xref: /openbmc/linux/net/ipv4/ip_output.c (revision 93df8a1e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82 
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl);
85 
86 static int ip_fragment(struct sock *sk, struct sk_buff *skb,
87 		       unsigned int mtu,
88 		       int (*output)(struct sock *, struct sk_buff *));
89 
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr *iph)
92 {
93 	iph->check = 0;
94 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 }
96 EXPORT_SYMBOL(ip_send_check);
97 
98 static int __ip_local_out_sk(struct sock *sk, struct sk_buff *skb)
99 {
100 	struct iphdr *iph = ip_hdr(skb);
101 
102 	iph->tot_len = htons(skb->len);
103 	ip_send_check(iph);
104 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, sk, skb, NULL,
105 		       skb_dst(skb)->dev, dst_output_sk);
106 }
107 
108 int __ip_local_out(struct sk_buff *skb)
109 {
110 	return __ip_local_out_sk(skb->sk, skb);
111 }
112 
113 int ip_local_out_sk(struct sock *sk, struct sk_buff *skb)
114 {
115 	int err;
116 
117 	err = __ip_local_out(skb);
118 	if (likely(err == 1))
119 		err = dst_output_sk(sk, skb);
120 
121 	return err;
122 }
123 EXPORT_SYMBOL_GPL(ip_local_out_sk);
124 
125 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
126 {
127 	int ttl = inet->uc_ttl;
128 
129 	if (ttl < 0)
130 		ttl = ip4_dst_hoplimit(dst);
131 	return ttl;
132 }
133 
134 /*
135  *		Add an ip header to a skbuff and send it out.
136  *
137  */
138 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
139 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
140 {
141 	struct inet_sock *inet = inet_sk(sk);
142 	struct rtable *rt = skb_rtable(skb);
143 	struct iphdr *iph;
144 
145 	/* Build the IP header. */
146 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
147 	skb_reset_network_header(skb);
148 	iph = ip_hdr(skb);
149 	iph->version  = 4;
150 	iph->ihl      = 5;
151 	iph->tos      = inet->tos;
152 	if (ip_dont_fragment(sk, &rt->dst))
153 		iph->frag_off = htons(IP_DF);
154 	else
155 		iph->frag_off = 0;
156 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
157 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
158 	iph->saddr    = saddr;
159 	iph->protocol = sk->sk_protocol;
160 	ip_select_ident(sock_net(sk), skb, sk);
161 
162 	if (opt && opt->opt.optlen) {
163 		iph->ihl += opt->opt.optlen>>2;
164 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
165 	}
166 
167 	skb->priority = sk->sk_priority;
168 	skb->mark = sk->sk_mark;
169 
170 	/* Send it out. */
171 	return ip_local_out(skb);
172 }
173 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
174 
175 static int ip_finish_output2(struct sock *sk, struct sk_buff *skb)
176 {
177 	struct dst_entry *dst = skb_dst(skb);
178 	struct rtable *rt = (struct rtable *)dst;
179 	struct net_device *dev = dst->dev;
180 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
181 	struct neighbour *neigh;
182 	u32 nexthop;
183 
184 	if (rt->rt_type == RTN_MULTICAST) {
185 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
186 	} else if (rt->rt_type == RTN_BROADCAST)
187 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
188 
189 	/* Be paranoid, rather than too clever. */
190 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
191 		struct sk_buff *skb2;
192 
193 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
194 		if (!skb2) {
195 			kfree_skb(skb);
196 			return -ENOMEM;
197 		}
198 		if (skb->sk)
199 			skb_set_owner_w(skb2, skb->sk);
200 		consume_skb(skb);
201 		skb = skb2;
202 	}
203 
204 	rcu_read_lock_bh();
205 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
206 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
207 	if (unlikely(!neigh))
208 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
209 	if (!IS_ERR(neigh)) {
210 		int res = dst_neigh_output(dst, neigh, skb);
211 
212 		rcu_read_unlock_bh();
213 		return res;
214 	}
215 	rcu_read_unlock_bh();
216 
217 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
218 			    __func__);
219 	kfree_skb(skb);
220 	return -EINVAL;
221 }
222 
223 static int ip_finish_output_gso(struct sock *sk, struct sk_buff *skb,
224 				unsigned int mtu)
225 {
226 	netdev_features_t features;
227 	struct sk_buff *segs;
228 	int ret = 0;
229 
230 	/* common case: locally created skb or seglen is <= mtu */
231 	if (((IPCB(skb)->flags & IPSKB_FORWARDED) == 0) ||
232 	      skb_gso_network_seglen(skb) <= mtu)
233 		return ip_finish_output2(sk, skb);
234 
235 	/* Slowpath -  GSO segment length is exceeding the dst MTU.
236 	 *
237 	 * This can happen in two cases:
238 	 * 1) TCP GRO packet, DF bit not set
239 	 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
240 	 * from host network stack.
241 	 */
242 	features = netif_skb_features(skb);
243 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
244 	if (IS_ERR_OR_NULL(segs)) {
245 		kfree_skb(skb);
246 		return -ENOMEM;
247 	}
248 
249 	consume_skb(skb);
250 
251 	do {
252 		struct sk_buff *nskb = segs->next;
253 		int err;
254 
255 		segs->next = NULL;
256 		err = ip_fragment(sk, segs, mtu, ip_finish_output2);
257 
258 		if (err && ret == 0)
259 			ret = err;
260 		segs = nskb;
261 	} while (segs);
262 
263 	return ret;
264 }
265 
266 static int ip_finish_output(struct sock *sk, struct sk_buff *skb)
267 {
268 	unsigned int mtu;
269 
270 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
271 	/* Policy lookup after SNAT yielded a new policy */
272 	if (skb_dst(skb)->xfrm) {
273 		IPCB(skb)->flags |= IPSKB_REROUTED;
274 		return dst_output_sk(sk, skb);
275 	}
276 #endif
277 	mtu = ip_skb_dst_mtu(skb);
278 	if (skb_is_gso(skb))
279 		return ip_finish_output_gso(sk, skb, mtu);
280 
281 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
282 		return ip_fragment(sk, skb, mtu, ip_finish_output2);
283 
284 	return ip_finish_output2(sk, skb);
285 }
286 
287 int ip_mc_output(struct sock *sk, struct sk_buff *skb)
288 {
289 	struct rtable *rt = skb_rtable(skb);
290 	struct net_device *dev = rt->dst.dev;
291 
292 	/*
293 	 *	If the indicated interface is up and running, send the packet.
