xref: /openbmc/linux/net/ipv4/ip_output.c (revision afb46f79)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82 
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl);
85 
86 /* Generate a checksum for an outgoing IP datagram. */
87 void ip_send_check(struct iphdr *iph)
88 {
89 	iph->check = 0;
90 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
91 }
92 EXPORT_SYMBOL(ip_send_check);
93 
94 int __ip_local_out(struct sk_buff *skb)
95 {
96 	struct iphdr *iph = ip_hdr(skb);
97 
98 	iph->tot_len = htons(skb->len);
99 	ip_send_check(iph);
100 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
101 		       skb_dst(skb)->dev, dst_output);
102 }
103 
104 int ip_local_out_sk(struct sock *sk, struct sk_buff *skb)
105 {
106 	int err;
107 
108 	err = __ip_local_out(skb);
109 	if (likely(err == 1))
110 		err = dst_output_sk(sk, skb);
111 
112 	return err;
113 }
114 EXPORT_SYMBOL_GPL(ip_local_out_sk);
115 
116 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
117 {
118 	int ttl = inet->uc_ttl;
119 
120 	if (ttl < 0)
121 		ttl = ip4_dst_hoplimit(dst);
122 	return ttl;
123 }
124 
125 /*
126  *		Add an ip header to a skbuff and send it out.
127  *
128  */
129 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
130 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
131 {
132 	struct inet_sock *inet = inet_sk(sk);
133 	struct rtable *rt = skb_rtable(skb);
134 	struct iphdr *iph;
135 
136 	/* Build the IP header. */
137 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
138 	skb_reset_network_header(skb);
139 	iph = ip_hdr(skb);
140 	iph->version  = 4;
141 	iph->ihl      = 5;
142 	iph->tos      = inet->tos;
143 	if (ip_dont_fragment(sk, &rt->dst))
144 		iph->frag_off = htons(IP_DF);
145 	else
146 		iph->frag_off = 0;
147 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
148 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
149 	iph->saddr    = saddr;
150 	iph->protocol = sk->sk_protocol;
151 	ip_select_ident(skb, &rt->dst, sk);
152 
153 	if (opt && opt->opt.optlen) {
154 		iph->ihl += opt->opt.optlen>>2;
155 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
156 	}
157 
158 	skb->priority = sk->sk_priority;
159 	skb->mark = sk->sk_mark;
160 
161 	/* Send it out. */
162 	return ip_local_out(skb);
163 }
164 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
165 
166 static inline int ip_finish_output2(struct sk_buff *skb)
167 {
168 	struct dst_entry *dst = skb_dst(skb);
169 	struct rtable *rt = (struct rtable *)dst;
170 	struct net_device *dev = dst->dev;
171 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
172 	struct neighbour *neigh;
173 	u32 nexthop;
174 
175 	if (rt->rt_type == RTN_MULTICAST) {
176 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
177 	} else if (rt->rt_type == RTN_BROADCAST)
178 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
179 
180 	/* Be paranoid, rather than too clever. */
181 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
182 		struct sk_buff *skb2;
183 
184 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
185 		if (skb2 == NULL) {
186 			kfree_skb(skb);
187 			return -ENOMEM;
188 		}
189 		if (skb->sk)
190 			skb_set_owner_w(skb2, skb->sk);
191 		consume_skb(skb);
192 		skb = skb2;
193 	}
194 
195 	rcu_read_lock_bh();
196 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
197 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
198 	if (unlikely(!neigh))
199 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
200 	if (!IS_ERR(neigh)) {
201 		int res = dst_neigh_output(dst, neigh, skb);
202 
203 		rcu_read_unlock_bh();
204 		return res;
205 	}
206 	rcu_read_unlock_bh();
207 
208 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
209 			    __func__);
210 	kfree_skb(skb);
211 	return -EINVAL;
212 }
213 
214 static int ip_finish_output(struct sk_buff *skb)
215 {
216 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
217 	/* Policy lookup after SNAT yielded a new policy */
218 	if (skb_dst(skb)->xfrm != NULL) {
219 		IPCB(skb)->flags |= IPSKB_REROUTED;
220 		return dst_output(skb);
221 	}
222 #endif
223 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
224 		return ip_fragment(skb, ip_finish_output2);
225 	else
226 		return ip_finish_output2(skb);
227 }
228 
229 int ip_mc_output(struct sock *sk, struct sk_buff *skb)
230 {
231 	struct rtable *rt = skb_rtable(skb);
232 	struct net_device *dev = rt->dst.dev;
233 
234 	/*
235 	 *	If the indicated interface is up and running, send the packet.
236 	 */
237 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
238 
239 	skb->dev = dev;
240 	skb->protocol = htons(ETH_P_IP);
241 
242 	/*
243 	 *	Multicasts are looped back for other local users
244 	 */
245 
246 	if (rt->rt_flags&RTCF_MULTICAST) {
247 		if (sk_mc_loop(sk)
248 #ifdef CONFIG_IP_MROUTE
249 		/* Small optimization: do not loopback not local frames,
250 		   which returned after forwarding; they will be  dropped
251 		   by ip_mr_input in any case.
252 		   Note, that local frames are looped back to be delivered
253 		   to local recipients.
