xref: /openbmc/linux/net/ipv4/ip_output.c (revision 82ced6fd)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82 
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 
85 /* Generate a checksum for an outgoing IP datagram. */
86 __inline__ void ip_send_check(struct iphdr *iph)
87 {
88 	iph->check = 0;
89 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
90 }
91 
92 int __ip_local_out(struct sk_buff *skb)
93 {
94 	struct iphdr *iph = ip_hdr(skb);
95 
96 	iph->tot_len = htons(skb->len);
97 	ip_send_check(iph);
98 	return nf_hook(PF_INET, NF_INET_LOCAL_OUT, skb, NULL, skb->dst->dev,
99 		       dst_output);
100 }
101 
102 int ip_local_out(struct sk_buff *skb)
103 {
104 	int err;
105 
106 	err = __ip_local_out(skb);
107 	if (likely(err == 1))
108 		err = dst_output(skb);
109 
110 	return err;
111 }
112 EXPORT_SYMBOL_GPL(ip_local_out);
113 
114 /* dev_loopback_xmit for use with netfilter. */
115 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
116 {
117 	skb_reset_mac_header(newskb);
118 	__skb_pull(newskb, skb_network_offset(newskb));
119 	newskb->pkt_type = PACKET_LOOPBACK;
120 	newskb->ip_summed = CHECKSUM_UNNECESSARY;
121 	WARN_ON(!newskb->dst);
122 	netif_rx(newskb);
123 	return 0;
124 }
125 
126 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
127 {
128 	int ttl = inet->uc_ttl;
129 
130 	if (ttl < 0)
131 		ttl = dst_metric(dst, RTAX_HOPLIMIT);
132 	return ttl;
133 }
134 
135 /*
136  *		Add an ip header to a skbuff and send it out.
137  *
138  */
139 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
140 			  __be32 saddr, __be32 daddr, struct ip_options *opt)
141 {
142 	struct inet_sock *inet = inet_sk(sk);
143 	struct rtable *rt = skb->rtable;
144 	struct iphdr *iph;
145 
146 	/* Build the IP header. */
147 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
148 	skb_reset_network_header(skb);
149 	iph = ip_hdr(skb);
150 	iph->version  = 4;
151 	iph->ihl      = 5;
152 	iph->tos      = inet->tos;
153 	if (ip_dont_fragment(sk, &rt->u.dst))
154 		iph->frag_off = htons(IP_DF);
155 	else
156 		iph->frag_off = 0;
157 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
158 	iph->daddr    = rt->rt_dst;
159 	iph->saddr    = rt->rt_src;
160 	iph->protocol = sk->sk_protocol;
161 	ip_select_ident(iph, &rt->u.dst, sk);
162 
163 	if (opt && opt->optlen) {
164 		iph->ihl += opt->optlen>>2;
165 		ip_options_build(skb, opt, daddr, rt, 0);
166 	}
167 
168 	skb->priority = sk->sk_priority;
169 	skb->mark = sk->sk_mark;
170 
171 	/* Send it out. */
172 	return ip_local_out(skb);
173 }
174 
175 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
176 
177 static inline int ip_finish_output2(struct sk_buff *skb)
178 {
179 	struct dst_entry *dst = skb->dst;
180 	struct rtable *rt = (struct rtable *)dst;
181 	struct net_device *dev = dst->dev;
182 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
183 
184 	if (rt->rt_type == RTN_MULTICAST)
185 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTMCASTPKTS);
186 	else if (rt->rt_type == RTN_BROADCAST)
187 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTBCASTPKTS);
188 
189 	/* Be paranoid, rather than too clever. */
190 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
191 		struct sk_buff *skb2;
192 
193 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
194 		if (skb2 == NULL) {
195 			kfree_skb(skb);
196 			return -ENOMEM;
197 		}
198 		if (skb->sk)
199 			skb_set_owner_w(skb2, skb->sk);
200 		kfree_skb(skb);
201 		skb = skb2;
202 	}
203 
204 	if (dst->hh)
205 		return neigh_hh_output(dst->hh, skb);
206 	else if (dst->neighbour)
207 		return dst->neighbour->output(skb);
208 
209 	if (net_ratelimit())
210 		printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
211 	kfree_skb(skb);
212 	return -EINVAL;
213 }
214 
215 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
216 {
217 	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
218 
219 	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
220 	       skb->dst->dev->mtu : dst_mtu(skb->dst);
221 }
222 
223 static int ip_finish_output(struct sk_buff *skb)
224 {
225 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
226 	/* Policy lookup after SNAT yielded a new policy */
227 	if (skb->dst->xfrm != NULL) {
228 		IPCB(skb)->flags |= IPSKB_REROUTED;
229 		return dst_output(skb);
230 	}
231 #endif
232 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
233 		return ip_fragment(skb, ip_finish_output2);
234 	else
235 		return ip_finish_output2(skb);
236 }
237 
238 int ip_mc_output(struct sk_buff *skb)
239 {
240 	struct sock *sk = skb->sk;
241 	struct rtable *rt = skb->rtable;
242 	struct net_device *dev = rt->u.dst.dev;
243 
244 	/*
245 	 *	If the indicated interface is up and running, send the packet.