294 	 */
295 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
296 
297 	skb->dev = dev;
298 	skb->protocol = htons(ETH_P_IP);
299 
300 	/*
301 	 *	Multicasts are looped back for other local users
302 	 */
303 
304 	if (rt->rt_flags&RTCF_MULTICAST) {
305 		if (sk_mc_loop(sk)
306 #ifdef CONFIG_IP_MROUTE
307 		/* Small optimization: do not loopback not local frames,
308 		   which returned after forwarding; they will be  dropped
309 		   by ip_mr_input in any case.
310 		   Note, that local frames are looped back to be delivered
311 		   to local recipients.
312 
313 		   This check is duplicated in ip_mr_input at the moment.
314 		 */
315 		    &&
316 		    ((rt->rt_flags & RTCF_LOCAL) ||
317 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
318 #endif
319 		   ) {
320 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
321 			if (newskb)
322 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
323 					sk, newskb, NULL, newskb->dev,
324 					dev_loopback_xmit);
325 		}
326 
327 		/* Multicasts with ttl 0 must not go beyond the host */
328 
329 		if (ip_hdr(skb)->ttl == 0) {
330 			kfree_skb(skb);
331 			return 0;
332 		}
333 	}
334 
335 	if (rt->rt_flags&RTCF_BROADCAST) {
336 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
337 		if (newskb)
338 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, sk, newskb,
339 				NULL, newskb->dev, dev_loopback_xmit);
340 	}
341 
342 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, sk, skb, NULL,
343 			    skb->dev, ip_finish_output,
344 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
345 }
346 
347 int ip_output(struct sock *sk, struct sk_buff *skb)
348 {
349 	struct net_device *dev = skb_dst(skb)->dev;
350 
351 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
352 
353 	skb->dev = dev;
354 	skb->protocol = htons(ETH_P_IP);
355 
356 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, sk, skb,
357 			    NULL, dev,
358 			    ip_finish_output,
359 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
360 }
361 
362 /*
363  * copy saddr and daddr, possibly using 64bit load/stores
364  * Equivalent to :
365  *   iph->saddr = fl4->saddr;
366  *   iph->daddr = fl4->daddr;
367  */
368 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
369 {
370 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
371 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
372 	memcpy(&iph->saddr, &fl4->saddr,
373 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
374 }
375 
376 /* Note: skb->sk can be different from sk, in case of tunnels */
377 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
378 {
379 	struct inet_sock *inet = inet_sk(sk);
380 	struct ip_options_rcu *inet_opt;
381 	struct flowi4 *fl4;
382 	struct rtable *rt;
383 	struct iphdr *iph;
384 	int res;
385 
386 	/* Skip all of this if the packet is already routed,
387 	 * f.e. by something like SCTP.
388 	 */
389 	rcu_read_lock();
390 	inet_opt = rcu_dereference(inet->inet_opt);
391 	fl4 = &fl->u.ip4;
392 	rt = skb_rtable(skb);
393 	if (rt)
394 		goto packet_routed;
395 
396 	/* Make sure we can route this packet. */
397 	rt = (struct rtable *)__sk_dst_check(sk, 0);
398 	if (!rt) {
399 		__be32 daddr;
400 
401 		/* Use correct destination address if we have options. */
402 		daddr = inet->inet_daddr;
403 		if (inet_opt && inet_opt->opt.srr)
404 			daddr = inet_opt->opt.faddr;
405 
406 		/* If this fails, retransmit mechanism of transport layer will
407 		 * keep trying until route appears or the connection times
408 		 * itself out.
409 		 */
410 		rt = ip_route_output_ports(sock_net(sk), fl4, sk,
411 					   daddr, inet->inet_saddr,
412 					   inet->inet_dport,
413 					   inet->inet_sport,
414 					   sk->sk_protocol,
415 					   RT_CONN_FLAGS(sk),
416 					   sk->sk_bound_dev_if);
417 		if (IS_ERR(rt))
418 			goto no_route;
419 		sk_setup_caps(sk, &rt->dst);
420 	}
421 	skb_dst_set_noref(skb, &rt->dst);
422 
423 packet_routed:
424 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
425 		goto no_route;
426 
427 	/* OK, we know where to send it, allocate and build IP header. */
428 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
429 	skb_reset_network_header(skb);
430 	iph = ip_hdr(skb);
431 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
432 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
433 		iph->frag_off = htons(IP_DF);
434 	else
435 		iph->frag_off = 0;
436 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
437 	iph->protocol = sk->sk_protocol;
438 	ip_copy_addrs(iph, fl4);
439 
440 	/* Transport layer set skb->h.foo itself. */
441 
442 	if (inet_opt && inet_opt->opt.optlen) {
443 		iph->ihl += inet_opt->opt.optlen >> 2;
444 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
445 	}
446 
447 	ip_select_ident_segs(sock_net(sk), skb, sk,
448 			     skb_shinfo(skb)->gso_segs ?: 1);
449 
450 	/* TODO : should we use skb->sk here instead of sk ? */
451 	skb->priority = sk->sk_priority;
452 	skb->mark = sk->sk_mark;
453 
454 	res = ip_local_out(skb);
455 	rcu_read_unlock();
456 	return res;
457 
458 no_route:
459 	rcu_read_unlock();
460 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
461 	kfree_skb(skb);
462 	return -EHOSTUNREACH;
463 }
464 EXPORT_SYMBOL(ip_queue_xmit);
465 
466 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
467 {
468 	to->pkt_type = from->pkt_type;
469 	to->priority = from->priority;
470 	to->protocol = from->protocol;
471 	skb_dst_drop(to);
472 	skb_dst_copy(to, from);
473 	to->dev = from->dev;
474 	to->mark = from->mark;
475 
476 	/* Copy the flags to each fragment. */
477 	IPCB(to)->flags = IPCB(from)->flags;
478 
479 #ifdef CONFIG_NET_SCHED
480 	to->tc_index = from->tc_index;
481 #endif
482 	nf_copy(to, from);
483 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
484 	to->ipvs_property = from->ipvs_property;
485 #endif
486 	skb_copy_secmark(to, from);
487 }
488 
489 static int ip_fragment(struct sock *sk, struct sk_buff *skb,
490 		       unsigned int mtu,
491 		       int (*output)(struct sock *, struct sk_buff *))
492 {
493 	struct iphdr *iph = ip_hdr(skb);
494 
495 	if ((iph->frag_off & htons(IP_DF)) == 0)
496 		return ip_do_fragment(sk, skb, output);
497 
498 	if (unlikely(!skb->ignore_df ||
499 		     (IPCB(skb)->frag_max_size &&
500 		      IPCB(skb)->frag_max_size > mtu))) {
501 		struct rtable *rt = skb_rtable(skb);
502 		struct net_device *dev = rt->dst.dev;
503 
504 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
505 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
506 			  htonl(mtu));
507 		kfree_skb(skb);
508 		return -EMSGSIZE;
509 	}
510 
511 	return ip_do_fragment(sk, skb, output);
512 }
513 
514 /*
515  *	This IP datagram is too large to be sent in one piece.  Break it up into
516  *	smaller pieces (each of size equal to IP header plus
517  *	a block of the data of the original IP data part) that will yet fit in a
518  *	single device frame, and queue such a frame for sending.
