1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The Internet Protocol (IP) output module. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Donald Becker, <becker@super.org> 12 * Alan Cox, <Alan.Cox@linux.org> 13 * Richard Underwood 14 * Stefan Becker, <stefanb@yello.ping.de> 15 * Jorge Cwik, <jorge@laser.satlink.net> 16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 17 * Hirokazu Takahashi, <taka@valinux.co.jp> 18 * 19 * See ip_input.c for original log 20 * 21 * Fixes: 22 * Alan Cox : Missing nonblock feature in ip_build_xmit. 23 * Mike Kilburn : htons() missing in ip_build_xmit. 24 * Bradford Johnson: Fix faulty handling of some frames when 25 * no route is found. 26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 27 * (in case if packet not accepted by 28 * output firewall rules) 29 * Mike McLagan : Routing by source 30 * Alexey Kuznetsov: use new route cache 31 * Andi Kleen: Fix broken PMTU recovery and remove 32 * some redundant tests. 33 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 34 * Andi Kleen : Replace ip_reply with ip_send_reply. 35 * Andi Kleen : Split fast and slow ip_build_xmit path 36 * for decreased register pressure on x86 37 * and more readibility. 38 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 39 * silently drop skb instead of failing with -EPERM. 40 * Detlev Wengorz : Copy protocol for fragments. 41 * Hirokazu Takahashi: HW checksumming for outgoing UDP 42 * datagrams. 43 * Hirokazu Takahashi: sendfile() on UDP works now. 44 */ 45 46 #include <linux/uaccess.h> 47 #include <linux/module.h> 48 #include <linux/types.h> 49 #include <linux/kernel.h> 50 #include <linux/mm.h> 51 #include <linux/string.h> 52 #include <linux/errno.h> 53 #include <linux/highmem.h> 54 #include <linux/slab.h> 55 56 #include <linux/socket.h> 57 #include <linux/sockios.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/etherdevice.h> 62 #include <linux/proc_fs.h> 63 #include <linux/stat.h> 64 #include <linux/init.h> 65 66 #include <net/snmp.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <net/route.h> 70 #include <net/xfrm.h> 71 #include <linux/skbuff.h> 72 #include <net/sock.h> 73 #include <net/arp.h> 74 #include <net/icmp.h> 75 #include <net/checksum.h> 76 #include <net/inetpeer.h> 77 #include <net/lwtunnel.h> 78 #include <linux/bpf-cgroup.h> 79 #include <linux/igmp.h> 80 #include <linux/netfilter_ipv4.h> 81 #include <linux/netfilter_bridge.h> 82 #include <linux/netlink.h> 83 #include <linux/tcp.h> 84 85 static int 86 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 87 unsigned int mtu, 88 int (*output)(struct net *, struct sock *, struct sk_buff *)); 89 90 /* Generate a checksum for an outgoing IP datagram. */ 91 void ip_send_check(struct iphdr *iph) 92 { 93 iph->check = 0; 94 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 95 } 96 EXPORT_SYMBOL(ip_send_check); 97 98 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 99 { 100 struct iphdr *iph = ip_hdr(skb); 101 102 iph->tot_len = htons(skb->len); 103 ip_send_check(iph); 104 105 /* if egress device is enslaved to an L3 master device pass the 106 * skb to its handler for processing 107 */ 108 skb = l3mdev_ip_out(sk, skb); 109 if (unlikely(!skb)) 110 return 0; 111 112 skb->protocol = htons(ETH_P_IP); 113 114 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 115 net, sk, skb, NULL, skb_dst(skb)->dev, 116 dst_output); 117 } 118 119 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 120 { 121 int err; 122 123 err = __ip_local_out(net, sk, skb); 124 if (likely(err == 1)) 125 err = dst_output(net, sk, skb); 126 127 return err; 128 } 129 EXPORT_SYMBOL_GPL(ip_local_out); 130 131 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 132 { 133 int ttl = inet->uc_ttl; 134 135 if (ttl < 0) 136 ttl = ip4_dst_hoplimit(dst); 137 return ttl; 138 } 139 140 /* 141 * Add an ip header to a skbuff and send it out. 142 * 143 */ 144 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 145 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 146 { 147 struct inet_sock *inet = inet_sk(sk); 148 struct rtable *rt = skb_rtable(skb); 149 struct net *net = sock_net(sk); 150 struct iphdr *iph; 151 152 /* Build the IP header. */ 153 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 154 skb_reset_network_header(skb); 