246 	 */
247 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTREQUESTS);
248 
249 	skb->dev = dev;
250 	skb->protocol = htons(ETH_P_IP);
251 
252 	/*
253 	 *	Multicasts are looped back for other local users
254 	 */
255 
256 	if (rt->rt_flags&RTCF_MULTICAST) {
257 		if ((!sk || inet_sk(sk)->mc_loop)
258 #ifdef CONFIG_IP_MROUTE
259 		/* Small optimization: do not loopback not local frames,
260 		   which returned after forwarding; they will be  dropped
261 		   by ip_mr_input in any case.
262 		   Note, that local frames are looped back to be delivered
263 		   to local recipients.
264 
265 		   This check is duplicated in ip_mr_input at the moment.
266 		 */
267 		    && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
268 #endif
269 		) {
270 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
271 			if (newskb)
272 				NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb,
273 					NULL, newskb->dev,
274 					ip_dev_loopback_xmit);
275 		}
276 
277 		/* Multicasts with ttl 0 must not go beyond the host */
278 
279 		if (ip_hdr(skb)->ttl == 0) {
280 			kfree_skb(skb);
281 			return 0;
282 		}
283 	}
284 
285 	if (rt->rt_flags&RTCF_BROADCAST) {
286 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
287 		if (newskb)
288 			NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb, NULL,
289 				newskb->dev, ip_dev_loopback_xmit);
290 	}
291 
292 	return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, skb->dev,
293 			    ip_finish_output,
294 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
295 }
296 
297 int ip_output(struct sk_buff *skb)
298 {
299 	struct net_device *dev = skb->dst->dev;
300 
301 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_OUTREQUESTS);
302 
303 	skb->dev = dev;
304 	skb->protocol = htons(ETH_P_IP);
305 
306 	return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, dev,
307 			    ip_finish_output,
308 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
309 }
310 
311 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
312 {
313 	struct sock *sk = skb->sk;
314 	struct inet_sock *inet = inet_sk(sk);
315 	struct ip_options *opt = inet->opt;
316 	struct rtable *rt;
317 	struct iphdr *iph;
318 
319 	/* Skip all of this if the packet is already routed,
320 	 * f.e. by something like SCTP.
321 	 */
322 	rt = skb->rtable;
323 	if (rt != NULL)
324 		goto packet_routed;
325 
326 	/* Make sure we can route this packet. */
327 	rt = (struct rtable *)__sk_dst_check(sk, 0);
328 	if (rt == NULL) {
329 		__be32 daddr;
330 
331 		/* Use correct destination address if we have options. */
332 		daddr = inet->daddr;
333 		if(opt && opt->srr)
334 			daddr = opt->faddr;
335 
336 		{
337 			struct flowi fl = { .oif = sk->sk_bound_dev_if,
338 					    .nl_u = { .ip4_u =
339 						      { .daddr = daddr,
340 							.saddr = inet->saddr,
341 							.tos = RT_CONN_FLAGS(sk) } },
342 					    .proto = sk->sk_protocol,
343 					    .flags = inet_sk_flowi_flags(sk),
344 					    .uli_u = { .ports =
345 						       { .sport = inet->sport,
346 							 .dport = inet->dport } } };
347 
348 			/* If this fails, retransmit mechanism of transport layer will
349 			 * keep trying until route appears or the connection times
350 			 * itself out.
351 			 */
352 			security_sk_classify_flow(sk, &fl);
353 			if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
354 				goto no_route;
355 		}
356 		sk_setup_caps(sk, &rt->u.dst);
357 	}
358 	skb->dst = dst_clone(&rt->u.dst);
359 
360 packet_routed:
361 	if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
362 		goto no_route;
363 
364 	/* OK, we know where to send it, allocate and build IP header. */
365 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
366 	skb_reset_network_header(skb);
367 	iph = ip_hdr(skb);
368 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
369 	if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
370 		iph->frag_off = htons(IP_DF);
371 	else
372 		iph->frag_off = 0;
373 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
374 	iph->protocol = sk->sk_protocol;
375 	iph->saddr    = rt->rt_src;
376 	iph->daddr    = rt->rt_dst;
377 	/* Transport layer set skb->h.foo itself. */
378 
379 	if (opt && opt->optlen) {
380 		iph->ihl += opt->optlen >> 2;
381 		ip_options_build(skb, opt, inet->daddr, rt, 0);
382 	}
383 
384 	ip_select_ident_more(iph, &rt->u.dst, sk,
385 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
386 
387 	skb->priority = sk->sk_priority;
388 	skb->mark = sk->sk_mark;
389 
390 	return ip_local_out(skb);
391 
392 no_route:
393 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
394 	kfree_skb(skb);
395 	return -EHOSTUNREACH;
396 }
397 
398 
399 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
400 {
401 	to->pkt_type = from->pkt_type;
402 	to->priority = from->priority;
403 	to->protocol = from->protocol;
404 	dst_release(to->dst);
405 	to->dst = dst_clone(from->dst);
406 	to->dev = from->dev;
407 	to->mark = from->mark;
408 
409 	/* Copy the flags to each fragment. */
410 	IPCB(to)->flags = IPCB(from)->flags;
411 
412 #ifdef CONFIG_NET_SCHED
413 	to->tc_index = from->tc_index;
414 #endif
415 	nf_copy(to, from);
416 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
417     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
418 	to->nf_trace = from->nf_trace;
419 #endif
420 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
421 	to->ipvs_property = from->ipvs_property;
422 #endif
423 	skb_copy_secmark(to, from);
424 }
425 
426 /*
427  *	This IP datagram is too large to be sent in one piece.  Break it up into
428  *	smaller pieces (each of size equal to IP header plus
429  *	a block of the data of the original IP data part) that will yet fit in a
430  *	single device frame, and queue such a frame for sending.
