xref: /openbmc/linux/net/ipv4/ip_output.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82 
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 
85 /* Generate a checksum for an outgoing IP datagram. */
86 __inline__ void ip_send_check(struct iphdr *iph)
87 {
88 	iph->check = 0;
89 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
90 }
91 
92 int __ip_local_out(struct sk_buff *skb)
93 {
94 	struct iphdr *iph = ip_hdr(skb);
95 
96 	iph->tot_len = htons(skb->len);
97 	ip_send_check(iph);
98 	return nf_hook(PF_INET, NF_INET_LOCAL_OUT, skb, NULL, skb->dst->dev,
99 		       dst_output);
100 }
101 
102 int ip_local_out(struct sk_buff *skb)
103 {
104 	int err;
105 
106 	err = __ip_local_out(skb);
107 	if (likely(err == 1))
108 		err = dst_output(skb);
109 
110 	return err;
111 }
112 EXPORT_SYMBOL_GPL(ip_local_out);
113 
114 /* dev_loopback_xmit for use with netfilter. */
115 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
116 {
117 	skb_reset_mac_header(newskb);
118 	__skb_pull(newskb, skb_network_offset(newskb));
119 	newskb->pkt_type = PACKET_LOOPBACK;
120 	newskb->ip_summed = CHECKSUM_UNNECESSARY;
121 	WARN_ON(!newskb->dst);
122 	netif_rx(newskb);
123 	return 0;
124 }
125 
126 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
127 {
128 	int ttl = inet->uc_ttl;
129 
130 	if (ttl < 0)
131 		ttl = dst_metric(dst, RTAX_HOPLIMIT);
132 	return ttl;
133 }
134 
135 /*
136  *		Add an ip header to a skbuff and send it out.
137  *
138  */
139 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
140 			  __be32 saddr, __be32 daddr, struct ip_options *opt)
141 {
142 	struct inet_sock *inet = inet_sk(sk);
143 	struct rtable *rt = skb->rtable;
144 	struct iphdr *iph;
145 
146 	/* Build the IP header. */
147 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
148 	skb_reset_network_header(skb);
149 	iph = ip_hdr(skb);
150 	iph->version  = 4;
151 	iph->ihl      = 5;
152 	iph->tos      = inet->tos;
153 	if (ip_dont_fragment(sk, &rt->u.dst))
154 		iph->frag_off = htons(IP_DF);
155 	else
156 		iph->frag_off = 0;
157 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
158 	iph->daddr    = rt->rt_dst;
159 	iph->saddr    = rt->rt_src;
160 	iph->protocol = sk->sk_protocol;
161 	ip_select_ident(iph, &rt->u.dst, sk);
162 
163 	if (opt && opt->optlen) {
164 		iph->ihl += opt->optlen>>2;
165 		ip_options_build(skb, opt, daddr, rt, 0);
166 	}
167 
168 	skb->priority = sk->sk_priority;
169 	skb->mark = sk->sk_mark;
170 
171 	/* Send it out. */
172 	return ip_local_out(skb);
173 }
174 
175 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
176 
177 static inline int ip_finish_output2(struct sk_buff *skb)
178 {
179 	struct dst_entry *dst = skb->dst;
180 	struct rtable *rt = (struct rtable *)dst;
181 	struct net_device *dev = dst->dev;
182 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
183 
184 	if (rt->rt_type == RTN_MULTICAST)
185 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTMCASTPKTS);
186 	else if (rt->rt_type == RTN_BROADCAST)
187 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTBCASTPKTS);
188 
189 	/* Be paranoid, rather than too clever. */
190 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
191 		struct sk_buff *skb2;
192 
193 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
194 		if (skb2 == NULL) {
195 			kfree_skb(skb);
196 			return -ENOMEM;
197 		}
198 		if (skb->sk)
199 			skb_set_owner_w(skb2, skb->sk);
200 		kfree_skb(skb);
201 		skb = skb2;
202 	}
203 
204 	if (dst->hh)
205 		return neigh_hh_output(dst->hh, skb);
206 	else if (dst->neighbour)
207 		return dst->neighbour->output(skb);
208 
209 	if (net_ratelimit())
210 		printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
211 	kfree_skb(skb);
212 	return -EINVAL;
213 }
214 
215 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
216 {
217 	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
218 
219 	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
220 	       skb->dst->dev->mtu : dst_mtu(skb->dst);
221 }
222 
223 static int ip_finish_output(struct sk_buff *skb)
224 {
225 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
226 	/* Policy lookup after SNAT yielded a new policy */
227 	if (skb->dst->xfrm != NULL) {
228 		IPCB(skb)->flags |= IPSKB_REROUTED;
229 		return dst_output(skb);
230 	}
231 #endif
232 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
233 		return ip_fragment(skb, ip_finish_output2);
234 	else
235 		return ip_finish_output2(skb);
236 }
237 
238 int ip_mc_output(struct sk_buff *skb)
239 {
240 	struct sock *sk = skb->sk;
241 	struct rtable *rt = skb->rtable;
242 	struct net_device *dev = rt->u.dst.dev;
243 
244 	/*
245 	 *	If the indicated interface is up and running, send the packet.
