xref: /openbmc/linux/net/ipv4/ip_output.c (revision 95298d63)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) output module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <Alan.Cox@linux.org>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *		Hirokazu Takahashi, <taka@valinux.co.jp>
18  *
19  *	See ip_input.c for original log
20  *
21  *	Fixes:
22  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
23  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
24  *		Bradford Johnson:	Fix faulty handling of some frames when
25  *					no route is found.
26  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
27  *					(in case if packet not accepted by
28  *					output firewall rules)
29  *		Mike McLagan	:	Routing by source
30  *		Alexey Kuznetsov:	use new route cache
31  *		Andi Kleen:		Fix broken PMTU recovery and remove
32  *					some redundant tests.
33  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
34  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
35  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
36  *					for decreased register pressure on x86
37  *					and more readibility.
38  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
39  *					silently drop skb instead of failing with -EPERM.
40  *		Detlev Wengorz	:	Copy protocol for fragments.
41  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
42  *					datagrams.
43  *		Hirokazu Takahashi:	sendfile() on UDP works now.
44  */
45 
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55 
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65 
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <net/lwtunnel.h>
78 #include <linux/bpf-cgroup.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
84 
85 static int
86 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
87 	    unsigned int mtu,
88 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
89 
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr *iph)
92 {
93 	iph->check = 0;
94 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 }
96 EXPORT_SYMBOL(ip_send_check);
97 
98 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
99 {
100 	struct iphdr *iph = ip_hdr(skb);
101 
102 	iph->tot_len = htons(skb->len);
103 	ip_send_check(iph);
104 
105 	/* if egress device is enslaved to an L3 master device pass the
106 	 * skb to its handler for processing
107 	 */
108 	skb = l3mdev_ip_out(sk, skb);
109 	if (unlikely(!skb))
110 		return 0;
111 
112 	skb->protocol = htons(ETH_P_IP);
113 
114 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
115 		       net, sk, skb, NULL, skb_dst(skb)->dev,
116 		       dst_output);
117 }
118 
119 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
120 {
121 	int err;
122 
123 	err = __ip_local_out(net, sk, skb);
124 	if (likely(err == 1))
125 		err = dst_output(net, sk, skb);
126 
127 	return err;
128 }
129 EXPORT_SYMBOL_GPL(ip_local_out);
130 
131 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
132 {
133 	int ttl = inet->uc_ttl;
134 
135 	if (ttl < 0)
136 		ttl = ip4_dst_hoplimit(dst);
137 	return ttl;
138 }
139 
140 /*
141  *		Add an ip header to a skbuff and send it out.
142  *
143  */
144 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
145 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
146 {
147 	struct inet_sock *inet = inet_sk(sk);
148 	struct rtable *rt = skb_rtable(skb);
149 	struct net *net = sock_net(sk);
150 	struct iphdr *iph;
151 
152 	/* Build the IP header. */
153 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
154 	skb_reset_network_header(skb);
155 	iph = ip_hdr(skb);
156 	iph->version  = 4;
157 	iph->ihl      = 5;
158 	iph->tos      = inet->tos;
159 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
160 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
161 	iph->saddr    = saddr;
162 	iph->protocol = sk->sk_protocol;
163 	if (ip_dont_fragment(sk, &rt->dst)) {
164 		iph->frag_off = htons(IP_DF);
165 		iph->id = 0;
166 	} else {
167 		iph->frag_off = 0;
168 		__ip_select_ident(net, iph, 1);
169 	}
170 
171 	if (opt && opt->opt.optlen) {
172 		iph->ihl += opt->opt.optlen>>2;
173 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
174 	}
175 
176 	skb->priority = sk->sk_priority;
177 	if (!skb->mark)
178 		skb->mark = sk->sk_mark;
179 
180 	/* Send it out. */
181 	return ip_local_out(net, skb->sk, skb);
182 }
183 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
184 
185 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
186 {
187 	struct dst_entry *dst = skb_dst(skb);
188 	struct rtable *rt = (struct rtable *)dst;
189 	struct net_device *dev = dst->dev;
190 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
191 	struct neighbour *neigh;
192 	bool is_v6gw = false;
193 
194 	if (rt->rt_type == RTN_MULTICAST) {
195 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
196 	} else if (rt->rt_type == RTN_BROADCAST)
197 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
198 
199 	/* Be paranoid, rather than too clever. */
200 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
201 		struct sk_buff *skb2;
202 
203 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
204 		if (!skb2) {
205 			kfree_skb(skb);
206 			return -ENOMEM;
207 		}
208 		if (skb->sk)
209 			skb_set_owner_w(skb2, skb->sk);
210 		consume_skb(skb);
211 		skb = skb2;
212 	}
213 
214 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
215 		int res = lwtunnel_xmit(skb);
216 
217 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
218 			return res;
219 	}
220 
221 	rcu_read_lock_bh();
222 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
223 	if (!IS_ERR(neigh)) {
224 		int res;
225 
226 		sock_confirm_neigh(skb, neigh);
227 		/* if crossing protocols, can not use the cached header */
228 		res = neigh_output(neigh, skb, is_v6gw);
229 		rcu_read_unlock_bh();
230 		return res;
231 	}
232 	rcu_read_unlock_bh();
233 
234 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
235 			    __func__);
236 	kfree_skb(skb);
237 	return -EINVAL;
238 }
239 
240 static int ip_finish_output_gso(struct net *net, struct sock *sk,
241 				struct sk_buff *skb, unsigned int mtu)
242 {
243 	struct sk_buff *segs, *nskb;
244 	netdev_features_t features;
245 	int ret = 0;
246 
247 	/* common case: seglen is <= mtu
248 	 */
249 	if (skb_gso_validate_network_len(skb, mtu))
250 		return ip_finish_output2(net, sk, skb);
251 
252 	/* Slowpath -  GSO segment length exceeds the egress MTU.
253 	 *
254 	 * This can happen in several cases:
255 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
256 	 *  - Forwarding of an skb that arrived on a virtualization interface
257 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
258 	 *    stack.
259 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
260 	 *    interface with a smaller MTU.
261 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
262 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
263 	 *    insufficent MTU.