254 
255 		   This check is duplicated in ip_mr_input at the moment.
256 		 */
257 		    &&
258 		    ((rt->rt_flags & RTCF_LOCAL) ||
259 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
260 #endif
261 		   ) {
262 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
263 			if (newskb)
264 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
265 					newskb, NULL, newskb->dev,
266 					dev_loopback_xmit);
267 		}
268 
269 		/* Multicasts with ttl 0 must not go beyond the host */
270 
271 		if (ip_hdr(skb)->ttl == 0) {
272 			kfree_skb(skb);
273 			return 0;
274 		}
275 	}
276 
277 	if (rt->rt_flags&RTCF_BROADCAST) {
278 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
279 		if (newskb)
280 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
281 				NULL, newskb->dev, dev_loopback_xmit);
282 	}
283 
284 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
285 			    skb->dev, ip_finish_output,
286 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
287 }
288 
289 int ip_output(struct sock *sk, struct sk_buff *skb)
290 {
291 	struct net_device *dev = skb_dst(skb)->dev;
292 
293 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
294 
295 	skb->dev = dev;
296 	skb->protocol = htons(ETH_P_IP);
297 
298 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
299 			    ip_finish_output,
300 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
301 }
302 
303 /*
304  * copy saddr and daddr, possibly using 64bit load/stores
305  * Equivalent to :
306  *   iph->saddr = fl4->saddr;
307  *   iph->daddr = fl4->daddr;
308  */
309 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
310 {
311 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
312 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
313 	memcpy(&iph->saddr, &fl4->saddr,
314 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
315 }
316 
317 /* Note: skb->sk can be different from sk, in case of tunnels */
318 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
319 {
320 	struct inet_sock *inet = inet_sk(sk);
321 	struct ip_options_rcu *inet_opt;
322 	struct flowi4 *fl4;
323 	struct rtable *rt;
324 	struct iphdr *iph;
325 	int res;
326 
327 	/* Skip all of this if the packet is already routed,
328 	 * f.e. by something like SCTP.
329 	 */
330 	rcu_read_lock();
331 	inet_opt = rcu_dereference(inet->inet_opt);
332 	fl4 = &fl->u.ip4;
333 	rt = skb_rtable(skb);
334 	if (rt != NULL)
335 		goto packet_routed;
336 
337 	/* Make sure we can route this packet. */
338 	rt = (struct rtable *)__sk_dst_check(sk, 0);
339 	if (rt == NULL) {
340 		__be32 daddr;
341 
342 		/* Use correct destination address if we have options. */
343 		daddr = inet->inet_daddr;
344 		if (inet_opt && inet_opt->opt.srr)
345 			daddr = inet_opt->opt.faddr;
346 
347 		/* If this fails, retransmit mechanism of transport layer will
348 		 * keep trying until route appears or the connection times
349 		 * itself out.
350 		 */
351 		rt = ip_route_output_ports(sock_net(sk), fl4, sk,
352 					   daddr, inet->inet_saddr,
353 					   inet->inet_dport,
354 					   inet->inet_sport,
355 					   sk->sk_protocol,
356 					   RT_CONN_FLAGS(sk),
357 					   sk->sk_bound_dev_if);
358 		if (IS_ERR(rt))
359 			goto no_route;
360 		sk_setup_caps(sk, &rt->dst);
361 	}
362 	skb_dst_set_noref(skb, &rt->dst);
363 
364 packet_routed:
365 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
366 		goto no_route;
367 
368 	/* OK, we know where to send it, allocate and build IP header. */
369 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
370 	skb_reset_network_header(skb);
371 	iph = ip_hdr(skb);
372 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
373 	if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
374 		iph->frag_off = htons(IP_DF);
375 	else
376 		iph->frag_off = 0;
377 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
378 	iph->protocol = sk->sk_protocol;
379 	ip_copy_addrs(iph, fl4);
380 
381 	/* Transport layer set skb->h.foo itself. */
382 
383 	if (inet_opt && inet_opt->opt.optlen) {
384 		iph->ihl += inet_opt->opt.optlen >> 2;
385 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
386 	}
387 
388 	ip_select_ident_more(skb, &rt->dst, sk,
389 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
390 
391 	/* TODO : should we use skb->sk here instead of sk ? */
392 	skb->priority = sk->sk_priority;
393 	skb->mark = sk->sk_mark;
394 
395 	res = ip_local_out(skb);
396 	rcu_read_unlock();
397 	return res;
398 
399 no_route:
400 	rcu_read_unlock();
401 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
402 	kfree_skb(skb);
403 	return -EHOSTUNREACH;
404 }
405 EXPORT_SYMBOL(ip_queue_xmit);
406 
407 
408 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
409 {
410 	to->pkt_type = from->pkt_type;
411 	to->priority = from->priority;
412 	to->protocol = from->protocol;
413 	skb_dst_drop(to);
414 	skb_dst_copy(to, from);
415 	to->dev = from->dev;
416 	to->mark = from->mark;
417 
418 	/* Copy the flags to each fragment. */
419 	IPCB(to)->flags = IPCB(from)->flags;
420 
421 #ifdef CONFIG_NET_SCHED
422 	to->tc_index = from->tc_index;
423 #endif
424 	nf_copy(to, from);
425 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
426 	to->ipvs_property = from->ipvs_property;
427 #endif
428 	skb_copy_secmark(to, from);
429 }
430 
431 /*
432  *	This IP datagram is too large to be sent in one piece.  Break it up into
433  *	smaller pieces (each of size equal to IP header plus
434  *	a block of the data of the original IP data part) that will yet fit in a
435  *	single device frame, and queue such a frame for sending.
436  */
437 
438 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
439 {
440 	struct iphdr *iph;
441 	int ptr;
442 	struct net_device *dev;
443 	struct sk_buff *skb2;
444 	unsigned int mtu, hlen, left, len, ll_rs;
445 	int offset;
446 	__be16 not_last_frag;
447 	struct rtable *rt = skb_rtable(skb);
448 	int err = 0;
449 
450 	dev = rt->dst.dev;
451 
452 	/*
453 	 *	Point into the IP datagram header.
454 	 */
455 
456 	iph = ip_hdr(skb);
457 
458 	mtu = ip_skb_dst_mtu(skb);
459 	if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->local_df) ||
460 		     (IPCB(skb)->frag_max_size &&
461 		      IPCB(skb)->frag_max_size > mtu))) {
462 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
463 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
464 			  htonl(mtu));
465 		kfree_skb(skb);
466 		return -EMSGSIZE;
467 	}
468 
469 	/*
470 	 *	Setup starting values.