246 	 */
247 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTREQUESTS);
248 
249 	skb->dev = dev;
250 	skb->protocol = htons(ETH_P_IP);
251 
252 	/*
253 	 *	Multicasts are looped back for other local users
254 	 */
255 
256 	if (rt->rt_flags&RTCF_MULTICAST) {
257 		if ((!sk || inet_sk(sk)->mc_loop)
258 #ifdef CONFIG_IP_MROUTE
259 		/* Small optimization: do not loopback not local frames,
260 		   which returned after forwarding; they will be  dropped
261 		   by ip_mr_input in any case.
262 		   Note, that local frames are looped back to be delivered
263 		   to local recipients.
264 
265 		   This check is duplicated in ip_mr_input at the moment.
266 		 */
267 		    && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
268 #endif
269 		) {
270 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
271 			if (newskb)
272 				NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb,
273 					NULL, newskb->dev,
274 					ip_dev_loopback_xmit);
275 		}
276 
277 		/* Multicasts with ttl 0 must not go beyond the host */
278 
279 		if (ip_hdr(skb)->ttl == 0) {
280 			kfree_skb(skb);
281 			return 0;
282 		}
283 	}
284 
285 	if (rt->rt_flags&RTCF_BROADCAST) {
286 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
287 		if (newskb)
288 			NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb, NULL,
289 				newskb->dev, ip_dev_loopback_xmit);
290 	}
291 
292 	return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, skb->dev,
293 			    ip_finish_output,
294 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
295 }
296 
297 int ip_output(struct sk_buff *skb)
298 {
299 	struct net_device *dev = skb->dst->dev;
300 
301 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTREQUESTS);
302 
303 	skb->dev = dev;
304 	skb->protocol = htons(ETH_P_IP);
305 
306 	return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, dev,
307 			    ip_finish_output,
308 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
309 }
310 
311 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
312 {
313 	struct sock *sk = skb->sk;
314 	struct inet_sock *inet = inet_sk(sk);
315 	struct ip_options *opt = inet->opt;
316 	struct rtable *rt;
317 	struct iphdr *iph;
318 
319 	/* Skip all of this if the packet is already routed,
320 	 * f.e. by something like SCTP.
321 	 */
322 	rt = skb->rtable;
323 	if (rt != NULL)
324 		goto packet_routed;
325 
326 	/* Make sure we can route this packet. */
327 	rt = (struct rtable *)__sk_dst_check(sk, 0);
328 	if (rt == NULL) {
329 		__be32 daddr;
330 
331 		/* Use correct destination address if we have options. */
332 		daddr = inet->daddr;
333 		if(opt && opt->srr)
334 			daddr = opt->faddr;
335 
336 		{
337 			struct flowi fl = { .oif = sk->sk_bound_dev_if,
338 					    .nl_u = { .ip4_u =
339 						      { .daddr = daddr,
340 							.saddr = inet->saddr,
341 							.tos = RT_CONN_FLAGS(sk) } },
342 					    .proto = sk->sk_protocol,
343 					    .flags = inet_sk_flowi_flags(sk),
344 					    .uli_u = { .ports =
345 						       { .sport = inet->sport,
346 							 .dport = inet->dport } } };
347 
348 			/* If this fails, retransmit mechanism of transport layer will
349 			 * keep trying until route appears or the connection times
350 			 * itself out.
351 			 */
352 			security_sk_classify_flow(sk, &fl);
353 			if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
354 				goto no_route;
355 		}
356 		sk_setup_caps(sk, &rt->u.dst);
357 	}
358 	skb->dst = dst_clone(&rt->u.dst);
359 
360 packet_routed:
361 	if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
362 		goto no_route;
363 
364 	/* OK, we know where to send it, allocate and build IP header. */
365 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
366 	skb_reset_network_header(skb);
367 	iph = ip_hdr(skb);
368 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
369 	if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
370 		iph->frag_off = htons(IP_DF);
371 	else
372 		iph->frag_off = 0;
373 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
374 	iph->protocol = sk->sk_protocol;
375 	iph->saddr    = rt->rt_src;
376 	iph->daddr    = rt->rt_dst;
377 	/* Transport layer set skb->h.foo itself. */
378 
379 	if (opt && opt->optlen) {
380 		iph->ihl += opt->optlen >> 2;
381 		ip_options_build(skb, opt, inet->daddr, rt, 0);
382 	}
383 
384 	ip_select_ident_more(iph, &rt->u.dst, sk,
385 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
386 
387 	skb->priority = sk->sk_priority;
388 	skb->mark = sk->sk_mark;
389 
390 	return ip_local_out(skb);
391 
392 no_route:
393 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
394 	kfree_skb(skb);
395 	return -EHOSTUNREACH;
396 }
397 
398 
399 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
400 {
401 	to->pkt_type = from->pkt_type;
402 	to->priority = from->priority;
403 	to->protocol = from->protocol;
404 	dst_release(to->dst);
405 	to->dst = dst_clone(from->dst);
406 	to->dev = from->dev;
407 	to->mark = from->mark;
408 
409 	/* Copy the flags to each fragment. */
410 	IPCB(to)->flags = IPCB(from)->flags;
411 
412 #ifdef CONFIG_NET_SCHED
413 	to->tc_index = from->tc_index;
414 #endif
415 	nf_copy(to, from);
416 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
417     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
418 	to->nf_trace = from->nf_trace;
419 #endif
420 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
421 	to->ipvs_property = from->ipvs_property;
422 #endif
423 	skb_copy_secmark(to, from);
424 }
425 
426 /*
427  *	This IP datagram is too large to be sent in one piece.  Break it up into
428  *	smaller pieces (each of size equal to IP header plus
429  *	a block of the data of the original IP data part) that will yet fit in a
430  *	single device frame, and queue such a frame for sending.