264 	 */
265 	features = netif_skb_features(skb);
266 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET);
267 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
268 	if (IS_ERR_OR_NULL(segs)) {
269 		kfree_skb(skb);
270 		return -ENOMEM;
271 	}
272 
273 	consume_skb(skb);
274 
275 	skb_list_walk_safe(segs, segs, nskb) {
276 		int err;
277 
278 		skb_mark_not_on_list(segs);
279 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
280 
281 		if (err && ret == 0)
282 			ret = err;
283 	}
284 
285 	return ret;
286 }
287 
288 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
289 {
290 	unsigned int mtu;
291 
292 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
293 	/* Policy lookup after SNAT yielded a new policy */
294 	if (skb_dst(skb)->xfrm) {
295 		IPCB(skb)->flags |= IPSKB_REROUTED;
296 		return dst_output(net, sk, skb);
297 	}
298 #endif
299 	mtu = ip_skb_dst_mtu(sk, skb);
300 	if (skb_is_gso(skb))
301 		return ip_finish_output_gso(net, sk, skb, mtu);
302 
303 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
304 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
305 
306 	return ip_finish_output2(net, sk, skb);
307 }
308 
309 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
310 {
311 	int ret;
312 
313 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
314 	switch (ret) {
315 	case NET_XMIT_SUCCESS:
316 		return __ip_finish_output(net, sk, skb);
317 	case NET_XMIT_CN:
318 		return __ip_finish_output(net, sk, skb) ? : ret;
319 	default:
320 		kfree_skb(skb);
321 		return ret;
322 	}
323 }
324 
325 static int ip_mc_finish_output(struct net *net, struct sock *sk,
326 			       struct sk_buff *skb)
327 {
328 	struct rtable *new_rt;
329 	bool do_cn = false;
330 	int ret, err;
331 
332 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
333 	switch (ret) {
334 	case NET_XMIT_CN:
335 		do_cn = true;
336 		fallthrough;
337 	case NET_XMIT_SUCCESS:
338 		break;
339 	default:
340 		kfree_skb(skb);
341 		return ret;
342 	}
343 
344 	/* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
345 	 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
346 	 * see ipv4_pktinfo_prepare().
347 	 */
348 	new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
349 	if (new_rt) {
350 		new_rt->rt_iif = 0;
351 		skb_dst_drop(skb);
352 		skb_dst_set(skb, &new_rt->dst);
353 	}
354 
355 	err = dev_loopback_xmit(net, sk, skb);
356 	return (do_cn && err) ? ret : err;
357 }
358 
359 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
360 {
361 	struct rtable *rt = skb_rtable(skb);
362 	struct net_device *dev = rt->dst.dev;
363 
364 	/*
365 	 *	If the indicated interface is up and running, send the packet.
366 	 */
367 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
368 
369 	skb->dev = dev;
370 	skb->protocol = htons(ETH_P_IP);
371 
372 	/*
373 	 *	Multicasts are looped back for other local users
374 	 */
375 
376 	if (rt->rt_flags&RTCF_MULTICAST) {
377 		if (sk_mc_loop(sk)
378 #ifdef CONFIG_IP_MROUTE
379 		/* Small optimization: do not loopback not local frames,
380 		   which returned after forwarding; they will be  dropped
381 		   by ip_mr_input in any case.
382 		   Note, that local frames are looped back to be delivered
383 		   to local recipients.
384 
385 		   This check is duplicated in ip_mr_input at the moment.
386 		 */
387 		    &&
388 		    ((rt->rt_flags & RTCF_LOCAL) ||
389 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
390 #endif
391 		   ) {
392 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
393 			if (newskb)
394 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
395 					net, sk, newskb, NULL, newskb->dev,
396 					ip_mc_finish_output);
397 		}
398 
399 		/* Multicasts with ttl 0 must not go beyond the host */
400 
401 		if (ip_hdr(skb)->ttl == 0) {
402 			kfree_skb(skb);
403 			return 0;
404 		}
405 	}
406 
407 	if (rt->rt_flags&RTCF_BROADCAST) {
408 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
409 		if (newskb)
410 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
411 				net, sk, newskb, NULL, newskb->dev,
412 				ip_mc_finish_output);
413 	}
414 
415 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
416 			    net, sk, skb, NULL, skb->dev,
417 			    ip_finish_output,
418 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
419 }
420 
421 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
422 {
423 	struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev;
424 
425 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
426 
427 	skb->dev = dev;
428 	skb->protocol = htons(ETH_P_IP);
429 
430 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
431 			    net, sk, skb, indev, dev,
432 			    ip_finish_output,
433 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
434 }
435 
436 /*
437  * copy saddr and daddr, possibly using 64bit load/stores
438  * Equivalent to :
439  *   iph->saddr = fl4->saddr;
440  *   iph->daddr = fl4->daddr;
441  */
442 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
443 {
444 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
445 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
446 	memcpy(&iph->saddr, &fl4->saddr,
447 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
448 }
449 
450 /* Note: skb->sk can be different from sk, in case of tunnels */
451 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
452 		    __u8 tos)
453 {
454 	struct inet_sock *inet = inet_sk(sk);
455 	struct net *net = sock_net(sk);
456 	struct ip_options_rcu *inet_opt;
457 	struct flowi4 *fl4;
458 	struct rtable *rt;
459 	struct iphdr *iph;
460 	int res;
461 
462 	/* Skip all of this if the packet is already routed,
463 	 * f.e. by something like SCTP.
464 	 */
465 	rcu_read_lock();
466 	inet_opt = rcu_dereference(inet->inet_opt);
467 	fl4 = &fl->u.ip4;
468 	rt = skb_rtable(skb);
469 	if (rt)
470 		goto packet_routed;
471 
472 	/* Make sure we can route this packet. */
473 	rt = (struct rtable *)__sk_dst_check(sk, 0);
474 	if (!rt) {
475 		__be32 daddr;
476 
477 		/* Use correct destination address if we have options. */
478 		daddr = inet->inet_daddr;
479 		if (inet_opt && inet_opt->opt.srr)
480 			daddr = inet_opt->opt.faddr;
481 
482 		/* If this fails, retransmit mechanism of transport layer will
483 		 * keep trying until route appears or the connection times
484 		 * itself out.