519  */
520 
521 int ip_do_fragment(struct sock *sk, struct sk_buff *skb,
522 		   int (*output)(struct sock *, struct sk_buff *))
523 {
524 	struct iphdr *iph;
525 	int ptr;
526 	struct net_device *dev;
527 	struct sk_buff *skb2;
528 	unsigned int mtu, hlen, left, len, ll_rs;
529 	int offset;
530 	__be16 not_last_frag;
531 	struct rtable *rt = skb_rtable(skb);
532 	int err = 0;
533 
534 	dev = rt->dst.dev;
535 
536 	/*
537 	 *	Point into the IP datagram header.
538 	 */
539 
540 	iph = ip_hdr(skb);
541 
542 	mtu = ip_skb_dst_mtu(skb);
543 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
544 		mtu = IPCB(skb)->frag_max_size;
545 
546 	/*
547 	 *	Setup starting values.
548 	 */
549 
550 	hlen = iph->ihl * 4;
551 	mtu = mtu - hlen;	/* Size of data space */
552 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
553 
554 	/* When frag_list is given, use it. First, check its validity:
555 	 * some transformers could create wrong frag_list or break existing
556 	 * one, it is not prohibited. In this case fall back to copying.
557 	 *
558 	 * LATER: this step can be merged to real generation of fragments,
559 	 * we can switch to copy when see the first bad fragment.
560 	 */
561 	if (skb_has_frag_list(skb)) {
562 		struct sk_buff *frag, *frag2;
563 		int first_len = skb_pagelen(skb);
564 
565 		if (first_len - hlen > mtu ||
566 		    ((first_len - hlen) & 7) ||
567 		    ip_is_fragment(iph) ||
568 		    skb_cloned(skb))
569 			goto slow_path;
570 
571 		skb_walk_frags(skb, frag) {
572 			/* Correct geometry. */
573 			if (frag->len > mtu ||
574 			    ((frag->len & 7) && frag->next) ||
575 			    skb_headroom(frag) < hlen)
576 				goto slow_path_clean;
577 
578 			/* Partially cloned skb? */
579 			if (skb_shared(frag))
580 				goto slow_path_clean;
581 
582 			BUG_ON(frag->sk);
583 			if (skb->sk) {
584 				frag->sk = skb->sk;
585 				frag->destructor = sock_wfree;
586 			}
587 			skb->truesize -= frag->truesize;
588 		}
589 
590 		/* Everything is OK. Generate! */
591 
592 		err = 0;
593 		offset = 0;
594 		frag = skb_shinfo(skb)->frag_list;
595 		skb_frag_list_init(skb);
596 		skb->data_len = first_len - skb_headlen(skb);
597 		skb->len = first_len;
598 		iph->tot_len = htons(first_len);
599 		iph->frag_off = htons(IP_MF);
600 		ip_send_check(iph);
601 
602 		for (;;) {
603 			/* Prepare header of the next frame,
604 			 * before previous one went down. */
605 			if (frag) {
606 				frag->ip_summed = CHECKSUM_NONE;
607 				skb_reset_transport_header(frag);
608 				__skb_push(frag, hlen);
609 				skb_reset_network_header(frag);
610 				memcpy(skb_network_header(frag), iph, hlen);
611 				iph = ip_hdr(frag);
612 				iph->tot_len = htons(frag->len);
613 				ip_copy_metadata(frag, skb);
614 				if (offset == 0)
615 					ip_options_fragment(frag);
616 				offset += skb->len - hlen;
617 				iph->frag_off = htons(offset>>3);
618 				if (frag->next)
619 					iph->frag_off |= htons(IP_MF);
620 				/* Ready, complete checksum */
621 				ip_send_check(iph);
622 			}
623 
624 			err = output(sk, skb);
625 
626 			if (!err)
627 				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
628 			if (err || !frag)
629 				break;
630 
631 			skb = frag;
632 			frag = skb->next;
633 			skb->next = NULL;
634 		}
635 
636 		if (err == 0) {
637 			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
638 			return 0;
639 		}
640 
641 		while (frag) {
642 			skb = frag->next;
643 			kfree_skb(frag);
644 			frag = skb;
645 		}
646 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
647 		return err;
648 
649 slow_path_clean:
650 		skb_walk_frags(skb, frag2) {
651 			if (frag2 == frag)
652 				break;
653 			frag2->sk = NULL;
654 			frag2->destructor = NULL;
655 			skb->truesize += frag2->truesize;
656 		}
657 	}
658 
659 slow_path:
660 	/* for offloaded checksums cleanup checksum before fragmentation */
661 	if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb))
662 		goto fail;
663 	iph = ip_hdr(skb);
664 
665 	left = skb->len - hlen;		/* Space per frame */
666 	ptr = hlen;		/* Where to start from */
667 
668 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
669 
670 	/*
671 	 *	Fragment the datagram.
