xref: /openbmc/linux/net/ipv4/ip_output.c (revision a2fb4d78)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82 
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl);
85 
86 /* Generate a checksum for an outgoing IP datagram. */
87 void ip_send_check(struct iphdr *iph)
88 {
89 	iph->check = 0;
90 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
91 }
92 EXPORT_SYMBOL(ip_send_check);
93 
94 int __ip_local_out(struct sk_buff *skb)
95 {
96 	struct iphdr *iph = ip_hdr(skb);
97 
98 	iph->tot_len = htons(skb->len);
99 	ip_send_check(iph);
100 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
101 		       skb_dst(skb)->dev, dst_output);
102 }
103 
104 int ip_local_out(struct sk_buff *skb)
105 {
106 	int err;
107 
108 	err = __ip_local_out(skb);
109 	if (likely(err == 1))
110 		err = dst_output(skb);
111 
112 	return err;
113 }
114 EXPORT_SYMBOL_GPL(ip_local_out);
115 
116 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
117 {
118 	int ttl = inet->uc_ttl;
119 
120 	if (ttl < 0)
121 		ttl = ip4_dst_hoplimit(dst);
122 	return ttl;
123 }
124 
125 /*
126  *		Add an ip header to a skbuff and send it out.
127  *
128  */
129 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
130 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
131 {
132 	struct inet_sock *inet = inet_sk(sk);
133 	struct rtable *rt = skb_rtable(skb);
134 	struct iphdr *iph;
135 
136 	/* Build the IP header. */
137 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
138 	skb_reset_network_header(skb);
139 	iph = ip_hdr(skb);
140 	iph->version  = 4;
141 	iph->ihl      = 5;
142 	iph->tos      = inet->tos;
143 	if (ip_dont_fragment(sk, &rt->dst))
144 		iph->frag_off = htons(IP_DF);
145 	else
146 		iph->frag_off = 0;
147 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
148 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
149 	iph->saddr    = saddr;
150 	iph->protocol = sk->sk_protocol;
151 	ip_select_ident(skb, &rt->dst, sk);
152 
153 	if (opt && opt->opt.optlen) {
154 		iph->ihl += opt->opt.optlen>>2;
155 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
156 	}
157 
158 	skb->priority = sk->sk_priority;
159 	skb->mark = sk->sk_mark;
160 
161 	/* Send it out. */
162 	return ip_local_out(skb);
163 }
164 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
165 
166 static inline int ip_finish_output2(struct sk_buff *skb)
167 {
168 	struct dst_entry *dst = skb_dst(skb);
169 	struct rtable *rt = (struct rtable *)dst;
170 	struct net_device *dev = dst->dev;
171 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
172 	struct neighbour *neigh;
173 	u32 nexthop;
174 
175 	if (rt->rt_type == RTN_MULTICAST) {
176 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
177 	} else if (rt->rt_type == RTN_BROADCAST)
178 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
179 
180 	/* Be paranoid, rather than too clever. */
181 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
182 		struct sk_buff *skb2;
183 
184 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
185 		if (skb2 == NULL) {
186 			kfree_skb(skb);
187 			return -ENOMEM;
188 		}
189 		if (skb->sk)
190 			skb_set_owner_w(skb2, skb->sk);
191 		consume_skb(skb);
192 		skb = skb2;
193 	}
194 
195 	rcu_read_lock_bh();
196 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
197 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
198 	if (unlikely(!neigh))
199 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
200 	if (!IS_ERR(neigh)) {
201 		int res = dst_neigh_output(dst, neigh, skb);
202 
203 		rcu_read_unlock_bh();
204 		return res;
205 	}
206 	rcu_read_unlock_bh();
207 
208 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
209 			    __func__);
210 	kfree_skb(skb);
211 	return -EINVAL;
212 }
213 
214 static int ip_finish_output(struct sk_buff *skb)
215 {
216 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
217 	/* Policy lookup after SNAT yielded a new policy */
218 	if (skb_dst(skb)->xfrm != NULL) {
219 		IPCB(skb)->flags |= IPSKB_REROUTED;
220 		return dst_output(skb);
221 	}
222 #endif
223 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
224 		return ip_fragment(skb, ip_finish_output2);
225 	else
226 		return ip_finish_output2(skb);
227 }
228 
229 int ip_mc_output(struct sk_buff *skb)
230 {
231 	struct sock *sk = skb->sk;
232 	struct rtable *rt = skb_rtable(skb);
233 	struct net_device *dev = rt->dst.dev;
234 
235 	/*
236 	 *	If the indicated interface is up and running, send the packet.
237 	 */
238 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
239 
240 	skb->dev = dev;
241 	skb->protocol = htons(ETH_P_IP);
242 
243 	/*
244 	 *	Multicasts are looped back for other local users
245 	 */
246 
247 	if (rt->rt_flags&RTCF_MULTICAST) {
248 		if (sk_mc_loop(sk)
249 #ifdef CONFIG_IP_MROUTE
250 		/* Small optimization: do not loopback not local frames,
251 		   which returned after forwarding; they will be  dropped
252 		   by ip_mr_input in any case.
253 		   Note, that local frames are looped back to be delivered
254 		   to local recipients.
