       &current->task_frag, getfrag,
1491 			       from, length, transhdrlen, flags);
1492 	if (err) {
1493 		__ip_flush_pending_frames(sk, &queue, &cork);
1494 		return ERR_PTR(err);
1495 	}
1496 
1497 	return __ip_make_skb(sk, fl4, &queue, &cork);
1498 }
1499 
1500 /*
1501  *	Fetch data from kernel space and fill in checksum if needed.
1502  */
1503 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1504 			      int len, int odd, struct sk_buff *skb)
1505 {
1506 	__wsum csum;
1507 
1508 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1509 	skb->csum = csum_block_add(skb->csum, csum, odd);
1510 	return 0;
1511 }
1512 
1513 /*
1514  *	Generic function to send a packet as reply to another packet.
1515  *	Used to send some TCP resets/acks so far.
1516  */
1517 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1518 			   const struct ip_options *sopt,
1519 			   __be32 daddr, __be32 saddr,
1520 			   const struct ip_reply_arg *arg,
1521 			   unsigned int len)
1522 {
1523 	struct ip_options_data replyopts;
1524 	struct ipcm_cookie ipc;
1525 	struct flowi4 fl4;
1526 	struct rtable *rt = skb_rtable(skb);
1527 	struct net *net = sock_net(sk);
1528 	struct sk_buff *nskb;
1529 	int err;
1530 	int oif;
1531 
1532 	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1533 		return;
1534 
1535 	ipc.addr = daddr;
1536 	ipc.opt = NULL;
1537 	ipc.tx_flags = 0;
1538 	ipc.ttl = 0;
1539 	ipc.tos = -1;
1540 
1541 	if (replyopts.opt.opt.optlen) {
1542 		ipc.opt = &replyopts.opt;
1543 
1544 		if (replyopts.opt.opt.srr)
1545 			daddr = replyopts.opt.opt.faddr;
1546 	}
1547 
1548 	oif = arg->bound_dev_if;
1549 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1550 		oif = skb->skb_iif;
1551 
1552 	flowi4_init_output(&fl4, oif,
1553 			   IP4_REPLY_MARK(net, skb->mark),
1554 			   RT_TOS(arg->tos),
1555 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1556 			   ip_reply_arg_flowi_flags(arg),
1557 			   daddr, saddr,
1558 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1559 			   arg->uid);
1560 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1561 	rt = ip_route_output_key(net, &fl4);
1562 	if (IS_ERR(rt))
1563 		return;
1564 
1565 	inet_sk(sk)->tos = arg->tos;
1566 
1567 	sk->sk_priority = skb->priority;
1568 	sk->sk_protocol = ip_hdr(skb)->protocol;
1569 	sk->sk_bound_dev_if = arg->bound_dev_if;
1570 	sk->sk_sndbuf = sysctl_wmem_default;
1571 	sk->sk_mark = fl4.flowi4_mark;
1572 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1573 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1574 	if (unlikely(err)) {
1575 		ip_flush_pending_frames(sk);
1576 		goto out;
1577 	}
1578 
1579 	nskb = skb_peek(&sk->sk_write_queue);
1580 	if (nskb) {
1581 		if (arg->csumoffset >= 0)
1582 			*((__sum16 *)skb_transport_header(nskb) +
1583 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1584 								arg->csum));
1585 		nskb->ip_summed = CHECKSUM_NONE;
1586 		ip_push_pending_frames(sk, &fl4);
1587 	}
1588 out:
1589 	ip_rt_put(rt);
1590 }
1591 
1592 void __init ip_init(void)
1593 {
1594 	ip_rt_init();
1595 	inet_initpeers();
1596 
1597 #if defined(CONFIG_IP_MULTICAST)
1598 	igmp_mc_init();
1599 #endif
1600 }
1601