xref: /openbmc/linux/net/ipv4/ip_output.c (revision a8fe58ce)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/netlink.h>
80 #include <linux/tcp.h>
81 
82 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
83 EXPORT_SYMBOL(sysctl_ip_default_ttl);
84 
85 static int
86 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
87 	    unsigned int mtu,
88 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
89 
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr *iph)
92 {
93 	iph->check = 0;
94 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 }
96 EXPORT_SYMBOL(ip_send_check);
97 
98 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
99 {
100 	struct iphdr *iph = ip_hdr(skb);
101 
102 	iph->tot_len = htons(skb->len);
103 	ip_send_check(iph);
104 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
105 		       net, sk, skb, NULL, skb_dst(skb)->dev,
106 		       dst_output);
107 }
108 
109 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
110 {
111 	int err;
112 
113 	err = __ip_local_out(net, sk, skb);
114 	if (likely(err == 1))
115 		err = dst_output(net, sk, skb);
116 
117 	return err;
118 }
119 EXPORT_SYMBOL_GPL(ip_local_out);
120 
121 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
122 {
123 	int ttl = inet->uc_ttl;
124 
125 	if (ttl < 0)
126 		ttl = ip4_dst_hoplimit(dst);
127 	return ttl;
128 }
129 
130 /*
131  *		Add an ip header to a skbuff and send it out.
132  *
133  */
134 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
135 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
136 {
137 	struct inet_sock *inet = inet_sk(sk);
138 	struct rtable *rt = skb_rtable(skb);
139 	struct net *net = sock_net(sk);
140 	struct iphdr *iph;
141 
142 	/* Build the IP header. */
143 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
144 	skb_reset_network_header(skb);
145 	iph = ip_hdr(skb);
146 	iph->version  = 4;
147 	iph->ihl      = 5;
148 	iph->tos      = inet->tos;
149 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
150 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
151 	iph->saddr    = saddr;
152 	iph->protocol = sk->sk_protocol;
153 	if (ip_dont_fragment(sk, &rt->dst)) {
154 		iph->frag_off = htons(IP_DF);
155 		iph->id = 0;
156 	} else {
157 		iph->frag_off = 0;
158 		__ip_select_ident(net, iph, 1);
159 	}
160 
161 	if (opt && opt->opt.optlen) {
162 		iph->ihl += opt->opt.optlen>>2;
163 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
164 	}
165 
166 	skb->priority = sk->sk_priority;
167 	skb->mark = sk->sk_mark;
168 
169 	/* Send it out. */
170 	return ip_local_out(net, skb->sk, skb);
171 }
172 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
173 
174 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
175 {
176 	struct dst_entry *dst = skb_dst(skb);
177 	struct rtable *rt = (struct rtable *)dst;
178 	struct net_device *dev = dst->dev;
179 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
180 	struct neighbour *neigh;
181 	u32 nexthop;
182 
183 	if (rt->rt_type == RTN_MULTICAST) {
184 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
185 	} else if (rt->rt_type == RTN_BROADCAST)
186 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
187 
188 	/* Be paranoid, rather than too clever. */
189 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
190 		struct sk_buff *skb2;
191 
192 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
193 		if (!skb2) {
194 			kfree_skb(skb);
195 			return -ENOMEM;
196 		}
197 		if (skb->sk)
198 			skb_set_owner_w(skb2, skb->sk);
199 		consume_skb(skb);
200 		skb = skb2;
201 	}
202 
203 	rcu_read_lock_bh();
204 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
205 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
206 	if (unlikely(!neigh))
207 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
208 	if (!IS_ERR(neigh)) {
209 		int res = dst_neigh_output(dst, neigh, skb);
210 
211 		rcu_read_unlock_bh();
212 		return res;
213 	}
214 	rcu_read_unlock_bh();
215 
216 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
217 			    __func__);
218 	kfree_skb(skb);
219 	return -EINVAL;
220 }
221 
222 static int ip_finish_output_gso(struct net *net, struct sock *sk,
223 				struct sk_buff *skb, unsigned int mtu)
224 {
225 	netdev_features_t features;
226 	struct sk_buff *segs;
227 	int ret = 0;
228 
229 	/* common case: locally created skb or seglen is <= mtu */
230 	if (((IPCB(skb)->flags & IPSKB_FORWARDED) == 0) ||
231 	      skb_gso_network_seglen(skb) <= mtu)
232 		return ip_finish_output2(net, sk, skb);
233 
234 	/* Slowpath -  GSO segment length is exceeding the dst MTU.
235 	 *
236 	 * This can happen in two cases:
237 	 * 1) TCP GRO packet, DF bit not set
238 	 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
239 	 * from host network stack.
240 	 */
241 	features = netif_skb_features(skb);
242 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
243 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
244 	if (IS_ERR_OR_NULL(segs)) {
245 		kfree_skb(skb);
246 		return -ENOMEM;
247 	}
248 
249 	consume_skb(skb);
250 
251 	do {
252 		struct sk_buff *nskb = segs->next;
253 		int err;
254 
255 		segs->next = NULL;
256 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
257 
258 		if (err && ret == 0)
259 			ret = err;
260 		segs = nskb;
261 	} while (segs);
262 
263 	return ret;
264 }
265 
266 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
267 {
268 	unsigned int mtu;
269 
270 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
271 	/* Policy lookup after SNAT yielded a new policy */
272 	if (skb_dst(skb)->xfrm) {
273 		IPCB(skb)->flags |= IPSKB_REROUTED;
274 		return dst_output(net, sk, skb);
275 	}
276 #endif
277 	mtu = ip_skb_dst_mtu(skb);
278 	if (skb_is_gso(skb))
279 		return ip_finish_output_gso(net, sk, skb, mtu);
280 
281 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
282 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
283 
284 	return ip_finish_output2(net, sk, skb);
285 }
286 
287 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
288 {
289 	struct rtable *rt = skb_rtable(skb);
290 	struct net_device *dev = rt->dst.dev;
291 
292 	/*
293 	 *	If the indicated interface is up and running, send the packet.