255 
256 		   This check is duplicated in ip_mr_input at the moment.
257 		 */
258 		    &&
259 		    ((rt->rt_flags & RTCF_LOCAL) ||
260 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
261 #endif
262 		   ) {
263 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
264 			if (newskb)
265 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
266 					newskb, NULL, newskb->dev,
267 					dev_loopback_xmit);
268 		}
269 
270 		/* Multicasts with ttl 0 must not go beyond the host */
271 
272 		if (ip_hdr(skb)->ttl == 0) {
273 			kfree_skb(skb);
274 			return 0;
275 		}
276 	}
277 
278 	if (rt->rt_flags&RTCF_BROADCAST) {
279 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
280 		if (newskb)
281 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
282 				NULL, newskb->dev, dev_loopback_xmit);
283 	}
284 
285 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
286 			    skb->dev, ip_finish_output,
287 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
288 }
289 
290 int ip_output(struct sk_buff *skb)
291 {
292 	struct net_device *dev = skb_dst(skb)->dev;
293 
294 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
295 
296 	skb->dev = dev;
297 	skb->protocol = htons(ETH_P_IP);
298 
299 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
300 			    ip_finish_output,
301 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
302 }
303 
304 /*
305  * copy saddr and daddr, possibly using 64bit load/stores
306  * Equivalent to :
307  *   iph->saddr = fl4->saddr;
308  *   iph->daddr = fl4->daddr;
309  */
310 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
311 {
312 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
313 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
314 	memcpy(&iph->saddr, &fl4->saddr,
315 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
316 }
317 
318 int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
319 {
320 	struct sock *sk = skb->sk;
321 	struct inet_sock *inet = inet_sk(sk);
322 	struct ip_options_rcu *inet_opt;
323 	struct flowi4 *fl4;
324 	struct rtable *rt;
325 	struct iphdr *iph;
326 	int res;
327 
328 	/* Skip all of this if the packet is already routed,
329 	 * f.e. by something like SCTP.
330 	 */
331 	rcu_read_lock();
332 	inet_opt = rcu_dereference(inet->inet_opt);
333 	fl4 = &fl->u.ip4;
334 	rt = skb_rtable(skb);
335 	if (rt != NULL)
336 		goto packet_routed;
337 
338 	/* Make sure we can route this packet. */
339 	rt = (struct rtable *)__sk_dst_check(sk, 0);
340 	if (rt == NULL) {
341 		__be32 daddr;
342 
343 		/* Use correct destination address if we have options. */
344 		daddr = inet->inet_daddr;
345 		if (inet_opt && inet_opt->opt.srr)
346 			daddr = inet_opt->opt.faddr;
347 
348 		/* If this fails, retransmit mechanism of transport layer will
349 		 * keep trying until route appears or the connection times
350 		 * itself out.
351 		 */
352 		rt = ip_route_output_ports(sock_net(sk), fl4, sk,
353 					   daddr, inet->inet_saddr,
354 					   inet->inet_dport,
355 					   inet->inet_sport,
356 					   sk->sk_protocol,
357 					   RT_CONN_FLAGS(sk),
358 					   sk->sk_bound_dev_if);
359 		if (IS_ERR(rt))
360 			goto no_route;
361 		sk_setup_caps(sk, &rt->dst);
362 	}
363 	skb_dst_set_noref(skb, &rt->dst);
364 
365 packet_routed:
366 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
367 		goto no_route;
368 
369 	/* OK, we know where to send it, allocate and build IP header. */
370 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
371 	skb_reset_network_header(skb);
372 	iph = ip_hdr(skb);
373 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
374 	if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
375 		iph->frag_off = htons(IP_DF);
376 	else
377 		iph->frag_off = 0;
378 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
379 	iph->protocol = sk->sk_protocol;
380 	ip_copy_addrs(iph, fl4);
381 
382 	/* Transport layer set skb->h.foo itself. */
383 
384 	if (inet_opt && inet_opt->opt.optlen) {
385 		iph->ihl += inet_opt->opt.optlen >> 2;
386 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
387 	}
388 
389 	ip_select_ident_more(skb, &rt->dst, sk,
390 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
391 
392 	skb->priority = sk->sk_priority;
393 	skb->mark = sk->sk_mark;
394 
395 	res = ip_local_out(skb);
396 	rcu_read_unlock();
397 	return res;
398 
399 no_route:
400 	rcu_read_unlock();
401 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
402 	kfree_skb(skb);
403 	return -EHOSTUNREACH;
404 }
405 EXPORT_SYMBOL(ip_queue_xmit);
406 
407 
408 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
409 {
410 	to->pkt_type = from->pkt_type;
411 	to->priority = from->priority;
412 	to->protocol = from->protocol;
413 	skb_dst_drop(to);
414 	skb_dst_copy(to, from);
415 	to->dev = from->dev;
416 	to->mark = from->mark;
417 
418 	/* Copy the flags to each fragment. */
419 	IPCB(to)->flags = IPCB(from)->flags;
420 
421 #ifdef CONFIG_NET_SCHED
422 	to->tc_index = from->tc_index;
423 #endif
424 	nf_copy(to, from);
425 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
426 	to->ipvs_property = from->ipvs_property;
427 #endif
428 	skb_copy_secmark(to, from);
429 }
430 
431 /*
432  *	This IP datagram is too large to be sent in one piece.  Break it up into
433  *	smaller pieces (each of size equal to IP header plus
434  *	a block of the data of the original IP data part) that will yet fit in a
435  *	single device frame, and queue such a frame for sending.
436  */
437 
438 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
439 {
440 	struct iphdr *iph;
441 	int ptr;
442 	struct net_device *dev;
443 	struct sk_buff *skb2;
444 	unsigned int mtu, hlen, left, len, ll_rs;
445 	int offset;
446 	__be16 not_last_frag;
447 	struct rtable *rt = skb_rtable(skb);
448 	int err = 0;
449 	bool forwarding = IPCB(skb)->flags & IPSKB_FORWARDED;
450 
451 	dev = rt->dst.dev;
452 
453 	/*
454 	 *	Point into the IP datagram header.
455 	 */
456 
457 	iph = ip_hdr(skb);
458 
459 	mtu = ip_dst_mtu_maybe_forward(&rt->dst, forwarding);
460 	if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->local_df) ||
461 		     (IPCB(skb)->frag_max_size &&
462 		      IPCB(skb)->frag_max_size > mtu))) {
463 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
464 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
465 			  htonl(mtu));
466 		kfree_skb(skb);
467 		return -EMSGSIZE;
468 	}
469 
470 	/*
471 	 *	Setup starting values.
