1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The Internet Protocol (IP) output module. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Donald Becker, <becker@super.org> 12 * Alan Cox, <Alan.Cox@linux.org> 13 * Richard Underwood 14 * Stefan Becker, <stefanb@yello.ping.de> 15 * Jorge Cwik, <jorge@laser.satlink.net> 16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 17 * Hirokazu Takahashi, <taka@valinux.co.jp> 18 * 19 * See ip_input.c for original log 20 * 21 * Fixes: 22 * Alan Cox : Missing nonblock feature in ip_build_xmit. 23 * Mike Kilburn : htons() missing in ip_build_xmit. 24 * Bradford Johnson: Fix faulty handling of some frames when 25 * no route is found. 26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 27 * (in case if packet not accepted by 28 * output firewall rules) 29 * Mike McLagan : Routing by source 30 * Alexey Kuznetsov: use new route cache 31 * Andi Kleen: Fix broken PMTU recovery and remove 32 * some redundant tests. 33 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 34 * Andi Kleen : Replace ip_reply with ip_send_reply. 35 * Andi Kleen : Split fast and slow ip_build_xmit path 36 * for decreased register pressure on x86 37 * and more readability. 38 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 39 * silently drop skb instead of failing with -EPERM. 40 * Detlev Wengorz : Copy protocol for fragments. 41 * Hirokazu Takahashi: HW checksumming for outgoing UDP 42 * datagrams. 43 * Hirokazu Takahashi: sendfile() on UDP works now. 44 */ 45 46 #include <linux/uaccess.h> 47 #include <linux/module.h> 48 #include <linux/types.h> 49 #include <linux/kernel.h> 50 #include <linux/mm.h> 51 #include <linux/string.h> 52 #include <linux/errno.h> 53 #include <linux/highmem.h> 54 #include <linux/slab.h> 55 56 #include <linux/socket.h> 57 #include <linux/sockios.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/etherdevice.h> 62 #include <linux/proc_fs.h> 63 #include <linux/stat.h> 64 #include <linux/init.h> 65 66 #include <net/snmp.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <net/route.h> 70 #include <net/xfrm.h> 71 #include <linux/skbuff.h> 72 #include <net/sock.h> 73 #include <net/arp.h> 74 #include <net/icmp.h> 75 #include <net/checksum.h> 76 #include <net/inetpeer.h> 77 #include <net/inet_ecn.h> 78 #include <net/lwtunnel.h> 79 #include <linux/bpf-cgroup.h> 80 #include <linux/igmp.h> 81 #include <linux/netfilter_ipv4.h> 82 #include <linux/netfilter_bridge.h> 83 #include <linux/netlink.h> 84 #include <linux/tcp.h> 85 86 static int 87 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 88 unsigned int mtu, 89 int (*output)(struct net *, struct sock *, struct sk_buff *)); 90 91 /* Generate a checksum for an outgoing IP datagram. */ 92 void ip_send_check(struct iphdr *iph) 93 { 94 iph->check = 0; 95 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 96 } 97 EXPORT_SYMBOL(ip_send_check); 98 99 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 100 { 101 struct iphdr *iph = ip_hdr(skb); 102 103 iph_set_totlen(iph, skb->len); 104 ip_send_check(iph); 105 106 /* if egress device is enslaved to an L3 master device pass the 107 * skb to its handler for processing 108 */ 109 skb = l3mdev_ip_out(sk, skb); 110 if (unlikely(!skb)) 111 return 0; 112 113 skb->protocol = htons(ETH_P_IP); 114 115 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 116 net, sk, skb, NULL, skb_dst(skb)->dev, 117 dst_output); 118 } 119 120 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 121 { 122 int err; 123 124 err = __ip_local_out(net, sk, skb); 125 if (likely(err == 1)) 126 err = dst_output(net, sk, skb); 127 128 return err; 129 } 130 EXPORT_SYMBOL_GPL(ip_local_out); 131 132 static inline int ip_select_ttl(const struct inet_sock *inet, 133 const struct dst_entry *dst) 134 { 135 int ttl = inet->uc_ttl; 136 137 if (ttl < 0) 138 ttl = ip4_dst_hoplimit(dst); 139 return ttl; 140 } 141 142 /* 143 * Add an ip header to a skbuff and send it out. 144 * 145 */ 146 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 147 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt, 148 u8 tos) 149 { 150 const struct inet_sock *inet = inet_sk(sk); 151 struct rtable *rt = skb_rtable(skb); 152 struct net *net = sock_net(sk); 153 struct iphdr *iph; 154 155 /* Build the IP header. */ 156 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 157 skb_reset_network_header(skb); 158 iph = ip_hdr(skb); 159 iph->version = 4; 160 iph->ihl = 5; 161 iph->tos = tos; 162 iph->ttl = ip_select_ttl(inet, &rt->dst); 163 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 164 iph->saddr = saddr; 165 iph->protocol = sk->sk_protocol; 166 /* Do not bother generating IPID for small packets (eg SYNACK) */ 167 if (skb->len <= IPV4_MIN_MTU || ip_dont_fragment(sk, &rt->dst)) { 168 iph->frag_off = htons(IP_DF); 169 iph->id = 0; 170 } else { 171 iph->frag_off = 0; 172 /* TCP packets here are SYNACK with fat IPv4/TCP options. 173 * Avoid using the hashed IP ident generator. 174 */ 175 if (sk->sk_protocol == IPPROTO_TCP) 176 iph->id = (__force __be16)get_random_u16(); 177 else 178 __ip_select_ident(net, iph, 1); 179 } 180 181 if (opt && opt->opt.optlen) { 182 iph->ihl += opt->opt.optlen>>2; 183 ip_options_build(skb, &opt->opt, daddr, rt); 184 } 185 186 skb->priority = sk->sk_priority; 187 if (!skb->mark) 188 skb->mark = sk->sk_mark; 189 190 /* Send it out. */ 191 return ip_local_out(net, skb->sk, skb); 192 } 193 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 194 195 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 196 { 197 struct dst_entry *dst = skb_dst(skb); 198 struct rtable *rt = (struct rtable *)dst; 199 struct net_device *dev = dst->dev; 200 unsigned int hh_len = LL_RESERVED_SPACE(dev); 201 struct neighbour *neigh; 202 bool is_v6gw = false; 203 204 if (rt->rt_type == RTN_MULTICAST) { 205 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 206 } else if (rt->rt_type == RTN_BROADCAST) 207 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 208 209 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 210 skb = skb_expand_head(skb, hh_len); 