294 	 */
295 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
296 
297 	skb->dev = dev;
298 	skb->protocol = htons(ETH_P_IP);
299 
300 	/*
301 	 *	Multicasts are looped back for other local users
302 	 */
303 
304 	if (rt->rt_flags&RTCF_MULTICAST) {
305 		if (sk_mc_loop(sk)
306 #ifdef CONFIG_IP_MROUTE
307 		/* Small optimization: do not loopback not local frames,
308 		   which returned after forwarding; they will be  dropped
309 		   by ip_mr_input in any case.
310 		   Note, that local frames are looped back to be delivered
311 		   to local recipients.
312 
313 		   This check is duplicated in ip_mr_input at the moment.
314 		 */
315 		    &&
316 		    ((rt->rt_flags & RTCF_LOCAL) ||
317 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
318 #endif
319 		   ) {
320 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
321 			if (newskb)
322 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
323 					net, sk, newskb, NULL, newskb->dev,
324 					dev_loopback_xmit);
325 		}
326 
327 		/* Multicasts with ttl 0 must not go beyond the host */
328 
329 		if (ip_hdr(skb)->ttl == 0) {
330 			kfree_skb(skb);
331 			return 0;
332 		}
333 	}
334 
335 	if (rt->rt_flags&RTCF_BROADCAST) {
336 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
337 		if (newskb)
338 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
339 				net, sk, newskb, NULL, newskb->dev,
340 				dev_loopback_xmit);
341 	}
342 
343 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
344 			    net, sk, skb, NULL, skb->dev,
345 			    ip_finish_output,
346 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
347 }
348 
349 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
350 {
351 	struct net_device *dev = skb_dst(skb)->dev;
352 
353 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
354 
355 	skb->dev = dev;
356 	skb->protocol = htons(ETH_P_IP);
357 
358 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
359 			    net, sk, skb, NULL, dev,
360 			    ip_finish_output,
361 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
362 }
363 
364 /*
365  * copy saddr and daddr, possibly using 64bit load/stores
366  * Equivalent to :
367  *   iph->saddr = fl4->saddr;
368  *   iph->daddr = fl4->daddr;
369  */
370 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
371 {
372 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
373 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
374 	memcpy(&iph->saddr, &fl4->saddr,
375 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
376 }
377 
378 /* Note: skb->sk can be different from sk, in case of tunnels */
379 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
380 {
381 	struct inet_sock *inet = inet_sk(sk);
382 	struct net *net = sock_net(sk);
383 	struct ip_options_rcu *inet_opt;
384 	struct flowi4 *fl4;
385 	struct rtable *rt;
386 	struct iphdr *iph;
387 	int res;
388 
389 	/* Skip all of this if the packet is already routed,
390 	 * f.e. by something like SCTP.
391 	 */
392 	rcu_read_lock();
393 	inet_opt = rcu_dereference(inet->inet_opt);
394 	fl4 = &fl->u.ip4;
395 	rt = skb_rtable(skb);
396 	if (rt)
397 		goto packet_routed;
398 
399 	/* Make sure we can route this packet. */
400 	rt = (struct rtable *)__sk_dst_check(sk, 0);
401 	if (!rt) {
402 		__be32 daddr;
403 
404 		/* Use correct destination address if we have options. */
405 		daddr = inet->inet_daddr;
406 		if (inet_opt && inet_opt->opt.srr)
407 			daddr = inet_opt->opt.faddr;
408 
409 		/* If this fails, retransmit mechanism of transport layer will
410 		 * keep trying until route appears or the connection times
411 		 * itself out.
412 		 */
413 		rt = ip_route_output_ports(net, fl4, sk,
414 					   daddr, inet->inet_saddr,
415 					   inet->inet_dport,
416 					   inet->inet_sport,
417 					   sk->sk_protocol,
418 					   RT_CONN_FLAGS(sk),
419 					   sk->sk_bound_dev_if);
420 		if (IS_ERR(rt))
421 			goto no_route;
422 		sk_setup_caps(sk, &rt->dst);
423 	}
424 	skb_dst_set_noref(skb, &rt->dst);
425 
426 packet_routed:
427 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
428 		goto no_route;
429 
430 	/* OK, we know where to send it, allocate and build IP header. */
431 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
432 	skb_reset_network_header(skb);
433 	iph = ip_hdr(skb);
434 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
435 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
436 		iph->frag_off = htons(IP_DF);
437 	else
438 		iph->frag_off = 0;
439 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
440 	iph->protocol = sk->sk_protocol;
441 	ip_copy_addrs(iph, fl4);
442 
443 	/* Transport layer set skb->h.foo itself. */
444 
445 	if (inet_opt && inet_opt->opt.optlen) {
446 		iph->ihl += inet_opt->opt.optlen >> 2;
447 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
448 	}
449 
450 	ip_select_ident_segs(net, skb, sk,
451 			     skb_shinfo(skb)->gso_segs ?: 1);
452 
453 	/* TODO : should we use skb->sk here instead of sk ? */
454 	skb->priority = sk->sk_priority;
455 	skb->mark = sk->sk_mark;
456 
457 	res = ip_local_out(net, sk, skb);
458 	rcu_read_unlock();
459 	return res;
460 
461 no_route:
462 	rcu_read_unlock();
463 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
464 	kfree_skb(skb);
465 	return -EHOSTUNREACH;
466 }
467 EXPORT_SYMBOL(ip_queue_xmit);
468 
469 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
470 {
471 	to->pkt_type = from->pkt_type;
472 	to->priority = from->priority;
473 	to->protocol = from->protocol;
474 	skb_dst_drop(to);
475 	skb_dst_copy(to, from);
476 	to->dev = from->dev;
477 	to->mark = from->mark;
478 
479 	/* Copy the flags to each fragment. */
480 	IPCB(to)->flags = IPCB(from)->flags;
481 
482 #ifdef CONFIG_NET_SCHED
483 	to->tc_index = from->tc_index;
484 #endif
485 	nf_copy(to, from);
486 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
487 	to->ipvs_property = from->ipvs_property;
488 #endif
489 	skb_copy_secmark(to, from);
490 }
491 
492 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
493 		       unsigned int mtu,
494 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
495 {
496 	struct iphdr *iph = ip_hdr(skb);
497 
498 	if ((iph->frag_off & htons(IP_DF)) == 0)
499 		return ip_do_fragment(net, sk, skb, output);
500 
501 	if (unlikely(!skb->ignore_df ||
502 		     (IPCB(skb)->frag_max_size &&
503 		      IPCB(skb)->frag_max_size > mtu))) {
504 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
505 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
506 			  htonl(mtu));
507 		kfree_skb(skb);
508 		return -EMSGSIZE;
509 	}
510 
511 	return ip_do_fragment(net, sk, skb, output);
512 }
513 
514 /*
515  *	This IP datagram is too large to be sent in one piece.  Break it up into
516  *	smaller pieces (each of size equal to IP header plus
517  *	a block of the data of the original IP data part) that will yet fit in a
518  *	single device frame, and queue such a frame for sending.