672 	 */
673 
674 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
675 	not_last_frag = iph->frag_off & htons(IP_MF);
676 
677 	/*
678 	 *	Keep copying data until we run out.
679 	 */
680 
681 	while (left > 0) {
682 		len = left;
683 		/* IF: it doesn't fit, use 'mtu' - the data space left */
684 		if (len > mtu)
685 			len = mtu;
686 		/* IF: we are not sending up to and including the packet end
687 		   then align the next start on an eight byte boundary */
688 		if (len < left)	{
689 			len &= ~7;
690 		}
691 
692 		/* Allocate buffer */
693 		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
694 		if (!skb2) {
695 			err = -ENOMEM;
696 			goto fail;
697 		}
698 
699 		/*
700 		 *	Set up data on packet
701 		 */
702 
703 		ip_copy_metadata(skb2, skb);
704 		skb_reserve(skb2, ll_rs);
705 		skb_put(skb2, len + hlen);
706 		skb_reset_network_header(skb2);
707 		skb2->transport_header = skb2->network_header + hlen;
708 
709 		/*
710 		 *	Charge the memory for the fragment to any owner
711 		 *	it might possess
712 		 */
713 
714 		if (skb->sk)
715 			skb_set_owner_w(skb2, skb->sk);
716 
717 		/*
718 		 *	Copy the packet header into the new buffer.
719 		 */
720 
721 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
722 
723 		/*
724 		 *	Copy a block of the IP datagram.
725 		 */
726 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
727 			BUG();
728 		left -= len;
729 
730 		/*
731 		 *	Fill in the new header fields.
732 		 */
733 		iph = ip_hdr(skb2);
734 		iph->frag_off = htons((offset >> 3));
735 
736 		if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
737 			iph->frag_off |= htons(IP_DF);
738 
739 		/* ANK: dirty, but effective trick. Upgrade options only if
740 		 * the segment to be fragmented was THE FIRST (otherwise,
741 		 * options are already fixed) and make it ONCE
742 		 * on the initial skb, so that all the following fragments
743 		 * will inherit fixed options.
744 		 */
745 		if (offset == 0)
746 			ip_options_fragment(skb);
747 
748 		/*
749 		 *	Added AC : If we are fragmenting a fragment that's not the
750 		 *		   last fragment then keep MF on each bit
751 		 */
752 		if (left > 0 || not_last_frag)
753 			iph->frag_off |= htons(IP_MF);
754 		ptr += len;
755 		offset += len;
756 
757 		/*
758 		 *	Put this fragment into the sending queue.
759 		 */
760 		iph->tot_len = htons(len + hlen);
761 
762 		ip_send_check(iph);
763 
764 		err = output(sk, skb2);
765 		if (err)
766 			goto fail;
767 
768 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
769 	}
770 	consume_skb(skb);
771 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
772 	return err;
773 
774 fail:
775 	kfree_skb(skb);
776 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
777 	return err;
778 }
779 EXPORT_SYMBOL(ip_do_fragment);
780 
781 int
782 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
783 {
784 	struct msghdr *msg = from;
785 
786 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
787 		if (copy_from_iter(to, len, &msg->msg_iter) != len)
788 			return -EFAULT;
789 	} else {
790 		__wsum csum = 0;
791 		if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
792 			return -EFAULT;
793 		skb->csum = csum_block_add(skb->csum, csum, odd);
794 	}
795 	return 0;
796 }
797 EXPORT_SYMBOL(ip_generic_getfrag);
798 
799 static inline __wsum
800 csum_page(struct page *page, int offset, int copy)
801 {
802 	char *kaddr;
803 	__wsum csum;
804 	kaddr = kmap(page);
805 	csum = csum_partial(kaddr + offset, copy, 0);
806 	kunmap(page);
807 	return csum;
808 }
809 
810 static inline int ip_ufo_append_data(struct sock *sk,
811 			struct sk_buff_head *queue,
812 			int getfrag(void *from, char *to, int offset, int len,
813 			       int odd, struct sk_buff *skb),
814 			void *from, int length, int hh_len, int fragheaderlen,
815 			int transhdrlen, int maxfraglen, unsigned int flags)
816 {
817 	struct sk_buff *skb;
818 	int err;
819 
820 	/* There is support for UDP fragmentation offload by network
821 	 * device, so create one single skb packet containing complete
822 	 * udp datagram
823 	 */
824 	skb = skb_peek_tail(queue);
825 	if (!skb) {
826 		skb = sock_alloc_send_skb(sk,
827 			hh_len + fragheaderlen + transhdrlen + 20,
828 			(flags & MSG_DONTWAIT), &err);
829 
830 		if (!skb)
831 			return err;
832 
833 		/* reserve space for Hardware header */
834 		skb_reserve(skb, hh_len);
835 
836 		/* create space for UDP/IP header */
837 		skb_put(skb, fragheaderlen + transhdrlen);
838 
839 		/* initialize network header pointer */
840 		skb_reset_network_header(skb);
841 
842 		/* initialize protocol header pointer */
843 		skb->transport_header = skb->network_header + fragheaderlen;
844 
845 		skb->csum = 0;
846 
847 		__skb_queue_tail(queue, skb);
848 	} else if (skb_is_gso(skb)) {
849 		goto append;
850 	}
851 
852 	skb->ip_summed = CHECKSUM_PARTIAL;
853 	/* specify the length of each IP datagram fragment */
854 	skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
855 	skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
856 
857 append:
858 	return skb_append_datato_frags(sk, skb, getfrag, from,
859 				       (length - transhdrlen));
860 }
861 
862 static int __ip_append_data(struct sock *sk,
863 			    struct flowi4 *fl4,
864 			    struct sk_buff_head *queue,
865 			    struct inet_cork *cork,
866 			    struct page_frag *pfrag,
867 			    int getfrag(void *from, char *to, int offset,
868 					int len, int odd, struct sk_buff *skb),
869 			    void *from, int length, int transhdrlen,
870 			    unsigned int flags)
871 {
872 	struct inet_sock *inet = inet_sk(sk);
873 	struct sk_buff *skb;
874 
875 	struct ip_options *opt = cork->opt;
876 	int hh_len;
877 	int exthdrlen;
878 	int mtu;
879 	int copy;
880 	int err;
881 	int offset = 0;
882 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
883 	int csummode = CHECKSUM_NONE;
884 	struct rtable *rt = (struct rtable *)cork->dst;
885 	u32 tskey = 0;
886 
887 	skb = skb_peek_tail(queue);
888 
889 	exthdrlen = !skb ? rt->dst.header_len : 0;
890 	mtu = cork->fragsize;
891 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
892 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
893 		tskey = sk->sk_tskey++;
894 
895 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
896 
897 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
898 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
899 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
900 
901 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
902 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
903 			       mtu - (opt ? opt->optlen : 0));
904 		return -EMSGSIZE;
905 	}
906 
907 	/*
908 	 * transhdrlen > 0 means that this is the first fragment and we wish
909 	 * it won't be fragmented in the future.