211 if (!skb) 212 return -ENOMEM; 213 } 214 215 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 216 int res = lwtunnel_xmit(skb); 217 218 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 219 return res; 220 } 221 222 rcu_read_lock(); 223 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 224 if (!IS_ERR(neigh)) { 225 int res; 226 227 sock_confirm_neigh(skb, neigh); 228 /* if crossing protocols, can not use the cached header */ 229 res = neigh_output(neigh, skb, is_v6gw); 230 rcu_read_unlock(); 231 return res; 232 } 233 rcu_read_unlock(); 234 235 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 236 __func__); 237 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL); 238 return -EINVAL; 239 } 240 241 static int ip_finish_output_gso(struct net *net, struct sock *sk, 242 struct sk_buff *skb, unsigned int mtu) 243 { 244 struct sk_buff *segs, *nskb; 245 netdev_features_t features; 246 int ret = 0; 247 248 /* common case: seglen is <= mtu 249 */ 250 if (skb_gso_validate_network_len(skb, mtu)) 251 return ip_finish_output2(net, sk, skb); 252 253 /* Slowpath - GSO segment length exceeds the egress MTU. 254 * 255 * This can happen in several cases: 256 * - Forwarding of a TCP GRO skb, when DF flag is not set. 257 * - Forwarding of an skb that arrived on a virtualization interface 258 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 259 * stack. 260 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 261 * interface with a smaller MTU. 262 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 263 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 264 * insufficient MTU. 265 */ 266 features = netif_skb_features(skb); 267 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET); 268 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 269 if (IS_ERR_OR_NULL(segs)) { 270 kfree_skb(skb); 271 return -ENOMEM; 272 } 273 274 consume_skb(skb); 275 276 skb_list_walk_safe(segs, segs, nskb) { 277 int err; 278 279 skb_mark_not_on_list(segs); 280 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 281 282 if (err && ret == 0) 283 ret = err; 284 } 285 286 return ret; 287 } 288 289 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 290 { 291 unsigned int mtu; 292 293 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 294 /* Policy lookup after SNAT yielded a new policy */ 295 if (skb_dst(skb)->xfrm) { 296 IPCB(skb)->flags |= IPSKB_REROUTED; 297 return dst_output(net, sk, skb); 298 } 299 #endif 300 mtu = ip_skb_dst_mtu(sk, skb); 301 if (skb_is_gso(skb)) 302 return ip_finish_output_gso(net, sk, skb, mtu); 303 304 if (skb->len > mtu || IPCB(skb)->frag_max_size) 305 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 306 307 return ip_finish_output2(net, sk, skb); 308 } 309 310 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 311 { 312 int ret; 313 314 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 315 switch (ret) { 316 case NET_XMIT_SUCCESS: 317 return __ip_finish_output(net, sk, skb); 318 case NET_XMIT_CN: 319 return __ip_finish_output(net, sk, skb) ? : ret; 320 default: 321 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS); 322 return ret; 323 } 324 } 325 326 static int ip_mc_finish_output(struct net *net, struct sock *sk, 327 struct sk_buff *skb) 328 { 329 struct rtable *new_rt; 330 bool do_cn = false; 331 int ret, err; 332 333 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 334 switch (ret) { 335 case NET_XMIT_CN: 336 do_cn = true; 337 fallthrough; 338 case NET_XMIT_SUCCESS: 339 break; 340 default: 341 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS); 342 return ret; 343 } 344 345 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting 346 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten, 347 * see ipv4_pktinfo_prepare(). 348 */ 349 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb)); 350 if (new_rt) { 351 new_rt->rt_iif = 0; 352 skb_dst_drop(skb); 353 skb_dst_set(skb, &new_rt->dst); 354 } 355 356 err = dev_loopback_xmit(net, sk, skb); 357 return (do_cn && err) ? ret : err; 358 } 359 360 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 361 { 362 struct rtable *rt = skb_rtable(skb); 363 struct net_device *dev = rt->dst.dev; 364 365 /* 366 * If the indicated interface is up and running, send the packet. 367 */ 368 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 369 370 skb->dev = dev; 371 skb->protocol = htons(ETH_P_IP); 372 373 /* 374 * Multicasts are looped back for other local users 375 */ 376 377 if (rt->rt_flags&RTCF_MULTICAST) { 378 if (sk_mc_loop(sk) 379 #ifdef CONFIG_IP_MROUTE 380 /* Small optimization: do not loopback not local frames, 381 which returned after forwarding; they will be dropped 382 by ip_mr_input in any case. 383 Note, that local frames are looped back to be delivered 384 to local recipients. 385 386 This check is duplicated in ip_mr_input at the moment. 387 */ 388 && 389 ((rt->rt_flags & RTCF_LOCAL) || 390 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 391 #endif 392 ) { 393 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 394 if (newskb) 395 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 396 net, sk, newskb, NULL, newskb->dev, 397 ip_mc_finish_output); 398 } 399 400 /* Multicasts with ttl 0 must not go beyond the host */ 401 402 if (ip_hdr(skb)->ttl == 0) { 403 kfree_skb(skb); 404 return 0; 405 } 406 } 407 408 if (rt->rt_flags&RTCF_BROADCAST) { 409 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 410 if (newskb) 411 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 412 net, sk, newskb, NULL, newskb->dev, 413 ip_mc_finish_output); 414 } 415 416 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 417 net, sk, skb, NULL, skb->dev, 418 ip_finish_output, 419 !(IPCB(skb)->flags & IPSKB_REROUTED)); 420 } 421 422 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 423 { 424 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev; 425 426 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 427 428 skb->dev = dev; 429 skb->protocol = htons(ETH_P_IP); 430 431 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 432 net, sk, skb, indev, dev, 433 ip_finish_output, 434 !