519  */
520 
521 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
522 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
523 {
524 	struct iphdr *iph;
525 	int ptr;
526 	struct net_device *dev;
527 	struct sk_buff *skb2;
528 	unsigned int mtu, hlen, left, len, ll_rs;
529 	int offset;
530 	__be16 not_last_frag;
531 	struct rtable *rt = skb_rtable(skb);
532 	int err = 0;
533 
534 	dev = rt->dst.dev;
535 
536 	/* for offloaded checksums cleanup checksum before fragmentation */
537 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
538 	    (err = skb_checksum_help(skb)))
539 		goto fail;
540 
541 	/*
542 	 *	Point into the IP datagram header.
543 	 */
544 
545 	iph = ip_hdr(skb);
546 
547 	mtu = ip_skb_dst_mtu(skb);
548 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
549 		mtu = IPCB(skb)->frag_max_size;
550 
551 	/*
552 	 *	Setup starting values.
553 	 */
554 
555 	hlen = iph->ihl * 4;
556 	mtu = mtu - hlen;	/* Size of data space */
557 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
558 
559 	/* When frag_list is given, use it. First, check its validity:
560 	 * some transformers could create wrong frag_list or break existing
561 	 * one, it is not prohibited. In this case fall back to copying.
562 	 *
563 	 * LATER: this step can be merged to real generation of fragments,
564 	 * we can switch to copy when see the first bad fragment.
565 	 */
566 	if (skb_has_frag_list(skb)) {
567 		struct sk_buff *frag, *frag2;
568 		int first_len = skb_pagelen(skb);
569 
570 		if (first_len - hlen > mtu ||
571 		    ((first_len - hlen) & 7) ||
572 		    ip_is_fragment(iph) ||
573 		    skb_cloned(skb))
574 			goto slow_path;
575 
576 		skb_walk_frags(skb, frag) {
577 			/* Correct geometry. */
578 			if (frag->len > mtu ||
579 			    ((frag->len & 7) && frag->next) ||
580 			    skb_headroom(frag) < hlen)
581 				goto slow_path_clean;
582 
583 			/* Partially cloned skb? */
584 			if (skb_shared(frag))
585 				goto slow_path_clean;
586 
587 			BUG_ON(frag->sk);
588 			if (skb->sk) {
589 				frag->sk = skb->sk;
590 				frag->destructor = sock_wfree;
591 			}
592 			skb->truesize -= frag->truesize;
593 		}
594 
595 		/* Everything is OK. Generate! */
596 
597 		err = 0;
598 		offset = 0;
599 		frag = skb_shinfo(skb)->frag_list;
600 		skb_frag_list_init(skb);
601 		skb->data_len = first_len - skb_headlen(skb);
602 		skb->len = first_len;
603 		iph->tot_len = htons(first_len);
604 		iph->frag_off = htons(IP_MF);
605 		ip_send_check(iph);
606 
607 		for (;;) {
608 			/* Prepare header of the next frame,
609 			 * before previous one went down. */
610 			if (frag) {
611 				frag->ip_summed = CHECKSUM_NONE;
612 				skb_reset_transport_header(frag);
613 				__skb_push(frag, hlen);
614 				skb_reset_network_header(frag);
615 				memcpy(skb_network_header(frag), iph, hlen);
616 				iph = ip_hdr(frag);
617 				iph->tot_len = htons(frag->len);
618 				ip_copy_metadata(frag, skb);
619 				if (offset == 0)
620 					ip_options_fragment(frag);
621 				offset += skb->len - hlen;
622 				iph->frag_off = htons(offset>>3);
623 				if (frag->next)
624 					iph->frag_off |= htons(IP_MF);
625 				/* Ready, complete checksum */
626 				ip_send_check(iph);
627 			}
628 
629 			err = output(net, sk, skb);
630 
631 			if (!err)
632 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
633 			if (err || !frag)
634 				break;
635 
636 			skb = frag;
637 			frag = skb->next;
638 			skb->next = NULL;
639 		}
640 
641 		if (err == 0) {
642 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
643 			return 0;
644 		}
645 
646 		while (frag) {
647 			skb = frag->next;
648 			kfree_skb(frag);
649 			frag = skb;
650 		}
651 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
652 		return err;
653 
654 slow_path_clean:
655 		skb_walk_frags(skb, frag2) {
656 			if (frag2 == frag)
657 				break;
658 			frag2->sk = NULL;
659 			frag2->destructor = NULL;
660 			skb->truesize += frag2->truesize;
661 		}
662 	}
663 
664 slow_path:
665 	iph = ip_hdr(skb);
666 
667 	left = skb->len - hlen;		/* Space per frame */
668 	ptr = hlen;		/* Where to start from */
669 
670 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
671 
672 	/*
673 	 *	Fragment the datagram.