431  */
432 
433 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
434 {
435 	struct iphdr *iph;
436 	int raw = 0;
437 	int ptr;
438 	struct net_device *dev;
439 	struct sk_buff *skb2;
440 	unsigned int mtu, hlen, left, len, ll_rs, pad;
441 	int offset;
442 	__be16 not_last_frag;
443 	struct rtable *rt = skb->rtable;
444 	int err = 0;
445 
446 	dev = rt->u.dst.dev;
447 
448 	/*
449 	 *	Point into the IP datagram header.
450 	 */
451 
452 	iph = ip_hdr(skb);
453 
454 	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
455 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
456 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
457 			  htonl(ip_skb_dst_mtu(skb)));
458 		kfree_skb(skb);
459 		return -EMSGSIZE;
460 	}
461 
462 	/*
463 	 *	Setup starting values.
464 	 */
465 
466 	hlen = iph->ihl * 4;
467 	mtu = dst_mtu(&rt->u.dst) - hlen;	/* Size of data space */
468 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
469 
470 	/* When frag_list is given, use it. First, check its validity:
471 	 * some transformers could create wrong frag_list or break existing
472 	 * one, it is not prohibited. In this case fall back to copying.
473 	 *
474 	 * LATER: this step can be merged to real generation of fragments,
475 	 * we can switch to copy when see the first bad fragment.
476 	 */
477 	if (skb_shinfo(skb)->frag_list) {
478 		struct sk_buff *frag;
479 		int first_len = skb_pagelen(skb);
480 		int truesizes = 0;
481 
482 		if (first_len - hlen > mtu ||
483 		    ((first_len - hlen) & 7) ||
484 		    (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
485 		    skb_cloned(skb))
486 			goto slow_path;
487 
488 		for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
489 			/* Correct geometry. */
490 			if (frag->len > mtu ||
491 			    ((frag->len & 7) && frag->next) ||
492 			    skb_headroom(frag) < hlen)
493 			    goto slow_path;
494 
495 			/* Partially cloned skb? */
496 			if (skb_shared(frag))
497 				goto slow_path;
498 
499 			BUG_ON(frag->sk);
500 			if (skb->sk) {
501 				sock_hold(skb->sk);
502 				frag->sk = skb->sk;
503 				frag->destructor = sock_wfree;
504 				truesizes += frag->truesize;
505 			}
506 		}
507 
508 		/* Everything is OK. Generate! */
509 
510 		err = 0;
511 		offset = 0;
512 		frag = skb_shinfo(skb)->frag_list;
513 		skb_shinfo(skb)->frag_list = NULL;
514 		skb->data_len = first_len - skb_headlen(skb);
515 		skb->truesize -= truesizes;
516 		skb->len = first_len;
517 		iph->tot_len = htons(first_len);
518 		iph->frag_off = htons(IP_MF);
519 		ip_send_check(iph);
520 
521 		for (;;) {
522 			/* Prepare header of the next frame,
523 			 * before previous one went down. */
524 			if (frag) {
525 				frag->ip_summed = CHECKSUM_NONE;
526 				skb_reset_transport_header(frag);
527 				__skb_push(frag, hlen);
528 				skb_reset_network_header(frag);
529 				memcpy(skb_network_header(frag), iph, hlen);
530 				iph = ip_hdr(frag);
531 				iph->tot_len = htons(frag->len);
532 				ip_copy_metadata(frag, skb);
533 				if (offset == 0)
534 					ip_options_fragment(frag);
535 				offset += skb->len - hlen;
536 				iph->frag_off = htons(offset>>3);
537 				if (frag->next != NULL)
538 					iph->frag_off |= htons(IP_MF);
539 				/* Ready, complete checksum */
540 				ip_send_check(iph);
541 			}
542 
543 			err = output(skb);
544 
545 			if (!err)
546 				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
547 			if (err || !frag)
548 				break;
549 
550 			skb = frag;
551 			frag = skb->next;
552 			skb->next = NULL;
553 		}
554 
555 		if (err == 0) {
556 			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
557 			return 0;
558 		}
559 
560 		while (frag) {
561 			skb = frag->next;
562 			kfree_skb(frag);
563 			frag = skb;
564 		}
565 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
566 		return err;
567 	}
568 
569 slow_path:
570 	left = skb->len - hlen;		/* Space per frame */
571 	ptr = raw + hlen;		/* Where to start from */
572 
573 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
574 	 * we need to make room for the encapsulating header
575 	 */
576 	pad = nf_bridge_pad(skb);
577 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
578 	mtu -= pad;
579 
580 	/*
581 	 *	Fragment the datagram.
582 	 */
583 
584 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
585 	not_last_frag = iph->frag_off & htons(IP_MF);
586 
587 	/*
588 	 *	Keep copying data until we run out.
589 	 */
590 
591 	while (left > 0) {
592 		len = left;
593 		/* IF: it doesn't fit, use 'mtu' - the data space left */
594 		if (len > mtu)
595 			len = mtu;
596 		/* IF: we are not sending upto and including the packet end
597 		   then align the next start on an eight byte boundary */
598 		if (len < left)	{
599 			len &= ~7;
600 		}
601 		/*
602 		 *	Allocate buffer.