472 	 */
473 
474 	hlen = iph->ihl * 4;
475 	mtu = mtu - hlen;	/* Size of data space */
476 #ifdef CONFIG_BRIDGE_NETFILTER
477 	if (skb->nf_bridge)
478 		mtu -= nf_bridge_mtu_reduction(skb);
479 #endif
480 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
481 
482 	/* When frag_list is given, use it. First, check its validity:
483 	 * some transformers could create wrong frag_list or break existing
484 	 * one, it is not prohibited. In this case fall back to copying.
485 	 *
486 	 * LATER: this step can be merged to real generation of fragments,
487 	 * we can switch to copy when see the first bad fragment.
488 	 */
489 	if (skb_has_frag_list(skb)) {
490 		struct sk_buff *frag, *frag2;
491 		int first_len = skb_pagelen(skb);
492 
493 		if (first_len - hlen > mtu ||
494 		    ((first_len - hlen) & 7) ||
495 		    ip_is_fragment(iph) ||
496 		    skb_cloned(skb))
497 			goto slow_path;
498 
499 		skb_walk_frags(skb, frag) {
500 			/* Correct geometry. */
501 			if (frag->len > mtu ||
502 			    ((frag->len & 7) && frag->next) ||
503 			    skb_headroom(frag) < hlen)
504 				goto slow_path_clean;
505 
506 			/* Partially cloned skb? */
507 			if (skb_shared(frag))
508 				goto slow_path_clean;
509 
510 			BUG_ON(frag->sk);
511 			if (skb->sk) {
512 				frag->sk = skb->sk;
513 				frag->destructor = sock_wfree;
514 			}
515 			skb->truesize -= frag->truesize;
516 		}
517 
518 		/* Everything is OK. Generate! */
519 
520 		err = 0;
521 		offset = 0;
522 		frag = skb_shinfo(skb)->frag_list;
523 		skb_frag_list_init(skb);
524 		skb->data_len = first_len - skb_headlen(skb);
525 		skb->len = first_len;
526 		iph->tot_len = htons(first_len);
527 		iph->frag_off = htons(IP_MF);
528 		ip_send_check(iph);
529 
530 		for (;;) {
531 			/* Prepare header of the next frame,
532 			 * before previous one went down. */
533 			if (frag) {
534 				frag->ip_summed = CHECKSUM_NONE;
535 				skb_reset_transport_header(frag);
536 				__skb_push(frag, hlen);
537 				skb_reset_network_header(frag);
538 				memcpy(skb_network_header(frag), iph, hlen);
539 				iph = ip_hdr(frag);
540 				iph->tot_len = htons(frag->len);
541 				ip_copy_metadata(frag, skb);
542 				if (offset == 0)
543 					ip_options_fragment(frag);
544 				offset += skb->len - hlen;
545 				iph->frag_off = htons(offset>>3);
546 				if (frag->next != NULL)
547 					iph->frag_off |= htons(IP_MF);
548 				/* Ready, complete checksum */
549 				ip_send_check(iph);
550 			}
551 
552 			err = output(skb);
553 
554 			if (!err)
555 				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
556 			if (err || !frag)
557 				break;
558 
559 			skb = frag;
560 			frag = skb->next;
561 			skb->next = NULL;
562 		}
563 
564 		if (err == 0) {
565 			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
566 			return 0;
567 		}
568 
569 		while (frag) {
570 			skb = frag->next;
571 			kfree_skb(frag);
572 			frag = skb;
573 		}
574 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
575 		return err;
576 
577 slow_path_clean:
578 		skb_walk_frags(skb, frag2) {
579 			if (frag2 == frag)
580 				break;
581 			frag2->sk = NULL;
582 			frag2->destructor = NULL;
583 			skb->truesize += frag2->truesize;
584 		}
585 	}
586 
587 slow_path:
588 	/* for offloaded checksums cleanup checksum before fragmentation */
589 	if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb))
590 		goto fail;
591 	iph = ip_hdr(skb);
592 
593 	left = skb->len - hlen;		/* Space per frame */
594 	ptr = hlen;		/* Where to start from */
595 
596 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
597 	 * we need to make room for the encapsulating header
598 	 */
599 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
600 
601 	/*
602 	 *	Fragment the datagram.
603 	 */
604 
605 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
606 	not_last_frag = iph->frag_off & htons(IP_MF);
607 
608 	/*
609 	 *	Keep copying data until we run out.
610 	 */
611 
612 	while (left > 0) {
613 		len = left;
614 		/* IF: it doesn't fit, use 'mtu' - the data space left */
615 		if (len > mtu)
616 			len = mtu;
617 		/* IF: we are not sending up to and including the packet end
618 		   then align the next start on an eight byte boundary */
619 		if (len < left)	{
620 			len &= ~7;
621 		}
622 		/*
623 		 *	Allocate buffer.
624 		 */
625 
626 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
627 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
628 			err = -ENOMEM;
629 			goto fail;
630 		}
631 
632 		/*
633 		 *	Set up data on packet
634 		 */
635 
636 		ip_copy_metadata(skb2, skb);
637 		skb_reserve(skb2, ll_rs);
638 		skb_put(skb2, len + hlen);
639 		skb_reset_network_header(skb2);
640 		skb2->transport_header = skb2->network_header + hlen;
641 
642 		/*
643 		 *	Charge the memory for the fragment to any owner
644 		 *	it might possess
645 		 */
646 
647 		if (skb->sk)
648 			skb_set_owner_w(skb2, skb->sk);
649 
650 		/*
651 		 *	Copy the packet header into the new buffer.
652 		 */
653 
654 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
655 
656 		/*
657 		 *	Copy a block of the IP datagram.