674 	 */
675 
676 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
677 	not_last_frag = iph->frag_off & htons(IP_MF);
678 
679 	/*
680 	 *	Keep copying data until we run out.
681 	 */
682 
683 	while (left > 0) {
684 		len = left;
685 		/* IF: it doesn't fit, use 'mtu' - the data space left */
686 		if (len > mtu)
687 			len = mtu;
688 		/* IF: we are not sending up to and including the packet end
689 		   then align the next start on an eight byte boundary */
690 		if (len < left)	{
691 			len &= ~7;
692 		}
693 
694 		/* Allocate buffer */
695 		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
696 		if (!skb2) {
697 			err = -ENOMEM;
698 			goto fail;
699 		}
700 
701 		/*
702 		 *	Set up data on packet
703 		 */
704 
705 		ip_copy_metadata(skb2, skb);
706 		skb_reserve(skb2, ll_rs);
707 		skb_put(skb2, len + hlen);
708 		skb_reset_network_header(skb2);
709 		skb2->transport_header = skb2->network_header + hlen;
710 
711 		/*
712 		 *	Charge the memory for the fragment to any owner
713 		 *	it might possess
714 		 */
715 
716 		if (skb->sk)
717 			skb_set_owner_w(skb2, skb->sk);
718 
719 		/*
720 		 *	Copy the packet header into the new buffer.
721 		 */
722 
723 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
724 
725 		/*
726 		 *	Copy a block of the IP datagram.
727 		 */
728 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
729 			BUG();
730 		left -= len;
731 
732 		/*
733 		 *	Fill in the new header fields.
734 		 */
735 		iph = ip_hdr(skb2);
736 		iph->frag_off = htons((offset >> 3));
737 
738 		if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
739 			iph->frag_off |= htons(IP_DF);
740 
741 		/* ANK: dirty, but effective trick. Upgrade options only if
742 		 * the segment to be fragmented was THE FIRST (otherwise,
743 		 * options are already fixed) and make it ONCE
744 		 * on the initial skb, so that all the following fragments
745 		 * will inherit fixed options.
746 		 */
747 		if (offset == 0)
748 			ip_options_fragment(skb);
749 
750 		/*
751 		 *	Added AC : If we are fragmenting a fragment that's not the
752 		 *		   last fragment then keep MF on each bit
753 		 */
754 		if (left > 0 || not_last_frag)
755 			iph->frag_off |= htons(IP_MF);
756 		ptr += len;
757 		offset += len;
758 
759 		/*
760 		 *	Put this fragment into the sending queue.
761 		 */
762 		iph->tot_len = htons(len + hlen);
763 
764 		ip_send_check(iph);
765 
766 		err = output(net, sk, skb2);
767 		if (err)
768 			goto fail;
769 
770 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
771 	}
772 	consume_skb(skb);
773 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
774 	return err;
775 
776 fail:
777 	kfree_skb(skb);
778 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
779 	return err;
780 }
781 EXPORT_SYMBOL(ip_do_fragment);
782 
783 int
784 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
785 {
786 	struct msghdr *msg = from;
787 
788 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
789 		if (copy_from_iter(to, len, &msg->msg_iter) != len)
790 			return -EFAULT;
791 	} else {
792 		__wsum csum = 0;
793 		if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
794 			return -EFAULT;
795 		skb->csum = csum_block_add(skb->csum, csum, odd);
796 	}
797 	return 0;
798 }
799 EXPORT_SYMBOL(ip_generic_getfrag);
800 
801 static inline __wsum
802 csum_page(struct page *page, int offset, int copy)
803 {
804 	char *kaddr;
805 	__wsum csum;
806 	kaddr = kmap(page);
807 	csum = csum_partial(kaddr + offset, copy, 0);
808 	kunmap(page);
809 	return csum;
810 }
811 
812 static inline int ip_ufo_append_data(struct sock *sk,
813 			struct sk_buff_head *queue,
814 			int getfrag(void *from, char *to, int offset, int len,
815 			       int odd, struct sk_buff *skb),
816 			void *from, int length, int hh_len, int fragheaderlen,
817 			int transhdrlen, int maxfraglen, unsigned int flags)
818 {
819 	struct sk_buff *skb;
820 	int err;
821 
822 	/* There is support for UDP fragmentation offload by network
823 	 * device, so create one single skb packet containing complete
824 	 * udp datagram
825 	 */
826 	skb = skb_peek_tail(queue);
827 	if (!skb) {
828 		skb = sock_alloc_send_skb(sk,
829 			hh_len + fragheaderlen + transhdrlen + 20,
830 			(flags & MSG_DONTWAIT), &err);
831 
832 		if (!skb)
833 			return err;
834 
835 		/* reserve space for Hardware header */
836 		skb_reserve(skb, hh_len);
837 
838 		/* create space for UDP/IP header */
839 		skb_put(skb, fragheaderlen + transhdrlen);
840 
841 		/* initialize network header pointer */
842 		skb_reset_network_header(skb);
843 
844 		/* initialize protocol header pointer */
845 		skb->transport_header = skb->network_header + fragheaderlen;
846 
847 		skb->csum = 0;
848 
849 		__skb_queue_tail(queue, skb);
850 	} else if (skb_is_gso(skb)) {
851 		goto append;
852 	}
853 
854 	skb->ip_summed = CHECKSUM_PARTIAL;
855 	/* specify the length of each IP datagram fragment */
856 	skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
857 	skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
858 
859 append:
860 	return skb_append_datato_frags(sk, skb, getfrag, from,
861 				       (length - transhdrlen));
862 }
863 
864 static int __ip_append_data(struct sock *sk,
865 			    struct flowi4 *fl4,
866 			    struct sk_buff_head *queue,
867 			    struct inet_cork *cork,
868 			    struct page_frag *pfrag,
869 			    int getfrag(void *from, char *to, int offset,
870 					int len, int odd, struct sk_buff *skb),
871 			    void *from, int length, int transhdrlen,
872 			    unsigned int flags)
873 {
874 	struct inet_sock *inet = inet_sk(sk);
875 	struct sk_buff *skb;
876 
877 	struct ip_options *opt = cork->opt;
878 	int hh_len;
879 	int exthdrlen;
880 	int mtu;
881 	int copy;
882 	int err;
883 	int offset = 0;
884 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
885 	int csummode = CHECKSUM_NONE;
886 	struct rtable *rt = (struct rtable *)cork->dst;
887 	u32 tskey = 0;
888 
889 	skb = skb_peek_tail(queue);
890 
891 	exthdrlen = !skb ? rt->dst.header_len : 0;
892 	mtu = cork->fragsize;
893 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
894 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
895 		tskey = sk->sk_tskey++;
896 
897 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
898 
899 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
900 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
901 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
902 
903 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
904 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
905 			       mtu - (opt ? opt->optlen : 0));
906 		return -EMSGSIZE;
907 	}
908 
909 	/*
910 	 * transhdrlen > 0 means that this is the first fragment and we wish
911 	 * it won't be fragmented in the future.
