1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The Internet Protocol (IP) output module. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Donald Becker, <becker@super.org> 12 * Alan Cox, <Alan.Cox@linux.org> 13 * Richard Underwood 14 * Stefan Becker, <stefanb@yello.ping.de> 15 * Jorge Cwik, <jorge@laser.satlink.net> 16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 17 * Hirokazu Takahashi, <taka@valinux.co.jp> 18 * 19 * See ip_input.c for original log 20 * 21 * Fixes: 22 * Alan Cox : Missing nonblock feature in ip_build_xmit. 23 * Mike Kilburn : htons() missing in ip_build_xmit. 24 * Bradford Johnson: Fix faulty handling of some frames when 25 * no route is found. 26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 27 * (in case if packet not accepted by 28 * output firewall rules) 29 * Mike McLagan : Routing by source 30 * Alexey Kuznetsov: use new route cache 31 * Andi Kleen: Fix broken PMTU recovery and remove 32 * some redundant tests. 33 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 34 * Andi Kleen : Replace ip_reply with ip_send_reply. 35 * Andi Kleen : Split fast and slow ip_build_xmit path 36 * for decreased register pressure on x86 37 * and more readibility. 38 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 39 * silently drop skb instead of failing with -EPERM. 40 * Detlev Wengorz : Copy protocol for fragments. 41 * Hirokazu Takahashi: HW checksumming for outgoing UDP 42 * datagrams. 43 * Hirokazu Takahashi: sendfile() on UDP works now. 44 */ 45 46 #include <linux/uaccess.h> 47 #include <linux/module.h> 48 #include <linux/types.h> 49 #include <linux/kernel.h> 50 #include <linux/mm.h> 51 #include <linux/string.h> 52 #include <linux/errno.h> 53 #include <linux/highmem.h> 54 #include <linux/slab.h> 55 56 #include <linux/socket.h> 57 #include <linux/sockios.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/etherdevice.h> 62 #include <linux/proc_fs.h> 63 #include <linux/stat.h> 64 #include <linux/init.h> 65 66 #include <net/snmp.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <net/route.h> 70 #include <net/xfrm.h> 71 #include <linux/skbuff.h> 72 #include <net/sock.h> 73 #include <net/arp.h> 74 #include <net/icmp.h> 75 #include <net/checksum.h> 76 #include <net/inetpeer.h> 77 #include <net/lwtunnel.h> 78 #include <linux/bpf-cgroup.h> 79 #include <linux/igmp.h> 80 #include <linux/netfilter_ipv4.h> 81 #include <linux/netfilter_bridge.h> 82 #include <linux/netlink.h> 83 #include <linux/tcp.h> 84 85 static int 86 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 87 unsigned int mtu, 88 int (*output)(struct net *, struct sock *, struct sk_buff *)); 89 90 /* Generate a checksum for an outgoing IP datagram. */ 91 void ip_send_check(struct iphdr *iph) 92 { 93 iph->check = 0; 94 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 95 } 96 EXPORT_SYMBOL(ip_send_check); 97 98 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 99 { 100 struct iphdr *iph = ip_hdr(skb); 101 102 iph->tot_len = htons(skb->len); 103 ip_send_check(iph); 104 105 /* if egress device is enslaved to an L3 master device pass the 106 * skb to its handler for processing 107 */ 108 skb = l3mdev_ip_out(sk, skb); 109 if (unlikely(!skb)) 110 return 0; 111 112 skb->protocol = htons(ETH_P_IP); 113 114 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 115 net, sk, skb, NULL, skb_dst(skb)->dev, 116 dst_output); 117 } 118 119 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 120 { 121 int err; 122 123 err = __ip_local_out(net, sk, skb); 124 if (likely(err == 1)) 125 err = dst_output(net, sk, skb); 126 127 return err; 128 } 129 EXPORT_SYMBOL_GPL(ip_local_out); 130 131 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 132 { 133 int ttl = inet->uc_ttl; 134 135 if (ttl < 0) 136 ttl = ip4_dst_hoplimit(dst); 137 return ttl; 138 } 139 140 /* 141 * Add an ip header to a skbuff and send it out. 142 * 143 */ 144 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 145 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 146 { 147 struct inet_sock *inet = inet_sk(sk); 148 struct rtable *rt = skb_rtable(skb); 149 struct net *net = sock_net(sk); 150 struct iphdr *iph; 151 152 /* Build the IP header. */ 153 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 154 skb_reset_network_header(skb); 155 iph = ip_hdr(skb); 156 iph->version = 4; 157 iph->ihl = 5; 158 iph->tos = inet->tos; 159 iph->ttl = ip_select_ttl(inet, &rt->dst); 160 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 161 iph->saddr = saddr; 162 iph->protocol = sk->sk_protocol; 163 if (ip_dont_fragment(sk, &rt->dst)) { 164 iph->frag_off = htons(IP_DF); 165 iph->id = 0; 166 } else { 167 iph->frag_off = 0; 168 __ip_select_ident(net, iph, 1); 169 } 170 171 if (opt && opt->opt.optlen) { 172 iph->ihl += opt->opt.optlen>>2; 173 ip_options_build(skb, &opt->opt, daddr, rt, 0); 174 } 175 176 skb->priority = sk->sk_priority; 177 if (!skb->mark) 178 skb->mark = sk->sk_mark; 179 180 /* Send it out. */ 181 return ip_local_out(net, skb->sk, skb); 182 } 183 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 184 185 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 186 { 187 struct dst_entry *dst = skb_dst(skb); 188 struct rtable *rt = (struct rtable *)dst; 189 struct net_device *dev = dst->dev; 190 unsigned int hh_len = LL_RESERVED_SPACE(dev); 191 struct neighbour *neigh; 192 bool is_v6gw = false; 193 194 if (rt->rt_type == RTN_MULTICAST) { 195 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 196 } else if (rt->rt_type == RTN_BROADCAST) 197 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 198 199 /* Be paranoid, rather than too clever. */ 200 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 201 struct sk_buff *skb2; 202 203 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 204 if (!skb2) { 205 kfree_skb(skb); 206 return -ENOMEM; 207 } 208 if (skb->sk) 209 skb_set_owner_w(skb2, skb->sk); 210 consume_skb(skb); 211 