658 		 */
659 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
660 			BUG();
661 		left -= len;
662 
663 		/*
664 		 *	Fill in the new header fields.
665 		 */
666 		iph = ip_hdr(skb2);
667 		iph->frag_off = htons((offset >> 3));
668 
669 		/* ANK: dirty, but effective trick. Upgrade options only if
670 		 * the segment to be fragmented was THE FIRST (otherwise,
671 		 * options are already fixed) and make it ONCE
672 		 * on the initial skb, so that all the following fragments
673 		 * will inherit fixed options.
674 		 */
675 		if (offset == 0)
676 			ip_options_fragment(skb);
677 
678 		/*
679 		 *	Added AC : If we are fragmenting a fragment that's not the
680 		 *		   last fragment then keep MF on each bit
681 		 */
682 		if (left > 0 || not_last_frag)
683 			iph->frag_off |= htons(IP_MF);
684 		ptr += len;
685 		offset += len;
686 
687 		/*
688 		 *	Put this fragment into the sending queue.
689 		 */
690 		iph->tot_len = htons(len + hlen);
691 
692 		ip_send_check(iph);
693 
694 		err = output(skb2);
695 		if (err)
696 			goto fail;
697 
698 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
699 	}
700 	consume_skb(skb);
701 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
702 	return err;
703 
704 fail:
705 	kfree_skb(skb);
706 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
707 	return err;
708 }
709 EXPORT_SYMBOL(ip_fragment);
710 
711 int
712 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
713 {
714 	struct iovec *iov = from;
715 
716 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
717 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
718 			return -EFAULT;
719 	} else {
720 		__wsum csum = 0;
721 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
722 			return -EFAULT;
723 		skb->csum = csum_block_add(skb->csum, csum, odd);
724 	}
725 	return 0;
726 }
727 EXPORT_SYMBOL(ip_generic_getfrag);
728 
729 static inline __wsum
730 csum_page(struct page *page, int offset, int copy)
731 {
732 	char *kaddr;
733 	__wsum csum;
734 	kaddr = kmap(page);
735 	csum = csum_partial(kaddr + offset, copy, 0);
736 	kunmap(page);
737 	return csum;
738 }
739 
740 static inline int ip_ufo_append_data(struct sock *sk,
741 			struct sk_buff_head *queue,
742 			int getfrag(void *from, char *to, int offset, int len,
743 			       int odd, struct sk_buff *skb),
744 			void *from, int length, int hh_len, int fragheaderlen,
745 			int transhdrlen, int maxfraglen, unsigned int flags)
746 {
747 	struct sk_buff *skb;
748 	int err;
749 
750 	/* There is support for UDP fragmentation offload by network
751 	 * device, so create one single skb packet containing complete
752 	 * udp datagram
753 	 */
754 	if ((skb = skb_peek_tail(queue)) == NULL) {
755 		skb = sock_alloc_send_skb(sk,
756 			hh_len + fragheaderlen + transhdrlen + 20,
757 			(flags & MSG_DONTWAIT), &err);
758 
759 		if (skb == NULL)
760 			return err;
761 
762 		/* reserve space for Hardware header */
763 		skb_reserve(skb, hh_len);
764 
765 		/* create space for UDP/IP header */
766 		skb_put(skb, fragheaderlen + transhdrlen);
767 
768 		/* initialize network header pointer */
769 		skb_reset_network_header(skb);
770 
771 		/* initialize protocol header pointer */
772 		skb->transport_header = skb->network_header + fragheaderlen;
773 
774 		skb->csum = 0;
775 
776 
777 		__skb_queue_tail(queue, skb);
778 	} else if (skb_is_gso(skb)) {
779 		goto append;
780 	}
781 
782 	skb->ip_summed = CHECKSUM_PARTIAL;
783 	/* specify the length of each IP datagram fragment */
784 	skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
785 	skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
786 
787 append:
788 	return skb_append_datato_frags(sk, skb, getfrag, from,
789 				       (length - transhdrlen));
790 }
791 
792 static int __ip_append_data(struct sock *sk,
793 			    struct flowi4 *fl4,
794 			    struct sk_buff_head *queue,
795 			    struct inet_cork *cork,
796 			    struct page_frag *pfrag,
797 			    int getfrag(void *from, char *to, int offset,
798 					int len, int odd, struct sk_buff *skb),
799 			    void *from, int length, int transhdrlen,
800 			    unsigned int flags)
801 {
802 	struct inet_sock *inet = inet_sk(sk);
803 	struct sk_buff *skb;
804 
805 	struct ip_options *opt = cork->opt;
806 	int hh_len;
807 	int exthdrlen;
808 	int mtu;
809 	int copy;
810 	int err;
811 	int offset = 0;
812 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
813 	int csummode = CHECKSUM_NONE;
814 	struct rtable *rt = (struct rtable *)cork->dst;
815 
816 	skb = skb_peek_tail(queue);
817 
818 	exthdrlen = !skb ? rt->dst.header_len : 0;
819 	mtu = cork->fragsize;
820 
821 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
822 
823 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
824 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
825 	maxnonfragsize = (inet->pmtudisc >= IP_PMTUDISC_DO) ?
826 			 mtu : 0xFFFF;
827 
828 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
829 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
830 			       mtu - (opt ? opt->optlen : 0));
831 		return -EMSGSIZE;
832 	}
833 
834 	/*
835 	 * transhdrlen > 0 means that this is the first fragment and we wish
836 	 * it won't be fragmented in the future.
837 	 */
838 	if (transhdrlen &&
839 	    length + fragheaderlen <= mtu &&
840 	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
841 	    !exthdrlen)
842 		csummode = CHECKSUM_PARTIAL;
843 
844 	cork->length += length;
845 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
846 	    (sk->sk_protocol == IPPROTO_UDP) &&
847 	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
848 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
849 					 hh_len, fragheaderlen, transhdrlen,
850 					 maxfraglen, flags);
851 		if (err)
852 			goto error;
853 		return 0;
854 	}
855 
856 	/* So, what's going on in the loop below?