912 	 */
913 	if (transhdrlen &&
914 	    length + fragheaderlen <= mtu &&
915 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
916 	    !(flags & MSG_MORE) &&
917 	    !exthdrlen)
918 		csummode = CHECKSUM_PARTIAL;
919 
920 	cork->length += length;
921 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
922 	    (sk->sk_protocol == IPPROTO_UDP) &&
923 	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
924 	    (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
925 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
926 					 hh_len, fragheaderlen, transhdrlen,
927 					 maxfraglen, flags);
928 		if (err)
929 			goto error;
930 		return 0;
931 	}
932 
933 	/* So, what's going on in the loop below?
934 	 *
935 	 * We use calculated fragment length to generate chained skb,
936 	 * each of segments is IP fragment ready for sending to network after
937 	 * adding appropriate IP header.
938 	 */
939 
940 	if (!skb)
941 		goto alloc_new_skb;
942 
943 	while (length > 0) {
944 		/* Check if the remaining data fits into current packet. */
945 		copy = mtu - skb->len;
946 		if (copy < length)
947 			copy = maxfraglen - skb->len;
948 		if (copy <= 0) {
949 			char *data;
950 			unsigned int datalen;
951 			unsigned int fraglen;
952 			unsigned int fraggap;
953 			unsigned int alloclen;
954 			struct sk_buff *skb_prev;
955 alloc_new_skb:
956 			skb_prev = skb;
957 			if (skb_prev)
958 				fraggap = skb_prev->len - maxfraglen;
959 			else
960 				fraggap = 0;
961 
962 			/*
963 			 * If remaining data exceeds the mtu,
964 			 * we know we need more fragment(s).
965 			 */
966 			datalen = length + fraggap;
967 			if (datalen > mtu - fragheaderlen)
968 				datalen = maxfraglen - fragheaderlen;
969 			fraglen = datalen + fragheaderlen;
970 
971 			if ((flags & MSG_MORE) &&
972 			    !(rt->dst.dev->features&NETIF_F_SG))
973 				alloclen = mtu;
974 			else
975 				alloclen = fraglen;
976 
977 			alloclen += exthdrlen;
978 
979 			/* The last fragment gets additional space at tail.
980 			 * Note, with MSG_MORE we overallocate on fragments,
981 			 * because we have no idea what fragment will be
982 			 * the last.
983 			 */
984 			if (datalen == length + fraggap)
985 				alloclen += rt->dst.trailer_len;
986 
987 			if (transhdrlen) {
988 				skb = sock_alloc_send_skb(sk,
989 						alloclen + hh_len + 15,
990 						(flags & MSG_DONTWAIT), &err);
991 			} else {
992 				skb = NULL;
993 				if (atomic_read(&sk->sk_wmem_alloc) <=
994 				    2 * sk->sk_sndbuf)
995 					skb = sock_wmalloc(sk,
996 							   alloclen + hh_len + 15, 1,
997 							   sk->sk_allocation);
998 				if (unlikely(!skb))
999 					err = -ENOBUFS;
1000 			}
1001 			if (!skb)
1002 				goto error;
1003 
1004 			/*
1005 			 *	Fill in the control structures
1006 			 */
1007 			skb->ip_summed = csummode;
1008 			skb->csum = 0;
1009 			skb_reserve(skb, hh_len);
1010 
1011 			/* only the initial fragment is time stamped */
1012 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1013 			cork->tx_flags = 0;
1014 			skb_shinfo(skb)->tskey = tskey;
1015 			tskey = 0;
1016 
1017 			/*
1018 			 *	Find where to start putting bytes.
1019 			 */
1020 			data = skb_put(skb, fraglen + exthdrlen);
1021 			skb_set_network_header(skb, exthdrlen);
1022 			skb->transport_header = (skb->network_header +
1023 						 fragheaderlen);
1024 			data += fragheaderlen + exthdrlen;
1025 
1026 			if (fraggap) {
1027 				skb->csum = skb_copy_and_csum_bits(
1028 					skb_prev, maxfraglen,
1029 					data + transhdrlen, fraggap, 0);
1030 				skb_prev->csum = csum_sub(skb_prev->csum,
1031 							  skb->csum);
1032 				data += fraggap;
1033 				pskb_trim_unique(skb_prev, maxfraglen);
1034 			}
1035 
1036 			copy = datalen - transhdrlen - fraggap;
1037 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1038 				err = -EFAULT;
1039 				kfree_skb(skb);
1040 				goto error;
1041 			}
1042 
1043 			offset += copy;
1044 			length -= datalen - fraggap;
1045 			transhdrlen = 0;
1046 			exthdrlen = 0;
1047 			csummode = CHECKSUM_NONE;
1048 
1049 			/*
1050 			 * Put the packet on the pending queue.