(IPCB(skb)->flags & IPSKB_REROUTED)); 435 } 436 EXPORT_SYMBOL(ip_output); 437 438 /* 439 * copy saddr and daddr, possibly using 64bit load/stores 440 * Equivalent to : 441 * iph->saddr = fl4->saddr; 442 * iph->daddr = fl4->daddr; 443 */ 444 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 445 { 446 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 447 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 448 449 iph->saddr = fl4->saddr; 450 iph->daddr = fl4->daddr; 451 } 452 453 /* Note: skb->sk can be different from sk, in case of tunnels */ 454 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, 455 __u8 tos) 456 { 457 struct inet_sock *inet = inet_sk(sk); 458 struct net *net = sock_net(sk); 459 struct ip_options_rcu *inet_opt; 460 struct flowi4 *fl4; 461 struct rtable *rt; 462 struct iphdr *iph; 463 int res; 464 465 /* Skip all of this if the packet is already routed, 466 * f.e. by something like SCTP. 467 */ 468 rcu_read_lock(); 469 inet_opt = rcu_dereference(inet->inet_opt); 470 fl4 = &fl->u.ip4; 471 rt = skb_rtable(skb); 472 if (rt) 473 goto packet_routed; 474 475 /* Make sure we can route this packet. */ 476 rt = (struct rtable *)__sk_dst_check(sk, 0); 477 if (!rt) { 478 __be32 daddr; 479 480 /* Use correct destination address if we have options. */ 481 daddr = inet->inet_daddr; 482 if (inet_opt && inet_opt->opt.srr) 483 daddr = inet_opt->opt.faddr; 484 485 /* If this fails, retransmit mechanism of transport layer will 486 * keep trying until route appears or the connection times 487 * itself out. 488 */ 489 rt = ip_route_output_ports(net, fl4, sk, 490 daddr, inet->inet_saddr, 491 inet->inet_dport, 492 inet->inet_sport, 493 sk->sk_protocol, 494 RT_CONN_FLAGS_TOS(sk, tos), 495 sk->sk_bound_dev_if); 496 if (IS_ERR(rt)) 497 goto no_route; 498 sk_setup_caps(sk, &rt->dst); 499 } 500 skb_dst_set_noref(skb, &rt->dst); 501 502 packet_routed: 503 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 504 goto no_route; 505 506 /* OK, we know where to send it, allocate and build IP header. */ 507 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 508 skb_reset_network_header(skb); 509 iph = ip_hdr(skb); 510 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); 511 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 512 iph->frag_off = htons(IP_DF); 513 else 514 iph->frag_off = 0; 515 iph->ttl = ip_select_ttl(inet, &rt->dst); 516 iph->protocol = sk->sk_protocol; 517 ip_copy_addrs(iph, fl4); 518 519 /* Transport layer set skb->h.foo itself. */ 520 521 if (inet_opt && inet_opt->opt.optlen) { 522 iph->ihl += inet_opt->opt.optlen >> 2; 523 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt); 524 } 525 526 ip_select_ident_segs(net, skb, sk, 527 skb_shinfo(skb)->gso_segs ?: 1); 528 529 /* TODO : should we use skb->sk here instead of sk ? */ 530 skb->priority = sk->sk_priority; 531 skb->mark = sk->sk_mark; 532 533 res = ip_local_out(net, sk, skb); 534 rcu_read_unlock(); 535 return res; 536 537 no_route: 538 rcu_read_unlock(); 539 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 540 kfree_skb_reason(skb, SKB_DROP_REASON_IP_OUTNOROUTES); 541 return -EHOSTUNREACH; 542 } 543 EXPORT_SYMBOL(__ip_queue_xmit); 544 545 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 546 { 547 return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos); 548 } 549 EXPORT_SYMBOL(ip_queue_xmit); 550 551 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 552 { 553 to->pkt_type = from->pkt_type; 554 to->priority = from->priority; 555 to->protocol = from->protocol; 556 to->skb_iif = from->skb_iif; 557 skb_dst_drop(to); 558 skb_dst_copy(to, from); 559 to->dev = from->dev; 560 to->mark = from->mark; 561 562 skb_copy_hash(to, from); 563 564 #ifdef CONFIG_NET_SCHED 565 to->tc_index = from->tc_index; 566 #endif 567 nf_copy(to, from); 568 skb_ext_copy(to, from); 569 #if IS_ENABLED(CONFIG_IP_VS) 570 to->ipvs_property = from->ipvs_property; 571 #endif 572 skb_copy_secmark(to, from); 573 } 574 575 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 576 unsigned int mtu, 577 int (*output)(struct net *, struct sock *, struct sk_buff *)) 578 { 579 struct iphdr *iph = ip_hdr(skb); 580 581 if ((iph->frag_off & htons(IP_DF)) == 0) 582 return ip_do_fragment(net, sk, skb, output); 583 584 if (unlikely(!skb->ignore_df || 585 (IPCB(skb)->frag_max_size && 586 IPCB(skb)->frag_max_size > mtu))) { 587 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 588 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 589 htonl(mtu)); 590 kfree_skb(skb); 591 return -EMSGSIZE; 592 } 593 594 return ip_do_fragment(net, sk, skb, output); 595 } 596 597 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, 598 unsigned int hlen, struct ip_fraglist_iter *iter) 599 { 600 unsigned int first_len = skb_pagelen(skb); 601 602 iter->frag = skb_shinfo(skb)->frag_list; 603 skb_frag_list_init(skb); 604 605 iter->offset = 0; 606 iter->iph = iph; 607 iter->hlen = hlen; 608 609 skb->data_len = first_len - skb_headlen(skb); 610 skb->len = first_len; 611 iph->tot_len = htons(first_len); 612 iph->frag_off = htons(IP_MF); 613 ip_send_check(iph); 614 } 615 EXPORT_SYMBOL(ip_fraglist_init); 616 617 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter) 618 { 619 unsigned int hlen = iter->hlen; 620 struct iphdr *iph = iter->iph; 621 struct sk_buff *frag; 622 623 frag = iter->frag; 624 frag->ip_summed = CHECKSUM_NONE; 625 skb_reset_transport_header(frag); 626 __skb_push(frag, hlen); 627 skb_reset_network_header(frag); 628 memcpy(skb_network_header(frag), iph, hlen); 629 iter->iph = ip_hdr(frag); 630 iph = iter->iph; 631 iph->tot_len = htons(frag->len); 632 ip_copy_metadata(frag, skb); 633 iter->offset += skb->len - hlen; 634 iph->frag_off = htons(iter->offset >> 3); 635 if (frag->next) 636 iph->frag_off |= htons(IP_MF); 637 /* Ready, complete checksum */ 638 ip_send_check(iph); 639 } 640 EXPORT_SYMBOL(ip_fraglist_prepare); 641 642 void ip_frag_init(struct sk_buff *skb, unsigned int hlen, 643 unsigned int ll_rs, unsigned int mtu, bool DF, 644 struct ip_frag_state *state) 645 { 646 struct iphdr *iph = ip_hdr(skb); 647 648 state->DF = DF; 649 state->hlen = hlen; 650 state->ll_rs = ll_rs; 651 state->mtu = mtu; 652 653 state->left = skb->len - hlen; /* Space per frame */ 654 state->ptr = hlen; /* Where to start from */ 655 656 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 657 state->not_last_frag = iph->frag_off & htons(IP_MF); 658 } 659 EXPORT_SYMBOL(ip_frag_init); 660 661 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to, 662 bool first_frag) 663 { 664 /* Copy the flags to each fragment. */ 665 IPCB(to)->flags = IPCB(from)->flags; 666 667 /* ANK: dirty, but effective trick. Upgrade options only if 668 * the segment to be fragmented was THE FIRST (otherwise, 669 * options are already fixed) and make it ONCE 670 * on the initial skb, so that all the following fragments 671 * will inherit fixed options. 