857 	 *
858 	 * We use calculated fragment length to generate chained skb,
859 	 * each of segments is IP fragment ready for sending to network after
860 	 * adding appropriate IP header.
861 	 */
862 
863 	if (!skb)
864 		goto alloc_new_skb;
865 
866 	while (length > 0) {
867 		/* Check if the remaining data fits into current packet. */
868 		copy = mtu - skb->len;
869 		if (copy < length)
870 			copy = maxfraglen - skb->len;
871 		if (copy <= 0) {
872 			char *data;
873 			unsigned int datalen;
874 			unsigned int fraglen;
875 			unsigned int fraggap;
876 			unsigned int alloclen;
877 			struct sk_buff *skb_prev;
878 alloc_new_skb:
879 			skb_prev = skb;
880 			if (skb_prev)
881 				fraggap = skb_prev->len - maxfraglen;
882 			else
883 				fraggap = 0;
884 
885 			/*
886 			 * If remaining data exceeds the mtu,
887 			 * we know we need more fragment(s).
888 			 */
889 			datalen = length + fraggap;
890 			if (datalen > mtu - fragheaderlen)
891 				datalen = maxfraglen - fragheaderlen;
892 			fraglen = datalen + fragheaderlen;
893 
894 			if ((flags & MSG_MORE) &&
895 			    !(rt->dst.dev->features&NETIF_F_SG))
896 				alloclen = mtu;
897 			else
898 				alloclen = fraglen;
899 
900 			alloclen += exthdrlen;
901 
902 			/* The last fragment gets additional space at tail.
903 			 * Note, with MSG_MORE we overallocate on fragments,
904 			 * because we have no idea what fragment will be
905 			 * the last.
906 			 */
907 			if (datalen == length + fraggap)
908 				alloclen += rt->dst.trailer_len;
909 
910 			if (transhdrlen) {
911 				skb = sock_alloc_send_skb(sk,
912 						alloclen + hh_len + 15,
913 						(flags & MSG_DONTWAIT), &err);
914 			} else {
915 				skb = NULL;
916 				if (atomic_read(&sk->sk_wmem_alloc) <=
917 				    2 * sk->sk_sndbuf)
918 					skb = sock_wmalloc(sk,
919 							   alloclen + hh_len + 15, 1,
920 							   sk->sk_allocation);
921 				if (unlikely(skb == NULL))
922 					err = -ENOBUFS;
923 				else
924 					/* only the initial fragment is
925 					   time stamped */
926 					cork->tx_flags = 0;
927 			}
928 			if (skb == NULL)
929 				goto error;
930 
931 			/*
932 			 *	Fill in the control structures
933 			 */
934 			skb->ip_summed = csummode;
935 			skb->csum = 0;
936 			skb_reserve(skb, hh_len);
937 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
938 
939 			/*
940 			 *	Find where to start putting bytes.
941 			 */
942 			data = skb_put(skb, fraglen + exthdrlen);
943 			skb_set_network_header(skb, exthdrlen);
944 			skb->transport_header = (skb->network_header +
945 						 fragheaderlen);
946 			data += fragheaderlen + exthdrlen;
947 
948 			if (fraggap) {
949 				skb->csum = skb_copy_and_csum_bits(
950 					skb_prev, maxfraglen,
951 					data + transhdrlen, fraggap, 0);
952 				skb_prev->csum = csum_sub(skb_prev->csum,
953 							  skb->csum);
954 				data += fraggap;
955 				pskb_trim_unique(skb_prev, maxfraglen);
956 			}
957 
958 			copy = datalen - transhdrlen - fraggap;
959 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
960 				err = -EFAULT;
961 				kfree_skb(skb);
962 				goto error;
963 			}
964 
965 			offset += copy;
966 			length -= datalen - fraggap;
967 			transhdrlen = 0;
968 			exthdrlen = 0;
969 			csummode = CHECKSUM_NONE;
970 
971 			/*
972 			 * Put the packet on the pending queue.
973 			 */
974 			__skb_queue_tail(queue, skb);
975 			continue;
976 		}
977 
978 		if (copy > length)
979 			copy = length;
980 
981 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
982 			unsigned int off;
983 
984 			off = skb->len;
985 			if (getfrag(from, skb_put(skb, copy),
986 					offset, copy, off, skb) < 0) {
987 				__skb_trim(skb, off);
988 				err = -EFAULT;
989 				goto error;
990 			}
991 		} else {
992 			int i = skb_shinfo(skb)->nr_frags;
993 
994 			err = -ENOMEM;
995 			if (!sk_page_frag_refill(sk, pfrag))
996 				goto error;
997 
998 			if (!skb_can_coalesce(skb, i, pfrag->page,
999 					      pfrag->offset)) {
1000 				err = -EMSGSIZE;
1001 				if (i == MAX_SKB_FRAGS)
1002 					goto error;
1003 
1004 				__skb_fill_page_desc(skb, i, pfrag->page,
1005 						     pfrag->offset, 0);
1006 				skb_shinfo(skb)->nr_frags = ++i;
1007 				get_page(pfrag->page);
1008 			}
1009 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1010 			if (getfrag(from,
1011 				    page_address(pfrag->page) + pfrag->offset,
1012 				    offset, copy, skb->len, skb) < 0)
1013 				goto error_efault;
1014 
1015 			pfrag->offset += copy;
1016 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1017 			skb->len += copy;
1018 			skb->data_len += copy;
1019 			skb->truesize += copy;
1020 			atomic_add(copy, &sk->sk_wmem_alloc);
1021 		}
1022 		offset += copy;
1023 		length -= copy;
1024 	}
1025 
1026 	return 0;
1027 
1028 error_efault:
1029 	err = -EFAULT;
1030 error:
1031 	cork->length -= length;
1032 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1033 	return err;
1034 }
1035 
1036 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1037 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1038 {
1039 	struct ip_options_rcu *opt;
1040 	struct rtable *rt;
1041 
1042 	/*
1043 	 * setup for corking.