910 	 */
911 	if (transhdrlen &&
912 	    length + fragheaderlen <= mtu &&
913 	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
914 	    !exthdrlen)
915 		csummode = CHECKSUM_PARTIAL;
916 
917 	cork->length += length;
918 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
919 	    (sk->sk_protocol == IPPROTO_UDP) &&
920 	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
921 	    (sk->sk_type == SOCK_DGRAM)) {
922 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
923 					 hh_len, fragheaderlen, transhdrlen,
924 					 maxfraglen, flags);
925 		if (err)
926 			goto error;
927 		return 0;
928 	}
929 
930 	/* So, what's going on in the loop below?
931 	 *
932 	 * We use calculated fragment length to generate chained skb,
933 	 * each of segments is IP fragment ready for sending to network after
934 	 * adding appropriate IP header.
935 	 */
936 
937 	if (!skb)
938 		goto alloc_new_skb;
939 
940 	while (length > 0) {
941 		/* Check if the remaining data fits into current packet. */
942 		copy = mtu - skb->len;
943 		if (copy < length)
944 			copy = maxfraglen - skb->len;
945 		if (copy <= 0) {
946 			char *data;
947 			unsigned int datalen;
948 			unsigned int fraglen;
949 			unsigned int fraggap;
950 			unsigned int alloclen;
951 			struct sk_buff *skb_prev;
952 alloc_new_skb:
953 			skb_prev = skb;
954 			if (skb_prev)
955 				fraggap = skb_prev->len - maxfraglen;
956 			else
957 				fraggap = 0;
958 
959 			/*
960 			 * If remaining data exceeds the mtu,
961 			 * we know we need more fragment(s).
962 			 */
963 			datalen = length + fraggap;
964 			if (datalen > mtu - fragheaderlen)
965 				datalen = maxfraglen - fragheaderlen;
966 			fraglen = datalen + fragheaderlen;
967 
968 			if ((flags & MSG_MORE) &&
969 			    !(rt->dst.dev->features&NETIF_F_SG))
970 				alloclen = mtu;
971 			else
972 				alloclen = fraglen;
973 
974 			alloclen += exthdrlen;
975 
976 			/* The last fragment gets additional space at tail.
977 			 * Note, with MSG_MORE we overallocate on fragments,
978 			 * because we have no idea what fragment will be
979 			 * the last.
980 			 */
981 			if (datalen == length + fraggap)
982 				alloclen += rt->dst.trailer_len;
983 
984 			if (transhdrlen) {
985 				skb = sock_alloc_send_skb(sk,
986 						alloclen + hh_len + 15,
987 						(flags & MSG_DONTWAIT), &err);
988 			} else {
989 				skb = NULL;
990 				if (atomic_read(&sk->sk_wmem_alloc) <=
991 				    2 * sk->sk_sndbuf)
992 					skb = sock_wmalloc(sk,
993 							   alloclen + hh_len + 15, 1,
994 							   sk->sk_allocation);
995 				if (unlikely(!skb))
996 					err = -ENOBUFS;
997 			}
998 			if (!skb)
999 				goto error;
1000 
1001 			/*
1002 			 *	Fill in the control structures
1003 			 */
1004 			skb->ip_summed = csummode;
1005 			skb->csum = 0;
1006 			skb_reserve(skb, hh_len);
1007 
1008 			/* only the initial fragment is time stamped */
1009 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1010 			cork->tx_flags = 0;
1011 			skb_shinfo(skb)->tskey = tskey;
1012 			tskey = 0;
1013 
1014 			/*
1015 			 *	Find where to start putting bytes.
1016 			 */
1017 			data = skb_put(skb, fraglen + exthdrlen);
1018 			skb_set_network_header(skb, exthdrlen);
1019 			skb->transport_header = (skb->network_header +
1020 						 fragheaderlen);
1021 			data += fragheaderlen + exthdrlen;
1022 
1023 			if (fraggap) {
1024 				skb->csum = skb_copy_and_csum_bits(
1025 					skb_prev, maxfraglen,
1026 					data + transhdrlen, fraggap, 0);
1027 				skb_prev->csum = csum_sub(skb_prev->csum,
1028 							  skb->csum);
1029 				data += fraggap;
1030 				pskb_trim_unique(skb_prev, maxfraglen);
1031 			}
1032 
1033 			copy = datalen - transhdrlen - fraggap;
1034 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1035 				err = -EFAULT;
1036 				kfree_skb(skb);
1037 				goto error;
1038 			}
1039 
1040 			offset += copy;
1041 			length -= datalen - fraggap;
1042 			transhdrlen = 0;
1043 			exthdrlen = 0;
1044 			csummode = CHECKSUM_NONE;
1045 
1046 			/*
1047 			 * Put the packet on the pending queue.