471 	 */
472 
473 	hlen = iph->ihl * 4;
474 	mtu = mtu - hlen;	/* Size of data space */
475 #ifdef CONFIG_BRIDGE_NETFILTER
476 	if (skb->nf_bridge)
477 		mtu -= nf_bridge_mtu_reduction(skb);
478 #endif
479 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
480 
481 	/* When frag_list is given, use it. First, check its validity:
482 	 * some transformers could create wrong frag_list or break existing
483 	 * one, it is not prohibited. In this case fall back to copying.
484 	 *
485 	 * LATER: this step can be merged to real generation of fragments,
486 	 * we can switch to copy when see the first bad fragment.
487 	 */
488 	if (skb_has_frag_list(skb)) {
489 		struct sk_buff *frag, *frag2;
490 		int first_len = skb_pagelen(skb);
491 
492 		if (first_len - hlen > mtu ||
493 		    ((first_len - hlen) & 7) ||
494 		    ip_is_fragment(iph) ||
495 		    skb_cloned(skb))
496 			goto slow_path;
497 
498 		skb_walk_frags(skb, frag) {
499 			/* Correct geometry. */
500 			if (frag->len > mtu ||
501 			    ((frag->len & 7) && frag->next) ||
502 			    skb_headroom(frag) < hlen)
503 				goto slow_path_clean;
504 
505 			/* Partially cloned skb? */
506 			if (skb_shared(frag))
507 				goto slow_path_clean;
508 
509 			BUG_ON(frag->sk);
510 			if (skb->sk) {
511 				frag->sk = skb->sk;
512 				frag->destructor = sock_wfree;
513 			}
514 			skb->truesize -= frag->truesize;
515 		}
516 
517 		/* Everything is OK. Generate! */
518 
519 		err = 0;
520 		offset = 0;
521 		frag = skb_shinfo(skb)->frag_list;
522 		skb_frag_list_init(skb);
523 		skb->data_len = first_len - skb_headlen(skb);
524 		skb->len = first_len;
525 		iph->tot_len = htons(first_len);
526 		iph->frag_off = htons(IP_MF);
527 		ip_send_check(iph);
528 
529 		for (;;) {
530 			/* Prepare header of the next frame,
531 			 * before previous one went down. */
532 			if (frag) {
533 				frag->ip_summed = CHECKSUM_NONE;
534 				skb_reset_transport_header(frag);
535 				__skb_push(frag, hlen);
536 				skb_reset_network_header(frag);
537 				memcpy(skb_network_header(frag), iph, hlen);
538 				iph = ip_hdr(frag);
539 				iph->tot_len = htons(frag->len);
540 				ip_copy_metadata(frag, skb);
541 				if (offset == 0)
542 					ip_options_fragment(frag);
543 				offset += skb->len - hlen;
544 				iph->frag_off = htons(offset>>3);
545 				if (frag->next != NULL)
546 					iph->frag_off |= htons(IP_MF);
547 				/* Ready, complete checksum */
548 				ip_send_check(iph);
549 			}
550 
551 			err = output(skb);
552 
553 			if (!err)
554 				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
555 			if (err || !frag)
556 				break;
557 
558 			skb = frag;
559 			frag = skb->next;
560 			skb->next = NULL;
561 		}
562 
563 		if (err == 0) {
564 			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
565 			return 0;
566 		}
567 
568 		while (frag) {
569 			skb = frag->next;
570 			kfree_skb(frag);
571 			frag = skb;
572 		}
573 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
574 		return err;
575 
576 slow_path_clean:
577 		skb_walk_frags(skb, frag2) {
578 			if (frag2 == frag)
579 				break;
580 			frag2->sk = NULL;
581 			frag2->destructor = NULL;
582 			skb->truesize += frag2->truesize;
583 		}
584 	}
585 
586 slow_path:
587 	/* for offloaded checksums cleanup checksum before fragmentation */
588 	if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb))
589 		goto fail;
590 	iph = ip_hdr(skb);
591 
592 	left = skb->len - hlen;		/* Space per frame */
593 	ptr = hlen;		/* Where to start from */
594 
595 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
596 	 * we need to make room for the encapsulating header
597 	 */
598 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
599 
600 	/*
601 	 *	Fragment the datagram.
602 	 */
603 
604 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
605 	not_last_frag = iph->frag_off & htons(IP_MF);
606 
607 	/*
608 	 *	Keep copying data until we run out.
609 	 */
610 
611 	while (left > 0) {
612 		len = left;
613 		/* IF: it doesn't fit, use 'mtu' - the data space left */
614 		if (len > mtu)
615 			len = mtu;
616 		/* IF: we are not sending up to and including the packet end
617 		   then align the next start on an eight byte boundary */
618 		if (len < left)	{
619 			len &= ~7;
620 		}
621 		/*
622 		 *	Allocate buffer.
623 		 */
624 
625 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
626 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
627 			err = -ENOMEM;
628 			goto fail;
629 		}
630 
631 		/*
632 		 *	Set up data on packet
633 		 */
634 
635 		ip_copy_metadata(skb2, skb);
636 		skb_reserve(skb2, ll_rs);
637 		skb_put(skb2, len + hlen);
638 		skb_reset_network_header(skb2);
639 		skb2->transport_header = skb2->network_header + hlen;
640 
641 		/*
642 		 *	Charge the memory for the fragment to any owner
643 		 *	it might possess
644 		 */
645 
646 		if (skb->sk)
647 			skb_set_owner_w(skb2, skb->sk);
648 
649 		/*
650 		 *	Copy the packet header into the new buffer.
651 		 */
652 
653 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
654 
655 		/*
656 		 *	Copy a block of the IP datagram.