672 */ 673 if (first_frag) 674 ip_options_fragment(from); 675 } 676 677 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state) 678 { 679 unsigned int len = state->left; 680 struct sk_buff *skb2; 681 struct iphdr *iph; 682 683 /* IF: it doesn't fit, use 'mtu' - the data space left */ 684 if (len > state->mtu) 685 len = state->mtu; 686 /* IF: we are not sending up to and including the packet end 687 then align the next start on an eight byte boundary */ 688 if (len < state->left) { 689 len &= ~7; 690 } 691 692 /* Allocate buffer */ 693 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC); 694 if (!skb2) 695 return ERR_PTR(-ENOMEM); 696 697 /* 698 * Set up data on packet 699 */ 700 701 ip_copy_metadata(skb2, skb); 702 skb_reserve(skb2, state->ll_rs); 703 skb_put(skb2, len + state->hlen); 704 skb_reset_network_header(skb2); 705 skb2->transport_header = skb2->network_header + state->hlen; 706 707 /* 708 * Charge the memory for the fragment to any owner 709 * it might possess 710 */ 711 712 if (skb->sk) 713 skb_set_owner_w(skb2, skb->sk); 714 715 /* 716 * Copy the packet header into the new buffer. 717 */ 718 719 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen); 720 721 /* 722 * Copy a block of the IP datagram. 723 */ 724 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len)) 725 BUG(); 726 state->left -= len; 727 728 /* 729 * Fill in the new header fields. 730 */ 731 iph = ip_hdr(skb2); 732 iph->frag_off = htons((state->offset >> 3)); 733 if (state->DF) 734 iph->frag_off |= htons(IP_DF); 735 736 /* 737 * Added AC : If we are fragmenting a fragment that's not the 738 * last fragment then keep MF on each bit 739 */ 740 if (state->left > 0 || state->not_last_frag) 741 iph->frag_off |= htons(IP_MF); 742 state->ptr += len; 743 state->offset += len; 744 745 iph->tot_len = htons(len + state->hlen); 746 747 ip_send_check(iph); 748 749 return skb2; 750 } 751 EXPORT_SYMBOL(ip_frag_next); 752 753 /* 754 * This IP datagram is too large to be sent in one piece. Break it up into 755 * smaller pieces (each of size equal to IP header plus 756 * a block of the data of the original IP data part) that will yet fit in a 757 * single device frame, and queue such a frame for sending. 758 */ 759 760 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 761 int (*output)(struct net *, struct sock *, struct sk_buff *)) 762 { 763 struct iphdr *iph; 764 struct sk_buff *skb2; 765 bool mono_delivery_time = skb->mono_delivery_time; 766 struct rtable *rt = skb_rtable(skb); 767 unsigned int mtu, hlen, ll_rs; 768 struct ip_fraglist_iter iter; 769 ktime_t tstamp = skb->tstamp; 770 struct ip_frag_state state; 771 int err = 0; 772 773 /* for offloaded checksums cleanup checksum before fragmentation */ 774 if (skb->ip_summed == CHECKSUM_PARTIAL && 775 (err = skb_checksum_help(skb))) 776 goto fail; 777 778 /* 779 * Point into the IP datagram header. 780 */ 781 782 iph = ip_hdr(skb); 783 784 mtu = ip_skb_dst_mtu(sk, skb); 785 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 786 mtu = IPCB(skb)->frag_max_size; 787 788 /* 789 * Setup starting values. 790 */ 791 792 hlen = iph->ihl * 4; 793 mtu = mtu - hlen; /* Size of data space */ 794 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 795 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 796 797 /* When frag_list is given, use it. First, check its validity: 798 * some transformers could create wrong frag_list or break existing 799 * one, it is not prohibited. In this case fall back to copying. 800 * 801 * LATER: this step can be merged to real generation of fragments, 802 * we can switch to copy when see the first bad fragment. 803 */ 804 if (skb_has_frag_list(skb)) { 805 struct sk_buff *frag, *frag2; 806 unsigned int first_len = skb_pagelen(skb); 807 808 if (first_len - hlen > mtu || 809 ((first_len - hlen) & 7) || 810 ip_is_fragment(iph) || 811 skb_cloned(skb) || 812 skb_headroom(skb) < ll_rs) 813 goto slow_path; 814 815 skb_walk_frags(skb, frag) { 816 /* Correct geometry. */ 817 if (frag->len > mtu || 818 ((frag->len & 7) && frag->next) || 819 skb_headroom(frag) < hlen + ll_rs) 820 goto slow_path_clean; 821 822 /* Partially cloned skb? */ 823 if (skb_shared(frag)) 824 goto slow_path_clean; 825 826 BUG_ON(frag->sk); 827 if (skb->sk) { 828 frag->sk = skb->sk; 829 frag->destructor = sock_wfree; 830 } 831 skb->truesize -= frag->truesize; 832 } 833 834 /* Everything is OK. Generate! */ 835 ip_fraglist_init(skb, iph, hlen, &iter); 836 837 for (;;) { 838 /* Prepare header of the next frame, 839 * before previous one went down. */ 840 if (iter.frag) { 841 bool first_frag = (iter.offset == 0); 842 843 IPCB(iter.frag)->flags = IPCB(skb)->flags; 844 ip_fraglist_prepare(skb, &iter); 845 if (first_frag && IPCB(skb)->opt.optlen) { 846 /* ipcb->opt is not populated for frags 847 * coming from __ip_make_skb(), 848 * ip_options_fragment() needs optlen 849 */ 850 IPCB(iter.frag)->opt.optlen = 851 IPCB(skb)->opt.optlen; 852 ip_options_fragment(iter.frag); 853 ip_send_check(iter.iph); 854 } 855 } 856 857 skb_set_delivery_time(skb, tstamp, mono_delivery_time); 858 err = output(net, sk, skb); 859 860 if (!err) 861 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 862 if (err || !iter.frag) 863 break; 864 865 skb = ip_fraglist_next(&iter); 866 } 867 868 if (err == 0) { 869 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 870 return 0; 871 } 872 873 kfree_skb_list(iter.frag); 874 875 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 876 return err; 877 878 slow_path_clean: 879 skb_walk_frags(skb, frag2) { 880 if (frag2 == frag) 881 break; 882 frag2->sk = NULL; 883 frag2->destructor = NULL; 884 skb->truesize += frag2->truesize; 885 } 886 } 887 888 slow_path: 889 /* 890 * Fragment the datagram. 