1044 	 */
1045 	opt = ipc->opt;
1046 	if (opt) {
1047 		if (cork->opt == NULL) {
1048 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1049 					    sk->sk_allocation);
1050 			if (unlikely(cork->opt == NULL))
1051 				return -ENOBUFS;
1052 		}
1053 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1054 		cork->flags |= IPCORK_OPT;
1055 		cork->addr = ipc->addr;
1056 	}
1057 	rt = *rtp;
1058 	if (unlikely(!rt))
1059 		return -EFAULT;
1060 	/*
1061 	 * We steal reference to this route, caller should not release it
1062 	 */
1063 	*rtp = NULL;
1064 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1065 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1066 	cork->dst = &rt->dst;
1067 	cork->length = 0;
1068 	cork->ttl = ipc->ttl;
1069 	cork->tos = ipc->tos;
1070 	cork->priority = ipc->priority;
1071 	cork->tx_flags = ipc->tx_flags;
1072 
1073 	return 0;
1074 }
1075 
1076 /*
1077  *	ip_append_data() and ip_append_page() can make one large IP datagram
1078  *	from many pieces of data. Each pieces will be holded on the socket
1079  *	until ip_push_pending_frames() is called. Each piece can be a page
1080  *	or non-page data.
1081  *
1082  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1083  *	this interface potentially.
1084  *
1085  *	LATER: length must be adjusted by pad at tail, when it is required.
1086  */
1087 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1088 		   int getfrag(void *from, char *to, int offset, int len,
1089 			       int odd, struct sk_buff *skb),
1090 		   void *from, int length, int transhdrlen,
1091 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1092 		   unsigned int flags)
1093 {
1094 	struct inet_sock *inet = inet_sk(sk);
1095 	int err;
1096 
1097 	if (flags&MSG_PROBE)
1098 		return 0;
1099 
1100 	if (skb_queue_empty(&sk->sk_write_queue)) {
1101 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1102 		if (err)
1103 			return err;
1104 	} else {
1105 		transhdrlen = 0;
1106 	}
1107 
1108 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1109 				sk_page_frag(sk), getfrag,
1110 				from, length, transhdrlen, flags);
1111 }
1112 
1113 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1114 		       int offset, size_t size, int flags)
1115 {
1116 	struct inet_sock *inet = inet_sk(sk);
1117 	struct sk_buff *skb;
1118 	struct rtable *rt;
1119 	struct ip_options *opt = NULL;
1120 	struct inet_cork *cork;
1121 	int hh_len;
1122 	int mtu;
1123 	int len;
1124 	int err;
1125 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1126 
1127 	if (inet->hdrincl)
1128 		return -EPERM;
1129 
1130 	if (flags&MSG_PROBE)
1131 		return 0;
1132 
1133 	if (skb_queue_empty(&sk->sk_write_queue))
1134 		return -EINVAL;
1135 
1136 	cork = &inet->cork.base;
1137 	rt = (struct rtable *)cork->dst;
1138 	if (cork->flags & IPCORK_OPT)
1139 		opt = cork->opt;
1140 
1141 	if (!(rt->dst.dev->features&NETIF_F_SG))
1142 		return -EOPNOTSUPP;
1143 
1144 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1145 	mtu = cork->fragsize;
1146 
1147 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1148 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1149 	maxnonfragsize = (inet->pmtudisc >= IP_PMTUDISC_DO) ?
1150 			 mtu : 0xFFFF;
1151 
1152 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1153 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1154 			       mtu - (opt ? opt->optlen : 0));
1155 		return -EMSGSIZE;
1156 	}
1157 
1158 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1159 		return -EINVAL;
1160 
1161 	cork->length += size;
1162 	if ((size + skb->len > mtu) &&
1163 	    (sk->sk_protocol == IPPROTO_UDP) &&
1164 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1165 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1166 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1167 	}
1168 
1169 
1170 	while (size > 0) {
1171 		int i;
1172 
1173 		if (skb_is_gso(skb))
1174 			len = size;
1175 		else {
1176 
1177 			/* Check if the remaining data fits into current packet. */
1178 			len = mtu - skb->len;
1179 			if (len < size)
1180 				len = maxfraglen - skb->len;
1181 		}
1182 		if (len <= 0) {
1183 			struct sk_buff *skb_prev;
1184 			int alloclen;
1185 
1186 			skb_prev = skb;
1187 			fraggap = skb_prev->len - maxfraglen;
1188 
1189 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1190 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1191 			if (unlikely(!skb)) {
1192 				err = -ENOBUFS;
1193 				goto error;
1194 			}
1195 
1196 			/*
1197 			 *	Fill in the control structures
1198 			 */
1199 			skb->ip_summed = CHECKSUM_NONE;
1200 			skb->csum = 0;
1201 			skb_reserve(skb, hh_len);
1202 
1203 			/*
1204 			 *	Find where to start putting bytes.
1205 			 */
1206 			skb_put(skb, fragheaderlen + fraggap);
1207 			skb_reset_network_header(skb);
1208 			skb->transport_header = (skb->network_header +
1209 						 fragheaderlen);
1210 			if (fraggap) {
1211 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1212 								   maxfraglen,
1213 						    skb_transport_header(skb),
1214 								   fraggap, 0);
1215 				skb_prev->csum = csum_sub(skb_prev->csum,
1216 							  skb->csum);
1217 				pskb_trim_unique(skb_prev, maxfraglen);
1218 			}
1219 
1220 			/*
1221 			 * Put the packet on the pending queue.