1048 			 */
1049 			__skb_queue_tail(queue, skb);
1050 			continue;
1051 		}
1052 
1053 		if (copy > length)
1054 			copy = length;
1055 
1056 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
1057 			unsigned int off;
1058 
1059 			off = skb->len;
1060 			if (getfrag(from, skb_put(skb, copy),
1061 					offset, copy, off, skb) < 0) {
1062 				__skb_trim(skb, off);
1063 				err = -EFAULT;
1064 				goto error;
1065 			}
1066 		} else {
1067 			int i = skb_shinfo(skb)->nr_frags;
1068 
1069 			err = -ENOMEM;
1070 			if (!sk_page_frag_refill(sk, pfrag))
1071 				goto error;
1072 
1073 			if (!skb_can_coalesce(skb, i, pfrag->page,
1074 					      pfrag->offset)) {
1075 				err = -EMSGSIZE;
1076 				if (i == MAX_SKB_FRAGS)
1077 					goto error;
1078 
1079 				__skb_fill_page_desc(skb, i, pfrag->page,
1080 						     pfrag->offset, 0);
1081 				skb_shinfo(skb)->nr_frags = ++i;
1082 				get_page(pfrag->page);
1083 			}
1084 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1085 			if (getfrag(from,
1086 				    page_address(pfrag->page) + pfrag->offset,
1087 				    offset, copy, skb->len, skb) < 0)
1088 				goto error_efault;
1089 
1090 			pfrag->offset += copy;
1091 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1092 			skb->len += copy;
1093 			skb->data_len += copy;
1094 			skb->truesize += copy;
1095 			atomic_add(copy, &sk->sk_wmem_alloc);
1096 		}
1097 		offset += copy;
1098 		length -= copy;
1099 	}
1100 
1101 	return 0;
1102 
1103 error_efault:
1104 	err = -EFAULT;
1105 error:
1106 	cork->length -= length;
1107 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1108 	return err;
1109 }
1110 
1111 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1112 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1113 {
1114 	struct ip_options_rcu *opt;
1115 	struct rtable *rt;
1116 
1117 	/*
1118 	 * setup for corking.
1119 	 */
1120 	opt = ipc->opt;
1121 	if (opt) {
1122 		if (!cork->opt) {
1123 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1124 					    sk->sk_allocation);
1125 			if (unlikely(!cork->opt))
1126 				return -ENOBUFS;
1127 		}
1128 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1129 		cork->flags |= IPCORK_OPT;
1130 		cork->addr = ipc->addr;
1131 	}
1132 	rt = *rtp;
1133 	if (unlikely(!rt))
1134 		return -EFAULT;
1135 	/*
1136 	 * We steal reference to this route, caller should not release it
1137 	 */
1138 	*rtp = NULL;
1139 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1140 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1141 	cork->dst = &rt->dst;
1142 	cork->length = 0;
1143 	cork->ttl = ipc->ttl;
1144 	cork->tos = ipc->tos;
1145 	cork->priority = ipc->priority;
1146 	cork->tx_flags = ipc->tx_flags;
1147 
1148 	return 0;
1149 }
1150 
1151 /*
1152  *	ip_append_data() and ip_append_page() can make one large IP datagram
1153  *	from many pieces of data. Each pieces will be holded on the socket
1154  *	until ip_push_pending_frames() is called. Each piece can be a page
1155  *	or non-page data.
1156  *
1157  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1158  *	this interface potentially.
1159  *
1160  *	LATER: length must be adjusted by pad at tail, when it is required.
1161  */
1162 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1163 		   int getfrag(void *from, char *to, int offset, int len,
1164 			       int odd, struct sk_buff *skb),
1165 		   void *from, int length, int transhdrlen,
1166 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1167 		   unsigned int flags)
1168 {
1169 	struct inet_sock *inet = inet_sk(sk);
1170 	int err;
1171 
1172 	if (flags&MSG_PROBE)
1173 		return 0;
1174 
1175 	if (skb_queue_empty(&sk->sk_write_queue)) {
1176 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1177 		if (err)
1178 			return err;
1179 	} else {
1180 		transhdrlen = 0;
1181 	}
1182 
1183 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1184 				sk_page_frag(sk), getfrag,
1185 				from, length, transhdrlen, flags);
1186 }
1187 
1188 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1189 		       int offset, size_t size, int flags)
1190 {
1191 	struct inet_sock *inet = inet_sk(sk);
1192 	struct sk_buff *skb;
1193 	struct rtable *rt;
1194 	struct ip_options *opt = NULL;
1195 	struct inet_cork *cork;
1196 	int hh_len;
1197 	int mtu;
1198 	int len;
1199 	int err;
1200 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1201 
1202 	if (inet->hdrincl)
1203 		return -EPERM;
1204 
1205 	if (flags&MSG_PROBE)
1206 		return 0;
1207 
1208 	if (skb_queue_empty(&sk->sk_write_queue))
1209 		return -EINVAL;
1210 
1211 	cork = &inet->cork.base;
1212 	rt = (struct rtable *)cork->dst;
1213 	if (cork->flags & IPCORK_OPT)
1214 		opt = cork->opt;
1215 
1216 	if (!(rt->dst.dev->features&NETIF_F_SG))
1217 		return -EOPNOTSUPP;
1218 
1219 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1220 	mtu = cork->fragsize;
1221 
1222 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1223 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1224 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1225 
1226 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1227 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1228 			       mtu - (opt ? opt->optlen : 0));
1229 		return -EMSGSIZE;
1230 	}
1231 
1232 	skb = skb_peek_tail(&sk->sk_write_queue);
1233 	if (!skb)
1234 		return -EINVAL;
1235 
1236 	cork->length += size;
1237 	if ((size + skb->len > mtu) &&
1238 	    (sk->sk_protocol == IPPROTO_UDP) &&
1239 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1240 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1241 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1242 	}
1243 
1244 	while (size > 0) {
1245 		if (skb_is_gso(skb)) {
1246 			len = size;
1247 		} else {
1248 
1249 			/* Check if the remaining data fits into current packet. */
1250 			len = mtu - skb->len;
1251 			if (len < size)
1252 				len = maxfraglen - skb->len;
1253 		}
1254 		if (len <= 0) {
1255 			struct sk_buff *skb_prev;
1256 			int alloclen;
1257 
1258 			skb_prev = skb;
1259 			fraggap = skb_prev->len - maxfraglen;
1260 
1261 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1262 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1263 			if (unlikely(!skb)) {
1264 				err = -ENOBUFS;
1265 				goto error;
1266 			}
1267 
1268 			/*
1269 			 *	Fill in the control structures
1270 			 */
1271 			skb->ip_summed = CHECKSUM_NONE;
1272 			skb->csum = 0;
1273 			skb_reserve(skb, hh_len);
1274 
1275 			/*
1276 			 *	Find where to start putting bytes.