485 		 */
486 		rt = ip_route_output_ports(net, fl4, sk,
487 					   daddr, inet->inet_saddr,
488 					   inet->inet_dport,
489 					   inet->inet_sport,
490 					   sk->sk_protocol,
491 					   RT_CONN_FLAGS_TOS(sk, tos),
492 					   sk->sk_bound_dev_if);
493 		if (IS_ERR(rt))
494 			goto no_route;
495 		sk_setup_caps(sk, &rt->dst);
496 	}
497 	skb_dst_set_noref(skb, &rt->dst);
498 
499 packet_routed:
500 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
501 		goto no_route;
502 
503 	/* OK, we know where to send it, allocate and build IP header. */
504 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
505 	skb_reset_network_header(skb);
506 	iph = ip_hdr(skb);
507 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
508 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
509 		iph->frag_off = htons(IP_DF);
510 	else
511 		iph->frag_off = 0;
512 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
513 	iph->protocol = sk->sk_protocol;
514 	ip_copy_addrs(iph, fl4);
515 
516 	/* Transport layer set skb->h.foo itself. */
517 
518 	if (inet_opt && inet_opt->opt.optlen) {
519 		iph->ihl += inet_opt->opt.optlen >> 2;
520 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
521 	}
522 
523 	ip_select_ident_segs(net, skb, sk,
524 			     skb_shinfo(skb)->gso_segs ?: 1);
525 
526 	/* TODO : should we use skb->sk here instead of sk ? */
527 	skb->priority = sk->sk_priority;
528 	skb->mark = sk->sk_mark;
529 
530 	res = ip_local_out(net, sk, skb);
531 	rcu_read_unlock();
532 	return res;
533 
534 no_route:
535 	rcu_read_unlock();
536 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
537 	kfree_skb(skb);
538 	return -EHOSTUNREACH;
539 }
540 EXPORT_SYMBOL(__ip_queue_xmit);
541 
542 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
543 {
544 	return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos);
545 }
546 EXPORT_SYMBOL(ip_queue_xmit);
547 
548 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
549 {
550 	to->pkt_type = from->pkt_type;
551 	to->priority = from->priority;
552 	to->protocol = from->protocol;
553 	to->skb_iif = from->skb_iif;
554 	skb_dst_drop(to);
555 	skb_dst_copy(to, from);
556 	to->dev = from->dev;
557 	to->mark = from->mark;
558 
559 	skb_copy_hash(to, from);
560 
561 #ifdef CONFIG_NET_SCHED
562 	to->tc_index = from->tc_index;
563 #endif
564 	nf_copy(to, from);
565 	skb_ext_copy(to, from);
566 #if IS_ENABLED(CONFIG_IP_VS)
567 	to->ipvs_property = from->ipvs_property;
568 #endif
569 	skb_copy_secmark(to, from);
570 }
571 
572 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
573 		       unsigned int mtu,
574 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
575 {
576 	struct iphdr *iph = ip_hdr(skb);
577 
578 	if ((iph->frag_off & htons(IP_DF)) == 0)
579 		return ip_do_fragment(net, sk, skb, output);
580 
581 	if (unlikely(!skb->ignore_df ||
582 		     (IPCB(skb)->frag_max_size &&
583 		      IPCB(skb)->frag_max_size > mtu))) {
584 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
585 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
586 			  htonl(mtu));
587 		kfree_skb(skb);
588 		return -EMSGSIZE;
589 	}
590 
591 	return ip_do_fragment(net, sk, skb, output);
592 }
593 
594 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
595 		      unsigned int hlen, struct ip_fraglist_iter *iter)
596 {
597 	unsigned int first_len = skb_pagelen(skb);
598 
599 	iter->frag = skb_shinfo(skb)->frag_list;
600 	skb_frag_list_init(skb);
601 
602 	iter->offset = 0;
603 	iter->iph = iph;
604 	iter->hlen = hlen;
605 
606 	skb->data_len = first_len - skb_headlen(skb);
607 	skb->len = first_len;
608 	iph->tot_len = htons(first_len);
609 	iph->frag_off = htons(IP_MF);
610 	ip_send_check(iph);
611 }
612 EXPORT_SYMBOL(ip_fraglist_init);
613 
614 static void ip_fraglist_ipcb_prepare(struct sk_buff *skb,
615 				     struct ip_fraglist_iter *iter)
616 {
617 	struct sk_buff *to = iter->frag;
618 
619 	/* Copy the flags to each fragment. */
620 	IPCB(to)->flags = IPCB(skb)->flags;
621 
622 	if (iter->offset == 0)
623 		ip_options_fragment(to);
624 }
625 
626 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
627 {
628 	unsigned int hlen = iter->hlen;
629 	struct iphdr *iph = iter->iph;
630 	struct sk_buff *frag;
631 
632 	frag = iter->frag;
633 	frag->ip_summed = CHECKSUM_NONE;
634 	skb_reset_transport_header(frag);
635 	__skb_push(frag, hlen);
636 	skb_reset_network_header(frag);
637 	memcpy(skb_network_header(frag), iph, hlen);
638 	iter->iph = ip_hdr(frag);
639 	iph = iter->iph;
640 	iph->tot_len = htons(frag->len);
641 	ip_copy_metadata(frag, skb);
642 	iter->offset += skb->len - hlen;
643 	iph->frag_off = htons(iter->offset >> 3);
644 	if (frag->next)
645 		iph->frag_off |= htons(IP_MF);
646 	/* Ready, complete checksum */
647 	ip_send_check(iph);
648 }
649 EXPORT_SYMBOL(ip_fraglist_prepare);
650 
651 void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
652 		  unsigned int ll_rs, unsigned int mtu, bool DF,
653 		  struct ip_frag_state *state)
654 {
655 	struct iphdr *iph = ip_hdr(skb);
656 
657 	state->DF = DF;
658 	state->hlen = hlen;
659 	state->ll_rs = ll_rs;
660 	state->mtu = mtu;
661 
662 	state->left = skb->len - hlen;	/* Space per frame */
663 	state->ptr = hlen;		/* Where to start from */
664 
665 	state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
666 	state->not_last_frag = iph->frag_off & htons(IP_MF);
667 }
668 EXPORT_SYMBOL(ip_frag_init);
669 
670 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
671 			 bool first_frag, struct ip_frag_state *state)
672 {
673 	/* Copy the flags to each fragment. */
674 	IPCB(to)->flags = IPCB(from)->flags;
675 
676 	/* ANK: dirty, but effective trick. Upgrade options only if
677 	 * the segment to be fragmented was THE FIRST (otherwise,
678 	 * options are already fixed) and make it ONCE
679 	 * on the initial skb, so that all the following fragments
680 	 * will inherit fixed options.
681 	 */
682 	if (first_frag)
683 		ip_options_fragment(from);
684 }
685 
686 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
687 {
688 	unsigned int len = state->left;
689 	struct sk_buff *skb2;
690 	struct iphdr *iph;
691 
692 	len = state->left;
693 	/* IF: it doesn't fit, use 'mtu' - the data space left */
694 	if (len > state->mtu)
695 		len = state->mtu;
696 	/* IF: we are not sending up to and including the packet end
697 	   then align the next start on an eight byte boundary */
698 	if (len < state->left)	{
699 		len &= ~7;
700 	}
701 
702 	/* Allocate buffer */
703 	skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
704 	if (!skb2)
705 		return ERR_PTR(-ENOMEM);
706 
707 	/*
708 	 *	Set up data on packet
709 	 */
710 
711 	ip_copy_metadata(skb2, skb);
712 	skb_reserve(skb2, state->ll_rs);
713 	skb_put(skb2, len + state->hlen);
714 	skb_reset_network_header(skb2);
715 	skb2->transport_header = skb2->network_header + state->hlen;
716 
717 	/*
718 	 *	Charge the memory for the fragment to any owner
719 	 *	it might possess
720 	 */
721 
722 	if (skb->sk)
723 		skb_set_owner_w(skb2, skb->sk);
724 
725 	/*
726 	 *	Copy the packet header into the new buffer.