431  */
432 
433 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
434 {
435 	struct iphdr *iph;
436 	int raw = 0;
437 	int ptr;
438 	struct net_device *dev;
439 	struct sk_buff *skb2;
440 	unsigned int mtu, hlen, left, len, ll_rs, pad;
441 	int offset;
442 	__be16 not_last_frag;
443 	struct rtable *rt = skb->rtable;
444 	int err = 0;
445 
446 	dev = rt->u.dst.dev;
447 
448 	/*
449 	 *	Point into the IP datagram header.
450 	 */
451 
452 	iph = ip_hdr(skb);
453 
454 	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
455 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
456 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
457 			  htonl(ip_skb_dst_mtu(skb)));
458 		kfree_skb(skb);
459 		return -EMSGSIZE;
460 	}
461 
462 	/*
463 	 *	Setup starting values.
464 	 */
465 
466 	hlen = iph->ihl * 4;
467 	mtu = dst_mtu(&rt->u.dst) - hlen;	/* Size of data space */
468 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
469 
470 	/* When frag_list is given, use it. First, check its validity:
471 	 * some transformers could create wrong frag_list or break existing
472 	 * one, it is not prohibited. In this case fall back to copying.
473 	 *
474 	 * LATER: this step can be merged to real generation of fragments,
475 	 * we can switch to copy when see the first bad fragment.
476 	 */
477 	if (skb_shinfo(skb)->frag_list) {
478 		struct sk_buff *frag;
479 		int first_len = skb_pagelen(skb);
480 		int truesizes = 0;
481 
482 		if (first_len - hlen > mtu ||
483 		    ((first_len - hlen) & 7) ||
484 		    (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
485 		    skb_cloned(skb))
486 			goto slow_path;
487 
488 		for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
489 			/* Correct geometry. */
490 			if (frag->len > mtu ||
491 			    ((frag->len & 7) && frag->next) ||
492 			    skb_headroom(frag) < hlen)
493 			    goto slow_path;
494 
495 			/* Partially cloned skb? */
496 			if (skb_shared(frag))
497 				goto slow_path;
498 
499 			BUG_ON(frag->sk);
500 			if (skb->sk) {
501 				sock_hold(skb->sk);
502 				frag->sk = skb->sk;
503 				frag->destructor = sock_wfree;
504 				truesizes += frag->truesize;
505 			}
506 		}
507 
508 		/* Everything is OK. Generate! */
509 
510 		err = 0;
511 		offset = 0;
512 		frag = skb_shinfo(skb)->frag_list;
513 		skb_shinfo(skb)->frag_list = NULL;
514 		skb->data_len = first_len - skb_headlen(skb);
515 		skb->truesize -= truesizes;
516 		skb->len = first_len;
517 		iph->tot_len = htons(first_len);
518 		iph->frag_off = htons(IP_MF);
519 		ip_send_check(iph);
520 
521 		for (;;) {
522 			/* Prepare header of the next frame,
523 			 * before previous one went down. */
524 			if (frag) {
525 				frag->ip_summed = CHECKSUM_NONE;
526 				skb_reset_transport_header(frag);
527 				__skb_push(frag, hlen);
528 				skb_reset_network_header(frag);
529 				memcpy(skb_network_header(frag), iph, hlen);
530 				iph = ip_hdr(frag);
531 				iph->tot_len = htons(frag->len);
532 				ip_copy_metadata(frag, skb);
533 				if (offset == 0)
534 					ip_options_fragment(frag);
535 				offset += skb->len - hlen;
536 				iph->frag_off = htons(offset>>3);
537 				if (frag->next != NULL)
538 					iph->frag_off |= htons(IP_MF);
539 				/* Ready, complete checksum */
540 				ip_send_check(iph);
541 			}
542 
543 			err = output(skb);
544 
545 			if (!err)
546 				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
547 			if (err || !frag)
548 				break;
549 
550 			skb = frag;
551 			frag = skb->next;
552 			skb->next = NULL;
553 		}
554 
555 		if (err == 0) {
556 			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
557 			return 0;
558 		}
559 
560 		while (frag) {
561 			skb = frag->next;
562 			kfree_skb(frag);
563 			frag = skb;
564 		}
565 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
566 		return err;
567 	}
568 
569 slow_path:
570 	left = skb->len - hlen;		/* Space per frame */
571 	ptr = raw + hlen;		/* Where to start from */
572 
573 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
574 	 * we need to make room for the encapsulating header
575 	 */
576 	pad = nf_bridge_pad(skb);
577 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
578 	mtu -= pad;
579 
580 	/*
581 	 *	Fragment the datagram.
582 	 */
583 
584 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
585 	not_last_frag = iph->frag_off & htons(IP_MF);
586 
587 	/*
588 	 *	Keep copying data until we run out.
589 	 */
590 
591 	while (left > 0) {
592 		len = left;
593 		/* IF: it doesn't fit, use 'mtu' - the data space left */
594 		if (len > mtu)
595 			len = mtu;
596 		/* IF: we are not sending upto and including the packet end
597 		   then align the next start on an eight byte boundary */
598 		if (len < left)	{
599 			len &= ~7;
600 		}
601 		/*
602 		 *	Allocate buffer.