skb = skb2; 212 } 213 214 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 215 int res = lwtunnel_xmit(skb); 216 217 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 218 return res; 219 } 220 221 rcu_read_lock_bh(); 222 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 223 if (!IS_ERR(neigh)) { 224 int res; 225 226 sock_confirm_neigh(skb, neigh); 227 /* if crossing protocols, can not use the cached header */ 228 res = neigh_output(neigh, skb, is_v6gw); 229 rcu_read_unlock_bh(); 230 return res; 231 } 232 rcu_read_unlock_bh(); 233 234 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 235 __func__); 236 kfree_skb(skb); 237 return -EINVAL; 238 } 239 240 static int ip_finish_output_gso(struct net *net, struct sock *sk, 241 struct sk_buff *skb, unsigned int mtu) 242 { 243 struct sk_buff *segs, *nskb; 244 netdev_features_t features; 245 int ret = 0; 246 247 /* common case: seglen is <= mtu 248 */ 249 if (skb_gso_validate_network_len(skb, mtu)) 250 return ip_finish_output2(net, sk, skb); 251 252 /* Slowpath - GSO segment length exceeds the egress MTU. 253 * 254 * This can happen in several cases: 255 * - Forwarding of a TCP GRO skb, when DF flag is not set. 256 * - Forwarding of an skb that arrived on a virtualization interface 257 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 258 * stack. 259 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 260 * interface with a smaller MTU. 261 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 262 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 263 * insufficent MTU. 264 */ 265 features = netif_skb_features(skb); 266 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET); 267 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 268 if (IS_ERR_OR_NULL(segs)) { 269 kfree_skb(skb); 270 return -ENOMEM; 271 } 272 273 consume_skb(skb); 274 275 skb_list_walk_safe(segs, segs, nskb) { 276 int err; 277 278 skb_mark_not_on_list(segs); 279 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 280 281 if (err && ret == 0) 282 ret = err; 283 } 284 285 return ret; 286 } 287 288 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 289 { 290 unsigned int mtu; 291 292 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 293 /* Policy lookup after SNAT yielded a new policy */ 294 if (skb_dst(skb)->xfrm) { 295 IPCB(skb)->flags |= IPSKB_REROUTED; 296 return dst_output(net, sk, skb); 297 } 298 #endif 299 mtu = ip_skb_dst_mtu(sk, skb); 300 if (skb_is_gso(skb)) 301 return ip_finish_output_gso(net, sk, skb, mtu); 302 303 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 304 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 305 306 return ip_finish_output2(net, sk, skb); 307 } 308 309 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 310 { 311 int ret; 312 313 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 314 switch (ret) { 315 case NET_XMIT_SUCCESS: 316 return __ip_finish_output(net, sk, skb); 317 case NET_XMIT_CN: 318 return __ip_finish_output(net, sk, skb) ? : ret; 319 default: 320 kfree_skb(skb); 321 return ret; 322 } 323 } 324 325 static int ip_mc_finish_output(struct net *net, struct sock *sk, 326 struct sk_buff *skb) 327 { 328 struct rtable *new_rt; 329 bool do_cn = false; 330 int ret, err; 331 332 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 333 switch (ret) { 334 case NET_XMIT_CN: 335 do_cn = true; 336 fallthrough; 337 case NET_XMIT_SUCCESS: 338 break; 339 default: 340 kfree_skb(skb); 341 return ret; 342 } 343 344 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting 345 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten, 346 * see ipv4_pktinfo_prepare(). 347 */ 348 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb)); 349 if (new_rt) { 350 new_rt->rt_iif = 0; 351 skb_dst_drop(skb); 352 skb_dst_set(skb, &new_rt->dst); 353 } 354 355 err = dev_loopback_xmit(net, sk, skb); 356 return (do_cn && err) ? ret : err; 357 } 358 359 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 360 { 361 struct rtable *rt = skb_rtable(skb); 362 struct net_device *dev = rt->dst.dev; 363 364 /* 365 * If the indicated interface is up and running, send the packet. 366 */ 367 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 368 369 skb->dev = dev; 370 skb->protocol = htons(ETH_P_IP); 371 372 /* 373 * Multicasts are looped back for other local users 374 */ 375 376 if (rt->rt_flags&RTCF_MULTICAST) { 377 if (sk_mc_loop(sk) 378 #ifdef CONFIG_IP_MROUTE 379 /* Small optimization: do not loopback not local frames, 380 which returned after forwarding; they will be dropped 381 by ip_mr_input in any case. 382 Note, that local frames are looped back to be delivered 383 to local recipients. 384 385 This check is duplicated in ip_mr_input at the moment. 386 */ 387 && 388 ((rt->rt_flags & RTCF_LOCAL) || 389 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 390 #endif 391 ) { 392 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 393 if (newskb) 394 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 395 net, sk, newskb, NULL, newskb->dev, 396 ip_mc_finish_output); 397 } 398 399 /* Multicasts with ttl 0 must not go beyond the host */ 400 401 if (ip_hdr(skb)->ttl == 0) { 402 kfree_skb(skb); 403 return 0; 404 } 405 } 406 407 if (rt->rt_flags&RTCF_BROADCAST) { 408 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 409 if (newskb) 410 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 411 net, sk, newskb, NULL, newskb->dev, 412 ip_mc_finish_output); 413 } 414 415 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 416 net, sk, skb, NULL, skb->dev, 417 ip_finish_output, 418 !(IPCB(skb)->flags & IPSKB_REROUTED)); 419 } 420 421 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 422 { 423 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev; 424 425 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 426 427 skb->dev = dev; 428 skb->protocol = htons(ETH_P_IP); 429 430 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 431 net, sk, skb, indev, dev, 432 ip_finish_output, 433 !