603 		 */
604 
605 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
606 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
607 			err = -ENOMEM;
608 			goto fail;
609 		}
610 
611 		/*
612 		 *	Set up data on packet
613 		 */
614 
615 		ip_copy_metadata(skb2, skb);
616 		skb_reserve(skb2, ll_rs);
617 		skb_put(skb2, len + hlen);
618 		skb_reset_network_header(skb2);
619 		skb2->transport_header = skb2->network_header + hlen;
620 
621 		/*
622 		 *	Charge the memory for the fragment to any owner
623 		 *	it might possess
624 		 */
625 
626 		if (skb->sk)
627 			skb_set_owner_w(skb2, skb->sk);
628 
629 		/*
630 		 *	Copy the packet header into the new buffer.
631 		 */
632 
633 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
634 
635 		/*
636 		 *	Copy a block of the IP datagram.
637 		 */
638 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
639 			BUG();
640 		left -= len;
641 
642 		/*
643 		 *	Fill in the new header fields.
644 		 */
645 		iph = ip_hdr(skb2);
646 		iph->frag_off = htons((offset >> 3));
647 
648 		/* ANK: dirty, but effective trick. Upgrade options only if
649 		 * the segment to be fragmented was THE FIRST (otherwise,
650 		 * options are already fixed) and make it ONCE
651 		 * on the initial skb, so that all the following fragments
652 		 * will inherit fixed options.
653 		 */
654 		if (offset == 0)
655 			ip_options_fragment(skb);
656 
657 		/*
658 		 *	Added AC : If we are fragmenting a fragment that's not the
659 		 *		   last fragment then keep MF on each bit
660 		 */
661 		if (left > 0 || not_last_frag)
662 			iph->frag_off |= htons(IP_MF);
663 		ptr += len;
664 		offset += len;
665 
666 		/*
667 		 *	Put this fragment into the sending queue.
668 		 */
669 		iph->tot_len = htons(len + hlen);
670 
671 		ip_send_check(iph);
672 
673 		err = output(skb2);
674 		if (err)
675 			goto fail;
676 
677 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
678 	}
679 	kfree_skb(skb);
680 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
681 	return err;
682 
683 fail:
684 	kfree_skb(skb);
685 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
686 	return err;
687 }
688 
689 EXPORT_SYMBOL(ip_fragment);
690 
691 int
692 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
693 {
694 	struct iovec *iov = from;
695 
696 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
697 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
698 			return -EFAULT;
699 	} else {
700 		__wsum csum = 0;
701 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
702 			return -EFAULT;
703 		skb->csum = csum_block_add(skb->csum, csum, odd);
704 	}
705 	return 0;
706 }
707 
708 static inline __wsum
709 csum_page(struct page *page, int offset, int copy)
710 {
711 	char *kaddr;
712 	__wsum csum;
713 	kaddr = kmap(page);
714 	csum = csum_partial(kaddr + offset, copy, 0);
715 	kunmap(page);
716 	return csum;
717 }
718 
719 static inline int ip_ufo_append_data(struct sock *sk,
720 			int getfrag(void *from, char *to, int offset, int len,
721 			       int odd, struct sk_buff *skb),
722 			void *from, int length, int hh_len, int fragheaderlen,
723 			int transhdrlen, int mtu,unsigned int flags)
724 {
725 	struct sk_buff *skb;
726 	int err;
727 
728 	/* There is support for UDP fragmentation offload by network
729 	 * device, so create one single skb packet containing complete
730 	 * udp datagram
731 	 */
732 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
733 		skb = sock_alloc_send_skb(sk,
734 			hh_len + fragheaderlen + transhdrlen + 20,
735 			(flags & MSG_DONTWAIT), &err);
736 
737 		if (skb == NULL)
738 			return err;
739 
740 		/* reserve space for Hardware header */
741 		skb_reserve(skb, hh_len);
742 
743 		/* create space for UDP/IP header */
744 		skb_put(skb,fragheaderlen + transhdrlen);
745 
746 		/* initialize network header pointer */
747 		skb_reset_network_header(skb);
748 
749 		/* initialize protocol header pointer */
750 		skb->transport_header = skb->network_header + fragheaderlen;
751 
752 		skb->ip_summed = CHECKSUM_PARTIAL;
753 		skb->csum = 0;
754 		sk->sk_sndmsg_off = 0;
755 
756 		/* specify the length of each IP datagram fragment */
757 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
758 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
759 		__skb_queue_tail(&sk->sk_write_queue, skb);
760 	}
761 
762 	return skb_append_datato_frags(sk, skb, getfrag, from,
763 				       (length - transhdrlen));
764 }
765 
766 /*
767  *	ip_append_data() and ip_append_page() can make one large IP datagram
768  *	from many pieces of data. Each pieces will be holded on the socket
769  *	until ip_push_pending_frames() is called. Each piece can be a page
770  *	or non-page data.
771  *
772  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
773  *	this interface potentially.
774  *
775  *	LATER: length must be adjusted by pad at tail, when it is required.