603 		 */
604 
605 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
606 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
607 			err = -ENOMEM;
608 			goto fail;
609 		}
610 
611 		/*
612 		 *	Set up data on packet
613 		 */
614 
615 		ip_copy_metadata(skb2, skb);
616 		skb_reserve(skb2, ll_rs);
617 		skb_put(skb2, len + hlen);
618 		skb_reset_network_header(skb2);
619 		skb2->transport_header = skb2->network_header + hlen;
620 
621 		/*
622 		 *	Charge the memory for the fragment to any owner
623 		 *	it might possess
624 		 */
625 
626 		if (skb->sk)
627 			skb_set_owner_w(skb2, skb->sk);
628 
629 		/*
630 		 *	Copy the packet header into the new buffer.
631 		 */
632 
633 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
634 
635 		/*
636 		 *	Copy a block of the IP datagram.
637 		 */
638 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
639 			BUG();
640 		left -= len;
641 
642 		/*
643 		 *	Fill in the new header fields.
644 		 */
645 		iph = ip_hdr(skb2);
646 		iph->frag_off = htons((offset >> 3));
647 
648 		/* ANK: dirty, but effective trick. Upgrade options only if
649 		 * the segment to be fragmented was THE FIRST (otherwise,
650 		 * options are already fixed) and make it ONCE
651 		 * on the initial skb, so that all the following fragments
652 		 * will inherit fixed options.
653 		 */
654 		if (offset == 0)
655 			ip_options_fragment(skb);
656 
657 		/*
658 		 *	Added AC : If we are fragmenting a fragment that's not the
659 		 *		   last fragment then keep MF on each bit
660 		 */
661 		if (left > 0 || not_last_frag)
662 			iph->frag_off |= htons(IP_MF);
663 		ptr += len;
664 		offset += len;
665 
666 		/*
667 		 *	Put this fragment into the sending queue.
668 		 */
669 		iph->tot_len = htons(len + hlen);
670 
671 		ip_send_check(iph);
672 
673 		err = output(skb2);
674 		if (err)
675 			goto fail;
676 
677 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
678 	}
679 	kfree_skb(skb);
680 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
681 	return err;
682 
683 fail:
684 	kfree_skb(skb);
685 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
686 	return err;
687 }
688 
689 EXPORT_SYMBOL(ip_fragment);
690 
691 int
692 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
693 {
694 	struct iovec *iov = from;
695 
696 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
697 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
698 			return -EFAULT;
699 	} else {
700 		__wsum csum = 0;
701 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
702 			return -EFAULT;
703 		skb->csum = csum_block_add(skb->csum, csum, odd);
704 	}
705 	return 0;
706 }
707 
708 static inline __wsum
709 csum_page(struct page *page, int offset, int copy)
710 {
711 	char *kaddr;
712 	__wsum csum;
713 	kaddr = kmap(page);
714 	csum = csum_partial(kaddr + offset, copy, 0);
715 	kunmap(page);
716 	return csum;
717 }
718 
719 static inline int ip_ufo_append_data(struct sock *sk,
720 			int getfrag(void *from, char *to, int offset, int len,
721 			       int odd, struct sk_buff *skb),
722 			void *from, int length, int hh_len, int fragheaderlen,
723 			int transhdrlen, int mtu, unsigned int flags)
724 {
725 	struct sk_buff *skb;
726 	int err;
727 
728 	/* There is support for UDP fragmentation offload by network
729 	 * device, so create one single skb packet containing complete
730 	 * udp datagram
731 	 */
732 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
733 		skb = sock_alloc_send_skb(sk,
734 			hh_len + fragheaderlen + transhdrlen + 20,
735 			(flags & MSG_DONTWAIT), &err);
736 
737 		if (skb == NULL)
738 			return err;
739 
740 		/* reserve space for Hardware header */
741 		skb_reserve(skb, hh_len);
742 
743 		/* create space for UDP/IP header */
744 		skb_put(skb, fragheaderlen + transhdrlen);
745 
746 		/* initialize network header pointer */
747 		skb_reset_network_header(skb);
748 
749 		/* initialize protocol header pointer */
750 		skb->transport_header = skb->network_header + fragheaderlen;
751 
752 		skb->ip_summed = CHECKSUM_PARTIAL;
753 		skb->csum = 0;
754 		sk->sk_sndmsg_off = 0;
755 
756 		/* specify the length of each IP datagram fragment */
757 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
758 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
759 		__skb_queue_tail(&sk->sk_write_queue, skb);
760 	}
761 
762 	return skb_append_datato_frags(sk, skb, getfrag, from,
763 				       (length - transhdrlen));
764 }
765 
766 /*
767  *	ip_append_data() and ip_append_page() can make one large IP datagram
768  *	from many pieces of data. Each pieces will be holded on the socket
769  *	until ip_push_pending_frames() is called. Each piece can be a page
770  *	or non-page data.
771  *
772  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
773  *	this interface potentially.
774  *
775  *	LATER: length must be adjusted by pad at tail, when it is required.
776  */
777 int ip_append_data(struct sock *sk,
778 		   int getfrag(void *from, char *to, int offset, int len,
779 			       int odd, struct sk_buff *skb),
780 		   void *from, int length, int transhdrlen,
781 		   struct ipcm_cookie *ipc, struct rtable **rtp,
782 		   unsigned int flags)
783 {
784 	struct inet_sock *inet = inet_sk(sk);
785 	struct sk_buff *skb;
786 
787 	struct ip_options *opt = NULL;
788 	int hh_len;
789 	int exthdrlen;
790 	int mtu;
791 	int copy;
792 	int err;
793 	int offset = 0;
794 	unsigned int maxfraglen, fragheaderlen;
795 	int csummode = CHECKSUM_NONE;
796 	struct rtable *rt;
797 
798 	if (flags&MSG_PROBE)
799 		return 0;
800 
801 	if (skb_queue_empty(&sk->sk_write_queue)) {
802 		/*
803 		 * setup for corking.