1051 			 */
1052 			__skb_queue_tail(queue, skb);
1053 			continue;
1054 		}
1055 
1056 		if (copy > length)
1057 			copy = length;
1058 
1059 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
1060 			unsigned int off;
1061 
1062 			off = skb->len;
1063 			if (getfrag(from, skb_put(skb, copy),
1064 					offset, copy, off, skb) < 0) {
1065 				__skb_trim(skb, off);
1066 				err = -EFAULT;
1067 				goto error;
1068 			}
1069 		} else {
1070 			int i = skb_shinfo(skb)->nr_frags;
1071 
1072 			err = -ENOMEM;
1073 			if (!sk_page_frag_refill(sk, pfrag))
1074 				goto error;
1075 
1076 			if (!skb_can_coalesce(skb, i, pfrag->page,
1077 					      pfrag->offset)) {
1078 				err = -EMSGSIZE;
1079 				if (i == MAX_SKB_FRAGS)
1080 					goto error;
1081 
1082 				__skb_fill_page_desc(skb, i, pfrag->page,
1083 						     pfrag->offset, 0);
1084 				skb_shinfo(skb)->nr_frags = ++i;
1085 				get_page(pfrag->page);
1086 			}
1087 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1088 			if (getfrag(from,
1089 				    page_address(pfrag->page) + pfrag->offset,
1090 				    offset, copy, skb->len, skb) < 0)
1091 				goto error_efault;
1092 
1093 			pfrag->offset += copy;
1094 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1095 			skb->len += copy;
1096 			skb->data_len += copy;
1097 			skb->truesize += copy;
1098 			atomic_add(copy, &sk->sk_wmem_alloc);
1099 		}
1100 		offset += copy;
1101 		length -= copy;
1102 	}
1103 
1104 	return 0;
1105 
1106 error_efault:
1107 	err = -EFAULT;
1108 error:
1109 	cork->length -= length;
1110 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1111 	return err;
1112 }
1113 
1114 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1115 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1116 {
1117 	struct ip_options_rcu *opt;
1118 	struct rtable *rt;
1119 
1120 	/*
1121 	 * setup for corking.
1122 	 */
1123 	opt = ipc->opt;
1124 	if (opt) {
1125 		if (!cork->opt) {
1126 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1127 					    sk->sk_allocation);
1128 			if (unlikely(!cork->opt))
1129 				return -ENOBUFS;
1130 		}
1131 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1132 		cork->flags |= IPCORK_OPT;
1133 		cork->addr = ipc->addr;
1134 	}
1135 	rt = *rtp;
1136 	if (unlikely(!rt))
1137 		return -EFAULT;
1138 	/*
1139 	 * We steal reference to this route, caller should not release it
1140 	 */
1141 	*rtp = NULL;
1142 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1143 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1144 	cork->dst = &rt->dst;
1145 	cork->length = 0;
1146 	cork->ttl = ipc->ttl;
1147 	cork->tos = ipc->tos;
1148 	cork->priority = ipc->priority;
1149 	cork->tx_flags = ipc->tx_flags;
1150 
1151 	return 0;
1152 }
1153 
1154 /*
1155  *	ip_append_data() and ip_append_page() can make one large IP datagram
1156  *	from many pieces of data. Each pieces will be holded on the socket
1157  *	until ip_push_pending_frames() is called. Each piece can be a page
1158  *	or non-page data.
1159  *
1160  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1161  *	this interface potentially.
1162  *
1163  *	LATER: length must be adjusted by pad at tail, when it is required.
1164  */
1165 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1166 		   int getfrag(void *from, char *to, int offset, int len,
1167 			       int odd, struct sk_buff *skb),
1168 		   void *from, int length, int transhdrlen,
1169 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1170 		   unsigned int flags)
1171 {
1172 	struct inet_sock *inet = inet_sk(sk);
1173 	int err;
1174 
1175 	if (flags&MSG_PROBE)
1176 		return 0;
1177 
1178 	if (skb_queue_empty(&sk->sk_write_queue)) {
1179 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1180 		if (err)
1181 			return err;
1182 	} else {
1183 		transhdrlen = 0;
1184 	}
1185 
1186 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1187 				sk_page_frag(sk), getfrag,
1188 				from, length, transhdrlen, flags);
1189 }
1190 
1191 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1192 		       int offset, size_t size, int flags)
1193 {
1194 	struct inet_sock *inet = inet_sk(sk);
1195 	struct sk_buff *skb;
1196 	struct rtable *rt;
1197 	struct ip_options *opt = NULL;
1198 	struct inet_cork *cork;
1199 	int hh_len;
1200 	int mtu;
1201 	int len;
1202 	int err;
1203 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1204 
1205 	if (inet->hdrincl)
1206 		return -EPERM;
1207 
1208 	if (flags&MSG_PROBE)
1209 		return 0;
1210 
1211 	if (skb_queue_empty(&sk->sk_write_queue))
1212 		return -EINVAL;
1213 
1214 	cork = &inet->cork.base;
1215 	rt = (struct rtable *)cork->dst;
1216 	if (cork->flags & IPCORK_OPT)
1217 		opt = cork->opt;
1218 
1219 	if (!(rt->dst.dev->features&NETIF_F_SG))
1220 		return -EOPNOTSUPP;
1221 
1222 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1223 	mtu = cork->fragsize;
1224 
1225 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1226 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1227 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1228 
1229 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1230 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1231 			       mtu - (opt ? opt->optlen : 0));
1232 		return -EMSGSIZE;
1233 	}
1234 
1235 	skb = skb_peek_tail(&sk->sk_write_queue);
1236 	if (!skb)
1237 		return -EINVAL;
1238 
1239 	cork->length += size;
1240 	if ((size + skb->len > mtu) &&
1241 	    (sk->sk_protocol == IPPROTO_UDP) &&
1242 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1243 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1244 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1245 	}
1246 
1247 	while (size > 0) {
1248 		if (skb_is_gso(skb)) {
1249 			len = size;
1250 		} else {
1251 
1252 			/* Check if the remaining data fits into current packet. */
1253 			len = mtu - skb->len;
1254 			if (len < size)
1255 				len = maxfraglen - skb->len;
1256 		}
1257 		if (len <= 0) {
1258 			struct sk_buff *skb_prev;
1259 			int alloclen;
1260 
1261 			skb_prev = skb;
1262 			fraggap = skb_prev->len - maxfraglen;
1263 
1264 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1265 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1266 			if (unlikely(!skb)) {
1267 				err = -ENOBUFS;
1268 				goto error;
1269 			}
1270 
1271 			/*
1272 			 *	Fill in the control structures
1273 			 */
1274 			skb->ip_summed = CHECKSUM_NONE;
1275 			skb->csum = 0;
1276 			skb_reserve(skb, hh_len);
1277 
1278 			/*
1279 			 *	Find where to start putting bytes.