1277 			 */
1278 			skb_put(skb, fragheaderlen + fraggap);
1279 			skb_reset_network_header(skb);
1280 			skb->transport_header = (skb->network_header +
1281 						 fragheaderlen);
1282 			if (fraggap) {
1283 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1284 								   maxfraglen,
1285 						    skb_transport_header(skb),
1286 								   fraggap, 0);
1287 				skb_prev->csum = csum_sub(skb_prev->csum,
1288 							  skb->csum);
1289 				pskb_trim_unique(skb_prev, maxfraglen);
1290 			}
1291 
1292 			/*
1293 			 * Put the packet on the pending queue.
1294 			 */
1295 			__skb_queue_tail(&sk->sk_write_queue, skb);
1296 			continue;
1297 		}
1298 
1299 		if (len > size)
1300 			len = size;
1301 
1302 		if (skb_append_pagefrags(skb, page, offset, len)) {
1303 			err = -EMSGSIZE;
1304 			goto error;
1305 		}
1306 
1307 		if (skb->ip_summed == CHECKSUM_NONE) {
1308 			__wsum csum;
1309 			csum = csum_page(page, offset, len);
1310 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1311 		}
1312 
1313 		skb->len += len;
1314 		skb->data_len += len;
1315 		skb->truesize += len;
1316 		atomic_add(len, &sk->sk_wmem_alloc);
1317 		offset += len;
1318 		size -= len;
1319 	}
1320 	return 0;
1321 
1322 error:
1323 	cork->length -= size;
1324 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1325 	return err;
1326 }
1327 
1328 static void ip_cork_release(struct inet_cork *cork)
1329 {
1330 	cork->flags &= ~IPCORK_OPT;
1331 	kfree(cork->opt);
1332 	cork->opt = NULL;
1333 	dst_release(cork->dst);
1334 	cork->dst = NULL;
1335 }
1336 
1337 /*
1338  *	Combined all pending IP fragments on the socket as one IP datagram
1339  *	and push them out.
1340  */
1341 struct sk_buff *__ip_make_skb(struct sock *sk,
1342 			      struct flowi4 *fl4,
1343 			      struct sk_buff_head *queue,
1344 			      struct inet_cork *cork)
1345 {
1346 	struct sk_buff *skb, *tmp_skb;
1347 	struct sk_buff **tail_skb;
1348 	struct inet_sock *inet = inet_sk(sk);
1349 	struct net *net = sock_net(sk);
1350 	struct ip_options *opt = NULL;
1351 	struct rtable *rt = (struct rtable *)cork->dst;
1352 	struct iphdr *iph;
1353 	__be16 df = 0;
1354 	__u8 ttl;
1355 
1356 	skb = __skb_dequeue(queue);
1357 	if (!skb)
1358 		goto out;
1359 	tail_skb = &(skb_shinfo(skb)->frag_list);
1360 
1361 	/* move skb->data to ip header from ext header */
1362 	if (skb->data < skb_network_header(skb))
1363 		__skb_pull(skb, skb_network_offset(skb));
1364 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1365 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1366 		*tail_skb = tmp_skb;
1367 		tail_skb = &(tmp_skb->next);
1368 		skb->len += tmp_skb->len;
1369 		skb->data_len += tmp_skb->len;
1370 		skb->truesize += tmp_skb->truesize;
1371 		tmp_skb->destructor = NULL;
1372 		tmp_skb->sk = NULL;
1373 	}
1374 
1375 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1376 	 * to fragment the frame generated here. No matter, what transforms
1377 	 * how transforms change size of the packet, it will come out.
1378 	 */
1379 	skb->ignore_df = ip_sk_ignore_df(sk);
1380 
1381 	/* DF bit is set when we want to see DF on outgoing frames.
1382 	 * If ignore_df is set too, we still allow to fragment this frame
1383 	 * locally. */
1384 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1385 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1386 	    (skb->len <= dst_mtu(&rt->dst) &&
1387 	     ip_dont_fragment(sk, &rt->dst)))
1388 		df = htons(IP_DF);
1389 
1390 	if (cork->flags & IPCORK_OPT)
1391 		opt = cork->opt;
1392 
1393 	if (cork->ttl != 0)
1394 		ttl = cork->ttl;
1395 	else if (rt->rt_type == RTN_MULTICAST)
1396 		ttl = inet->mc_ttl;
1397 	else
1398 		ttl = ip_select_ttl(inet, &rt->dst);
1399 
1400 	iph = ip_hdr(skb);
1401 	iph->version = 4;
1402 	iph->ihl = 5;
1403 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1404 	iph->frag_off = df;
1405 	iph->ttl = ttl;
1406 	iph->protocol = sk->sk_protocol;
1407 	ip_copy_addrs(iph, fl4);
1408 	ip_select_ident(net, skb, sk);
1409 
1410 	if (opt) {
1411 		iph->ihl += opt->optlen>>2;
1412 		ip_options_build(skb, opt, cork->addr, rt, 0);
1413 	}
1414 
1415 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1416 	skb->mark = sk->sk_mark;
1417 	/*
1418 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1419 	 * on dst refcount
1420 	 */
1421 	cork->dst = NULL;
1422 	skb_dst_set(skb, &rt->dst);
1423 
1424 	if (iph->protocol == IPPROTO_ICMP)
1425 		icmp_out_count(net, ((struct icmphdr *)
1426 			skb_transport_header(skb))->type);
1427 
1428 	ip_cork_release(cork);
1429 out:
1430 	return skb;
1431 }
1432 
1433 int ip_send_skb(struct net *net, struct sk_buff *skb)
1434 {
1435 	int err;
1436 
1437 	err = ip_local_out(skb);
1438 	if (err) {
1439 		if (err > 0)
1440 			err = net_xmit_errno(err);
1441 		if (err)
1442 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1443 	}
1444 
1445 	return err;
1446 }
1447 
1448 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1449 {
1450 	struct sk_buff *skb;
1451 
1452 	skb = ip_finish_skb(sk, fl4);
1453 	if (!skb)
1454 		return 0;
1455 
1456 	/* Netfilter gets whole the not fragmented skb. */
1457 	return ip_send_skb(sock_net(sk), skb);
1458 }
1459 
1460 /*
1461  *	Throw away all pending data on the socket.