776  */
777 int ip_append_data(struct sock *sk,
778 		   int getfrag(void *from, char *to, int offset, int len,
779 			       int odd, struct sk_buff *skb),
780 		   void *from, int length, int transhdrlen,
781 		   struct ipcm_cookie *ipc, struct rtable *rt,
782 		   unsigned int flags)
783 {
784 	struct inet_sock *inet = inet_sk(sk);
785 	struct sk_buff *skb;
786 
787 	struct ip_options *opt = NULL;
788 	int hh_len;
789 	int exthdrlen;
790 	int mtu;
791 	int copy;
792 	int err;
793 	int offset = 0;
794 	unsigned int maxfraglen, fragheaderlen;
795 	int csummode = CHECKSUM_NONE;
796 
797 	if (flags&MSG_PROBE)
798 		return 0;
799 
800 	if (skb_queue_empty(&sk->sk_write_queue)) {
801 		/*
802 		 * setup for corking.
803 		 */
804 		opt = ipc->opt;
805 		if (opt) {
806 			if (inet->cork.opt == NULL) {
807 				inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
808 				if (unlikely(inet->cork.opt == NULL))
809 					return -ENOBUFS;
810 			}
811 			memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
812 			inet->cork.flags |= IPCORK_OPT;
813 			inet->cork.addr = ipc->addr;
814 		}
815 		dst_hold(&rt->u.dst);
816 		inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
817 					    rt->u.dst.dev->mtu :
818 					    dst_mtu(rt->u.dst.path);
819 		inet->cork.dst = &rt->u.dst;
820 		inet->cork.length = 0;
821 		sk->sk_sndmsg_page = NULL;
822 		sk->sk_sndmsg_off = 0;
823 		if ((exthdrlen = rt->u.dst.header_len) != 0) {
824 			length += exthdrlen;
825 			transhdrlen += exthdrlen;
826 		}
827 	} else {
828 		rt = (struct rtable *)inet->cork.dst;
829 		if (inet->cork.flags & IPCORK_OPT)
830 			opt = inet->cork.opt;
831 
832 		transhdrlen = 0;
833 		exthdrlen = 0;
834 		mtu = inet->cork.fragsize;
835 	}
836 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
837 
838 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
839 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
840 
841 	if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
842 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
843 		return -EMSGSIZE;
844 	}
845 
846 	/*
847 	 * transhdrlen > 0 means that this is the first fragment and we wish
848 	 * it won't be fragmented in the future.
849 	 */
850 	if (transhdrlen &&
851 	    length + fragheaderlen <= mtu &&
852 	    rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
853 	    !exthdrlen)
854 		csummode = CHECKSUM_PARTIAL;
855 
856 	inet->cork.length += length;
857 	if (((length> mtu) || !skb_queue_empty(&sk->sk_write_queue)) &&
858 	    (sk->sk_protocol == IPPROTO_UDP) &&
859 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
860 		err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
861 					 fragheaderlen, transhdrlen, mtu,
862 					 flags);
863 		if (err)
864 			goto error;
865 		return 0;
866 	}
867 
868 	/* So, what's going on in the loop below?
869 	 *
870 	 * We use calculated fragment length to generate chained skb,
871 	 * each of segments is IP fragment ready for sending to network after
872 	 * adding appropriate IP header.
873 	 */
874 
875 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
876 		goto alloc_new_skb;
877 
878 	while (length > 0) {
879 		/* Check if the remaining data fits into current packet. */
880 		copy = mtu - skb->len;
881 		if (copy < length)
882 			copy = maxfraglen - skb->len;
883 		if (copy <= 0) {
884 			char *data;
885 			unsigned int datalen;
886 			unsigned int fraglen;
887 			unsigned int fraggap;
888 			unsigned int alloclen;
889 			struct sk_buff *skb_prev;
890 alloc_new_skb:
891 			skb_prev = skb;
892 			if (skb_prev)
893 				fraggap = skb_prev->len - maxfraglen;
894 			else
895 				fraggap = 0;
896 
897 			/*
898 			 * If remaining data exceeds the mtu,
899 			 * we know we need more fragment(s).
900 			 */
901 			datalen = length + fraggap;
902 			if (datalen > mtu - fragheaderlen)
903 				datalen = maxfraglen - fragheaderlen;
904 			fraglen = datalen + fragheaderlen;
905 
906 			if ((flags & MSG_MORE) &&
907 			    !(rt->u.dst.dev->features&NETIF_F_SG))
908 				alloclen = mtu;
909 			else
910 				alloclen = datalen + fragheaderlen;
911 
912 			/* The last fragment gets additional space at tail.
913 			 * Note, with MSG_MORE we overallocate on fragments,
914 			 * because we have no idea what fragment will be
915 			 * the last.
916 			 */
917 			if (datalen == length + fraggap)
918 				alloclen += rt->u.dst.trailer_len;
919 
920 			if (transhdrlen) {
921 				skb = sock_alloc_send_skb(sk,
922 						alloclen + hh_len + 15,
923 						(flags & MSG_DONTWAIT), &err);
924 			} else {
925 				skb = NULL;
926 				if (atomic_read(&sk->sk_wmem_alloc) <=
927 				    2 * sk->sk_sndbuf)
928 					skb = sock_wmalloc(sk,
929 							   alloclen + hh_len + 15, 1,
930 							   sk->sk_allocation);
931 				if (unlikely(skb == NULL))
932 					err = -ENOBUFS;
933 			}
934 			if (skb == NULL)
935 				goto error;
936 
937 			/*
938 			 *	Fill in the control structures
939 			 */
940 			skb->ip_summed = csummode;
941 			skb->csum = 0;
942 			skb_reserve(skb, hh_len);
943 
944 			/*
945 			 *	Find where to start putting bytes.