1222 			 */
1223 			__skb_queue_tail(&sk->sk_write_queue, skb);
1224 			continue;
1225 		}
1226 
1227 		i = skb_shinfo(skb)->nr_frags;
1228 		if (len > size)
1229 			len = size;
1230 		if (skb_can_coalesce(skb, i, page, offset)) {
1231 			skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1232 		} else if (i < MAX_SKB_FRAGS) {
1233 			get_page(page);
1234 			skb_fill_page_desc(skb, i, page, offset, len);
1235 		} else {
1236 			err = -EMSGSIZE;
1237 			goto error;
1238 		}
1239 
1240 		if (skb->ip_summed == CHECKSUM_NONE) {
1241 			__wsum csum;
1242 			csum = csum_page(page, offset, len);
1243 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1244 		}
1245 
1246 		skb->len += len;
1247 		skb->data_len += len;
1248 		skb->truesize += len;
1249 		atomic_add(len, &sk->sk_wmem_alloc);
1250 		offset += len;
1251 		size -= len;
1252 	}
1253 	return 0;
1254 
1255 error:
1256 	cork->length -= size;
1257 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1258 	return err;
1259 }
1260 
1261 static void ip_cork_release(struct inet_cork *cork)
1262 {
1263 	cork->flags &= ~IPCORK_OPT;
1264 	kfree(cork->opt);
1265 	cork->opt = NULL;
1266 	dst_release(cork->dst);
1267 	cork->dst = NULL;
1268 }
1269 
1270 /*
1271  *	Combined all pending IP fragments on the socket as one IP datagram
1272  *	and push them out.
1273  */
1274 struct sk_buff *__ip_make_skb(struct sock *sk,
1275 			      struct flowi4 *fl4,
1276 			      struct sk_buff_head *queue,
1277 			      struct inet_cork *cork)
1278 {
1279 	struct sk_buff *skb, *tmp_skb;
1280 	struct sk_buff **tail_skb;
1281 	struct inet_sock *inet = inet_sk(sk);
1282 	struct net *net = sock_net(sk);
1283 	struct ip_options *opt = NULL;
1284 	struct rtable *rt = (struct rtable *)cork->dst;
1285 	struct iphdr *iph;
1286 	__be16 df = 0;
1287 	__u8 ttl;
1288 
1289 	if ((skb = __skb_dequeue(queue)) == NULL)
1290 		goto out;
1291 	tail_skb = &(skb_shinfo(skb)->frag_list);
1292 
1293 	/* move skb->data to ip header from ext header */
1294 	if (skb->data < skb_network_header(skb))
1295 		__skb_pull(skb, skb_network_offset(skb));
1296 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1297 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1298 		*tail_skb = tmp_skb;
1299 		tail_skb = &(tmp_skb->next);
1300 		skb->len += tmp_skb->len;
1301 		skb->data_len += tmp_skb->len;
1302 		skb->truesize += tmp_skb->truesize;
1303 		tmp_skb->destructor = NULL;
1304 		tmp_skb->sk = NULL;
1305 	}
1306 
1307 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1308 	 * to fragment the frame generated here. No matter, what transforms
1309 	 * how transforms change size of the packet, it will come out.
1310 	 */
1311 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1312 		skb->local_df = 1;
1313 
1314 	/* DF bit is set when we want to see DF on outgoing frames.
1315 	 * If local_df is set too, we still allow to fragment this frame
1316 	 * locally. */
1317 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1318 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1319 	    (skb->len <= dst_mtu(&rt->dst) &&
1320 	     ip_dont_fragment(sk, &rt->dst)))
1321 		df = htons(IP_DF);
1322 
1323 	if (cork->flags & IPCORK_OPT)
1324 		opt = cork->opt;
1325 
1326 	if (cork->ttl != 0)
1327 		ttl = cork->ttl;
1328 	else if (rt->rt_type == RTN_MULTICAST)
1329 		ttl = inet->mc_ttl;
1330 	else
1331 		ttl = ip_select_ttl(inet, &rt->dst);
1332 
1333 	iph = ip_hdr(skb);
1334 	iph->version = 4;
1335 	iph->ihl = 5;
1336 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1337 	iph->frag_off = df;
1338 	iph->ttl = ttl;
1339 	iph->protocol = sk->sk_protocol;
1340 	ip_copy_addrs(iph, fl4);
1341 	ip_select_ident(skb, &rt->dst, sk);
1342 
1343 	if (opt) {
1344 		iph->ihl += opt->optlen>>2;
1345 		ip_options_build(skb, opt, cork->addr, rt, 0);
1346 	}
1347 
1348 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1349 	skb->mark = sk->sk_mark;
1350 	/*
1351 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1352 	 * on dst refcount
1353 	 */
1354 	cork->dst = NULL;
1355 	skb_dst_set(skb, &rt->dst);
1356 
1357 	if (iph->protocol == IPPROTO_ICMP)
1358 		icmp_out_count(net, ((struct icmphdr *)
1359 			skb_transport_header(skb))->type);
1360 
1361 	ip_cork_release(cork);
1362 out:
1363 	return skb;
1364 }
1365 
1366 int ip_send_skb(struct net *net, struct sk_buff *skb)
1367 {
1368 	int err;
1369 
1370 	err = ip_local_out(skb);
1371 	if (err) {
1372 		if (err > 0)
1373 			err = net_xmit_errno(err);
1374 		if (err)
1375 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1376 	}
1377 
1378 	return err;
1379 }
1380 
1381 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1382 {
1383 	struct sk_buff *skb;
1384 
1385 	skb = ip_finish_skb(sk, fl4);
1386 	if (!skb)
1387 		return 0;
1388 
1389 	/* Netfilter gets whole the not fragmented skb. */
1390 	return ip_send_skb(sock_net(sk), skb);
1391 }
1392 
1393 /*
1394  *	Throw away all pending data on the socket.