1462  */
1463 static void __ip_flush_pending_frames(struct sock *sk,
1464 				      struct sk_buff_head *queue,
1465 				      struct inet_cork *cork)
1466 {
1467 	struct sk_buff *skb;
1468 
1469 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1470 		kfree_skb(skb);
1471 
1472 	ip_cork_release(cork);
1473 }
1474 
1475 void ip_flush_pending_frames(struct sock *sk)
1476 {
1477 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1478 }
1479 
1480 struct sk_buff *ip_make_skb(struct sock *sk,
1481 			    struct flowi4 *fl4,
1482 			    int getfrag(void *from, char *to, int offset,
1483 					int len, int odd, struct sk_buff *skb),
1484 			    void *from, int length, int transhdrlen,
1485 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1486 			    unsigned int flags)
1487 {
1488 	struct inet_cork cork;
1489 	struct sk_buff_head queue;
1490 	int err;
1491 
1492 	if (flags & MSG_PROBE)
1493 		return NULL;
1494 
1495 	__skb_queue_head_init(&queue);
1496 
1497 	cork.flags = 0;
1498 	cork.addr = 0;
1499 	cork.opt = NULL;
1500 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1501 	if (err)
1502 		return ERR_PTR(err);
1503 
1504 	err = __ip_append_data(sk, fl4, &queue, &cork,
1505 			       &current->task_frag, getfrag,
1506 			       from, length, transhdrlen, flags);
1507 	if (err) {
1508 		__ip_flush_pending_frames(sk, &queue, &cork);
1509 		return ERR_PTR(err);
1510 	}
1511 
1512 	return __ip_make_skb(sk, fl4, &queue, &cork);
1513 }
1514 
1515 /*
1516  *	Fetch data from kernel space and fill in checksum if needed.
1517  */
1518 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1519 			      int len, int odd, struct sk_buff *skb)
1520 {
1521 	__wsum csum;
1522 
1523 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1524 	skb->csum = csum_block_add(skb->csum, csum, odd);
1525 	return 0;
1526 }
1527 
1528 /*
1529  *	Generic function to send a packet as reply to another packet.
1530  *	Used to send some TCP resets/acks so far.
1531  */
1532 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1533 			   const struct ip_options *sopt,
1534 			   __be32 daddr, __be32 saddr,
1535 			   const struct ip_reply_arg *arg,
1536 			   unsigned int len)
1537 {
1538 	struct ip_options_data replyopts;
1539 	struct ipcm_cookie ipc;
1540 	struct flowi4 fl4;
1541 	struct rtable *rt = skb_rtable(skb);
1542 	struct net *net = sock_net(sk);
1543 	struct sk_buff *nskb;
1544 	int err;
1545 
1546 	if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1547 		return;
1548 
1549 	ipc.addr = daddr;
1550 	ipc.opt = NULL;
1551 	ipc.tx_flags = 0;
1552 	ipc.ttl = 0;
1553 	ipc.tos = -1;
1554 
1555 	if (replyopts.opt.opt.optlen) {
1556 		ipc.opt = &replyopts.opt;
1557 
1558 		if (replyopts.opt.opt.srr)
1559 			daddr = replyopts.opt.opt.faddr;
1560 	}
1561 
1562 	flowi4_init_output(&fl4, arg->bound_dev_if,
1563 			   IP4_REPLY_MARK(net, skb->mark),
1564 			   RT_TOS(arg->tos),
1565 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1566 			   ip_reply_arg_flowi_flags(arg),
1567 			   daddr, saddr,
1568 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1569 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1570 	rt = ip_route_output_key(net, &fl4);
1571 	if (IS_ERR(rt))
1572 		return;
1573 
1574 	inet_sk(sk)->tos = arg->tos;
1575 
1576 	sk->sk_priority = skb->priority;
1577 	sk->sk_protocol = ip_hdr(skb)->protocol;
1578 	sk->sk_bound_dev_if = arg->bound_dev_if;
1579 	sk->sk_sndbuf = sysctl_wmem_default;
1580 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1581 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1582 	if (unlikely(err)) {
1583 		ip_flush_pending_frames(sk);
1584 		goto out;
1585 	}
1586 
1587 	nskb = skb_peek(&sk->sk_write_queue);
1588 	if (nskb) {
1589 		if (arg->csumoffset >= 0)
1590 			*((__sum16 *)skb_transport_header(nskb) +
1591 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1592 								arg->csum));
1593 		nskb->ip_summed = CHECKSUM_NONE;
1594 		skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb));
1595 		ip_push_pending_frames(sk, &fl4);
1596 	}
1597 out:
1598 	ip_rt_put(rt);
1599 }
1600 
1601 void __init ip_init(void)
1602 {
1603 	ip_rt_init();
1604 	inet_initpeers();
1605 
1606 #if defined(CONFIG_IP_MULTICAST)
1607 	igmp_mc_init();
1608 #endif
1609 }
1610