727 	 */
728 
729 	skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
730 
731 	/*
732 	 *	Copy a block of the IP datagram.
733 	 */
734 	if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
735 		BUG();
736 	state->left -= len;
737 
738 	/*
739 	 *	Fill in the new header fields.
740 	 */
741 	iph = ip_hdr(skb2);
742 	iph->frag_off = htons((state->offset >> 3));
743 	if (state->DF)
744 		iph->frag_off |= htons(IP_DF);
745 
746 	/*
747 	 *	Added AC : If we are fragmenting a fragment that's not the
748 	 *		   last fragment then keep MF on each bit
749 	 */
750 	if (state->left > 0 || state->not_last_frag)
751 		iph->frag_off |= htons(IP_MF);
752 	state->ptr += len;
753 	state->offset += len;
754 
755 	iph->tot_len = htons(len + state->hlen);
756 
757 	ip_send_check(iph);
758 
759 	return skb2;
760 }
761 EXPORT_SYMBOL(ip_frag_next);
762 
763 /*
764  *	This IP datagram is too large to be sent in one piece.  Break it up into
765  *	smaller pieces (each of size equal to IP header plus
766  *	a block of the data of the original IP data part) that will yet fit in a
767  *	single device frame, and queue such a frame for sending.
768  */
769 
770 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
771 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
772 {
773 	struct iphdr *iph;
774 	struct sk_buff *skb2;
775 	struct rtable *rt = skb_rtable(skb);
776 	unsigned int mtu, hlen, ll_rs;
777 	struct ip_fraglist_iter iter;
778 	ktime_t tstamp = skb->tstamp;
779 	struct ip_frag_state state;
780 	int err = 0;
781 
782 	/* for offloaded checksums cleanup checksum before fragmentation */
783 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
784 	    (err = skb_checksum_help(skb)))
785 		goto fail;
786 
787 	/*
788 	 *	Point into the IP datagram header.
789 	 */
790 
791 	iph = ip_hdr(skb);
792 
793 	mtu = ip_skb_dst_mtu(sk, skb);
794 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
795 		mtu = IPCB(skb)->frag_max_size;
796 
797 	/*
798 	 *	Setup starting values.
799 	 */
800 
801 	hlen = iph->ihl * 4;
802 	mtu = mtu - hlen;	/* Size of data space */
803 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
804 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
805 
806 	/* When frag_list is given, use it. First, check its validity:
807 	 * some transformers could create wrong frag_list or break existing
808 	 * one, it is not prohibited. In this case fall back to copying.
809 	 *
810 	 * LATER: this step can be merged to real generation of fragments,
811 	 * we can switch to copy when see the first bad fragment.
812 	 */
813 	if (skb_has_frag_list(skb)) {
814 		struct sk_buff *frag, *frag2;
815 		unsigned int first_len = skb_pagelen(skb);
816 
817 		if (first_len - hlen > mtu ||
818 		    ((first_len - hlen) & 7) ||
819 		    ip_is_fragment(iph) ||
820 		    skb_cloned(skb) ||
821 		    skb_headroom(skb) < ll_rs)
822 			goto slow_path;
823 
824 		skb_walk_frags(skb, frag) {
825 			/* Correct geometry. */
826 			if (frag->len > mtu ||
827 			    ((frag->len & 7) && frag->next) ||
828 			    skb_headroom(frag) < hlen + ll_rs)
829 				goto slow_path_clean;
830 
831 			/* Partially cloned skb? */
832 			if (skb_shared(frag))
833 				goto slow_path_clean;
834 
835 			BUG_ON(frag->sk);
836 			if (skb->sk) {
837 				frag->sk = skb->sk;
838 				frag->destructor = sock_wfree;
839 			}
840 			skb->truesize -= frag->truesize;
841 		}
842 
843 		/* Everything is OK. Generate! */
844 		ip_fraglist_init(skb, iph, hlen, &iter);
845 
846 		for (;;) {
847 			/* Prepare header of the next frame,
848 			 * before previous one went down. */
849 			if (iter.frag) {
850 				ip_fraglist_ipcb_prepare(skb, &iter);
851 				ip_fraglist_prepare(skb, &iter);
852 			}
853 
854 			skb->tstamp = tstamp;
855 			err = output(net, sk, skb);
856 
857 			if (!err)
858 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
859 			if (err || !iter.frag)
860 				break;
861 
862 			skb = ip_fraglist_next(&iter);
863 		}
864 
865 		if (err == 0) {
866 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
867 			return 0;
868 		}
869 
870 		kfree_skb_list(iter.frag);
871 
872 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
873 		return err;
874 
875 slow_path_clean:
876 		skb_walk_frags(skb, frag2) {
877 			if (frag2 == frag)
878 				break;
879 			frag2->sk = NULL;
880 			frag2->destructor = NULL;
881 			skb->truesize += frag2->truesize;
882 		}
883 	}
884 
885 slow_path:
886 	/*
887 	 *	Fragment the datagram.
888 	 */
889 
890 	ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
891 		     &state);
892 
893 	/*
894 	 *	Keep copying data until we run out.
895 	 */
896 
897 	while (state.left > 0) {
898 		bool first_frag = (state.offset == 0);
899 
900 		skb2 = ip_frag_next(skb, &state);
901 		if (IS_ERR(skb2)) {
902 			err = PTR_ERR(skb2);
903 			goto fail;
904 		}
905 		ip_frag_ipcb(skb, skb2, first_frag, &state);
906 
907 		/*
908 		 *	Put this fragment into the sending queue.