657 		 */
658 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
659 			BUG();
660 		left -= len;
661 
662 		/*
663 		 *	Fill in the new header fields.
664 		 */
665 		iph = ip_hdr(skb2);
666 		iph->frag_off = htons((offset >> 3));
667 
668 		/* ANK: dirty, but effective trick. Upgrade options only if
669 		 * the segment to be fragmented was THE FIRST (otherwise,
670 		 * options are already fixed) and make it ONCE
671 		 * on the initial skb, so that all the following fragments
672 		 * will inherit fixed options.
673 		 */
674 		if (offset == 0)
675 			ip_options_fragment(skb);
676 
677 		/*
678 		 *	Added AC : If we are fragmenting a fragment that's not the
679 		 *		   last fragment then keep MF on each bit
680 		 */
681 		if (left > 0 || not_last_frag)
682 			iph->frag_off |= htons(IP_MF);
683 		ptr += len;
684 		offset += len;
685 
686 		/*
687 		 *	Put this fragment into the sending queue.
688 		 */
689 		iph->tot_len = htons(len + hlen);
690 
691 		ip_send_check(iph);
692 
693 		err = output(skb2);
694 		if (err)
695 			goto fail;
696 
697 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
698 	}
699 	consume_skb(skb);
700 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
701 	return err;
702 
703 fail:
704 	kfree_skb(skb);
705 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
706 	return err;
707 }
708 EXPORT_SYMBOL(ip_fragment);
709 
710 int
711 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
712 {
713 	struct iovec *iov = from;
714 
715 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
716 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
717 			return -EFAULT;
718 	} else {
719 		__wsum csum = 0;
720 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
721 			return -EFAULT;
722 		skb->csum = csum_block_add(skb->csum, csum, odd);
723 	}
724 	return 0;
725 }
726 EXPORT_SYMBOL(ip_generic_getfrag);
727 
728 static inline __wsum
729 csum_page(struct page *page, int offset, int copy)
730 {
731 	char *kaddr;
732 	__wsum csum;
733 	kaddr = kmap(page);
734 	csum = csum_partial(kaddr + offset, copy, 0);
735 	kunmap(page);
736 	return csum;
737 }
738 
739 static inline int ip_ufo_append_data(struct sock *sk,
740 			struct sk_buff_head *queue,
741 			int getfrag(void *from, char *to, int offset, int len,
742 			       int odd, struct sk_buff *skb),
743 			void *from, int length, int hh_len, int fragheaderlen,
744 			int transhdrlen, int maxfraglen, unsigned int flags)
745 {
746 	struct sk_buff *skb;
747 	int err;
748 
749 	/* There is support for UDP fragmentation offload by network
750 	 * device, so create one single skb packet containing complete
751 	 * udp datagram
752 	 */
753 	if ((skb = skb_peek_tail(queue)) == NULL) {
754 		skb = sock_alloc_send_skb(sk,
755 			hh_len + fragheaderlen + transhdrlen + 20,
756 			(flags & MSG_DONTWAIT), &err);
757 
758 		if (skb == NULL)
759 			return err;
760 
761 		/* reserve space for Hardware header */
762 		skb_reserve(skb, hh_len);
763 
764 		/* create space for UDP/IP header */
765 		skb_put(skb, fragheaderlen + transhdrlen);
766 
767 		/* initialize network header pointer */
768 		skb_reset_network_header(skb);
769 
770 		/* initialize protocol header pointer */
771 		skb->transport_header = skb->network_header + fragheaderlen;
772 
773 		skb->csum = 0;
774 
775 
776 		__skb_queue_tail(queue, skb);
777 	} else if (skb_is_gso(skb)) {
778 		goto append;
779 	}
780 
781 	skb->ip_summed = CHECKSUM_PARTIAL;
782 	/* specify the length of each IP datagram fragment */
783 	skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
784 	skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
785 
786 append:
787 	return skb_append_datato_frags(sk, skb, getfrag, from,
788 				       (length - transhdrlen));
789 }
790 
791 static int __ip_append_data(struct sock *sk,
792 			    struct flowi4 *fl4,
793 			    struct sk_buff_head *queue,
794 			    struct inet_cork *cork,
795 			    struct page_frag *pfrag,
796 			    int getfrag(void *from, char *to, int offset,
797 					int len, int odd, struct sk_buff *skb),
798 			    void *from, int length, int transhdrlen,
799 			    unsigned int flags)
800 {
801 	struct inet_sock *inet = inet_sk(sk);
802 	struct sk_buff *skb;
803 
804 	struct ip_options *opt = cork->opt;
805 	int hh_len;
806 	int exthdrlen;
807 	int mtu;
808 	int copy;
809 	int err;
810 	int offset = 0;
811 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
812 	int csummode = CHECKSUM_NONE;
813 	struct rtable *rt = (struct rtable *)cork->dst;
814 
815 	skb = skb_peek_tail(queue);
816 
817 	exthdrlen = !skb ? rt->dst.header_len : 0;
818 	mtu = cork->fragsize;
819 
820 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
821 
822 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
823 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
824 	maxnonfragsize = ip_sk_local_df(sk) ? 0xFFFF : mtu;
825 
826 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
827 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
828 			       mtu - (opt ? opt->optlen : 0));
829 		return -EMSGSIZE;
830 	}
831 
832 	/*
833 	 * transhdrlen > 0 means that this is the first fragment and we wish
834 	 * it won't be fragmented in the future.
835 	 */
836 	if (transhdrlen &&
837 	    length + fragheaderlen <= mtu &&
838 	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
839 	    !exthdrlen)
840 		csummode = CHECKSUM_PARTIAL;
841 
842 	cork->length += length;
843 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
844 	    (sk->sk_protocol == IPPROTO_UDP) &&
845 	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
846 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
847 					 hh_len, fragheaderlen, transhdrlen,
848 					 maxfraglen, flags);
849 		if (err)
850 			goto error;
851 		return 0;
852 	}
853 
854 	/* So, what's going on in the loop below?