946 			 */
947 			data = skb_put(skb, fraglen);
948 			skb_set_network_header(skb, exthdrlen);
949 			skb->transport_header = (skb->network_header +
950 						 fragheaderlen);
951 			data += fragheaderlen;
952 
953 			if (fraggap) {
954 				skb->csum = skb_copy_and_csum_bits(
955 					skb_prev, maxfraglen,
956 					data + transhdrlen, fraggap, 0);
957 				skb_prev->csum = csum_sub(skb_prev->csum,
958 							  skb->csum);
959 				data += fraggap;
960 				pskb_trim_unique(skb_prev, maxfraglen);
961 			}
962 
963 			copy = datalen - transhdrlen - fraggap;
964 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
965 				err = -EFAULT;
966 				kfree_skb(skb);
967 				goto error;
968 			}
969 
970 			offset += copy;
971 			length -= datalen - fraggap;
972 			transhdrlen = 0;
973 			exthdrlen = 0;
974 			csummode = CHECKSUM_NONE;
975 
976 			/*
977 			 * Put the packet on the pending queue.
978 			 */
979 			__skb_queue_tail(&sk->sk_write_queue, skb);
980 			continue;
981 		}
982 
983 		if (copy > length)
984 			copy = length;
985 
986 		if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
987 			unsigned int off;
988 
989 			off = skb->len;
990 			if (getfrag(from, skb_put(skb, copy),
991 					offset, copy, off, skb) < 0) {
992 				__skb_trim(skb, off);
993 				err = -EFAULT;
994 				goto error;
995 			}
996 		} else {
997 			int i = skb_shinfo(skb)->nr_frags;
998 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
999 			struct page *page = sk->sk_sndmsg_page;
1000 			int off = sk->sk_sndmsg_off;
1001 			unsigned int left;
1002 
1003 			if (page && (left = PAGE_SIZE - off) > 0) {
1004 				if (copy >= left)
1005 					copy = left;
1006 				if (page != frag->page) {
1007 					if (i == MAX_SKB_FRAGS) {
1008 						err = -EMSGSIZE;
1009 						goto error;
1010 					}
1011 					get_page(page);
1012 					skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1013 					frag = &skb_shinfo(skb)->frags[i];
1014 				}
1015 			} else if (i < MAX_SKB_FRAGS) {
1016 				if (copy > PAGE_SIZE)
1017 					copy = PAGE_SIZE;
1018 				page = alloc_pages(sk->sk_allocation, 0);
1019 				if (page == NULL)  {
1020 					err = -ENOMEM;
1021 					goto error;
1022 				}
1023 				sk->sk_sndmsg_page = page;
1024 				sk->sk_sndmsg_off = 0;
1025 
1026 				skb_fill_page_desc(skb, i, page, 0, 0);
1027 				frag = &skb_shinfo(skb)->frags[i];
1028 			} else {
1029 				err = -EMSGSIZE;
1030 				goto error;
1031 			}
1032 			if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1033 				err = -EFAULT;
1034 				goto error;
1035 			}
1036 			sk->sk_sndmsg_off += copy;
1037 			frag->size += copy;
1038 			skb->len += copy;
1039 			skb->data_len += copy;
1040 			skb->truesize += copy;
1041 			atomic_add(copy, &sk->sk_wmem_alloc);
1042 		}
1043 		offset += copy;
1044 		length -= copy;
1045 	}
1046 
1047 	return 0;
1048 
1049 error:
1050 	inet->cork.length -= length;
1051 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1052 	return err;
1053 }
1054 
1055 ssize_t	ip_append_page(struct sock *sk, struct page *page,
1056 		       int offset, size_t size, int flags)
1057 {
1058 	struct inet_sock *inet = inet_sk(sk);
1059 	struct sk_buff *skb;
1060 	struct rtable *rt;
1061 	struct ip_options *opt = NULL;
1062 	int hh_len;
1063 	int mtu;
1064 	int len;
1065 	int err;
1066 	unsigned int maxfraglen, fragheaderlen, fraggap;
1067 
1068 	if (inet->hdrincl)
1069 		return -EPERM;
1070 
1071 	if (flags&MSG_PROBE)
1072 		return 0;
1073 
1074 	if (skb_queue_empty(&sk->sk_write_queue))
1075 		return -EINVAL;
1076 
1077 	rt = (struct rtable *)inet->cork.dst;
1078 	if (inet->cork.flags & IPCORK_OPT)
1079 		opt = inet->cork.opt;
1080 
1081 	if (!(rt->u.dst.dev->features&NETIF_F_SG))
1082 		return -EOPNOTSUPP;
1083 
1084 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1085 	mtu = inet->cork.fragsize;
1086 
1087 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1088 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1089 
1090 	if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1091 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1092 		return -EMSGSIZE;
1093 	}
1094 
1095 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1096 		return -EINVAL;
1097 
1098 	inet->cork.length += size;
1099 	if ((sk->sk_protocol == IPPROTO_UDP) &&
1100 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
1101 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1102 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1103 	}
1104 
1105 
1106 	while (size > 0) {
1107 		int i;
1108 
1109 		if (skb_is_gso(skb))
1110 			len = size;
1111 		else {
1112 
1113 			/* Check if the remaining data fits into current packet. */
1114 			len = mtu - skb->len;
1115 			if (len < size)
1116 				len = maxfraglen - skb->len;
1117 		}
1118 		if (len <= 0) {
1119 			struct sk_buff *skb_prev;
1120 			int alloclen;
1121 
1122 			skb_prev = skb;
1123 			fraggap = skb_prev->len - maxfraglen;
1124 
1125 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1126 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1127 			if (unlikely(!skb)) {
1128 				err = -ENOBUFS;
1129 				goto error;
1130 			}
1131 
1132 			/*
1133 			 *	Fill in the control structures
1134 			 */
1135 			skb->ip_summed = CHECKSUM_NONE;
1136 			skb->csum = 0;
1137 			skb_reserve(skb, hh_len);
1138 
1139 			/*
1140 			 *	Find where to start putting bytes.