909 		 */
910 		skb2->tstamp = tstamp;
911 		err = output(net, sk, skb2);
912 		if (err)
913 			goto fail;
914 
915 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
916 	}
917 	consume_skb(skb);
918 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
919 	return err;
920 
921 fail:
922 	kfree_skb(skb);
923 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
924 	return err;
925 }
926 EXPORT_SYMBOL(ip_do_fragment);
927 
928 int
929 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
930 {
931 	struct msghdr *msg = from;
932 
933 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
934 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
935 			return -EFAULT;
936 	} else {
937 		__wsum csum = 0;
938 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
939 			return -EFAULT;
940 		skb->csum = csum_block_add(skb->csum, csum, odd);
941 	}
942 	return 0;
943 }
944 EXPORT_SYMBOL(ip_generic_getfrag);
945 
946 static inline __wsum
947 csum_page(struct page *page, int offset, int copy)
948 {
949 	char *kaddr;
950 	__wsum csum;
951 	kaddr = kmap(page);
952 	csum = csum_partial(kaddr + offset, copy, 0);
953 	kunmap(page);
954 	return csum;
955 }
956 
957 static int __ip_append_data(struct sock *sk,
958 			    struct flowi4 *fl4,
959 			    struct sk_buff_head *queue,
960 			    struct inet_cork *cork,
961 			    struct page_frag *pfrag,
962 			    int getfrag(void *from, char *to, int offset,
963 					int len, int odd, struct sk_buff *skb),
964 			    void *from, int length, int transhdrlen,
965 			    unsigned int flags)
966 {
967 	struct inet_sock *inet = inet_sk(sk);
968 	struct ubuf_info *uarg = NULL;
969 	struct sk_buff *skb;
970 
971 	struct ip_options *opt = cork->opt;
972 	int hh_len;
973 	int exthdrlen;
974 	int mtu;
975 	int copy;
976 	int err;
977 	int offset = 0;
978 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
979 	int csummode = CHECKSUM_NONE;
980 	struct rtable *rt = (struct rtable *)cork->dst;
981 	unsigned int wmem_alloc_delta = 0;
982 	bool paged, extra_uref = false;
983 	u32 tskey = 0;
984 
985 	skb = skb_peek_tail(queue);
986 
987 	exthdrlen = !skb ? rt->dst.header_len : 0;
988 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
989 	paged = !!cork->gso_size;
990 
991 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
992 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
993 		tskey = sk->sk_tskey++;
994 
995 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
996 
997 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
998 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
999 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1000 
1001 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
1002 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1003 			       mtu - (opt ? opt->optlen : 0));
1004 		return -EMSGSIZE;
1005 	}
1006 
1007 	/*
1008 	 * transhdrlen > 0 means that this is the first fragment and we wish
1009 	 * it won't be fragmented in the future.
1010 	 */
1011 	if (transhdrlen &&
1012 	    length + fragheaderlen <= mtu &&
1013 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1014 	    (!(flags & MSG_MORE) || cork->gso_size) &&
1015 	    (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1016 		csummode = CHECKSUM_PARTIAL;
1017 
1018 	if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
1019 		uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
1020 		if (!uarg)
1021 			return -ENOBUFS;
1022 		extra_uref = !skb_zcopy(skb);	/* only ref on new uarg */
1023 		if (rt->dst.dev->features & NETIF_F_SG &&
1024 		    csummode == CHECKSUM_PARTIAL) {
1025 			paged = true;
1026 		} else {
1027 			uarg->zerocopy = 0;
1028 			skb_zcopy_set(skb, uarg, &extra_uref);
1029 		}
1030 	}
1031 
1032 	cork->length += length;
1033 
1034 	/* So, what's going on in the loop below?
1035 	 *
1036 	 * We use calculated fragment length to generate chained skb,
1037 	 * each of segments is IP fragment ready for sending to network after
1038 	 * adding appropriate IP header.
1039 	 */
1040 
1041 	if (!skb)
1042 		goto alloc_new_skb;
1043 
1044 	while (length > 0) {
1045 		/* Check if the remaining data fits into current packet. */
1046 		copy = mtu - skb->len;
1047 		if (copy < length)
1048 			copy = maxfraglen - skb->len;
1049 		if (copy <= 0) {
1050 			char *data;
1051 			unsigned int datalen;
1052 			unsigned int fraglen;
1053 			unsigned int fraggap;
1054 			unsigned int alloclen;
1055 			unsigned int pagedlen;
1056 			struct sk_buff *skb_prev;
1057 alloc_new_skb:
1058 			skb_prev = skb;
1059 			if (skb_prev)
1060 				fraggap = skb_prev->len - maxfraglen;
1061 			else
1062 				fraggap = 0;
1063 
1064 			/*
1065 			 * If remaining data exceeds the mtu,
1066 			 * we know we need more fragment(s).
1067 			 */
1068 			datalen = length + fraggap;
1069 			if (datalen > mtu - fragheaderlen)
1070 				datalen = maxfraglen - fragheaderlen;
1071 			fraglen = datalen + fragheaderlen;
1072 			pagedlen = 0;
1073 
1074 			if ((flags & MSG_MORE) &&
1075 			    !(rt->dst.dev->features&NETIF_F_SG))
1076 				alloclen = mtu;
1077 			else if (!paged)
1078 				alloclen = fraglen;
1079 			else {
1080 				alloclen = min_t(int, fraglen, MAX_HEADER);
1081 				pagedlen = fraglen - alloclen;
1082 			}
1083 
1084 			alloclen += exthdrlen;
1085 
1086 			/* The last fragment gets additional space at tail.
1087 			 * Note, with MSG_MORE we overallocate on fragments,
1088 			 * because we have no idea what fragment will be
1089 			 * the last.
1090 			 */
1091 			if (datalen == length + fraggap)
1092 				alloclen += rt->dst.trailer_len;
1093 
1094 			if (transhdrlen) {
1095 				skb = sock_alloc_send_skb(sk,
1096 						alloclen + hh_len + 15,
1097 						(flags & MSG_DONTWAIT), &err);
1098 			} else {
1099 				skb = NULL;
1100 				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1101 				    2 * sk->sk_sndbuf)
1102 					skb = alloc_skb(alloclen + hh_len + 15,
1103 							sk->sk_allocation);
1104 				if (unlikely(!skb))
1105 					err = -ENOBUFS;
1106 			}
1107 			if (!skb)
1108 				goto error;
1109 
1110 			/*
1111 			 *	Fill in the control structures
1112 			 */
1113 			skb->ip_summed = csummode;
1114 			skb->csum = 0;
1115 			skb_reserve(skb, hh_len);
1116 
1117 			/*
1118 			 *	Find where to start putting bytes.