804 		 */
805 		opt = ipc->opt;
806 		if (opt) {
807 			if (inet->cork.opt == NULL) {
808 				inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
809 				if (unlikely(inet->cork.opt == NULL))
810 					return -ENOBUFS;
811 			}
812 			memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
813 			inet->cork.flags |= IPCORK_OPT;
814 			inet->cork.addr = ipc->addr;
815 		}
816 		rt = *rtp;
817 		/*
818 		 * We steal reference to this route, caller should not release it
819 		 */
820 		*rtp = NULL;
821 		inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
822 					    rt->u.dst.dev->mtu :
823 					    dst_mtu(rt->u.dst.path);
824 		inet->cork.dst = &rt->u.dst;
825 		inet->cork.length = 0;
826 		sk->sk_sndmsg_page = NULL;
827 		sk->sk_sndmsg_off = 0;
828 		if ((exthdrlen = rt->u.dst.header_len) != 0) {
829 			length += exthdrlen;
830 			transhdrlen += exthdrlen;
831 		}
832 	} else {
833 		rt = (struct rtable *)inet->cork.dst;
834 		if (inet->cork.flags & IPCORK_OPT)
835 			opt = inet->cork.opt;
836 
837 		transhdrlen = 0;
838 		exthdrlen = 0;
839 		mtu = inet->cork.fragsize;
840 	}
841 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
842 
843 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
844 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
845 
846 	if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
847 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
848 		return -EMSGSIZE;
849 	}
850 
851 	/*
852 	 * transhdrlen > 0 means that this is the first fragment and we wish
853 	 * it won't be fragmented in the future.
854 	 */
855 	if (transhdrlen &&
856 	    length + fragheaderlen <= mtu &&
857 	    rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
858 	    !exthdrlen)
859 		csummode = CHECKSUM_PARTIAL;
860 
861 	inet->cork.length += length;
862 	if (((length> mtu) || !skb_queue_empty(&sk->sk_write_queue)) &&
863 	    (sk->sk_protocol == IPPROTO_UDP) &&
864 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
865 		err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
866 					 fragheaderlen, transhdrlen, mtu,
867 					 flags);
868 		if (err)
869 			goto error;
870 		return 0;
871 	}
872 
873 	/* So, what's going on in the loop below?
874 	 *
875 	 * We use calculated fragment length to generate chained skb,
876 	 * each of segments is IP fragment ready for sending to network after
877 	 * adding appropriate IP header.
878 	 */
879 
880 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
881 		goto alloc_new_skb;
882 
883 	while (length > 0) {
884 		/* Check if the remaining data fits into current packet. */
885 		copy = mtu - skb->len;
886 		if (copy < length)
887 			copy = maxfraglen - skb->len;
888 		if (copy <= 0) {
889 			char *data;
890 			unsigned int datalen;
891 			unsigned int fraglen;
892 			unsigned int fraggap;
893 			unsigned int alloclen;
894 			struct sk_buff *skb_prev;
895 alloc_new_skb:
896 			skb_prev = skb;
897 			if (skb_prev)
898 				fraggap = skb_prev->len - maxfraglen;
899 			else
900 				fraggap = 0;
901 
902 			/*
903 			 * If remaining data exceeds the mtu,
904 			 * we know we need more fragment(s).
905 			 */
906 			datalen = length + fraggap;
907 			if (datalen > mtu - fragheaderlen)
908 				datalen = maxfraglen - fragheaderlen;
909 			fraglen = datalen + fragheaderlen;
910 
911 			if ((flags & MSG_MORE) &&
912 			    !(rt->u.dst.dev->features&NETIF_F_SG))
913 				alloclen = mtu;
914 			else
915 				alloclen = datalen + fragheaderlen;
916 
917 			/* The last fragment gets additional space at tail.
918 			 * Note, with MSG_MORE we overallocate on fragments,
919 			 * because we have no idea what fragment will be
920 			 * the last.
921 			 */
922 			if (datalen == length + fraggap)
923 				alloclen += rt->u.dst.trailer_len;
924 
925 			if (transhdrlen) {
926 				skb = sock_alloc_send_skb(sk,
927 						alloclen + hh_len + 15,
928 						(flags & MSG_DONTWAIT), &err);
929 			} else {
930 				skb = NULL;
931 				if (atomic_read(&sk->sk_wmem_alloc) <=
932 				    2 * sk->sk_sndbuf)
933 					skb = sock_wmalloc(sk,
934 							   alloclen + hh_len + 15, 1,
935 							   sk->sk_allocation);
936 				if (unlikely(skb == NULL))
937 					err = -ENOBUFS;
938 				else
939 					/* only the initial fragment is
940 					   time stamped */
941 					ipc->shtx.flags = 0;
942 			}
943 			if (skb == NULL)
944 				goto error;
945 
946 			/*
947 			 *	Fill in the control structures
948 			 */
949 			skb->ip_summed = csummode;
950 			skb->csum = 0;
951 			skb_reserve(skb, hh_len);
952 			*skb_tx(skb) = ipc->shtx;
953 
954 			/*
955 			 *	Find where to start putting bytes.