891 */ 892 893 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU, 894 &state); 895 896 /* 897 * Keep copying data until we run out. 898 */ 899 900 while (state.left > 0) { 901 bool first_frag = (state.offset == 0); 902 903 skb2 = ip_frag_next(skb, &state); 904 if (IS_ERR(skb2)) { 905 err = PTR_ERR(skb2); 906 goto fail; 907 } 908 ip_frag_ipcb(skb, skb2, first_frag); 909 910 /* 911 * Put this fragment into the sending queue. 912 */ 913 skb_set_delivery_time(skb2, tstamp, mono_delivery_time); 914 err = output(net, sk, skb2); 915 if (err) 916 goto fail; 917 918 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 919 } 920 consume_skb(skb); 921 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 922 return err; 923 924 fail: 925 kfree_skb(skb); 926 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 927 return err; 928 } 929 EXPORT_SYMBOL(ip_do_fragment); 930 931 int 932 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 933 { 934 struct msghdr *msg = from; 935 936 if (skb->ip_summed == CHECKSUM_PARTIAL) { 937 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 938 return -EFAULT; 939 } else { 940 __wsum csum = 0; 941 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 942 return -EFAULT; 943 skb->csum = csum_block_add(skb->csum, csum, odd); 944 } 945 return 0; 946 } 947 EXPORT_SYMBOL(ip_generic_getfrag); 948 949 static inline __wsum 950 csum_page(struct page *page, int offset, int copy) 951 { 952 char *kaddr; 953 __wsum csum; 954 kaddr = kmap(page); 955 csum = csum_partial(kaddr + offset, copy, 0); 956 kunmap(page); 957 return csum; 958 } 959 960 static int __ip_append_data(struct sock *sk, 961 struct flowi4 *fl4, 962 struct sk_buff_head *queue, 963 struct inet_cork *cork, 964 struct page_frag *pfrag, 965 int getfrag(void *from, char *to, int offset, 966 int len, int odd, struct sk_buff *skb), 967 void *from, int length, int transhdrlen, 968 unsigned int flags) 969 { 970 struct inet_sock *inet = inet_sk(sk); 971 struct ubuf_info *uarg = NULL; 972 struct sk_buff *skb; 973 struct ip_options *opt = cork->opt; 974 int hh_len; 975 int exthdrlen; 976 int mtu; 977 int copy; 978 int err; 979 int offset = 0; 980 bool zc = false; 981 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 982 int csummode = CHECKSUM_NONE; 983 struct rtable *rt = (struct rtable *)cork->dst; 984 unsigned int wmem_alloc_delta = 0; 985 bool paged, extra_uref = false; 986 u32 tskey = 0; 987 988 skb = skb_peek_tail(queue); 989 990 exthdrlen = !skb ? rt->dst.header_len : 0; 991 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 992 paged = !!cork->gso_size; 993 994 if (cork->tx_flags & SKBTX_ANY_TSTAMP && 995 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 996 tskey = atomic_inc_return(&sk->sk_tskey) - 1; 997 998 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 999 1000 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1001 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1002 maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu; 1003 1004 if (cork->length + length > maxnonfragsize - fragheaderlen) { 1005 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1006 mtu - (opt ? opt->optlen : 0)); 1007 return -EMSGSIZE; 1008 } 1009 1010 /* 1011 * transhdrlen > 0 means that this is the first fragment and we wish 1012 * it won't be fragmented in the future. 1013 */ 1014 if (transhdrlen && 1015 length + fragheaderlen <= mtu && 1016 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 1017 (!(flags & MSG_MORE) || cork->gso_size) && 1018 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 1019 csummode = CHECKSUM_PARTIAL; 1020 1021 if ((flags & MSG_ZEROCOPY) && length) { 1022 struct msghdr *msg = from; 1023 1024 if (getfrag == ip_generic_getfrag && msg->msg_ubuf) { 1025 if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb)) 1026 return -EINVAL; 1027 1028 /* Leave uarg NULL if can't zerocopy, callers should 1029 * be able to handle it. 1030 */ 1031 if ((rt->dst.dev->features & NETIF_F_SG) && 1032 csummode == CHECKSUM_PARTIAL) { 1033 paged = true; 1034 zc = true; 1035 uarg = msg->msg_ubuf; 1036 } 1037 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1038 uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb)); 1039 if (!uarg) 1040 return -ENOBUFS; 1041 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ 1042 if (rt->dst.dev->features & NETIF_F_SG && 1043 csummode == CHECKSUM_PARTIAL) { 1044 paged = true; 1045 zc = true; 1046 } else { 1047 uarg_to_msgzc(uarg)->zerocopy = 0; 1048 skb_zcopy_set(skb, uarg, &extra_uref); 1049 } 1050 } 1051 } 1052 1053 cork->length += length; 1054 1055 /* So, what's going on in the loop below? 1056 * 1057 * We use calculated fragment length to generate chained skb, 1058 * each of segments is IP fragment ready for sending to network after 1059 * adding appropriate IP header. 1060 */ 1061 1062 if (!skb) 1063 goto alloc_new_skb; 1064 1065 while (length > 0) { 1066 /* Check if the remaining data fits into current packet. */ 1067 copy = mtu - skb->len; 1068 if (copy < length) 1069 copy = maxfraglen - skb->len; 1070 if (copy <= 0) { 1071 char *data; 1072 unsigned int datalen; 1073 unsigned int fraglen; 1074 unsigned int fraggap; 1075 unsigned int alloclen, alloc_extra; 1076 unsigned int pagedlen; 1077 struct sk_buff *skb_prev; 1078 alloc_new_skb: 1079 skb_prev = skb; 1080 if (skb_prev) 1081 fraggap = skb_prev->len - maxfraglen; 1082 else 1083 fraggap = 0; 1084 1085 /* 1086 * If remaining data exceeds the mtu, 1087 * we know we need more fragment(s). 