1119 			 */
1120 			data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1121 			skb_set_network_header(skb, exthdrlen);
1122 			skb->transport_header = (skb->network_header +
1123 						 fragheaderlen);
1124 			data += fragheaderlen + exthdrlen;
1125 
1126 			if (fraggap) {
1127 				skb->csum = skb_copy_and_csum_bits(
1128 					skb_prev, maxfraglen,
1129 					data + transhdrlen, fraggap, 0);
1130 				skb_prev->csum = csum_sub(skb_prev->csum,
1131 							  skb->csum);
1132 				data += fraggap;
1133 				pskb_trim_unique(skb_prev, maxfraglen);
1134 			}
1135 
1136 			copy = datalen - transhdrlen - fraggap - pagedlen;
1137 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1138 				err = -EFAULT;
1139 				kfree_skb(skb);
1140 				goto error;
1141 			}
1142 
1143 			offset += copy;
1144 			length -= copy + transhdrlen;
1145 			transhdrlen = 0;
1146 			exthdrlen = 0;
1147 			csummode = CHECKSUM_NONE;
1148 
1149 			/* only the initial fragment is time stamped */
1150 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1151 			cork->tx_flags = 0;
1152 			skb_shinfo(skb)->tskey = tskey;
1153 			tskey = 0;
1154 			skb_zcopy_set(skb, uarg, &extra_uref);
1155 
1156 			if ((flags & MSG_CONFIRM) && !skb_prev)
1157 				skb_set_dst_pending_confirm(skb, 1);
1158 
1159 			/*
1160 			 * Put the packet on the pending queue.
1161 			 */
1162 			if (!skb->destructor) {
1163 				skb->destructor = sock_wfree;
1164 				skb->sk = sk;
1165 				wmem_alloc_delta += skb->truesize;
1166 			}
1167 			__skb_queue_tail(queue, skb);
1168 			continue;
1169 		}
1170 
1171 		if (copy > length)
1172 			copy = length;
1173 
1174 		if (!(rt->dst.dev->features&NETIF_F_SG) &&
1175 		    skb_tailroom(skb) >= copy) {
1176 			unsigned int off;
1177 
1178 			off = skb->len;
1179 			if (getfrag(from, skb_put(skb, copy),
1180 					offset, copy, off, skb) < 0) {
1181 				__skb_trim(skb, off);
1182 				err = -EFAULT;
1183 				goto error;
1184 			}
1185 		} else if (!uarg || !uarg->zerocopy) {
1186 			int i = skb_shinfo(skb)->nr_frags;
1187 
1188 			err = -ENOMEM;
1189 			if (!sk_page_frag_refill(sk, pfrag))
1190 				goto error;
1191 
1192 			if (!skb_can_coalesce(skb, i, pfrag->page,
1193 					      pfrag->offset)) {
1194 				err = -EMSGSIZE;
1195 				if (i == MAX_SKB_FRAGS)
1196 					goto error;
1197 
1198 				__skb_fill_page_desc(skb, i, pfrag->page,
1199 						     pfrag->offset, 0);
1200 				skb_shinfo(skb)->nr_frags = ++i;
1201 				get_page(pfrag->page);
1202 			}
1203 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1204 			if (getfrag(from,
1205 				    page_address(pfrag->page) + pfrag->offset,
1206 				    offset, copy, skb->len, skb) < 0)
1207 				goto error_efault;
1208 
1209 			pfrag->offset += copy;
1210 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1211 			skb->len += copy;
1212 			skb->data_len += copy;
1213 			skb->truesize += copy;
1214 			wmem_alloc_delta += copy;
1215 		} else {
1216 			err = skb_zerocopy_iter_dgram(skb, from, copy);
1217 			if (err < 0)
1218 				goto error;
1219 		}
1220 		offset += copy;
1221 		length -= copy;
1222 	}
1223 
1224 	if (wmem_alloc_delta)
1225 		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1226 	return 0;
1227 
1228 error_efault:
1229 	err = -EFAULT;
1230 error:
1231 	if (uarg)
1232 		sock_zerocopy_put_abort(uarg, extra_uref);
1233 	cork->length -= length;
1234 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1235 	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1236 	return err;
1237 }
1238 
1239 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1240 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1241 {
1242 	struct ip_options_rcu *opt;
1243 	struct rtable *rt;
1244 
1245 	rt = *rtp;
1246 	if (unlikely(!rt))
1247 		return -EFAULT;
1248 
1249 	/*
1250 	 * setup for corking.
1251 	 */
1252 	opt = ipc->opt;
1253 	if (opt) {
1254 		if (!cork->opt) {
1255 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1256 					    sk->sk_allocation);
1257 			if (unlikely(!cork->opt))
1258 				return -ENOBUFS;
1259 		}
1260 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1261 		cork->flags |= IPCORK_OPT;
1262 		cork->addr = ipc->addr;
1263 	}
1264 
1265 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1266 			 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
1267 
1268 	if (!inetdev_valid_mtu(cork->fragsize))
1269 		return -ENETUNREACH;
1270 
1271 	cork->gso_size = ipc->gso_size;
1272 
1273 	cork->dst = &rt->dst;
1274 	/* We stole this route, caller should not release it. */
1275 	*rtp = NULL;
1276 
1277 	cork->length = 0;
1278 	cork->ttl = ipc->ttl;
1279 	cork->tos = ipc->tos;
1280 	cork->mark = ipc->sockc.mark;
1281 	cork->priority = ipc->priority;
1282 	cork->transmit_time = ipc->sockc.transmit_time;
1283 	cork->tx_flags = 0;
1284 	sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1285 
1286 	return 0;
1287 }
1288 
1289 /*
1290  *	ip_append_data() and ip_append_page() can make one large IP datagram
1291  *	from many pieces of data. Each pieces will be holded on the socket
1292  *	until ip_push_pending_frames() is called. Each piece can be a page
1293  *	or non-page data.
1294  *
1295  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1296  *	this interface potentially.
1297  *
1298  *	LATER: length must be adjusted by pad at tail, when it is required.