855 	 *
856 	 * We use calculated fragment length to generate chained skb,
857 	 * each of segments is IP fragment ready for sending to network after
858 	 * adding appropriate IP header.
859 	 */
860 
861 	if (!skb)
862 		goto alloc_new_skb;
863 
864 	while (length > 0) {
865 		/* Check if the remaining data fits into current packet. */
866 		copy = mtu - skb->len;
867 		if (copy < length)
868 			copy = maxfraglen - skb->len;
869 		if (copy <= 0) {
870 			char *data;
871 			unsigned int datalen;
872 			unsigned int fraglen;
873 			unsigned int fraggap;
874 			unsigned int alloclen;
875 			struct sk_buff *skb_prev;
876 alloc_new_skb:
877 			skb_prev = skb;
878 			if (skb_prev)
879 				fraggap = skb_prev->len - maxfraglen;
880 			else
881 				fraggap = 0;
882 
883 			/*
884 			 * If remaining data exceeds the mtu,
885 			 * we know we need more fragment(s).
886 			 */
887 			datalen = length + fraggap;
888 			if (datalen > mtu - fragheaderlen)
889 				datalen = maxfraglen - fragheaderlen;
890 			fraglen = datalen + fragheaderlen;
891 
892 			if ((flags & MSG_MORE) &&
893 			    !(rt->dst.dev->features&NETIF_F_SG))
894 				alloclen = mtu;
895 			else
896 				alloclen = fraglen;
897 
898 			alloclen += exthdrlen;
899 
900 			/* The last fragment gets additional space at tail.
901 			 * Note, with MSG_MORE we overallocate on fragments,
902 			 * because we have no idea what fragment will be
903 			 * the last.
904 			 */
905 			if (datalen == length + fraggap)
906 				alloclen += rt->dst.trailer_len;
907 
908 			if (transhdrlen) {
909 				skb = sock_alloc_send_skb(sk,
910 						alloclen + hh_len + 15,
911 						(flags & MSG_DONTWAIT), &err);
912 			} else {
913 				skb = NULL;
914 				if (atomic_read(&sk->sk_wmem_alloc) <=
915 				    2 * sk->sk_sndbuf)
916 					skb = sock_wmalloc(sk,
917 							   alloclen + hh_len + 15, 1,
918 							   sk->sk_allocation);
919 				if (unlikely(skb == NULL))
920 					err = -ENOBUFS;
921 				else
922 					/* only the initial fragment is
923 					   time stamped */
924 					cork->tx_flags = 0;
925 			}
926 			if (skb == NULL)
927 				goto error;
928 
929 			/*
930 			 *	Fill in the control structures
931 			 */
932 			skb->ip_summed = csummode;
933 			skb->csum = 0;
934 			skb_reserve(skb, hh_len);
935 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
936 
937 			/*
938 			 *	Find where to start putting bytes.
939 			 */
940 			data = skb_put(skb, fraglen + exthdrlen);
941 			skb_set_network_header(skb, exthdrlen);
942 			skb->transport_header = (skb->network_header +
943 						 fragheaderlen);
944 			data += fragheaderlen + exthdrlen;
945 
946 			if (fraggap) {
947 				skb->csum = skb_copy_and_csum_bits(
948 					skb_prev, maxfraglen,
949 					data + transhdrlen, fraggap, 0);
950 				skb_prev->csum = csum_sub(skb_prev->csum,
951 							  skb->csum);
952 				data += fraggap;
953 				pskb_trim_unique(skb_prev, maxfraglen);
954 			}
955 
956 			copy = datalen - transhdrlen - fraggap;
957 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
958 				err = -EFAULT;
959 				kfree_skb(skb);
960 				goto error;
961 			}
962 
963 			offset += copy;
964 			length -= datalen - fraggap;
965 			transhdrlen = 0;
966 			exthdrlen = 0;
967 			csummode = CHECKSUM_NONE;
968 
969 			/*
970 			 * Put the packet on the pending queue.
971 			 */
972 			__skb_queue_tail(queue, skb);
973 			continue;
974 		}
975 
976 		if (copy > length)
977 			copy = length;
978 
979 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
980 			unsigned int off;
981 
982 			off = skb->len;
983 			if (getfrag(from, skb_put(skb, copy),
984 					offset, copy, off, skb) < 0) {
985 				__skb_trim(skb, off);
986 				err = -EFAULT;
987 				goto error;
988 			}
989 		} else {
990 			int i = skb_shinfo(skb)->nr_frags;
991 
992 			err = -ENOMEM;
993 			if (!sk_page_frag_refill(sk, pfrag))
994 				goto error;
995 
996 			if (!skb_can_coalesce(skb, i, pfrag->page,
997 					      pfrag->offset)) {
998 				err = -EMSGSIZE;
999 				if (i == MAX_SKB_FRAGS)
1000 					goto error;
1001 
1002 				__skb_fill_page_desc(skb, i, pfrag->page,
1003 						     pfrag->offset, 0);
1004 				skb_shinfo(skb)->nr_frags = ++i;
1005 				get_page(pfrag->page);
1006 			}
1007 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1008 			if (getfrag(from,
1009 				    page_address(pfrag->page) + pfrag->offset,
1010 				    offset, copy, skb->len, skb) < 0)
1011 				goto error_efault;
1012 
1013 			pfrag->offset += copy;
1014 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1015 			skb->len += copy;
1016 			skb->data_len += copy;
1017 			skb->truesize += copy;
1018 			atomic_add(copy, &sk->sk_wmem_alloc);
1019 		}
1020 		offset += copy;
1021 		length -= copy;
1022 	}
1023 
1024 	return 0;
1025 
1026 error_efault:
1027 	err = -EFAULT;
1028 error:
1029 	cork->length -= length;
1030 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1031 	return err;
1032 }
1033 
1034 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1035 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1036 {
1037 	struct ip_options_rcu *opt;
1038 	struct rtable *rt;
1039 
1040 	/*
1041 	 * setup for corking.