1088 */ 1089 datalen = length + fraggap; 1090 if (datalen > mtu - fragheaderlen) 1091 datalen = maxfraglen - fragheaderlen; 1092 fraglen = datalen + fragheaderlen; 1093 pagedlen = 0; 1094 1095 alloc_extra = hh_len + 15; 1096 alloc_extra += exthdrlen; 1097 1098 /* The last fragment gets additional space at tail. 1099 * Note, with MSG_MORE we overallocate on fragments, 1100 * because we have no idea what fragment will be 1101 * the last. 1102 */ 1103 if (datalen == length + fraggap) 1104 alloc_extra += rt->dst.trailer_len; 1105 1106 if ((flags & MSG_MORE) && 1107 !(rt->dst.dev->features&NETIF_F_SG)) 1108 alloclen = mtu; 1109 else if (!paged && 1110 (fraglen + alloc_extra < SKB_MAX_ALLOC || 1111 !(rt->dst.dev->features & NETIF_F_SG))) 1112 alloclen = fraglen; 1113 else { 1114 alloclen = fragheaderlen + transhdrlen; 1115 pagedlen = datalen - transhdrlen; 1116 } 1117 1118 alloclen += alloc_extra; 1119 1120 if (transhdrlen) { 1121 skb = sock_alloc_send_skb(sk, alloclen, 1122 (flags & MSG_DONTWAIT), &err); 1123 } else { 1124 skb = NULL; 1125 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 1126 2 * sk->sk_sndbuf) 1127 skb = alloc_skb(alloclen, 1128 sk->sk_allocation); 1129 if (unlikely(!skb)) 1130 err = -ENOBUFS; 1131 } 1132 if (!skb) 1133 goto error; 1134 1135 /* 1136 * Fill in the control structures 1137 */ 1138 skb->ip_summed = csummode; 1139 skb->csum = 0; 1140 skb_reserve(skb, hh_len); 1141 1142 /* 1143 * Find where to start putting bytes. 1144 */ 1145 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1146 skb_set_network_header(skb, exthdrlen); 1147 skb->transport_header = (skb->network_header + 1148 fragheaderlen); 1149 data += fragheaderlen + exthdrlen; 1150 1151 if (fraggap) { 1152 skb->csum = skb_copy_and_csum_bits( 1153 skb_prev, maxfraglen, 1154 data + transhdrlen, fraggap); 1155 skb_prev->csum = csum_sub(skb_prev->csum, 1156 skb->csum); 1157 data += fraggap; 1158 pskb_trim_unique(skb_prev, maxfraglen); 1159 } 1160 1161 copy = datalen - transhdrlen - fraggap - pagedlen; 1162 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1163 err = -EFAULT; 1164 kfree_skb(skb); 1165 goto error; 1166 } 1167 1168 offset += copy; 1169 length -= copy + transhdrlen; 1170 transhdrlen = 0; 1171 exthdrlen = 0; 1172 csummode = CHECKSUM_NONE; 1173 1174 /* only the initial fragment is time stamped */ 1175 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1176 cork->tx_flags = 0; 1177 skb_shinfo(skb)->tskey = tskey; 1178 tskey = 0; 1179 skb_zcopy_set(skb, uarg, &extra_uref); 1180 1181 if ((flags & MSG_CONFIRM) && !skb_prev) 1182 skb_set_dst_pending_confirm(skb, 1); 1183 1184 /* 1185 * Put the packet on the pending queue. 1186 */ 1187 if (!skb->destructor) { 1188 skb->destructor = sock_wfree; 1189 skb->sk = sk; 1190 wmem_alloc_delta += skb->truesize; 1191 } 1192 __skb_queue_tail(queue, skb); 1193 continue; 1194 } 1195 1196 if (copy > length) 1197 copy = length; 1198 1199 if (!(rt->dst.dev->features&NETIF_F_SG) && 1200 skb_tailroom(skb) >= copy) { 1201 unsigned int off; 1202 1203 off = skb->len; 1204 if (getfrag(from, skb_put(skb, copy), 1205 offset, copy, off, skb) < 0) { 1206 __skb_trim(skb, off); 1207 err = -EFAULT; 1208 goto error; 1209 } 1210 } else if (!zc) { 1211 int i = skb_shinfo(skb)->nr_frags; 1212 1213 err = -ENOMEM; 1214 if (!sk_page_frag_refill(sk, pfrag)) 1215 goto error; 1216 1217 skb_zcopy_downgrade_managed(skb); 1218 if (!skb_can_coalesce(skb, i, pfrag->page, 1219 pfrag->offset)) { 1220 err = -EMSGSIZE; 1221 if (i == MAX_SKB_FRAGS) 1222 goto error; 1223 1224 __skb_fill_page_desc(skb, i, pfrag->page, 1225 pfrag->offset, 0); 1226 skb_shinfo(skb)->nr_frags = ++i; 1227 get_page(pfrag->page); 1228 } 1229 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1230 if (getfrag(from, 1231 page_address(pfrag->page) + pfrag->offset, 1232 offset, copy, skb->len, skb) < 0) 1233 goto error_efault; 1234 1235 pfrag->offset += copy; 1236 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1237 skb_len_add(skb, copy); 1238 wmem_alloc_delta += copy; 1239 } else { 1240 err = skb_zerocopy_iter_dgram(skb, from, copy); 1241 if (err < 0) 1242 goto error; 1243 } 1244 offset += copy; 1245 length -= copy; 1246 } 1247 1248 if (wmem_alloc_delta) 1249 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1250 return 0; 1251 1252 error_efault: 1253 err = -EFAULT; 1254 error: 1255 net_zcopy_put_abort(uarg, extra_uref); 1256 cork->length -= length; 1257 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1258 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1259 return err; 1260 } 1261 1262 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1263 struct ipcm_cookie *ipc, struct rtable **rtp) 1264 { 1265 struct ip_options_rcu *opt; 1266 struct rtable *rt; 1267 1268 rt = *rtp; 1269 if (unlikely(!rt)) 1270 return -EFAULT; 1271 1272 /* 1273 * setup for corking. 1274 */ 1275 opt = ipc->opt; 1276 if (opt) { 1277 if (!cork->opt) { 1278 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1279 sk->sk_allocation); 1280 if (unlikely(!cork->opt)) 1281 return -ENOBUFS; 1282 } 1283 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1284 cork->flags |= IPCORK_OPT; 1285 cork->addr = ipc->addr; 1286 } 1287 1288 cork->fragsize = ip_sk_use_pmtu(sk) ? 1289 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu); 1290 1291 if (!inetdev_valid_mtu(cork->fragsize)) 1292 return -ENETUNREACH; 1293 1294 cork->gso_size = ipc->gso_size; 1295 1296 cork->dst = &rt->dst; 1297 /* We stole this route, caller should not release it. */ 1298 *rtp = NULL; 1299 1300 cork->length = 0; 1301 cork->ttl = ipc->ttl; 1302 cork->tos = ipc->tos; 1303 cork->mark = ipc->sockc.mark; 1304 cork->priority = ipc->priority; 1305 cork->transmit_time = ipc->sockc.transmit_time; 1306 cork->tx_flags = 0; 1307 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); 1308 1309 return 0; 1310 } 1311 1312 /* 1313 * ip_append_data() and ip_append_page() can make one large IP datagram 1314 * from many pieces of data. Each pieces will be holded on the socket 1315 * until ip_push_pending_frames() is called. Each piece can be a page 1316 * or non-page data. 1317 * 1318 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1319 * this interface potentially. 