1299  */
1300 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1301 		   int getfrag(void *from, char *to, int offset, int len,
1302 			       int odd, struct sk_buff *skb),
1303 		   void *from, int length, int transhdrlen,
1304 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1305 		   unsigned int flags)
1306 {
1307 	struct inet_sock *inet = inet_sk(sk);
1308 	int err;
1309 
1310 	if (flags&MSG_PROBE)
1311 		return 0;
1312 
1313 	if (skb_queue_empty(&sk->sk_write_queue)) {
1314 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1315 		if (err)
1316 			return err;
1317 	} else {
1318 		transhdrlen = 0;
1319 	}
1320 
1321 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1322 				sk_page_frag(sk), getfrag,
1323 				from, length, transhdrlen, flags);
1324 }
1325 
1326 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1327 		       int offset, size_t size, int flags)
1328 {
1329 	struct inet_sock *inet = inet_sk(sk);
1330 	struct sk_buff *skb;
1331 	struct rtable *rt;
1332 	struct ip_options *opt = NULL;
1333 	struct inet_cork *cork;
1334 	int hh_len;
1335 	int mtu;
1336 	int len;
1337 	int err;
1338 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1339 
1340 	if (inet->hdrincl)
1341 		return -EPERM;
1342 
1343 	if (flags&MSG_PROBE)
1344 		return 0;
1345 
1346 	if (skb_queue_empty(&sk->sk_write_queue))
1347 		return -EINVAL;
1348 
1349 	cork = &inet->cork.base;
1350 	rt = (struct rtable *)cork->dst;
1351 	if (cork->flags & IPCORK_OPT)
1352 		opt = cork->opt;
1353 
1354 	if (!(rt->dst.dev->features&NETIF_F_SG))
1355 		return -EOPNOTSUPP;
1356 
1357 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1358 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1359 
1360 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1361 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1362 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1363 
1364 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1365 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1366 			       mtu - (opt ? opt->optlen : 0));
1367 		return -EMSGSIZE;
1368 	}
1369 
1370 	skb = skb_peek_tail(&sk->sk_write_queue);
1371 	if (!skb)
1372 		return -EINVAL;
1373 
1374 	cork->length += size;
1375 
1376 	while (size > 0) {
1377 		/* Check if the remaining data fits into current packet. */
1378 		len = mtu - skb->len;
1379 		if (len < size)
1380 			len = maxfraglen - skb->len;
1381 
1382 		if (len <= 0) {
1383 			struct sk_buff *skb_prev;
1384 			int alloclen;
1385 
1386 			skb_prev = skb;
1387 			fraggap = skb_prev->len - maxfraglen;
1388 
1389 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1390 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1391 			if (unlikely(!skb)) {
1392 				err = -ENOBUFS;
1393 				goto error;
1394 			}
1395 
1396 			/*
1397 			 *	Fill in the control structures
1398 			 */
1399 			skb->ip_summed = CHECKSUM_NONE;
1400 			skb->csum = 0;
1401 			skb_reserve(skb, hh_len);
1402 
1403 			/*
1404 			 *	Find where to start putting bytes.
1405 			 */
1406 			skb_put(skb, fragheaderlen + fraggap);
1407 			skb_reset_network_header(skb);
1408 			skb->transport_header = (skb->network_header +
1409 						 fragheaderlen);
1410 			if (fraggap) {
1411 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1412 								   maxfraglen,
1413 						    skb_transport_header(skb),
1414 								   fraggap, 0);
1415 				skb_prev->csum = csum_sub(skb_prev->csum,
1416 							  skb->csum);
1417 				pskb_trim_unique(skb_prev, maxfraglen);
1418 			}
1419 
1420 			/*
1421 			 * Put the packet on the pending queue.
1422 			 */
1423 			__skb_queue_tail(&sk->sk_write_queue, skb);
1424 			continue;
1425 		}
1426 
1427 		if (len > size)
1428 			len = size;
1429 
1430 		if (skb_append_pagefrags(skb, page, offset, len)) {
1431 			err = -EMSGSIZE;
1432 			goto error;
1433 		}
1434 
1435 		if (skb->ip_summed == CHECKSUM_NONE) {
1436 			__wsum csum;
1437 			csum = csum_page(page, offset, len);
1438 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1439 		}
1440 
1441 		skb->len += len;
1442 		skb->data_len += len;
1443 		skb->truesize += len;
1444 		refcount_add(len, &sk->sk_wmem_alloc);
1445 		offset += len;
1446 		size -= len;
1447 	}
1448 	return 0;
1449 
1450 error:
1451 	cork->length -= size;
1452 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1453 	return err;
1454 }
1455 
1456 static void ip_cork_release(struct inet_cork *cork)
1457 {
1458 	cork->flags &= ~IPCORK_OPT;
1459 	kfree(cork->opt);
1460 	cork->opt = NULL;
1461 	dst_release(cork->dst);
1462 	cork->dst = NULL;
1463 }
1464 
1465 /*
1466  *	Combined all pending IP fragments on the socket as one IP datagram
1467  *	and push them out.
1468  */
1469 struct sk_buff *__ip_make_skb(struct sock *sk,
1470 			      struct flowi4 *fl4,
1471 			      struct sk_buff_head *queue,
1472 			      struct inet_cork *cork)
1473 {
1474 	struct sk_buff *skb, *tmp_skb;
1475 	struct sk_buff **tail_skb;
1476 	struct inet_sock *inet = inet_sk(sk);
1477 	struct net *net = sock_net(sk);
1478 	struct ip_options *opt = NULL;
1479 	struct rtable *rt = (struct rtable *)cork->dst;
1480 	struct iphdr *iph;
1481 	__be16 df = 0;
1482 	__u8 ttl;
1483 
1484 	skb = __skb_dequeue(queue);
1485 	if (!skb)
1486 		goto out;
1487 	tail_skb = &(skb_shinfo(skb)->frag_list);
1488 
1489 	/* move skb->data to ip header from ext header */
1490 	if (skb->data < skb_network_header(skb))
1491 		__skb_pull(skb, skb_network_offset(skb));
1492 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1493 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1494 		*tail_skb = tmp_skb;
1495 		tail_skb = &(tmp_skb->next);
1496 		skb->len += tmp_skb->len;
1497 		skb->data_len += tmp_skb->len;
1498 		skb->truesize += tmp_skb->truesize;
1499 		tmp_skb->destructor = NULL;
1500 		tmp_skb->sk = NULL;
1501 	}
1502 
1503 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1504 	 * to fragment the frame generated here. No matter, what transforms
1505 	 * how transforms change size of the packet, it will come out.
1506 	 */
1507 	skb->ignore_df = ip_sk_ignore_df(sk);
1508 
1509 	/* DF bit is set when we want to see DF on outgoing frames.