1042 	 */
1043 	opt = ipc->opt;
1044 	if (opt) {
1045 		if (cork->opt == NULL) {
1046 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1047 					    sk->sk_allocation);
1048 			if (unlikely(cork->opt == NULL))
1049 				return -ENOBUFS;
1050 		}
1051 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1052 		cork->flags |= IPCORK_OPT;
1053 		cork->addr = ipc->addr;
1054 	}
1055 	rt = *rtp;
1056 	if (unlikely(!rt))
1057 		return -EFAULT;
1058 	/*
1059 	 * We steal reference to this route, caller should not release it
1060 	 */
1061 	*rtp = NULL;
1062 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1063 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1064 	cork->dst = &rt->dst;
1065 	cork->length = 0;
1066 	cork->ttl = ipc->ttl;
1067 	cork->tos = ipc->tos;
1068 	cork->priority = ipc->priority;
1069 	cork->tx_flags = ipc->tx_flags;
1070 
1071 	return 0;
1072 }
1073 
1074 /*
1075  *	ip_append_data() and ip_append_page() can make one large IP datagram
1076  *	from many pieces of data. Each pieces will be holded on the socket
1077  *	until ip_push_pending_frames() is called. Each piece can be a page
1078  *	or non-page data.
1079  *
1080  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1081  *	this interface potentially.
1082  *
1083  *	LATER: length must be adjusted by pad at tail, when it is required.
1084  */
1085 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1086 		   int getfrag(void *from, char *to, int offset, int len,
1087 			       int odd, struct sk_buff *skb),
1088 		   void *from, int length, int transhdrlen,
1089 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1090 		   unsigned int flags)
1091 {
1092 	struct inet_sock *inet = inet_sk(sk);
1093 	int err;
1094 
1095 	if (flags&MSG_PROBE)
1096 		return 0;
1097 
1098 	if (skb_queue_empty(&sk->sk_write_queue)) {
1099 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1100 		if (err)
1101 			return err;
1102 	} else {
1103 		transhdrlen = 0;
1104 	}
1105 
1106 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1107 				sk_page_frag(sk), getfrag,
1108 				from, length, transhdrlen, flags);
1109 }
1110 
1111 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1112 		       int offset, size_t size, int flags)
1113 {
1114 	struct inet_sock *inet = inet_sk(sk);
1115 	struct sk_buff *skb;
1116 	struct rtable *rt;
1117 	struct ip_options *opt = NULL;
1118 	struct inet_cork *cork;
1119 	int hh_len;
1120 	int mtu;
1121 	int len;
1122 	int err;
1123 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1124 
1125 	if (inet->hdrincl)
1126 		return -EPERM;
1127 
1128 	if (flags&MSG_PROBE)
1129 		return 0;
1130 
1131 	if (skb_queue_empty(&sk->sk_write_queue))
1132 		return -EINVAL;
1133 
1134 	cork = &inet->cork.base;
1135 	rt = (struct rtable *)cork->dst;
1136 	if (cork->flags & IPCORK_OPT)
1137 		opt = cork->opt;
1138 
1139 	if (!(rt->dst.dev->features&NETIF_F_SG))
1140 		return -EOPNOTSUPP;
1141 
1142 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1143 	mtu = cork->fragsize;
1144 
1145 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1146 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1147 	maxnonfragsize = ip_sk_local_df(sk) ? 0xFFFF : mtu;
1148 
1149 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1150 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1151 			       mtu - (opt ? opt->optlen : 0));
1152 		return -EMSGSIZE;
1153 	}
1154 
1155 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1156 		return -EINVAL;
1157 
1158 	cork->length += size;
1159 	if ((size + skb->len > mtu) &&
1160 	    (sk->sk_protocol == IPPROTO_UDP) &&
1161 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1162 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1163 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1164 	}
1165 
1166 
1167 	while (size > 0) {
1168 		int i;
1169 
1170 		if (skb_is_gso(skb))
1171 			len = size;
1172 		else {
1173 
1174 			/* Check if the remaining data fits into current packet. */
1175 			len = mtu - skb->len;
1176 			if (len < size)
1177 				len = maxfraglen - skb->len;
1178 		}
1179 		if (len <= 0) {
1180 			struct sk_buff *skb_prev;
1181 			int alloclen;
1182 
1183 			skb_prev = skb;
1184 			fraggap = skb_prev->len - maxfraglen;
1185 
1186 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1187 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1188 			if (unlikely(!skb)) {
1189 				err = -ENOBUFS;
1190 				goto error;
1191 			}
1192 
1193 			/*
1194 			 *	Fill in the control structures
1195 			 */
1196 			skb->ip_summed = CHECKSUM_NONE;
1197 			skb->csum = 0;
1198 			skb_reserve(skb, hh_len);
1199 
1200 			/*
1201 			 *	Find where to start putting bytes.
1202 			 */
1203 			skb_put(skb, fragheaderlen + fraggap);
1204 			skb_reset_network_header(skb);
1205 			skb->transport_header = (skb->network_header +
1206 						 fragheaderlen);
1207 			if (fraggap) {
1208 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1209 								   maxfraglen,
1210 						    skb_transport_header(skb),
1211 								   fraggap, 0);
1212 				skb_prev->csum = csum_sub(skb_prev->csum,
1213 							  skb->csum);
1214 				pskb_trim_unique(skb_prev, maxfraglen);
1215 			}
1216 
1217 			/*
1218 			 * Put the packet on the pending queue.