1320 * 1321 * LATER: length must be adjusted by pad at tail, when it is required. 1322 */ 1323 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1324 int getfrag(void *from, char *to, int offset, int len, 1325 int odd, struct sk_buff *skb), 1326 void *from, int length, int transhdrlen, 1327 struct ipcm_cookie *ipc, struct rtable **rtp, 1328 unsigned int flags) 1329 { 1330 struct inet_sock *inet = inet_sk(sk); 1331 int err; 1332 1333 if (flags&MSG_PROBE) 1334 return 0; 1335 1336 if (skb_queue_empty(&sk->sk_write_queue)) { 1337 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1338 if (err) 1339 return err; 1340 } else { 1341 transhdrlen = 0; 1342 } 1343 1344 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1345 sk_page_frag(sk), getfrag, 1346 from, length, transhdrlen, flags); 1347 } 1348 1349 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1350 int offset, size_t size, int flags) 1351 { 1352 struct inet_sock *inet = inet_sk(sk); 1353 struct sk_buff *skb; 1354 struct rtable *rt; 1355 struct ip_options *opt = NULL; 1356 struct inet_cork *cork; 1357 int hh_len; 1358 int mtu; 1359 int len; 1360 int err; 1361 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1362 1363 if (inet->hdrincl) 1364 return -EPERM; 1365 1366 if (flags&MSG_PROBE) 1367 return 0; 1368 1369 if (skb_queue_empty(&sk->sk_write_queue)) 1370 return -EINVAL; 1371 1372 cork = &inet->cork.base; 1373 rt = (struct rtable *)cork->dst; 1374 if (cork->flags & IPCORK_OPT) 1375 opt = cork->opt; 1376 1377 if (!(rt->dst.dev->features & NETIF_F_SG)) 1378 return -EOPNOTSUPP; 1379 1380 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1381 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 1382 1383 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1384 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1385 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1386 1387 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1388 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1389 mtu - (opt ? opt->optlen : 0)); 1390 return -EMSGSIZE; 1391 } 1392 1393 skb = skb_peek_tail(&sk->sk_write_queue); 1394 if (!skb) 1395 return -EINVAL; 1396 1397 cork->length += size; 1398 1399 while (size > 0) { 1400 /* Check if the remaining data fits into current packet. */ 1401 len = mtu - skb->len; 1402 if (len < size) 1403 len = maxfraglen - skb->len; 1404 1405 if (len <= 0) { 1406 struct sk_buff *skb_prev; 1407 int alloclen; 1408 1409 skb_prev = skb; 1410 fraggap = skb_prev->len - maxfraglen; 1411 1412 alloclen = fragheaderlen + hh_len + fraggap + 15; 1413 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1414 if (unlikely(!skb)) { 1415 err = -ENOBUFS; 1416 goto error; 1417 } 1418 1419 /* 1420 * Fill in the control structures 1421 */ 1422 skb->ip_summed = CHECKSUM_NONE; 1423 skb->csum = 0; 1424 skb_reserve(skb, hh_len); 1425 1426 /* 1427 * Find where to start putting bytes. 1428 */ 1429 skb_put(skb, fragheaderlen + fraggap); 1430 skb_reset_network_header(skb); 1431 skb->transport_header = (skb->network_header + 1432 fragheaderlen); 1433 if (fraggap) { 1434 skb->csum = skb_copy_and_csum_bits(skb_prev, 1435 maxfraglen, 1436 skb_transport_header(skb), 1437 fraggap); 1438 skb_prev->csum = csum_sub(skb_prev->csum, 1439 skb->csum); 1440 pskb_trim_unique(skb_prev, maxfraglen); 1441 } 1442 1443 /* 1444 * Put the packet on the pending queue. 1445 */ 1446 __skb_queue_tail(&sk->sk_write_queue, skb); 1447 continue; 1448 } 1449 1450 if (len > size) 1451 len = size; 1452 1453 if (skb_append_pagefrags(skb, page, offset, len)) { 1454 err = -EMSGSIZE; 1455 goto error; 1456 } 1457 1458 if (skb->ip_summed == CHECKSUM_NONE) { 1459 __wsum csum; 1460 csum = csum_page(page, offset, len); 1461 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1462 } 1463 1464 skb_len_add(skb, len); 1465 refcount_add(len, &sk->sk_wmem_alloc); 1466 offset += len; 1467 size -= len; 1468 } 1469 return 0; 1470 1471 error: 1472 cork->length -= size; 1473 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1474 return err; 1475 } 1476 1477 static void ip_cork_release(struct inet_cork *cork) 1478 { 1479 cork->flags &= ~IPCORK_OPT; 1480 kfree(cork->opt); 1481 cork->opt = NULL; 1482 dst_release(cork->dst); 1483 cork->dst = NULL; 1484 } 1485 1486 /* 1487 * Combined all pending IP fragments on the socket as one IP datagram 1488 * and push them out. 1489 */ 1490 struct sk_buff *__ip_make_skb(struct sock *sk, 1491 struct flowi4 *fl4, 1492 struct sk_buff_head *queue, 1493 struct inet_cork *cork) 1494 { 1495 struct sk_buff *skb, *tmp_skb; 1496 struct sk_buff **tail_skb; 1497 struct inet_sock *inet = inet_sk(sk); 1498 struct net *net = sock_net(sk); 1499 struct ip_options *opt = NULL; 1500 struct rtable *rt = (struct rtable *)cork->dst; 1501 struct iphdr *iph; 1502 __be16 df = 0; 1503 __u8 ttl; 1504 1505 skb = __skb_dequeue(queue); 1506 if (!skb) 1507 goto out; 1508 tail_skb = &(skb_shinfo(skb)->frag_list); 1509 1510 /* move skb->data to ip header from ext header */ 1511 if (skb->data < skb_network_header(skb)) 1512 __skb_pull(skb, skb_network_offset(skb)); 1513 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1514 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1515 *tail_skb = tmp_skb; 1516 tail_skb = &(tmp_skb->next); 1517 skb->len += tmp_skb->len; 1518 skb->data_len += tmp_skb->len; 1519 skb->truesize += tmp_skb->truesize; 1520 tmp_skb->destructor = NULL; 1521 tmp_skb->sk = NULL; 1522 } 1523 1524 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1525 * to fragment the frame generated here. No matter, what transforms 1526 * how transforms change size of the packet, it will come out. 1527 */ 1528 skb->ignore_df = ip_sk_ignore_df(sk); 1529 1530 /* DF bit is set when we want to see DF on outgoing frames. 