1141 			 */
1142 			skb_put(skb, fragheaderlen + fraggap);
1143 			skb_reset_network_header(skb);
1144 			skb->transport_header = (skb->network_header +
1145 						 fragheaderlen);
1146 			if (fraggap) {
1147 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1148 								   maxfraglen,
1149 						    skb_transport_header(skb),
1150 								   fraggap, 0);
1151 				skb_prev->csum = csum_sub(skb_prev->csum,
1152 							  skb->csum);
1153 				pskb_trim_unique(skb_prev, maxfraglen);
1154 			}
1155 
1156 			/*
1157 			 * Put the packet on the pending queue.
1158 			 */
1159 			__skb_queue_tail(&sk->sk_write_queue, skb);
1160 			continue;
1161 		}
1162 
1163 		i = skb_shinfo(skb)->nr_frags;
1164 		if (len > size)
1165 			len = size;
1166 		if (skb_can_coalesce(skb, i, page, offset)) {
1167 			skb_shinfo(skb)->frags[i-1].size += len;
1168 		} else if (i < MAX_SKB_FRAGS) {
1169 			get_page(page);
1170 			skb_fill_page_desc(skb, i, page, offset, len);
1171 		} else {
1172 			err = -EMSGSIZE;
1173 			goto error;
1174 		}
1175 
1176 		if (skb->ip_summed == CHECKSUM_NONE) {
1177 			__wsum csum;
1178 			csum = csum_page(page, offset, len);
1179 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1180 		}
1181 
1182 		skb->len += len;
1183 		skb->data_len += len;
1184 		skb->truesize += len;
1185 		atomic_add(len, &sk->sk_wmem_alloc);
1186 		offset += len;
1187 		size -= len;
1188 	}
1189 	return 0;
1190 
1191 error:
1192 	inet->cork.length -= size;
1193 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1194 	return err;
1195 }
1196 
1197 static void ip_cork_release(struct inet_sock *inet)
1198 {
1199 	inet->cork.flags &= ~IPCORK_OPT;
1200 	kfree(inet->cork.opt);
1201 	inet->cork.opt = NULL;
1202 	dst_release(inet->cork.dst);
1203 	inet->cork.dst = NULL;
1204 }
1205 
1206 /*
1207  *	Combined all pending IP fragments on the socket as one IP datagram
1208  *	and push them out.
1209  */
1210 int ip_push_pending_frames(struct sock *sk)
1211 {
1212 	struct sk_buff *skb, *tmp_skb;
1213 	struct sk_buff **tail_skb;
1214 	struct inet_sock *inet = inet_sk(sk);
1215 	struct net *net = sock_net(sk);
1216 	struct ip_options *opt = NULL;
1217 	struct rtable *rt = (struct rtable *)inet->cork.dst;
1218 	struct iphdr *iph;
1219 	__be16 df = 0;
1220 	__u8 ttl;
1221 	int err = 0;
1222 
1223 	if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1224 		goto out;
1225 	tail_skb = &(skb_shinfo(skb)->frag_list);
1226 
1227 	/* move skb->data to ip header from ext header */
1228 	if (skb->data < skb_network_header(skb))
1229 		__skb_pull(skb, skb_network_offset(skb));
1230 	while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1231 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1232 		*tail_skb = tmp_skb;
1233 		tail_skb = &(tmp_skb->next);
1234 		skb->len += tmp_skb->len;
1235 		skb->data_len += tmp_skb->len;
1236 		skb->truesize += tmp_skb->truesize;
1237 		__sock_put(tmp_skb->sk);
1238 		tmp_skb->destructor = NULL;
1239 		tmp_skb->sk = NULL;
1240 	}
1241 
1242 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1243 	 * to fragment the frame generated here. No matter, what transforms
1244 	 * how transforms change size of the packet, it will come out.
1245 	 */
1246 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1247 		skb->local_df = 1;
1248 
1249 	/* DF bit is set when we want to see DF on outgoing frames.