1219 			 */
1220 			__skb_queue_tail(&sk->sk_write_queue, skb);
1221 			continue;
1222 		}
1223 
1224 		i = skb_shinfo(skb)->nr_frags;
1225 		if (len > size)
1226 			len = size;
1227 		if (skb_can_coalesce(skb, i, page, offset)) {
1228 			skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1229 		} else if (i < MAX_SKB_FRAGS) {
1230 			get_page(page);
1231 			skb_fill_page_desc(skb, i, page, offset, len);
1232 		} else {
1233 			err = -EMSGSIZE;
1234 			goto error;
1235 		}
1236 
1237 		if (skb->ip_summed == CHECKSUM_NONE) {
1238 			__wsum csum;
1239 			csum = csum_page(page, offset, len);
1240 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1241 		}
1242 
1243 		skb->len += len;
1244 		skb->data_len += len;
1245 		skb->truesize += len;
1246 		atomic_add(len, &sk->sk_wmem_alloc);
1247 		offset += len;
1248 		size -= len;
1249 	}
1250 	return 0;
1251 
1252 error:
1253 	cork->length -= size;
1254 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1255 	return err;
1256 }
1257 
1258 static void ip_cork_release(struct inet_cork *cork)
1259 {
1260 	cork->flags &= ~IPCORK_OPT;
1261 	kfree(cork->opt);
1262 	cork->opt = NULL;
1263 	dst_release(cork->dst);
1264 	cork->dst = NULL;
1265 }
1266 
1267 /*
1268  *	Combined all pending IP fragments on the socket as one IP datagram
1269  *	and push them out.
1270  */
1271 struct sk_buff *__ip_make_skb(struct sock *sk,
1272 			      struct flowi4 *fl4,
1273 			      struct sk_buff_head *queue,
1274 			      struct inet_cork *cork)
1275 {
1276 	struct sk_buff *skb, *tmp_skb;
1277 	struct sk_buff **tail_skb;
1278 	struct inet_sock *inet = inet_sk(sk);
1279 	struct net *net = sock_net(sk);
1280 	struct ip_options *opt = NULL;
1281 	struct rtable *rt = (struct rtable *)cork->dst;
1282 	struct iphdr *iph;
1283 	__be16 df = 0;
1284 	__u8 ttl;
1285 
1286 	if ((skb = __skb_dequeue(queue)) == NULL)
1287 		goto out;
1288 	tail_skb = &(skb_shinfo(skb)->frag_list);
1289 
1290 	/* move skb->data to ip header from ext header */
1291 	if (skb->data < skb_network_header(skb))
1292 		__skb_pull(skb, skb_network_offset(skb));
1293 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1294 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1295 		*tail_skb = tmp_skb;
1296 		tail_skb = &(tmp_skb->next);
1297 		skb->len += tmp_skb->len;
1298 		skb->data_len += tmp_skb->len;
1299 		skb->truesize += tmp_skb->truesize;
1300 		tmp_skb->destructor = NULL;
1301 		tmp_skb->sk = NULL;
1302 	}
1303 
1304 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1305 	 * to fragment the frame generated here. No matter, what transforms
1306 	 * how transforms change size of the packet, it will come out.
1307 	 */
1308 	skb->local_df = ip_sk_local_df(sk);
1309 
1310 	/* DF bit is set when we want to see DF on outgoing frames.
1311 	 * If local_df is set too, we still allow to fragment this frame
1312 	 * locally. */
1313 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1314 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1315 	    (skb->len <= dst_mtu(&rt->dst) &&
1316 	     ip_dont_fragment(sk, &rt->dst)))
1317 		df = htons(IP_DF);
1318 
1319 	if (cork->flags & IPCORK_OPT)
1320 		opt = cork->opt;
1321 
1322 	if (cork->ttl != 0)
1323 		ttl = cork->ttl;
1324 	else if (rt->rt_type == RTN_MULTICAST)
1325 		ttl = inet->mc_ttl;
1326 	else
1327 		ttl = ip_select_ttl(inet, &rt->dst);
1328 
1329 	iph = ip_hdr(skb);
1330 	iph->version = 4;
1331 	iph->ihl = 5;
1332 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1333 	iph->frag_off = df;
1334 	iph->ttl = ttl;
1335 	iph->protocol = sk->sk_protocol;
1336 	ip_copy_addrs(iph, fl4);
1337 	ip_select_ident(skb, &rt->dst, sk);
1338 
1339 	if (opt) {
1340 		iph->ihl += opt->optlen>>2;
1341 		ip_options_build(skb, opt, cork->addr, rt, 0);
1342 	}
1343 
1344 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1345 	skb->mark = sk->sk_mark;
1346 	/*
1347 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1348 	 * on dst refcount
1349 	 */
1350 	cork->dst = NULL;
1351 	skb_dst_set(skb, &rt->dst);
1352 
1353 	if (iph->protocol == IPPROTO_ICMP)
1354 		icmp_out_count(net, ((struct icmphdr *)
1355 			skb_transport_header(skb))->type);
1356 
1357 	ip_cork_release(cork);
1358 out:
1359 	return skb;
1360 }
1361 
1362 int ip_send_skb(struct net *net, struct sk_buff *skb)
1363 {
1364 	int err;
1365 
1366 	err = ip_local_out(skb);
1367 	if (err) {
1368 		if (err > 0)
1369 			err = net_xmit_errno(err);
1370 		if (err)
1371 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1372 	}
1373 
1374 	return err;
1375 }
1376 
1377 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1378 {
1379 	struct sk_buff *skb;
1380 
1381 	skb = ip_finish_skb(sk, fl4);
1382 	if (!skb)
1383 		return 0;
1384 
1385 	/* Netfilter gets whole the not fragmented skb. */
1386 	return ip_send_skb(sock_net(sk), skb);
1387 }
1388 
1389 /*
1390  *	Throw away all pending data on the socket.