1280 			 */
1281 			skb_put(skb, fragheaderlen + fraggap);
1282 			skb_reset_network_header(skb);
1283 			skb->transport_header = (skb->network_header +
1284 						 fragheaderlen);
1285 			if (fraggap) {
1286 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1287 								   maxfraglen,
1288 						    skb_transport_header(skb),
1289 								   fraggap, 0);
1290 				skb_prev->csum = csum_sub(skb_prev->csum,
1291 							  skb->csum);
1292 				pskb_trim_unique(skb_prev, maxfraglen);
1293 			}
1294 
1295 			/*
1296 			 * Put the packet on the pending queue.
1297 			 */
1298 			__skb_queue_tail(&sk->sk_write_queue, skb);
1299 			continue;
1300 		}
1301 
1302 		if (len > size)
1303 			len = size;
1304 
1305 		if (skb_append_pagefrags(skb, page, offset, len)) {
1306 			err = -EMSGSIZE;
1307 			goto error;
1308 		}
1309 
1310 		if (skb->ip_summed == CHECKSUM_NONE) {
1311 			__wsum csum;
1312 			csum = csum_page(page, offset, len);
1313 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1314 		}
1315 
1316 		skb->len += len;
1317 		skb->data_len += len;
1318 		skb->truesize += len;
1319 		atomic_add(len, &sk->sk_wmem_alloc);
1320 		offset += len;
1321 		size -= len;
1322 	}
1323 	return 0;
1324 
1325 error:
1326 	cork->length -= size;
1327 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1328 	return err;
1329 }
1330 
1331 static void ip_cork_release(struct inet_cork *cork)
1332 {
1333 	cork->flags &= ~IPCORK_OPT;
1334 	kfree(cork->opt);
1335 	cork->opt = NULL;
1336 	dst_release(cork->dst);
1337 	cork->dst = NULL;
1338 }
1339 
1340 /*
1341  *	Combined all pending IP fragments on the socket as one IP datagram
1342  *	and push them out.
1343  */
1344 struct sk_buff *__ip_make_skb(struct sock *sk,
1345 			      struct flowi4 *fl4,
1346 			      struct sk_buff_head *queue,
1347 			      struct inet_cork *cork)
1348 {
1349 	struct sk_buff *skb, *tmp_skb;
1350 	struct sk_buff **tail_skb;
1351 	struct inet_sock *inet = inet_sk(sk);
1352 	struct net *net = sock_net(sk);
1353 	struct ip_options *opt = NULL;
1354 	struct rtable *rt = (struct rtable *)cork->dst;
1355 	struct iphdr *iph;
1356 	__be16 df = 0;
1357 	__u8 ttl;
1358 
1359 	skb = __skb_dequeue(queue);
1360 	if (!skb)
1361 		goto out;
1362 	tail_skb = &(skb_shinfo(skb)->frag_list);
1363 
1364 	/* move skb->data to ip header from ext header */
1365 	if (skb->data < skb_network_header(skb))
1366 		__skb_pull(skb, skb_network_offset(skb));
1367 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1368 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1369 		*tail_skb = tmp_skb;
1370 		tail_skb = &(tmp_skb->next);
1371 		skb->len += tmp_skb->len;
1372 		skb->data_len += tmp_skb->len;
1373 		skb->truesize += tmp_skb->truesize;
1374 		tmp_skb->destructor = NULL;
1375 		tmp_skb->sk = NULL;
1376 	}
1377 
1378 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1379 	 * to fragment the frame generated here. No matter, what transforms
1380 	 * how transforms change size of the packet, it will come out.
1381 	 */
1382 	skb->ignore_df = ip_sk_ignore_df(sk);
1383 
1384 	/* DF bit is set when we want to see DF on outgoing frames.
1385 	 * If ignore_df is set too, we still allow to fragment this frame
1386 	 * locally. */
1387 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1388 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1389 	    (skb->len <= dst_mtu(&rt->dst) &&
1390 	     ip_dont_fragment(sk, &rt->dst)))
1391 		df = htons(IP_DF);
1392 
1393 	if (cork->flags & IPCORK_OPT)
1394 		opt = cork->opt;
1395 
1396 	if (cork->ttl != 0)
1397 		ttl = cork->ttl;
1398 	else if (rt->rt_type == RTN_MULTICAST)
1399 		ttl = inet->mc_ttl;
1400 	else
1401 		ttl = ip_select_ttl(inet, &rt->dst);
1402 
1403 	iph = ip_hdr(skb);
1404 	iph->version = 4;
1405 	iph->ihl = 5;
1406 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1407 	iph->frag_off = df;
1408 	iph->ttl = ttl;
1409 	iph->protocol = sk->sk_protocol;
1410 	ip_copy_addrs(iph, fl4);
1411 	ip_select_ident(net, skb, sk);
1412 
1413 	if (opt) {
1414 		iph->ihl += opt->optlen>>2;
1415 		ip_options_build(skb, opt, cork->addr, rt, 0);
1416 	}
1417 
1418 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1419 	skb->mark = sk->sk_mark;
1420 	/*
1421 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1422 	 * on dst refcount
1423 	 */
1424 	cork->dst = NULL;
1425 	skb_dst_set(skb, &rt->dst);
1426 
1427 	if (iph->protocol == IPPROTO_ICMP)
1428 		icmp_out_count(net, ((struct icmphdr *)
1429 			skb_transport_header(skb))->type);
1430 
1431 	ip_cork_release(cork);
1432 out:
1433 	return skb;
1434 }
1435 
1436 int ip_send_skb(struct net *net, struct sk_buff *skb)
1437 {
1438 	int err;
1439 
1440 	err = ip_local_out(net, skb->sk, skb);
1441 	if (err) {
1442 		if (err > 0)
1443 			err = net_xmit_errno(err);
1444 		if (err)
1445 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1446 	}
1447 
1448 	return err;
1449 }
1450 
1451 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1452 {
1453 	struct sk_buff *skb;
1454 
1455 	skb = ip_finish_skb(sk, fl4);
1456 	if (!skb)
1457 		return 0;
1458 
1459 	/* Netfilter gets whole the not fragmented skb. */
1460 	return ip_send_skb(sock_net(sk), skb);
1461 }
1462 
1463 /*
1464  *	Throw away all pending data on the socket.