1250 	 * If local_df is set too, we still allow to fragment this frame
1251 	 * locally. */
1252 	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1253 	    (skb->len <= dst_mtu(&rt->u.dst) &&
1254 	     ip_dont_fragment(sk, &rt->u.dst)))
1255 		df = htons(IP_DF);
1256 
1257 	if (inet->cork.flags & IPCORK_OPT)
1258 		opt = inet->cork.opt;
1259 
1260 	if (rt->rt_type == RTN_MULTICAST)
1261 		ttl = inet->mc_ttl;
1262 	else
1263 		ttl = ip_select_ttl(inet, &rt->u.dst);
1264 
1265 	iph = (struct iphdr *)skb->data;
1266 	iph->version = 4;
1267 	iph->ihl = 5;
1268 	if (opt) {
1269 		iph->ihl += opt->optlen>>2;
1270 		ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1271 	}
1272 	iph->tos = inet->tos;
1273 	iph->frag_off = df;
1274 	ip_select_ident(iph, &rt->u.dst, sk);
1275 	iph->ttl = ttl;
1276 	iph->protocol = sk->sk_protocol;
1277 	iph->saddr = rt->rt_src;
1278 	iph->daddr = rt->rt_dst;
1279 
1280 	skb->priority = sk->sk_priority;
1281 	skb->mark = sk->sk_mark;
1282 	skb->dst = dst_clone(&rt->u.dst);
1283 
1284 	if (iph->protocol == IPPROTO_ICMP)
1285 		icmp_out_count(net, ((struct icmphdr *)
1286 			skb_transport_header(skb))->type);
1287 
1288 	/* Netfilter gets whole the not fragmented skb. */
1289 	err = ip_local_out(skb);
1290 	if (err) {
1291 		if (err > 0)
1292 			err = inet->recverr ? net_xmit_errno(err) : 0;
1293 		if (err)
1294 			goto error;
1295 	}
1296 
1297 out:
1298 	ip_cork_release(inet);
1299 	return err;
1300 
1301 error:
1302 	IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1303 	goto out;
1304 }
1305 
1306 /*
1307  *	Throw away all pending data on the socket.
1308  */
1309 void ip_flush_pending_frames(struct sock *sk)
1310 {
1311 	struct sk_buff *skb;
1312 
1313 	while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1314 		kfree_skb(skb);
1315 
1316 	ip_cork_release(inet_sk(sk));
1317 }
1318 
1319 
1320 /*
1321  *	Fetch data from kernel space and fill in checksum if needed.
1322  */
1323 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1324 			      int len, int odd, struct sk_buff *skb)
1325 {
1326 	__wsum csum;
1327 
1328 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1329 	skb->csum = csum_block_add(skb->csum, csum, odd);
1330 	return 0;
1331 }
1332 
1333 /*
1334  *	Generic function to send a packet as reply to another packet.
1335  *	Used to send TCP resets so far. ICMP should use this function too.
1336  *
1337  *	Should run single threaded per socket because it uses the sock
1338  *     	structure to pass arguments.
1339  */
1340 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1341 		   unsigned int len)
1342 {
1343 	struct inet_sock *inet = inet_sk(sk);
1344 	struct {
1345 		struct ip_options	opt;
1346 		char			data[40];
1347 	} replyopts;
1348 	struct ipcm_cookie ipc;
1349 	__be32 daddr;
1350 	struct rtable *rt = skb->rtable;
1351 
1352 	if (ip_options_echo(&replyopts.opt, skb))
1353 		return;
1354 
1355 	daddr = ipc.addr = rt->rt_src;
1356 	ipc.opt = NULL;
1357 
1358 	if (replyopts.opt.optlen) {
1359 		ipc.opt = &replyopts.opt;
1360 
1361 		if (ipc.opt->srr)
1362 			daddr = replyopts.opt.faddr;
1363 	}
1364 
1365 	{
1366 		struct flowi fl = { .oif = arg->bound_dev_if,
1367 				    .nl_u = { .ip4_u =
1368 					      { .daddr = daddr,
1369 						.saddr = rt->rt_spec_dst,
1370 						.tos = RT_TOS(ip_hdr(skb)->tos) } },
1371 				    /* Not quite clean, but right. */
1372 				    .uli_u = { .ports =
1373 					       { .sport = tcp_hdr(skb)->dest,
1374 						 .dport = tcp_hdr(skb)->source } },
1375 				    .proto = sk->sk_protocol,
1376 				    .flags = ip_reply_arg_flowi_flags(arg) };
1377 		security_skb_classify_flow(skb, &fl);
1378 		if (ip_route_output_key(sock_net(sk), &rt, &fl))
1379 			return;
1380 	}
1381 
1382 	/* And let IP do all the hard work.
1383 
1384 	   This chunk is not reenterable, hence spinlock.
1385 	   Note that it uses the fact, that this function is called
1386 	   with locally disabled BH and that sk cannot be already spinlocked.
1387 	 */
1388 	bh_lock_sock(sk);
1389 	inet->tos = ip_hdr(skb)->tos;
1390 	sk->sk_priority = skb->priority;
1391 	sk->sk_protocol = ip_hdr(skb)->protocol;
1392 	sk->sk_bound_dev_if = arg->bound_dev_if;
1393 	ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1394 		       &ipc, rt, MSG_DONTWAIT);
1395 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1396 		if (arg->csumoffset >= 0)
1397 			*((__sum16 *)skb_transport_header(skb) +
1398 			  arg->csumoffset) = csum_fold(csum_add(skb->csum,
1399 								arg->csum));
1400 		skb->ip_summed = CHECKSUM_NONE;
1401 		ip_push_pending_frames(sk);
1402 	}
1403 
1404 	bh_unlock_sock(sk);
1405 
1406 	ip_rt_put(rt);
1407 }
1408 
1409 void __init ip_init(void)
1410 {
1411 	ip_rt_init();
1412 	inet_initpeers();
1413 
1414 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1415 	igmp_mc_proc_init();
1416 #endif
1417 }
1418 
1419 EXPORT_SYMBOL(ip_generic_getfrag);
1420 EXPORT_SYMBOL(ip_queue_xmit);
1421 EXPORT_SYMBOL(ip_send_check);
1422