(IPCB(skb)->flags & IPSKB_REROUTED)); 434 } 435 436 /* 437 * copy saddr and daddr, possibly using 64bit load/stores 438 * Equivalent to : 439 * iph->saddr = fl4->saddr; 440 * iph->daddr = fl4->daddr; 441 */ 442 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 443 { 444 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 445 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 446 memcpy(&iph->saddr, &fl4->saddr, 447 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 448 } 449 450 /* Note: skb->sk can be different from sk, in case of tunnels */ 451 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, 452 __u8 tos) 453 { 454 struct inet_sock *inet = inet_sk(sk); 455 struct net *net = sock_net(sk); 456 struct ip_options_rcu *inet_opt; 457 struct flowi4 *fl4; 458 struct rtable *rt; 459 struct iphdr *iph; 460 int res; 461 462 /* Skip all of this if the packet is already routed, 463 * f.e. by something like SCTP. 464 */ 465 rcu_read_lock(); 466 inet_opt = rcu_dereference(inet->inet_opt); 467 fl4 = &fl->u.ip4; 468 rt = skb_rtable(skb); 469 if (rt) 470 goto packet_routed; 471 472 /* Make sure we can route this packet. */ 473 rt = (struct rtable *)__sk_dst_check(sk, 0); 474 if (!rt) { 475 __be32 daddr; 476 477 /* Use correct destination address if we have options. */ 478 daddr = inet->inet_daddr; 479 if (inet_opt && inet_opt->opt.srr) 480 daddr = inet_opt->opt.faddr; 481 482 /* If this fails, retransmit mechanism of transport layer will 483 * keep trying until route appears or the connection times 484 * itself out. 485 */ 486 rt = ip_route_output_ports(net, fl4, sk, 487 daddr, inet->inet_saddr, 488 inet->inet_dport, 489 inet->inet_sport, 490 sk->sk_protocol, 491 RT_CONN_FLAGS_TOS(sk, tos), 492 sk->sk_bound_dev_if); 493 if (IS_ERR(rt)) 494 goto no_route; 495 sk_setup_caps(sk, &rt->dst); 496 } 497 skb_dst_set_noref(skb, &rt->dst); 498 499 packet_routed: 500 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 501 goto no_route; 502 503 /* OK, we know where to send it, allocate and build IP header. */ 504 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 505 skb_reset_network_header(skb); 506 iph = ip_hdr(skb); 507 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); 508 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 509 iph->frag_off = htons(IP_DF); 510 else 511 iph->frag_off = 0; 512 iph->ttl = ip_select_ttl(inet, &rt->dst); 513 iph->protocol = sk->sk_protocol; 514 ip_copy_addrs(iph, fl4); 515 516 /* Transport layer set skb->h.foo itself. */ 517 518 if (inet_opt && inet_opt->opt.optlen) { 519 iph->ihl += inet_opt->opt.optlen >> 2; 520 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 521 } 522 523 ip_select_ident_segs(net, skb, sk, 524 skb_shinfo(skb)->gso_segs ?: 1); 525 526 /* TODO : should we use skb->sk here instead of sk ? */ 527 skb->priority = sk->sk_priority; 528 skb->mark = sk->sk_mark; 529 530 res = ip_local_out(net, sk, skb); 531 rcu_read_unlock(); 532 return res; 533 534 no_route: 535 rcu_read_unlock(); 536 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 537 kfree_skb(skb); 538 return -EHOSTUNREACH; 539 } 540 EXPORT_SYMBOL(__ip_queue_xmit); 541 542 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 543 { 544 return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos); 545 } 546 EXPORT_SYMBOL(ip_queue_xmit); 547 548 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 549 { 550 to->pkt_type = from->pkt_type; 551 to->priority = from->priority; 552 to->protocol = from->protocol; 553 to->skb_iif = from->skb_iif; 554 skb_dst_drop(to); 555 skb_dst_copy(to, from); 556 to->dev = from->dev; 557 to->mark = from->mark; 558 559 skb_copy_hash(to, from); 560 561 #ifdef CONFIG_NET_SCHED 562 to->tc_index = from->tc_index; 563 #endif 564 nf_copy(to, from); 565 skb_ext_copy(to, from); 566 #if IS_ENABLED(CONFIG_IP_VS) 567 to->ipvs_property = from->ipvs_property; 568 #endif 569 skb_copy_secmark(to, from); 570 } 571 572 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 573 unsigned int mtu, 574 int (*output)(struct net *, struct sock *, struct sk_buff *)) 575 { 576 struct iphdr *iph = ip_hdr(skb); 577 578 if ((iph->frag_off & htons(IP_DF)) == 0) 579 return ip_do_fragment(net, sk, skb, output); 580 581 if (unlikely(!skb->ignore_df || 582 (IPCB(skb)->frag_max_size && 583 IPCB(skb)->frag_max_size > mtu))) { 584 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 585 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 586 htonl(mtu)); 587 kfree_skb(skb); 588 return -EMSGSIZE; 589 } 590 591 return ip_do_fragment(net, sk, skb, output); 592 } 593 594 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, 595 unsigned int hlen, struct ip_fraglist_iter *iter) 596 { 597 unsigned int first_len = skb_pagelen(skb); 598 599 iter->frag = skb_shinfo(skb)->frag_list; 600 skb_frag_list_init(skb); 601 602 iter->offset = 0; 603 iter->iph = iph; 604 iter->hlen = hlen; 605 606 skb->data_len = first_len - skb_headlen(skb); 607 skb->len = first_len; 608 iph->tot_len = htons(first_len); 609 iph->frag_off = htons(IP_MF); 610 ip_send_check(iph); 611 } 612 EXPORT_SYMBOL(ip_fraglist_init); 613 614 static void ip_fraglist_ipcb_prepare(struct sk_buff *skb, 615 struct ip_fraglist_iter *iter) 616 { 617 struct sk_buff *to = iter->frag; 618 619 /* Copy the flags to each fragment. */ 620 IPCB(to)->flags = IPCB(skb)->flags; 621 622 if (iter->offset == 0) 623 ip_options_fragment(to); 624 } 625 626 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter) 627 { 628 unsigned int hlen = iter->hlen; 629 struct iphdr *iph = iter->iph; 630 struct sk_buff *frag; 631 632 frag = iter->frag; 633 frag->ip_summed = CHECKSUM_NONE; 634 skb_reset_transport_header(frag); 635 __skb_push(frag, hlen); 636 skb_reset_network_header(frag); 637 memcpy(skb_network_header(frag), iph, hlen); 638 iter->iph = ip_hdr(frag); 639 iph = iter->iph; 640 iph->tot_len = htons(frag->len); 641 ip_copy_metadata(frag, skb); 642 iter->offset += skb->len - hlen; 643 iph->frag_off = htons(iter->offset >> 3); 644 if (frag->next) 645 iph->frag_off |= htons(IP_MF); 646 /* Ready, complete checksum */ 647 ip_send_check(iph); 648 } 649 EXPORT_SYMBOL(ip_fraglist_prepare); 650 651 void ip_frag_init(struct sk_buff *skb, unsigned int hlen, 652 unsigned int ll_rs, unsigned int mtu, bool DF, 653 struct ip_frag_state *state) 654 { 655 struct iphdr *iph = ip_hdr(skb); 656 657 state->DF = DF; 658 state->hlen = hlen; 659 state->ll_rs = ll_rs; 660 state->mtu = mtu; 661 662 state->left = skb->len - hlen; /* Space per frame */ 663 state->ptr = hlen; /* Where to start from */ 664 665 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 666 state->not_last_frag = iph->frag_off & htons(IP_MF); 667 } 668 EXPORT_SYMBOL(ip_frag_init); 669 670 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to, 671 bool first_frag, struct ip_frag_state *state) 672 { 673 /* Copy the flags to each fragment. */ 674 IPCB(to)->flags = IPCB(from)->flags; 675 676 /* ANK: dirty, but effective trick. Upgrade options only if 677 * the segment to be fragmented was THE FIRST (otherwise, 678 * options are already fixed) and make it ONCE 679 * on the initial skb, so that all the following fragments 680 * will inherit fixed options. 681 */ 682 if (first_frag) 683 ip_options_fragment(from); 684 } 685 686 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state) 687 { 688 unsigned int len = state->left; 689 struct sk_buff *skb2; 690 struct iphdr *iph; 691 692 len = state->left; 693 /* IF: it doesn't fit, use 'mtu' - the data space left */ 694 if (len > state->mtu) 695 len = state->mtu; 696 /* IF: we are not sending up to and including the packet end 697 then align the next start on an eight byte boundary */ 698 if (len < state->left) { 699 len &= ~7; 700 } 701 702 /* Allocate buffer */ 703 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC); 704 if (!skb2) 705 return ERR_PTR(-ENOMEM); 706 707 /* 708 * Set up data on packet 709 */ 710 711 ip_copy_metadata(skb2, skb); 712 skb_reserve(skb2, state->ll_rs); 713 skb_put(skb2, len + state->hlen); 714 skb_reset_network_header(skb2); 715 skb2->transport_header = skb2->network_header + state->hlen; 716 717 /* 718 * Charge the memory for the fragment to any owner 719 * it might possess 720 */ 721 722 if (skb->sk) 723 skb_set_owner_w(skb2, skb->sk); 724 725 /* 726 * Copy the packet header into the new buffer. 727 */ 728 729 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen); 730 731 /* 732 * Copy a block of the IP datagram. 733 */ 734 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len)) 735 BUG(); 736 state->left -= len; 737 738 /* 739 * Fill in the new header fields. 740 */ 741 iph = ip_hdr(skb2); 742 iph->frag_off = htons((state->offset >> 3)); 743 if (state->DF) 744 iph->frag_off |= htons(IP_DF); 745 746 /* 747 * Added AC : If we are fragmenting a fragment that's not the 748 * last fragment then keep MF on each bit 749 */ 750 if (state->left > 0 || state->not_last_frag) 751 iph->frag_off |= htons(IP_MF); 752 state->ptr += len; 753 state->offset += len; 754 755 iph->tot_len = htons(len + state->hlen); 756 757 ip_send_check(iph); 758 759 return skb2; 760 } 761 EXPORT_SYMBOL(ip_frag_next); 762 763 /* 764 * This IP datagram is too large to be sent in one piece. Break it up into 765 * smaller pieces (each of size equal to IP header plus 766 * a block of the data of the original IP data part) that will yet fit in a 767 * single device frame, and queue such a frame for sending. 768 */ 769 770 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 771 int (*output)(struct net *, struct sock *, struct sk_buff *)) 772 { 773 struct iphdr *iph; 774 struct sk_buff *skb2; 775 struct rtable *rt = skb_rtable(skb); 776 unsigned int mtu, hlen, ll_rs; 777 struct ip_fraglist_iter iter; 778 ktime_t tstamp = skb->tstamp; 779 struct ip_frag_state state; 780 int err = 0; 781 782 /* for offloaded checksums cleanup checksum before fragmentation */ 783 if (skb->ip_summed == CHECKSUM_PARTIAL && 784 (err = skb_checksum_help(skb))) 785 goto fail; 786 787 /* 788 * Point into the IP datagram header. 789 */ 790 791 iph = ip_hdr(skb); 792 793 mtu = ip_skb_dst_mtu(sk, skb); 794 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 795 mtu = IPCB(skb)->frag_max_size; 796 797 /* 798 * Setup starting values. 799 */ 800 801 hlen = iph->ihl * 4; 802 mtu = mtu - hlen; /* Size of data space */ 803 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 804 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 805 806 /* When frag_list is given, use it. First, check its validity: 807 * some transformers could create wrong frag_list or break existing 808 * one, it is not prohibited. In this case fall back to copying. 809 * 810 * LATER: this step can be merged to real generation of fragments, 811 * we can switch to copy when see the first bad fragment. 812 */ 813 if (skb_has_frag_list(skb)) { 814 struct sk_buff *frag, *frag2; 815 unsigned int first_len = skb_pagelen(skb); 816 817 if (first_len - hlen > mtu || 818 ((first_len - hlen) & 7) || 819 ip_is_fragment(iph) || 820 skb_cloned(skb) || 821 skb_headroom(skb) < ll_rs) 822 goto slow_path; 823 824 skb_walk_frags(skb, frag) { 825 /* Correct geometry. */ 826 if (frag->len > mtu || 827 ((frag->len & 7) && frag->next) || 828 skb_headroom(frag) < hlen + ll_rs) 829 goto slow_path_clean; 830 831 /* Partially cloned skb? */ 832 if (skb_shared(frag)) 833 goto slow_path_clean; 834 835 BUG_ON(frag->sk); 836 if (skb->sk) { 837 frag->sk = skb->sk; 838 frag->destructor = sock_wfree; 839 } 840 skb->truesize -= frag->truesize; 841 } 842 843 /* Everything is OK. Generate! */ 844 ip_fraglist_init(skb, iph, hlen, &iter); 845 846 for (;;) { 847 /* Prepare header of the next frame, 848 * before previous one went down. */ 849 if (iter.frag) { 850 ip_fraglist_ipcb_prepare(skb, &iter); 851 ip_fraglist_prepare(skb, &iter); 852 } 853 854 skb->tstamp = tstamp; 855 err = output(net, sk, skb); 856 857 if (!err) 858 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 859 if (err || !iter.frag) 860 break; 861 862 skb = ip_fraglist_next(&iter); 863 } 864 865 if (err == 0) { 866 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 867 return 0; 868 } 869 870 kfree_skb_list(iter.frag); 871 872 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 873 return err; 874 875 slow_path_clean: 876 skb_walk_frags(skb, frag2) { 877 if (frag2 == frag) 878 break; 879 frag2->sk = NULL; 880 frag2->destructor = NULL; 881 skb->truesize += frag2->truesize; 882 } 883 } 884 885 slow_path: 886 /* 887 * Fragment the datagram. 