1465  */
1466 static void __ip_flush_pending_frames(struct sock *sk,
1467 				      struct sk_buff_head *queue,
1468 				      struct inet_cork *cork)
1469 {
1470 	struct sk_buff *skb;
1471 
1472 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1473 		kfree_skb(skb);
1474 
1475 	ip_cork_release(cork);
1476 }
1477 
1478 void ip_flush_pending_frames(struct sock *sk)
1479 {
1480 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1481 }
1482 
1483 struct sk_buff *ip_make_skb(struct sock *sk,
1484 			    struct flowi4 *fl4,
1485 			    int getfrag(void *from, char *to, int offset,
1486 					int len, int odd, struct sk_buff *skb),
1487 			    void *from, int length, int transhdrlen,
1488 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1489 			    unsigned int flags)
1490 {
1491 	struct inet_cork cork;
1492 	struct sk_buff_head queue;
1493 	int err;
1494 
1495 	if (flags & MSG_PROBE)
1496 		return NULL;
1497 
1498 	__skb_queue_head_init(&queue);
1499 
1500 	cork.flags = 0;
1501 	cork.addr = 0;
1502 	cork.opt = NULL;
1503 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1504 	if (err)
1505 		return ERR_PTR(err);
1506 
1507 	err = __ip_append_data(sk, fl4, &queue, &cork,
1508 			       &current->task_frag, getfrag,
1509 			       from, length, transhdrlen, flags);
1510 	if (err) {
1511 		__ip_flush_pending_frames(sk, &queue, &cork);
1512 		return ERR_PTR(err);
1513 	}
1514 
1515 	return __ip_make_skb(sk, fl4, &queue, &cork);
1516 }
1517 
1518 /*
1519  *	Fetch data from kernel space and fill in checksum if needed.
1520  */
1521 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1522 			      int len, int odd, struct sk_buff *skb)
1523 {
1524 	__wsum csum;
1525 
1526 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1527 	skb->csum = csum_block_add(skb->csum, csum, odd);
1528 	return 0;
1529 }
1530 
1531 /*
1532  *	Generic function to send a packet as reply to another packet.
1533  *	Used to send some TCP resets/acks so far.
1534  */
1535 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1536 			   const struct ip_options *sopt,
1537 			   __be32 daddr, __be32 saddr,
1538 			   const struct ip_reply_arg *arg,
1539 			   unsigned int len)
1540 {
1541 	struct ip_options_data replyopts;
1542 	struct ipcm_cookie ipc;
1543 	struct flowi4 fl4;
1544 	struct rtable *rt = skb_rtable(skb);
1545 	struct net *net = sock_net(sk);
1546 	struct sk_buff *nskb;
1547 	int err;
1548 	int oif;
1549 
1550 	if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1551 		return;
1552 
1553 	ipc.addr = daddr;
1554 	ipc.opt = NULL;
1555 	ipc.tx_flags = 0;
1556 	ipc.ttl = 0;
1557 	ipc.tos = -1;
1558 
1559 	if (replyopts.opt.opt.optlen) {
1560 		ipc.opt = &replyopts.opt;
1561 
1562 		if (replyopts.opt.opt.srr)
1563 			daddr = replyopts.opt.opt.faddr;
1564 	}
1565 
1566 	oif = arg->bound_dev_if;
1567 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1568 		oif = skb->skb_iif;
1569 
1570 	flowi4_init_output(&fl4, oif,
1571 			   IP4_REPLY_MARK(net, skb->mark),
1572 			   RT_TOS(arg->tos),
1573 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1574 			   ip_reply_arg_flowi_flags(arg),
1575 			   daddr, saddr,
1576 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1577 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1578 	rt = ip_route_output_key(net, &fl4);
1579 	if (IS_ERR(rt))
1580 		return;
1581 
1582 	inet_sk(sk)->tos = arg->tos;
1583 
1584 	sk->sk_priority = skb->priority;
1585 	sk->sk_protocol = ip_hdr(skb)->protocol;
1586 	sk->sk_bound_dev_if = arg->bound_dev_if;
1587 	sk->sk_sndbuf = sysctl_wmem_default;
1588 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1589 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1590 	if (unlikely(err)) {
1591 		ip_flush_pending_frames(sk);
1592 		goto out;
1593 	}
1594 
1595 	nskb = skb_peek(&sk->sk_write_queue);
1596 	if (nskb) {
1597 		if (arg->csumoffset >= 0)
1598 			*((__sum16 *)skb_transport_header(nskb) +
1599 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1600 								arg->csum));
1601 		nskb->ip_summed = CHECKSUM_NONE;
1602 		ip_push_pending_frames(sk, &fl4);
1603 	}
1604 out:
1605 	ip_rt_put(rt);
1606 }
1607 
1608 void __init ip_init(void)
1609 {
1610 	ip_rt_init();
1611 	inet_initpeers();
1612 
1613 #if defined(CONFIG_IP_MULTICAST)
1614 	igmp_mc_init();
1615 #endif
1616 }
1617