956 			 */
957 			data = skb_put(skb, fraglen);
958 			skb_set_network_header(skb, exthdrlen);
959 			skb->transport_header = (skb->network_header +
960 						 fragheaderlen);
961 			data += fragheaderlen;
962 
963 			if (fraggap) {
964 				skb->csum = skb_copy_and_csum_bits(
965 					skb_prev, maxfraglen,
966 					data + transhdrlen, fraggap, 0);
967 				skb_prev->csum = csum_sub(skb_prev->csum,
968 							  skb->csum);
969 				data += fraggap;
970 				pskb_trim_unique(skb_prev, maxfraglen);
971 			}
972 
973 			copy = datalen - transhdrlen - fraggap;
974 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
975 				err = -EFAULT;
976 				kfree_skb(skb);
977 				goto error;
978 			}
979 
980 			offset += copy;
981 			length -= datalen - fraggap;
982 			transhdrlen = 0;
983 			exthdrlen = 0;
984 			csummode = CHECKSUM_NONE;
985 
986 			/*
987 			 * Put the packet on the pending queue.
988 			 */
989 			__skb_queue_tail(&sk->sk_write_queue, skb);
990 			continue;
991 		}
992 
993 		if (copy > length)
994 			copy = length;
995 
996 		if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
997 			unsigned int off;
998 
999 			off = skb->len;
1000 			if (getfrag(from, skb_put(skb, copy),
1001 					offset, copy, off, skb) < 0) {
1002 				__skb_trim(skb, off);
1003 				err = -EFAULT;
1004 				goto error;
1005 			}
1006 		} else {
1007 			int i = skb_shinfo(skb)->nr_frags;
1008 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1009 			struct page *page = sk->sk_sndmsg_page;
1010 			int off = sk->sk_sndmsg_off;
1011 			unsigned int left;
1012 
1013 			if (page && (left = PAGE_SIZE - off) > 0) {
1014 				if (copy >= left)
1015 					copy = left;
1016 				if (page != frag->page) {
1017 					if (i == MAX_SKB_FRAGS) {
1018 						err = -EMSGSIZE;
1019 						goto error;
1020 					}
1021 					get_page(page);
1022 					skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1023 					frag = &skb_shinfo(skb)->frags[i];
1024 				}
1025 			} else if (i < MAX_SKB_FRAGS) {
1026 				if (copy > PAGE_SIZE)
1027 					copy = PAGE_SIZE;
1028 				page = alloc_pages(sk->sk_allocation, 0);
1029 				if (page == NULL)  {
1030 					err = -ENOMEM;
1031 					goto error;
1032 				}
1033 				sk->sk_sndmsg_page = page;
1034 				sk->sk_sndmsg_off = 0;
1035 
1036 				skb_fill_page_desc(skb, i, page, 0, 0);
1037 				frag = &skb_shinfo(skb)->frags[i];
1038 			} else {
1039 				err = -EMSGSIZE;
1040 				goto error;
1041 			}
1042 			if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1043 				err = -EFAULT;
1044 				goto error;
1045 			}
1046 			sk->sk_sndmsg_off += copy;
1047 			frag->size += copy;
1048 			skb->len += copy;
1049 			skb->data_len += copy;
1050 			skb->truesize += copy;
1051 			atomic_add(copy, &sk->sk_wmem_alloc);
1052 		}
1053 		offset += copy;
1054 		length -= copy;
1055 	}
1056 
1057 	return 0;
1058 
1059 error:
1060 	inet->cork.length -= length;
1061 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1062 	return err;
1063 }
1064 
1065 ssize_t	ip_append_page(struct sock *sk, struct page *page,
1066 		       int offset, size_t size, int flags)
1067 {
1068 	struct inet_sock *inet = inet_sk(sk);
1069 	struct sk_buff *skb;
1070 	struct rtable *rt;
1071 	struct ip_options *opt = NULL;
1072 	int hh_len;
1073 	int mtu;
1074 	int len;
1075 	int err;
1076 	unsigned int maxfraglen, fragheaderlen, fraggap;
1077 
1078 	if (inet->hdrincl)
1079 		return -EPERM;
1080 
1081 	if (flags&MSG_PROBE)
1082 		return 0;
1083 
1084 	if (skb_queue_empty(&sk->sk_write_queue))
1085 		return -EINVAL;
1086 
1087 	rt = (struct rtable *)inet->cork.dst;
1088 	if (inet->cork.flags & IPCORK_OPT)
1089 		opt = inet->cork.opt;
1090 
1091 	if (!(rt->u.dst.dev->features&NETIF_F_SG))
1092 		return -EOPNOTSUPP;
1093 
1094 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1095 	mtu = inet->cork.fragsize;
1096 
1097 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1098 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1099 
1100 	if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1101 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1102 		return -EMSGSIZE;
1103 	}
1104 
1105 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1106 		return -EINVAL;
1107 
1108 	inet->cork.length += size;
1109 	if ((sk->sk_protocol == IPPROTO_UDP) &&
1110 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
1111 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1112 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1113 	}
1114 
1115 
1116 	while (size > 0) {
1117 		int i;
1118 
1119 		if (skb_is_gso(skb))
1120 			len = size;
1121 		else {
1122 
1123 			/* Check if the remaining data fits into current packet. */
1124 			len = mtu - skb->len;
1125 			if (len < size)
1126 				len = maxfraglen - skb->len;
1127 		}
1128 		if (len <= 0) {
1129 			struct sk_buff *skb_prev;
1130 			int alloclen;
1131 
1132 			skb_prev = skb;
1133 			fraggap = skb_prev->len - maxfraglen;
1134 
1135 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1136 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1137 			if (unlikely(!skb)) {
1138 				err = -ENOBUFS;
1139 				goto error;
1140 			}
1141 
1142 			/*
1143 			 *	Fill in the control structures
1144 			 */
1145 			skb->ip_summed = CHECKSUM_NONE;
1146 			skb->csum = 0;
1147 			skb_reserve(skb, hh_len);
1148 
1149 			/*
1150 			 *	Find where to start putting bytes.