1395  */
1396 static void __ip_flush_pending_frames(struct sock *sk,
1397 				      struct sk_buff_head *queue,
1398 				      struct inet_cork *cork)
1399 {
1400 	struct sk_buff *skb;
1401 
1402 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1403 		kfree_skb(skb);
1404 
1405 	ip_cork_release(cork);
1406 }
1407 
1408 void ip_flush_pending_frames(struct sock *sk)
1409 {
1410 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1411 }
1412 
1413 struct sk_buff *ip_make_skb(struct sock *sk,
1414 			    struct flowi4 *fl4,
1415 			    int getfrag(void *from, char *to, int offset,
1416 					int len, int odd, struct sk_buff *skb),
1417 			    void *from, int length, int transhdrlen,
1418 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1419 			    unsigned int flags)
1420 {
1421 	struct inet_cork cork;
1422 	struct sk_buff_head queue;
1423 	int err;
1424 
1425 	if (flags & MSG_PROBE)
1426 		return NULL;
1427 
1428 	__skb_queue_head_init(&queue);
1429 
1430 	cork.flags = 0;
1431 	cork.addr = 0;
1432 	cork.opt = NULL;
1433 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1434 	if (err)
1435 		return ERR_PTR(err);
1436 
1437 	err = __ip_append_data(sk, fl4, &queue, &cork,
1438 			       &current->task_frag, getfrag,
1439 			       from, length, transhdrlen, flags);
1440 	if (err) {
1441 		__ip_flush_pending_frames(sk, &queue, &cork);
1442 		return ERR_PTR(err);
1443 	}
1444 
1445 	return __ip_make_skb(sk, fl4, &queue, &cork);
1446 }
1447 
1448 /*
1449  *	Fetch data from kernel space and fill in checksum if needed.
1450  */
1451 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1452 			      int len, int odd, struct sk_buff *skb)
1453 {
1454 	__wsum csum;
1455 
1456 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1457 	skb->csum = csum_block_add(skb->csum, csum, odd);
1458 	return 0;
1459 }
1460 
1461 /*
1462  *	Generic function to send a packet as reply to another packet.
1463  *	Used to send some TCP resets/acks so far.
1464  *
1465  *	Use a fake percpu inet socket to avoid false sharing and contention.
1466  */
1467 static DEFINE_PER_CPU(struct inet_sock, unicast_sock) = {
1468 	.sk = {
1469 		.__sk_common = {
1470 			.skc_refcnt = ATOMIC_INIT(1),
1471 		},
1472 		.sk_wmem_alloc	= ATOMIC_INIT(1),
1473 		.sk_allocation	= GFP_ATOMIC,
1474 		.sk_flags	= (1UL << SOCK_USE_WRITE_QUEUE),
1475 	},
1476 	.pmtudisc	= IP_PMTUDISC_WANT,
1477 	.uc_ttl		= -1,
1478 };
1479 
1480 void ip_send_unicast_reply(struct net *net, struct sk_buff *skb, __be32 daddr,
1481 			   __be32 saddr, const struct ip_reply_arg *arg,
1482 			   unsigned int len)
1483 {
1484 	struct ip_options_data replyopts;
1485 	struct ipcm_cookie ipc;
1486 	struct flowi4 fl4;
1487 	struct rtable *rt = skb_rtable(skb);
1488 	struct sk_buff *nskb;
1489 	struct sock *sk;
1490 	struct inet_sock *inet;
1491 
1492 	if (ip_options_echo(&replyopts.opt.opt, skb))
1493 		return;
1494 
1495 	ipc.addr = daddr;
1496 	ipc.opt = NULL;
1497 	ipc.tx_flags = 0;
1498 	ipc.ttl = 0;
1499 	ipc.tos = -1;
1500 
1501 	if (replyopts.opt.opt.optlen) {
1502 		ipc.opt = &replyopts.opt;
1503 
1504 		if (replyopts.opt.opt.srr)
1505 			daddr = replyopts.opt.opt.faddr;
1506 	}
1507 
1508 	flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1509 			   RT_TOS(arg->tos),
1510 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1511 			   ip_reply_arg_flowi_flags(arg),
1512 			   daddr, saddr,
1513 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1514 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1515 	rt = ip_route_output_key(net, &fl4);
1516 	if (IS_ERR(rt))
1517 		return;
1518 
1519 	inet = &get_cpu_var(unicast_sock);
1520 
1521 	inet->tos = arg->tos;
1522 	sk = &inet->sk;
1523 	sk->sk_priority = skb->priority;
1524 	sk->sk_protocol = ip_hdr(skb)->protocol;
1525 	sk->sk_bound_dev_if = arg->bound_dev_if;
1526 	sock_net_set(sk, net);
1527 	__skb_queue_head_init(&sk->sk_write_queue);
1528 	sk->sk_sndbuf = sysctl_wmem_default;
1529 	ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1530 		       &ipc, &rt, MSG_DONTWAIT);
1531 	nskb = skb_peek(&sk->sk_write_queue);
1532 	if (nskb) {
1533 		if (arg->csumoffset >= 0)
1534 			*((__sum16 *)skb_transport_header(nskb) +
1535 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1536 								arg->csum));
1537 		nskb->ip_summed = CHECKSUM_NONE;
1538 		skb_orphan(nskb);
1539 		skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb));
1540 		ip_push_pending_frames(sk, &fl4);
1541 	}
1542 
1543 	put_cpu_var(unicast_sock);
1544 
1545 	ip_rt_put(rt);
1546 }
1547 
1548 void __init ip_init(void)
1549 {
1550 	ip_rt_init();
1551 	inet_initpeers();
1552 
1553 #if defined(CONFIG_IP_MULTICAST)
1554 	igmp_mc_init();
1555 #endif
1556 }
1557