1531 * If ignore_df is set too, we still allow to fragment this frame 1532 * locally. */ 1533 if (inet->pmtudisc == IP_PMTUDISC_DO || 1534 inet->pmtudisc == IP_PMTUDISC_PROBE || 1535 (skb->len <= dst_mtu(&rt->dst) && 1536 ip_dont_fragment(sk, &rt->dst))) 1537 df = htons(IP_DF); 1538 1539 if (cork->flags & IPCORK_OPT) 1540 opt = cork->opt; 1541 1542 if (cork->ttl != 0) 1543 ttl = cork->ttl; 1544 else if (rt->rt_type == RTN_MULTICAST) 1545 ttl = inet->mc_ttl; 1546 else 1547 ttl = ip_select_ttl(inet, &rt->dst); 1548 1549 iph = ip_hdr(skb); 1550 iph->version = 4; 1551 iph->ihl = 5; 1552 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1553 iph->frag_off = df; 1554 iph->ttl = ttl; 1555 iph->protocol = sk->sk_protocol; 1556 ip_copy_addrs(iph, fl4); 1557 ip_select_ident(net, skb, sk); 1558 1559 if (opt) { 1560 iph->ihl += opt->optlen >> 2; 1561 ip_options_build(skb, opt, cork->addr, rt); 1562 } 1563 1564 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1565 skb->mark = cork->mark; 1566 skb->tstamp = cork->transmit_time; 1567 /* 1568 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1569 * on dst refcount 1570 */ 1571 cork->dst = NULL; 1572 skb_dst_set(skb, &rt->dst); 1573 1574 if (iph->protocol == IPPROTO_ICMP) 1575 icmp_out_count(net, ((struct icmphdr *) 1576 skb_transport_header(skb))->type); 1577 1578 ip_cork_release(cork); 1579 out: 1580 return skb; 1581 } 1582 1583 int ip_send_skb(struct net *net, struct sk_buff *skb) 1584 { 1585 int err; 1586 1587 err = ip_local_out(net, skb->sk, skb); 1588 if (err) { 1589 if (err > 0) 1590 err = net_xmit_errno(err); 1591 if (err) 1592 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1593 } 1594 1595 return err; 1596 } 1597 1598 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1599 { 1600 struct sk_buff *skb; 1601 1602 skb = ip_finish_skb(sk, fl4); 1603 if (!skb) 1604 return 0; 1605 1606 /* Netfilter gets whole the not fragmented skb. */ 1607 return ip_send_skb(sock_net(sk), skb); 1608 } 1609 1610 /* 1611 * Throw away all pending data on the socket. 1612 */ 1613 static void __ip_flush_pending_frames(struct sock *sk, 1614 struct sk_buff_head *queue, 1615 struct inet_cork *cork) 1616 { 1617 struct sk_buff *skb; 1618 1619 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1620 kfree_skb(skb); 1621 1622 ip_cork_release(cork); 1623 } 1624 1625 void ip_flush_pending_frames(struct sock *sk) 1626 { 1627 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1628 } 1629 1630 struct sk_buff *ip_make_skb(struct sock *sk, 1631 struct flowi4 *fl4, 1632 int getfrag(void *from, char *to, int offset, 1633 int len, int odd, struct sk_buff *skb), 1634 void *from, int length, int transhdrlen, 1635 struct ipcm_cookie *ipc, struct rtable **rtp, 1636 struct inet_cork *cork, unsigned int flags) 1637 { 1638 struct sk_buff_head queue; 1639 int err; 1640 1641 if (flags & MSG_PROBE) 1642 return NULL; 1643 1644 __skb_queue_head_init(&queue); 1645 1646 cork->flags = 0; 1647 cork->addr = 0; 1648 cork->opt = NULL; 1649 err = ip_setup_cork(sk, cork, ipc, rtp); 1650 if (err) 1651 return ERR_PTR(err); 1652 1653 err = __ip_append_data(sk, fl4, &queue, cork, 1654 ¤t->task_frag, getfrag, 1655 from, length, transhdrlen, flags); 1656 if (err) { 1657 __ip_flush_pending_frames(sk, &queue, cork); 1658 return ERR_PTR(err); 1659 } 1660 1661 return __ip_make_skb(sk, fl4, &queue, cork); 1662 } 1663 1664 /* 1665 * Fetch data from kernel space and fill in checksum if needed. 1666 */ 1667 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1668 int len, int odd, struct sk_buff *skb) 1669 { 1670 __wsum csum; 1671 1672 csum = csum_partial_copy_nocheck(dptr+offset, to, len); 1673 skb->csum = csum_block_add(skb->csum, csum, odd); 1674 return 0; 1675 } 1676 1677 /* 1678 * Generic function to send a packet as reply to another packet. 1679 * Used to send some TCP resets/acks so far. 1680 */ 1681 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1682 const struct ip_options *sopt, 1683 __be32 daddr, __be32 saddr, 1684 const struct ip_reply_arg *arg, 1685 unsigned int len, u64 transmit_time) 1686 { 1687 struct ip_options_data replyopts; 1688 struct ipcm_cookie ipc; 1689 struct flowi4 fl4; 1690 struct rtable *rt = skb_rtable(skb); 1691 struct net *net = sock_net(sk); 1692 struct sk_buff *nskb; 1693 int err; 1694 int oif; 1695 1696 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1697 return; 1698 1699 ipcm_init(&ipc); 1700 ipc.addr = daddr; 1701 ipc.sockc.transmit_time = transmit_time; 1702 1703 if (replyopts.opt.opt.optlen) { 1704 ipc.opt = &replyopts.opt; 1705 1706 if (replyopts.opt.opt.srr) 1707 daddr = replyopts.opt.opt.faddr; 1708 } 1709 1710 oif = arg->bound_dev_if; 1711 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1712 oif = skb->skb_iif; 1713 1714 flowi4_init_output(&fl4, oif, 1715 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1716 RT_TOS(arg->tos), 1717 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1718 ip_reply_arg_flowi_flags(arg), 1719 daddr, saddr, 1720 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1721 arg->uid); 1722 security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4)); 1723 rt = ip_route_output_flow(net, &fl4, sk); 1724 if (IS_ERR(rt)) 1725 return; 1726 1727 inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK; 1728 1729 sk->sk_protocol = ip_hdr(skb)->protocol; 1730 sk->sk_bound_dev_if = arg->bound_dev_if; 1731 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 1732 ipc.sockc.mark = fl4.flowi4_mark; 1733 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1734 len, 0, &ipc, &rt, MSG_DONTWAIT); 1735 if (unlikely(err)) { 1736 ip_flush_pending_frames(sk); 1737 goto out; 1738 } 1739 1740 nskb = skb_peek(&sk->sk_write_queue); 1741 if (nskb) { 1742 if (arg->csumoffset >= 0) 1743 *((__sum16 *)skb_transport_header(nskb) + 1744 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1745 arg->csum)); 1746 nskb->ip_summed = CHECKSUM_NONE; 1747 nskb->mono_delivery_time = !!transmit_time; 1748 ip_push_pending_frames(sk, &fl4); 1749 } 1750 out: 1751 ip_rt_put(rt); 1752 } 1753 1754 void __init ip_init(void) 1755 { 1756 ip_rt_init(); 1757 inet_initpeers(); 1758 1759 #if defined(CONFIG_IP_MULTICAST) 1760 igmp_mc_init(); 1761 #endif 1762 } 1763