1151 			 */
1152 			skb_put(skb, fragheaderlen + fraggap);
1153 			skb_reset_network_header(skb);
1154 			skb->transport_header = (skb->network_header +
1155 						 fragheaderlen);
1156 			if (fraggap) {
1157 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1158 								   maxfraglen,
1159 						    skb_transport_header(skb),
1160 								   fraggap, 0);
1161 				skb_prev->csum = csum_sub(skb_prev->csum,
1162 							  skb->csum);
1163 				pskb_trim_unique(skb_prev, maxfraglen);
1164 			}
1165 
1166 			/*
1167 			 * Put the packet on the pending queue.
1168 			 */
1169 			__skb_queue_tail(&sk->sk_write_queue, skb);
1170 			continue;
1171 		}
1172 
1173 		i = skb_shinfo(skb)->nr_frags;
1174 		if (len > size)
1175 			len = size;
1176 		if (skb_can_coalesce(skb, i, page, offset)) {
1177 			skb_shinfo(skb)->frags[i-1].size += len;
1178 		} else if (i < MAX_SKB_FRAGS) {
1179 			get_page(page);
1180 			skb_fill_page_desc(skb, i, page, offset, len);
1181 		} else {
1182 			err = -EMSGSIZE;
1183 			goto error;
1184 		}
1185 
1186 		if (skb->ip_summed == CHECKSUM_NONE) {
1187 			__wsum csum;
1188 			csum = csum_page(page, offset, len);
1189 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1190 		}
1191 
1192 		skb->len += len;
1193 		skb->data_len += len;
1194 		skb->truesize += len;
1195 		atomic_add(len, &sk->sk_wmem_alloc);
1196 		offset += len;
1197 		size -= len;
1198 	}
1199 	return 0;
1200 
1201 error:
1202 	inet->cork.length -= size;
1203 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1204 	return err;
1205 }
1206 
1207 static void ip_cork_release(struct inet_sock *inet)
1208 {
1209 	inet->cork.flags &= ~IPCORK_OPT;
1210 	kfree(inet->cork.opt);
1211 	inet->cork.opt = NULL;
1212 	dst_release(inet->cork.dst);
1213 	inet->cork.dst = NULL;
1214 }
1215 
1216 /*
1217  *	Combined all pending IP fragments on the socket as one IP datagram
1218  *	and push them out.
1219  */
1220 int ip_push_pending_frames(struct sock *sk)
1221 {
1222 	struct sk_buff *skb, *tmp_skb;
1223 	struct sk_buff **tail_skb;
1224 	struct inet_sock *inet = inet_sk(sk);
1225 	struct net *net = sock_net(sk);
1226 	struct ip_options *opt = NULL;
1227 	struct rtable *rt = (struct rtable *)inet->cork.dst;
1228 	struct iphdr *iph;
1229 	__be16 df = 0;
1230 	__u8 ttl;
1231 	int err = 0;
1232 
1233 	if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1234 		goto out;
1235 	tail_skb = &(skb_shinfo(skb)->frag_list);
1236 
1237 	/* move skb->data to ip header from ext header */
1238 	if (skb->data < skb_network_header(skb))
1239 		__skb_pull(skb, skb_network_offset(skb));
1240 	while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1241 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1242 		*tail_skb = tmp_skb;
1243 		tail_skb = &(tmp_skb->next);
1244 		skb->len += tmp_skb->len;
1245 		skb->data_len += tmp_skb->len;
1246 		skb->truesize += tmp_skb->truesize;
1247 		__sock_put(tmp_skb->sk);
1248 		tmp_skb->destructor = NULL;
1249 		tmp_skb->sk = NULL;
1250 	}
1251 
1252 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1253 	 * to fragment the frame generated here. No matter, what transforms
1254 	 * how transforms change size of the packet, it will come out.
1255 	 */
1256 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1257 		skb->local_df = 1;
1258 
1259 	/* DF bit is set when we want to see DF on outgoing frames.