888 */ 889 890 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU, 891 &state); 892 893 /* 894 * Keep copying data until we run out. 895 */ 896 897 while (state.left > 0) { 898 bool first_frag = (state.offset == 0); 899 900 skb2 = ip_frag_next(skb, &state); 901 if (IS_ERR(skb2)) { 902 err = PTR_ERR(skb2); 903 goto fail; 904 } 905 ip_frag_ipcb(skb, skb2, first_frag, &state); 906 907 /* 908 * Put this fragment into the sending queue. 909 */ 910 skb2->tstamp = tstamp; 911 err = output(net, sk, skb2); 912 if (err) 913 goto fail; 914 915 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 916 } 917 consume_skb(skb); 918 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 919 return err; 920 921 fail: 922 kfree_skb(skb); 923 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 924 return err; 925 } 926 EXPORT_SYMBOL(ip_do_fragment); 927 928 int 929 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 930 { 931 struct msghdr *msg = from; 932 933 if (skb->ip_summed == CHECKSUM_PARTIAL) { 934 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 935 return -EFAULT; 936 } else { 937 __wsum csum = 0; 938 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 939 return -EFAULT; 940 skb->csum = csum_block_add(skb->csum, csum, odd); 941 } 942 return 0; 943 } 944 EXPORT_SYMBOL(ip_generic_getfrag); 945 946 static inline __wsum 947 csum_page(struct page *page, int offset, int copy) 948 { 949 char *kaddr; 950 __wsum csum; 951 kaddr = kmap(page); 952 csum = csum_partial(kaddr + offset, copy, 0); 953 kunmap(page); 954 return csum; 955 } 956 957 static int __ip_append_data(struct sock *sk, 958 struct flowi4 *fl4, 959 struct sk_buff_head *queue, 960 struct inet_cork *cork, 961 struct page_frag *pfrag, 962 int getfrag(void *from, char *to, int offset, 963 int len, int odd, struct sk_buff *skb), 964 void *from, int length, int transhdrlen, 965 unsigned int flags) 966 { 967 struct inet_sock *inet = inet_sk(sk); 968 struct ubuf_info *uarg = NULL; 969 struct sk_buff *skb; 970 971 struct ip_options *opt = cork->opt; 972 int hh_len; 973 int exthdrlen; 974 int mtu; 975 int copy; 976 int err; 977 int offset = 0; 978 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 979 int csummode = CHECKSUM_NONE; 980 struct rtable *rt = (struct rtable *)cork->dst; 981 unsigned int wmem_alloc_delta = 0; 982 bool paged, extra_uref = false; 983 u32 tskey = 0; 984 985 skb = skb_peek_tail(queue); 986 987 exthdrlen = !skb ? rt->dst.header_len : 0; 988 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 989 paged = !!cork->gso_size; 990 991 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 992 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 993 tskey = sk->sk_tskey++; 994 995 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 996 997 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 998 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 999 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1000 1001 if (cork->length + length > maxnonfragsize - fragheaderlen) { 1002 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1003 mtu - (opt ? opt->optlen : 0)); 1004 return -EMSGSIZE; 1005 } 1006 1007 /* 1008 * transhdrlen > 0 means that this is the first fragment and we wish 1009 * it won't be fragmented in the future. 1010 */ 1011 if (transhdrlen && 1012 length + fragheaderlen <= mtu && 1013 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 1014 (!(flags & MSG_MORE) || cork->gso_size) && 1015 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 1016 csummode = CHECKSUM_PARTIAL; 1017 1018 if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) { 1019 uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb)); 1020 if (!uarg) 1021 return -ENOBUFS; 1022 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ 1023 if (rt->dst.dev->features & NETIF_F_SG && 1024 csummode == CHECKSUM_PARTIAL) { 1025 paged = true; 1026 } else { 1027 uarg->zerocopy = 0; 1028 skb_zcopy_set(skb, uarg, &extra_uref); 1029 } 1030 } 1031 1032 cork->length += length; 1033 1034 /* So, what's going on in the loop below? 1035 * 1036 * We use calculated fragment length to generate chained skb, 1037 * each of segments is IP fragment ready for sending to network after 1038 * adding appropriate IP header. 1039 */ 1040 1041 if (!skb) 1042 goto alloc_new_skb; 1043 1044 while (length > 0) { 1045 /* Check if the remaining data fits into current packet. */ 1046 copy = mtu - skb->len; 1047 if (copy < length) 1048 copy = maxfraglen - skb->len; 1049 if (copy <= 0) { 1050 char *data; 1051 unsigned int datalen; 1052 unsigned int fraglen; 1053 unsigned int fraggap; 1054 unsigned int alloclen; 1055 unsigned int pagedlen; 1056 struct sk_buff *skb_prev; 1057 alloc_new_skb: 1058 skb_prev = skb; 1059 if (skb_prev) 1060 fraggap = skb_prev->len - maxfraglen; 1061 else 1062 fraggap = 0; 1063 1064 /* 1065 * If remaining data exceeds the mtu, 1066 * we know we need more fragment(s). 1067 */ 1068 datalen = length + fraggap; 1069 if (datalen > mtu - fragheaderlen) 1070 datalen = maxfraglen - fragheaderlen; 1071 fraglen = datalen + fragheaderlen; 1072 pagedlen = 0; 1073 1074 if ((flags & MSG_MORE) && 1075 !