1391  */
1392 static void __ip_flush_pending_frames(struct sock *sk,
1393 				      struct sk_buff_head *queue,
1394 				      struct inet_cork *cork)
1395 {
1396 	struct sk_buff *skb;
1397 
1398 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1399 		kfree_skb(skb);
1400 
1401 	ip_cork_release(cork);
1402 }
1403 
1404 void ip_flush_pending_frames(struct sock *sk)
1405 {
1406 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1407 }
1408 
1409 struct sk_buff *ip_make_skb(struct sock *sk,
1410 			    struct flowi4 *fl4,
1411 			    int getfrag(void *from, char *to, int offset,
1412 					int len, int odd, struct sk_buff *skb),
1413 			    void *from, int length, int transhdrlen,
1414 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1415 			    unsigned int flags)
1416 {
1417 	struct inet_cork cork;
1418 	struct sk_buff_head queue;
1419 	int err;
1420 
1421 	if (flags & MSG_PROBE)
1422 		return NULL;
1423 
1424 	__skb_queue_head_init(&queue);
1425 
1426 	cork.flags = 0;
1427 	cork.addr = 0;
1428 	cork.opt = NULL;
1429 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1430 	if (err)
1431 		return ERR_PTR(err);
1432 
1433 	err = __ip_append_data(sk, fl4, &queue, &cork,
1434 			       &current->task_frag, getfrag,
1435 			       from, length, transhdrlen, flags);
1436 	if (err) {
1437 		__ip_flush_pending_frames(sk, &queue, &cork);
1438 		return ERR_PTR(err);
1439 	}
1440 
1441 	return __ip_make_skb(sk, fl4, &queue, &cork);
1442 }
1443 
1444 /*
1445  *	Fetch data from kernel space and fill in checksum if needed.
1446  */
1447 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1448 			      int len, int odd, struct sk_buff *skb)
1449 {
1450 	__wsum csum;
1451 
1452 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1453 	skb->csum = csum_block_add(skb->csum, csum, odd);
1454 	return 0;
1455 }
1456 
1457 /*
1458  *	Generic function to send a packet as reply to another packet.
1459  *	Used to send some TCP resets/acks so far.
1460  *
1461  *	Use a fake percpu inet socket to avoid false sharing and contention.
1462  */
1463 static DEFINE_PER_CPU(struct inet_sock, unicast_sock) = {
1464 	.sk = {
1465 		.__sk_common = {
1466 			.skc_refcnt = ATOMIC_INIT(1),
1467 		},
1468 		.sk_wmem_alloc	= ATOMIC_INIT(1),
1469 		.sk_allocation	= GFP_ATOMIC,
1470 		.sk_flags	= (1UL << SOCK_USE_WRITE_QUEUE),
1471 	},
1472 	.pmtudisc	= IP_PMTUDISC_WANT,
1473 	.uc_ttl		= -1,
1474 };
1475 
1476 void ip_send_unicast_reply(struct net *net, struct sk_buff *skb, __be32 daddr,
1477 			   __be32 saddr, const struct ip_reply_arg *arg,
1478 			   unsigned int len)
1479 {
1480 	struct ip_options_data replyopts;
1481 	struct ipcm_cookie ipc;
1482 	struct flowi4 fl4;
1483 	struct rtable *rt = skb_rtable(skb);
1484 	struct sk_buff *nskb;
1485 	struct sock *sk;
1486 	struct inet_sock *inet;
1487 
1488 	if (ip_options_echo(&replyopts.opt.opt, skb))
1489 		return;
1490 
1491 	ipc.addr = daddr;
1492 	ipc.opt = NULL;
1493 	ipc.tx_flags = 0;
1494 	ipc.ttl = 0;
1495 	ipc.tos = -1;
1496 
1497 	if (replyopts.opt.opt.optlen) {
1498 		ipc.opt = &replyopts.opt;
1499 
1500 		if (replyopts.opt.opt.srr)
1501 			daddr = replyopts.opt.opt.faddr;
1502 	}
1503 
1504 	flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1505 			   RT_TOS(arg->tos),
1506 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1507 			   ip_reply_arg_flowi_flags(arg),
1508 			   daddr, saddr,
1509 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1510 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1511 	rt = ip_route_output_key(net, &fl4);
1512 	if (IS_ERR(rt))
1513 		return;
1514 
1515 	inet = &get_cpu_var(unicast_sock);
1516 
1517 	inet->tos = arg->tos;
1518 	sk = &inet->sk;
1519 	sk->sk_priority = skb->priority;
1520 	sk->sk_protocol = ip_hdr(skb)->protocol;
1521 	sk->sk_bound_dev_if = arg->bound_dev_if;
1522 	sock_net_set(sk, net);
1523 	__skb_queue_head_init(&sk->sk_write_queue);
1524 	sk->sk_sndbuf = sysctl_wmem_default;
1525 	ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1526 		       &ipc, &rt, MSG_DONTWAIT);
1527 	nskb = skb_peek(&sk->sk_write_queue);
1528 	if (nskb) {
1529 		if (arg->csumoffset >= 0)
1530 			*((__sum16 *)skb_transport_header(nskb) +
1531 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1532 								arg->csum));
1533 		nskb->ip_summed = CHECKSUM_NONE;
1534 		skb_orphan(nskb);
1535 		skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb));
1536 		ip_push_pending_frames(sk, &fl4);
1537 	}
1538 
1539 	put_cpu_var(unicast_sock);
1540 
1541 	ip_rt_put(rt);
1542 }
1543 
1544 void __init ip_init(void)
1545 {
1546 	ip_rt_init();
1547 	inet_initpeers();
1548 
1549 #if defined(CONFIG_IP_MULTICAST)
1550 	igmp_mc_init();
1551 #endif
1552 }
1553