1510 	 * If ignore_df is set too, we still allow to fragment this frame
1511 	 * locally. */
1512 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1513 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1514 	    (skb->len <= dst_mtu(&rt->dst) &&
1515 	     ip_dont_fragment(sk, &rt->dst)))
1516 		df = htons(IP_DF);
1517 
1518 	if (cork->flags & IPCORK_OPT)
1519 		opt = cork->opt;
1520 
1521 	if (cork->ttl != 0)
1522 		ttl = cork->ttl;
1523 	else if (rt->rt_type == RTN_MULTICAST)
1524 		ttl = inet->mc_ttl;
1525 	else
1526 		ttl = ip_select_ttl(inet, &rt->dst);
1527 
1528 	iph = ip_hdr(skb);
1529 	iph->version = 4;
1530 	iph->ihl = 5;
1531 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1532 	iph->frag_off = df;
1533 	iph->ttl = ttl;
1534 	iph->protocol = sk->sk_protocol;
1535 	ip_copy_addrs(iph, fl4);
1536 	ip_select_ident(net, skb, sk);
1537 
1538 	if (opt) {
1539 		iph->ihl += opt->optlen>>2;
1540 		ip_options_build(skb, opt, cork->addr, rt, 0);
1541 	}
1542 
1543 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1544 	skb->mark = cork->mark;
1545 	skb->tstamp = cork->transmit_time;
1546 	/*
1547 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1548 	 * on dst refcount
1549 	 */
1550 	cork->dst = NULL;
1551 	skb_dst_set(skb, &rt->dst);
1552 
1553 	if (iph->protocol == IPPROTO_ICMP)
1554 		icmp_out_count(net, ((struct icmphdr *)
1555 			skb_transport_header(skb))->type);
1556 
1557 	ip_cork_release(cork);
1558 out:
1559 	return skb;
1560 }
1561 
1562 int ip_send_skb(struct net *net, struct sk_buff *skb)
1563 {
1564 	int err;
1565 
1566 	err = ip_local_out(net, skb->sk, skb);
1567 	if (err) {
1568 		if (err > 0)
1569 			err = net_xmit_errno(err);
1570 		if (err)
1571 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1572 	}
1573 
1574 	return err;
1575 }
1576 
1577 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1578 {
1579 	struct sk_buff *skb;
1580 
1581 	skb = ip_finish_skb(sk, fl4);
1582 	if (!skb)
1583 		return 0;
1584 
1585 	/* Netfilter gets whole the not fragmented skb. */
1586 	return ip_send_skb(sock_net(sk), skb);
1587 }
1588 
1589 /*
1590  *	Throw away all pending data on the socket.
1591  */
1592 static void __ip_flush_pending_frames(struct sock *sk,
1593 				      struct sk_buff_head *queue,
1594 				      struct inet_cork *cork)
1595 {
1596 	struct sk_buff *skb;
1597 
1598 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1599 		kfree_skb(skb);
1600 
1601 	ip_cork_release(cork);
1602 }
1603 
1604 void ip_flush_pending_frames(struct sock *sk)
1605 {
1606 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1607 }
1608 
1609 struct sk_buff *ip_make_skb(struct sock *sk,
1610 			    struct flowi4 *fl4,
1611 			    int getfrag(void *from, char *to, int offset,
1612 					int len, int odd, struct sk_buff *skb),
1613 			    void *from, int length, int transhdrlen,
1614 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1615 			    struct inet_cork *cork, unsigned int flags)
1616 {
1617 	struct sk_buff_head queue;
1618 	int err;
1619 
1620 	if (flags & MSG_PROBE)
1621 		return NULL;
1622 
1623 	__skb_queue_head_init(&queue);
1624 
1625 	cork->flags = 0;
1626 	cork->addr = 0;
1627 	cork->opt = NULL;
1628 	err = ip_setup_cork(sk, cork, ipc, rtp);
1629 	if (err)
1630 		return ERR_PTR(err);
1631 
1632 	err = __ip_append_data(sk, fl4, &queue, cork,
1633 			       &current->task_frag, getfrag,
1634 			       from, length, transhdrlen, flags);
1635 	if (err) {
1636 		__ip_flush_pending_frames(sk, &queue, cork);
1637 		return ERR_PTR(err);
1638 	}
1639 
1640 	return __ip_make_skb(sk, fl4, &queue, cork);
1641 }
1642 
1643 /*
1644  *	Fetch data from kernel space and fill in checksum if needed.
1645  */
1646 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1647 			      int len, int odd, struct sk_buff *skb)
1648 {
1649 	__wsum csum;
1650 
1651 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1652 	skb->csum = csum_block_add(skb->csum, csum, odd);
1653 	return 0;
1654 }
1655 
1656 /*
1657  *	Generic function to send a packet as reply to another packet.
1658  *	Used to send some TCP resets/acks so far.
1659  */
1660 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1661 			   const struct ip_options *sopt,
1662 			   __be32 daddr, __be32 saddr,
1663 			   const struct ip_reply_arg *arg,
1664 			   unsigned int len, u64 transmit_time)
1665 {
1666 	struct ip_options_data replyopts;
1667 	struct ipcm_cookie ipc;
1668 	struct flowi4 fl4;
1669 	struct rtable *rt = skb_rtable(skb);
1670 	struct net *net = sock_net(sk);
1671 	struct sk_buff *nskb;
1672 	int err;
1673 	int oif;
1674 
1675 	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1676 		return;
1677 
1678 	ipcm_init(&ipc);
1679 	ipc.addr = daddr;
1680 	ipc.sockc.transmit_time = transmit_time;
1681 
1682 	if (replyopts.opt.opt.optlen) {
1683 		ipc.opt = &replyopts.opt;
1684 
1685 		if (replyopts.opt.opt.srr)
1686 			daddr = replyopts.opt.opt.faddr;
1687 	}
1688 
1689 	oif = arg->bound_dev_if;
1690 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1691 		oif = skb->skb_iif;
1692 
1693 	flowi4_init_output(&fl4, oif,
1694 			   IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1695 			   RT_TOS(arg->tos),
1696 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1697 			   ip_reply_arg_flowi_flags(arg),
1698 			   daddr, saddr,
1699 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1700 			   arg->uid);
1701 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1702 	rt = ip_route_output_key(net, &fl4);
1703 	if (IS_ERR(rt))
1704 		return;
1705 
1706 	inet_sk(sk)->tos = arg->tos;
1707 
1708 	sk->sk_protocol = ip_hdr(skb)->protocol;
1709 	sk->sk_bound_dev_if = arg->bound_dev_if;
1710 	sk->sk_sndbuf = sysctl_wmem_default;
1711 	sk->sk_mark = fl4.flowi4_mark;
1712 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1713 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1714 	if (unlikely(err)) {
1715 		ip_flush_pending_frames(sk);
1716 		goto out;
1717 	}
1718 
1719 	nskb = skb_peek(&sk->sk_write_queue);
1720 	if (nskb) {
1721 		if (arg->csumoffset >= 0)
1722 			*((__sum16 *)skb_transport_header(nskb) +
1723 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1724 								arg->csum));
1725 		nskb->ip_summed = CHECKSUM_NONE;
1726 		ip_push_pending_frames(sk, &fl4);
1727 	}
1728 out:
1729 	ip_rt_put(rt);
1730 }
1731 
1732 void __init ip_init(void)
1733 {
1734 	ip_rt_init();
1735 	inet_initpeers();
1736 
1737 #if defined(CONFIG_IP_MULTICAST)
1738 	igmp_mc_init();
1739 #endif
1740 }
1741