(rt->dst.dev->features&NETIF_F_SG)) 1076 alloclen = mtu; 1077 else if (!paged) 1078 alloclen = fraglen; 1079 else { 1080 alloclen = min_t(int, fraglen, MAX_HEADER); 1081 pagedlen = fraglen - alloclen; 1082 } 1083 1084 alloclen += exthdrlen; 1085 1086 /* The last fragment gets additional space at tail. 1087 * Note, with MSG_MORE we overallocate on fragments, 1088 * because we have no idea what fragment will be 1089 * the last. 1090 */ 1091 if (datalen == length + fraggap) 1092 alloclen += rt->dst.trailer_len; 1093 1094 if (transhdrlen) { 1095 skb = sock_alloc_send_skb(sk, 1096 alloclen + hh_len + 15, 1097 (flags & MSG_DONTWAIT), &err); 1098 } else { 1099 skb = NULL; 1100 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 1101 2 * sk->sk_sndbuf) 1102 skb = alloc_skb(alloclen + hh_len + 15, 1103 sk->sk_allocation); 1104 if (unlikely(!skb)) 1105 err = -ENOBUFS; 1106 } 1107 if (!skb) 1108 goto error; 1109 1110 /* 1111 * Fill in the control structures 1112 */ 1113 skb->ip_summed = csummode; 1114 skb->csum = 0; 1115 skb_reserve(skb, hh_len); 1116 1117 /* 1118 * Find where to start putting bytes. 1119 */ 1120 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1121 skb_set_network_header(skb, exthdrlen); 1122 skb->transport_header = (skb->network_header + 1123 fragheaderlen); 1124 data += fragheaderlen + exthdrlen; 1125 1126 if (fraggap) { 1127 skb->csum = skb_copy_and_csum_bits( 1128 skb_prev, maxfraglen, 1129 data + transhdrlen, fraggap, 0); 1130 skb_prev->csum = csum_sub(skb_prev->csum, 1131 skb->csum); 1132 data += fraggap; 1133 pskb_trim_unique(skb_prev, maxfraglen); 1134 } 1135 1136 copy = datalen - transhdrlen - fraggap - pagedlen; 1137 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1138 err = -EFAULT; 1139 kfree_skb(skb); 1140 goto error; 1141 } 1142 1143 offset += copy; 1144 length -= copy + transhdrlen; 1145 transhdrlen = 0; 1146 exthdrlen = 0; 1147 csummode = CHECKSUM_NONE; 1148 1149 /* only the initial fragment is time stamped */ 1150 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1151 cork->tx_flags = 0; 1152 skb_shinfo(skb)->tskey = tskey; 1153 tskey = 0; 1154 skb_zcopy_set(skb, uarg, &extra_uref); 1155 1156 if ((flags & MSG_CONFIRM) && !skb_prev) 1157 skb_set_dst_pending_confirm(skb, 1); 1158 1159 /* 1160 * Put the packet on the pending queue. 1161 */ 1162 if (!skb->destructor) { 1163 skb->destructor = sock_wfree; 1164 skb->sk = sk; 1165 wmem_alloc_delta += skb->truesize; 1166 } 1167 __skb_queue_tail(queue, skb); 1168 continue; 1169 } 1170 1171 if (copy > length) 1172 copy = length; 1173 1174 if (!(rt->dst.dev->features&NETIF_F_SG) && 1175 skb_tailroom(skb) >= copy) { 1176 unsigned int off; 1177 1178 off = skb->len; 1179 if (getfrag(from, skb_put(skb, copy), 1180 offset, copy, off, skb) < 0) { 1181 __skb_trim(skb, off); 1182 err = -EFAULT; 1183 goto error; 1184 } 1185 } else if (!uarg || !uarg->zerocopy) { 1186 int i = skb_shinfo(skb)->nr_frags; 1187 1188 err = -ENOMEM; 1189 if (!sk_page_frag_refill(sk, pfrag)) 1190 goto error; 1191 1192 if (!skb_can_coalesce(skb, i, pfrag->page, 1193 pfrag->offset)) { 1194 err = -EMSGSIZE; 1195 if (i == MAX_SKB_FRAGS) 1196 goto error; 1197 1198 __skb_fill_page_desc(skb, i, pfrag->page, 1199 pfrag->offset, 0); 1200 skb_shinfo(skb)->nr_frags = ++i; 1201 get_page(pfrag->page); 1202 } 1203 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1204 if (getfrag(from, 1205 page_address(pfrag->page) + pfrag->offset, 1206 offset, copy, skb->len, skb) < 0) 1207 goto error_efault; 1208 1209 pfrag->offset += copy; 1210 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1211 skb->len += copy; 1212 skb->data_len += copy; 1213 skb->truesize += copy; 1214 wmem_alloc_delta += copy; 1215 } else { 1216 err = skb_zerocopy_iter_dgram(skb, from, copy); 1217 if (err < 0) 1218 goto error; 1219 } 1220 offset += copy; 1221 length -= copy; 1222 } 1223 1224 if (wmem_alloc_delta) 1225 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1226 return 0; 1227 1228 error_efault: 1229 err = -EFAULT; 1230 error: 1231 if (uarg) 1232 sock_zerocopy_put_abort(uarg, extra_uref); 1233 cork->length -= length; 1234 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1235 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1236 return err; 1237 } 1238 1239 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1240 struct ipcm_cookie *ipc, struct rtable **rtp) 1241 { 1242 struct ip_options_rcu *opt; 1243 struct rtable *rt; 1244 1245 rt = *rtp; 1246 if (unlikely(!rt)) 1247 return -EFAULT; 1248 1249 /* 1250 * setup for corking. 1251 */ 1252 opt = ipc->opt; 1253 if (opt) { 1254 if (!cork->opt) { 1255 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1256 sk->sk_allocation); 1257 if (unlikely(!cork->opt)) 1258 return -ENOBUFS; 1259 } 1260 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1261 cork->flags |= IPCORK_OPT; 1262 cork->addr = ipc->addr; 1263 } 1264 1265 cork->fragsize = ip_sk_use_pmtu(sk) ? 1266 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu); 1267 1268 if (!inetdev_valid_mtu(cork->fragsize)) 1269 return -ENETUNREACH; 1270 1271 cork->gso_size = ipc->gso_size; 1272 1273 cork->dst = &rt->dst; 1274 /* We stole this route, caller should not release it. */ 1275 *rtp = NULL; 1276 1277 cork->length = 0; 1278 cork->ttl = ipc->ttl; 1279 cork->tos = ipc->tos; 1280 cork->mark = ipc->sockc.mark; 1281 cork->priority = ipc->priority; 1282 cork->transmit_time = ipc->sockc.transmit_time; 1283 cork->tx_flags = 0; 1284 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); 1285 1286 return 0; 1287 } 1288 1289 /* 1290 * ip_append_data() and ip_append_page() can make one large IP datagram 1291 * from many pieces of data. Each pieces will be holded on the socket 1292 * until ip_push_pending_frames() is called. Each piece can be a page 1293 * or non-page data. 1294 * 1295 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1296 * this interface potentially. 1297 * 1298 * LATER: length must be adjusted by pad at tail, when it is required. 