1260 	 * If local_df is set too, we still allow to fragment this frame
1261 	 * locally. */
1262 	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1263 	    (skb->len <= dst_mtu(&rt->u.dst) &&
1264 	     ip_dont_fragment(sk, &rt->u.dst)))
1265 		df = htons(IP_DF);
1266 
1267 	if (inet->cork.flags & IPCORK_OPT)
1268 		opt = inet->cork.opt;
1269 
1270 	if (rt->rt_type == RTN_MULTICAST)
1271 		ttl = inet->mc_ttl;
1272 	else
1273 		ttl = ip_select_ttl(inet, &rt->u.dst);
1274 
1275 	iph = (struct iphdr *)skb->data;
1276 	iph->version = 4;
1277 	iph->ihl = 5;
1278 	if (opt) {
1279 		iph->ihl += opt->optlen>>2;
1280 		ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1281 	}
1282 	iph->tos = inet->tos;
1283 	iph->frag_off = df;
1284 	ip_select_ident(iph, &rt->u.dst, sk);
1285 	iph->ttl = ttl;
1286 	iph->protocol = sk->sk_protocol;
1287 	iph->saddr = rt->rt_src;
1288 	iph->daddr = rt->rt_dst;
1289 
1290 	skb->priority = sk->sk_priority;
1291 	skb->mark = sk->sk_mark;
1292 	/*
1293 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1294 	 * on dst refcount
1295 	 */
1296 	inet->cork.dst = NULL;
1297 	skb->dst = &rt->u.dst;
1298 
1299 	if (iph->protocol == IPPROTO_ICMP)
1300 		icmp_out_count(net, ((struct icmphdr *)
1301 			skb_transport_header(skb))->type);
1302 
1303 	/* Netfilter gets whole the not fragmented skb. */
1304 	err = ip_local_out(skb);
1305 	if (err) {
1306 		if (err > 0)
1307 			err = inet->recverr ? net_xmit_errno(err) : 0;
1308 		if (err)
1309 			goto error;
1310 	}
1311 
1312 out:
1313 	ip_cork_release(inet);
1314 	return err;
1315 
1316 error:
1317 	IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1318 	goto out;
1319 }
1320 
1321 /*
1322  *	Throw away all pending data on the socket.
1323  */
1324 void ip_flush_pending_frames(struct sock *sk)
1325 {
1326 	struct sk_buff *skb;
1327 
1328 	while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1329 		kfree_skb(skb);
1330 
1331 	ip_cork_release(inet_sk(sk));
1332 }
1333 
1334 
1335 /*
1336  *	Fetch data from kernel space and fill in checksum if needed.
1337  */
1338 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1339 			      int len, int odd, struct sk_buff *skb)
1340 {
1341 	__wsum csum;
1342 
1343 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1344 	skb->csum = csum_block_add(skb->csum, csum, odd);
1345 	return 0;
1346 }
1347 
1348 /*
1349  *	Generic function to send a packet as reply to another packet.
1350  *	Used to send TCP resets so far. ICMP should use this function too.
1351  *
1352  *	Should run single threaded per socket because it uses the sock
1353  *     	structure to pass arguments.
1354  */
1355 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1356 		   unsigned int len)
1357 {
1358 	struct inet_sock *inet = inet_sk(sk);
1359 	struct {
1360 		struct ip_options	opt;
1361 		char			data[40];
1362 	} replyopts;
1363 	struct ipcm_cookie ipc;
1364 	__be32 daddr;
1365 	struct rtable *rt = skb->rtable;
1366 
1367 	if (ip_options_echo(&replyopts.opt, skb))
1368 		return;
1369 
1370 	daddr = ipc.addr = rt->rt_src;
1371 	ipc.opt = NULL;
1372 	ipc.shtx.flags = 0;
1373 
1374 	if (replyopts.opt.optlen) {
1375 		ipc.opt = &replyopts.opt;
1376 
1377 		if (ipc.opt->srr)
1378 			daddr = replyopts.opt.faddr;
1379 	}
1380 
1381 	{
1382 		struct flowi fl = { .oif = arg->bound_dev_if,
1383 				    .nl_u = { .ip4_u =
1384 					      { .daddr = daddr,
1385 						.saddr = rt->rt_spec_dst,
1386 						.tos = RT_TOS(ip_hdr(skb)->tos) } },
1387 				    /* Not quite clean, but right. */
1388 				    .uli_u = { .ports =
1389 					       { .sport = tcp_hdr(skb)->dest,
1390 						 .dport = tcp_hdr(skb)->source } },
1391 				    .proto = sk->sk_protocol,
1392 				    .flags = ip_reply_arg_flowi_flags(arg) };
1393 		security_skb_classify_flow(skb, &fl);
1394 		if (ip_route_output_key(sock_net(sk), &rt, &fl))
1395 			return;
1396 	}
1397 
1398 	/* And let IP do all the hard work.
1399 
1400 	   This chunk is not reenterable, hence spinlock.
1401 	   Note that it uses the fact, that this function is called
1402 	   with locally disabled BH and that sk cannot be already spinlocked.
1403 	 */
1404 	bh_lock_sock(sk);
1405 	inet->tos = ip_hdr(skb)->tos;
1406 	sk->sk_priority = skb->priority;
1407 	sk->sk_protocol = ip_hdr(skb)->protocol;
1408 	sk->sk_bound_dev_if = arg->bound_dev_if;
1409 	ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1410 		       &ipc, &rt, MSG_DONTWAIT);
1411 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1412 		if (arg->csumoffset >= 0)
1413 			*((__sum16 *)skb_transport_header(skb) +
1414 			  arg->csumoffset) = csum_fold(csum_add(skb->csum,
1415 								arg->csum));
1416 		skb->ip_summed = CHECKSUM_NONE;
1417 		ip_push_pending_frames(sk);
1418 	}
1419 
1420 	bh_unlock_sock(sk);
1421 
1422 	ip_rt_put(rt);
1423 }
1424 
1425 void __init ip_init(void)
1426 {
1427 	ip_rt_init();
1428 	inet_initpeers();
1429 
1430 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1431 	igmp_mc_proc_init();
1432 #endif
1433 }
1434 
1435 EXPORT_SYMBOL(ip_generic_getfrag);
1436 EXPORT_SYMBOL(ip_queue_xmit);
1437 EXPORT_SYMBOL(ip_send_check);
1438