1299 */ 1300 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1301 int getfrag(void *from, char *to, int offset, int len, 1302 int odd, struct sk_buff *skb), 1303 void *from, int length, int transhdrlen, 1304 struct ipcm_cookie *ipc, struct rtable **rtp, 1305 unsigned int flags) 1306 { 1307 struct inet_sock *inet = inet_sk(sk); 1308 int err; 1309 1310 if (flags&MSG_PROBE) 1311 return 0; 1312 1313 if (skb_queue_empty(&sk->sk_write_queue)) { 1314 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1315 if (err) 1316 return err; 1317 } else { 1318 transhdrlen = 0; 1319 } 1320 1321 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1322 sk_page_frag(sk), getfrag, 1323 from, length, transhdrlen, flags); 1324 } 1325 1326 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1327 int offset, size_t size, int flags) 1328 { 1329 struct inet_sock *inet = inet_sk(sk); 1330 struct sk_buff *skb; 1331 struct rtable *rt; 1332 struct ip_options *opt = NULL; 1333 struct inet_cork *cork; 1334 int hh_len; 1335 int mtu; 1336 int len; 1337 int err; 1338 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1339 1340 if (inet->hdrincl) 1341 return -EPERM; 1342 1343 if (flags&MSG_PROBE) 1344 return 0; 1345 1346 if (skb_queue_empty(&sk->sk_write_queue)) 1347 return -EINVAL; 1348 1349 cork = &inet->cork.base; 1350 rt = (struct rtable *)cork->dst; 1351 if (cork->flags & IPCORK_OPT) 1352 opt = cork->opt; 1353 1354 if (!(rt->dst.dev->features&NETIF_F_SG)) 1355 return -EOPNOTSUPP; 1356 1357 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1358 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 1359 1360 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1361 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1362 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1363 1364 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1365 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1366 mtu - (opt ? opt->optlen : 0)); 1367 return -EMSGSIZE; 1368 } 1369 1370 skb = skb_peek_tail(&sk->sk_write_queue); 1371 if (!skb) 1372 return -EINVAL; 1373 1374 cork->length += size; 1375 1376 while (size > 0) { 1377 /* Check if the remaining data fits into current packet. */ 1378 len = mtu - skb->len; 1379 if (len < size) 1380 len = maxfraglen - skb->len; 1381 1382 if (len <= 0) { 1383 struct sk_buff *skb_prev; 1384 int alloclen; 1385 1386 skb_prev = skb; 1387 fraggap = skb_prev->len - maxfraglen; 1388 1389 alloclen = fragheaderlen + hh_len + fraggap + 15; 1390 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1391 if (unlikely(!skb)) { 1392 err = -ENOBUFS; 1393 goto error; 1394 } 1395 1396 /* 1397 * Fill in the control structures 1398 */ 1399 skb->ip_summed = CHECKSUM_NONE; 1400 skb->csum = 0; 1401 skb_reserve(skb, hh_len); 1402 1403 /* 1404 * Find where to start putting bytes. 1405 */ 1406 skb_put(skb, fragheaderlen + fraggap); 1407 skb_reset_network_header(skb); 1408 skb->transport_header = (skb->network_header + 1409 fragheaderlen); 1410 if (fraggap) { 1411 skb->csum = skb_copy_and_csum_bits(skb_prev, 1412 maxfraglen, 1413 skb_transport_header(skb), 1414 fraggap, 0); 1415 skb_prev->csum = csum_sub(skb_prev->csum, 1416 skb->csum); 1417 pskb_trim_unique(skb_prev, maxfraglen); 1418 } 1419 1420 /* 1421 * Put the packet on the pending queue. 1422 */ 1423 __skb_queue_tail(&sk->sk_write_queue, skb); 1424 continue; 1425 } 1426 1427 if (len > size) 1428 len = size; 1429 1430 if (skb_append_pagefrags(skb, page, offset, len)) { 1431 err = -EMSGSIZE; 1432 goto error; 1433 } 1434 1435 if (skb->ip_summed == CHECKSUM_NONE) { 1436 __wsum csum; 1437 csum = csum_page(page, offset, len); 1438 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1439 } 1440 1441 skb->len += len; 1442 skb->data_len += len; 1443 skb->truesize += len; 1444 refcount_add(len, &sk->sk_wmem_alloc); 1445 offset += len; 1446 size -= len; 1447 } 1448 return 0; 1449 1450 error: 1451 cork->length -= size; 1452 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1453 return err; 1454 } 1455 1456 static void ip_cork_release(struct inet_cork *cork) 1457 { 1458 cork->flags &= ~IPCORK_OPT; 1459 kfree(cork->opt); 1460 cork->opt = NULL; 1461 dst_release(cork->dst); 1462 cork->dst = NULL; 1463 } 1464 1465 /* 1466 * Combined all pending IP fragments on the socket as one IP datagram 1467 * and push them out. 1468 */ 1469 struct sk_buff *__ip_make_skb(struct sock *sk, 1470 struct flowi4 *fl4, 1471 struct sk_buff_head *queue, 1472 struct inet_cork *cork) 1473 { 1474 struct sk_buff *skb, *tmp_skb; 1475 struct sk_buff **tail_skb; 1476 struct inet_sock *inet = inet_sk(sk); 1477 struct net *net = sock_net(sk); 1478 struct ip_options *opt = NULL; 1479 struct rtable *rt = (struct rtable *)cork->dst; 1480 struct iphdr *iph; 1481 __be16 df = 0; 1482 __u8 ttl; 1483 1484 skb = __skb_dequeue(queue); 1485 if (!skb) 1486 goto out; 1487 tail_skb = &(skb_shinfo(skb)->frag_list); 1488 1489 /* move skb->data to ip header from ext header */ 1490 if (skb->data < skb_network_header(skb)) 1491 __skb_pull(skb, skb_network_offset(skb)); 1492 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1493 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1494 *tail_skb = tmp_skb; 1495 tail_skb = &(tmp_skb->next); 1496 skb->len += tmp_skb->len; 1497 skb->data_len += tmp_skb->len; 1498 skb->truesize += tmp_skb->truesize; 1499 tmp_skb->destructor = NULL; 1500 tmp_skb->sk = NULL; 1501 } 1502 1503 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1504 * to fragment the frame generated here. No matter, what transforms 1505 * how transforms change size of the packet, it will come out. 1506 */ 1507 skb->ignore_df = ip_sk_ignore_df(sk); 1508 1509 /* DF bit is set when we want to see DF on outgoing frames. 1510 * If ignore_df is set too, we still allow to fragment this frame 1511 * locally. */ 1512 if (inet->pmtudisc == IP_PMTUDISC_DO || 1513 inet->pmtudisc == IP_PMTUDISC_PROBE || 1514 (skb->len <= dst_mtu(&rt->dst) && 1515 ip_dont_fragment(sk, &rt->dst))) 1516 df = htons(IP_DF); 1517 1518 if (cork->flags & IPCORK_OPT) 1519 opt = cork->opt; 1520 1521 if (cork->ttl != 0) 1522 ttl = cork->ttl; 1523 else if (rt->rt_type == RTN_MULTICAST) 1524 ttl = inet->mc_ttl; 1525 else 1526 ttl = ip_select_ttl(inet, &rt->dst); 1527 1528 iph = ip_hdr(skb); 1529 iph->version = 4; 1530 iph->ihl = 5; 1531 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1532 iph->frag_off = df; 1533 iph->ttl = ttl; 1534 iph->protocol = sk->sk_protocol; 1535 ip_copy_addrs(iph, fl4); 1536 ip_select_ident(net, skb, sk); 1537 1538 if (opt) { 1539 iph->ihl += opt->optlen>>2; 1540 ip_options_build(skb, opt, cork->addr, rt, 0); 1541 } 1542 1543 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1544 skb->mark = cork->mark; 1545 skb->tstamp = cork->transmit_time; 1546 /* 1547 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1548 * on dst refcount 1549 */ 1550 cork->dst = NULL; 1551 skb_dst_set(skb, &rt->dst); 1552 1553 if (iph->protocol == IPPROTO_ICMP) 1554 icmp_out_count(net, ((struct icmphdr *) 1555 skb_transport_header(skb))->type); 1556 1557 ip_cork_release(cork); 1558 out: 1559 return skb; 1560 } 1561 1562 int ip_send_skb(struct net *net, struct sk_buff *skb) 1563 { 1564 int err; 1565 1566 err = ip_local_out(net, skb->sk, skb); 1567 if (err) { 1568 if (err > 0) 1569 err = net_xmit_errno(err); 1570 if (err) 1571 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1572 } 1573 1574 return err; 1575 } 1576 1577 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1578 { 1579 struct sk_buff *skb; 1580 1581 skb = ip_finish_skb(sk, fl4); 1582 if (!skb) 1583 return 0; 1584 1585 /* Netfilter gets whole the not fragmented skb. */ 1586 return ip_send_skb(sock_net(sk), skb); 1587 } 1588 1589 /* 1590 * Throw away all pending data on the socket. 1591 */ 1592 static void __ip_flush_pending_frames(struct sock *sk, 1593 struct sk_buff_head *queue, 1594 struct inet_cork *cork) 1595 { 1596 struct sk_buff *skb; 1597 1598 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1599 kfree_skb(skb); 1600 1601 ip_cork_release(cork); 1602 } 1603 1604 void ip_flush_pending_frames(struct sock *sk) 1605 { 1606 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1607 } 1608 1609 struct sk_buff *ip_make_skb(struct sock *sk, 1610 struct flowi4 *fl4, 1611 int getfrag(void *from, char *to, int offset, 1612 int len, int odd, struct sk_buff *skb), 1613 void *from, int length, int transhdrlen, 1614 struct ipcm_cookie *ipc, struct rtable **rtp, 1615 struct inet_cork *cork, unsigned int flags) 1616 { 1617 struct sk_buff_head queue; 1618 int err; 1619 1620 if (flags & MSG_PROBE) 1621 return NULL; 1622 1623 __skb_queue_head_init(&queue); 1624 1625 cork->flags = 0; 1626 cork->addr = 0; 1627 cork->opt = NULL; 1628 err = ip_setup_cork(sk, cork, ipc, rtp); 1629 if (err) 1630 return ERR_PTR(err); 1631 1632 err = __ip_append_data(sk, fl4, &queue, cork, 1633 ¤t->task_frag, getfrag, 1634 from, length, transhdrlen, flags); 1635 if (err) { 1636 __ip_flush_pending_frames(sk, &queue, cork); 1637 return ERR_PTR(err); 1638 } 1639 1640 return __ip_make_skb(sk, fl4, &queue, cork); 1641 } 1642 1643 /* 1644 * Fetch data from kernel space and fill in checksum if needed. 1645 */ 1646 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1647 int len, int odd, struct sk_buff *skb) 1648 { 1649 __wsum csum; 1650 1651 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1652 skb->csum = csum_block_add(skb->csum, csum, odd); 1653 return 0; 1654 } 1655 1656 /* 1657 * Generic function to send a packet as reply to another packet. 1658 * Used to send some TCP resets/acks so far. 1659 */ 1660 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1661 const struct ip_options *sopt, 1662 __be32 daddr, __be32 saddr, 1663 const struct ip_reply_arg *arg, 1664 unsigned int len, u64 transmit_time) 1665 { 1666 struct ip_options_data replyopts; 1667 struct ipcm_cookie ipc; 1668 struct flowi4 fl4; 1669 struct rtable *rt = skb_rtable(skb); 1670 struct net *net = sock_net(sk); 1671 struct sk_buff *nskb; 1672 int err; 1673 int oif; 1674 1675 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1676 return; 1677 1678 ipcm_init(&ipc); 1679 ipc.addr = daddr; 1680 ipc.sockc.transmit_time = transmit_time; 1681 1682 if (replyopts.opt.opt.optlen) { 1683 ipc.opt = &replyopts.opt; 1684 1685 if (replyopts.opt.opt.srr) 1686 daddr = replyopts.opt.opt.faddr; 1687 } 1688 1689 oif = arg->bound_dev_if; 1690 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1691 oif = skb->skb_iif; 1692 1693 flowi4_init_output(&fl4, oif, 1694 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1695 RT_TOS(arg->tos), 1696 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1697 ip_reply_arg_flowi_flags(arg), 1698 daddr, saddr, 1699 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1700 arg->uid); 1701 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1702 rt = ip_route_output_key(net, &fl4); 1703 if (IS_ERR(rt)) 1704 return; 1705 1706 inet_sk(sk)->tos = arg->tos; 1707 1708 sk->sk_protocol = ip_hdr(skb)->protocol; 1709 sk->sk_bound_dev_if = arg->bound_dev_if; 1710 sk->sk_sndbuf = sysctl_wmem_default; 1711 ipc.sockc.mark = fl4.flowi4_mark; 1712 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1713 len, 0, &ipc, &rt, MSG_DONTWAIT); 1714 if (unlikely(err)) { 1715 ip_flush_pending_frames(sk); 1716 goto out; 1717 } 1718 1719 nskb = skb_peek(&sk->sk_write_queue); 1720 if (nskb) { 1721 if (arg->csumoffset >= 0) 1722 *((__sum16 *)skb_transport_header(nskb) + 1723 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1724 arg->csum)); 1725 nskb->ip_summed = CHECKSUM_NONE; 1726 ip_push_pending_frames(sk, &fl4); 1727 } 1728 out: 1729 ip_rt_put(rt); 1730 } 1731 1732 void __init ip_init(void) 1733 { 1734 ip_rt_init(); 1735 inet_initpeers(); 1736 1737 #if defined(CONFIG_IP_MULTICAST) 1738 igmp_mc_init(); 1739 #endif 1740 } 1741