155 iph = ip_hdr(skb); 156 iph->version = 4; 157 iph->ihl = 5; 158 iph->tos = inet->tos; 159 iph->ttl = ip_select_ttl(inet, &rt->dst); 160 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 161 iph->saddr = saddr; 162 iph->protocol = sk->sk_protocol; 163 if (ip_dont_fragment(sk, &rt->dst)) { 164 iph->frag_off = htons(IP_DF); 165 iph->id = 0; 166 } else { 167 iph->frag_off = 0; 168 __ip_select_ident(net, iph, 1); 169 } 170 171 if (opt && opt->opt.optlen) { 172 iph->ihl += opt->opt.optlen>>2; 173 ip_options_build(skb, &opt->opt, daddr, rt, 0); 174 } 175 176 skb->priority = sk->sk_priority; 177 if (!skb->mark) 178 skb->mark = sk->sk_mark; 179 180 /* Send it out. */ 181 return ip_local_out(net, skb->sk, skb); 182 } 183 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 184 185 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 186 { 187 struct dst_entry *dst = skb_dst(skb); 188 struct rtable *rt = (struct rtable *)dst; 189 struct net_device *dev = dst->dev; 190 unsigned int hh_len = LL_RESERVED_SPACE(dev); 191 struct neighbour *neigh; 192 bool is_v6gw = false; 193 194 if (rt->rt_type == RTN_MULTICAST) { 195 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 196 } else if (rt->rt_type == RTN_BROADCAST) 197 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 198 199 /* Be paranoid, rather than too clever. */ 200 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 201 struct sk_buff *skb2; 202 203 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 204 if (!skb2) { 205 kfree_skb(skb); 206 return -ENOMEM; 207 } 208 if (skb->sk) 209 skb_set_owner_w(skb2, skb->sk); 210 consume_skb(skb); 211 skb = skb2; 212 } 213 214 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 215 int res = lwtunnel_xmit(skb); 216 217 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 218 return res; 219 } 220 221 rcu_read_lock_bh(); 222 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 223 if (!IS_ERR(neigh)) { 224 int res; 225 226 sock_confirm_neigh(skb, neigh); 227 /* if crossing protocols, can not use the cached header */ 228 res = neigh_output(neigh, skb, is_v6gw); 229 rcu_read_unlock_bh(); 230 return res; 231 } 232 rcu_read_unlock_bh(); 233 234 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 235 __func__); 236 kfree_skb(skb); 237 return -EINVAL; 238 } 239 240 static int ip_finish_output_gso(struct net *net, struct sock *sk, 241 struct sk_buff *skb, unsigned int mtu) 242 { 243 netdev_features_t features; 244 struct sk_buff *segs; 245 int ret = 0; 246 247 /* common case: seglen is <= mtu 248 */ 249 if (skb_gso_validate_network_len(skb, mtu)) 250 return ip_finish_output2(net, sk, skb); 251 252 /* Slowpath - GSO segment length exceeds the egress MTU. 253 * 254 * This can happen in several cases: 255 * - Forwarding of a TCP GRO skb, when DF flag is not set. 256 * - Forwarding of an skb that arrived on a virtualization interface 257 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 258 * stack. 259 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 260 * interface with a smaller MTU. 261 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 262 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 263 * insufficent MTU. 264 */ 265 features = netif_skb_features(skb); 266 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET); 267 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 268 if (IS_ERR_OR_NULL(segs)) { 269 kfree_skb(skb); 270 return -ENOMEM; 271 } 272 273 consume_skb(skb); 274 275 do { 276 struct sk_buff *nskb = segs->next; 277 int err; 278 279 skb_mark_not_on_list(segs); 280 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 281 282 if (err && ret == 0) 283 ret = err; 284 segs = nskb; 285 } while (segs); 286 287 return ret; 288 } 289 290 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 291 { 292 unsigned int mtu; 293 int ret; 294 295 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 296 if (ret) { 297 kfree_skb(skb); 298 return ret; 299 } 300 301 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 302 /* Policy lookup after SNAT yielded a new policy */ 303 if (skb_dst(skb)->xfrm) { 304 IPCB(skb)->flags |= IPSKB_REROUTED; 305 return dst_output(net, sk, skb); 306 } 307 #endif 308 mtu = ip_skb_dst_mtu(sk, skb); 309 if (skb_is_gso(skb)) 310 return ip_finish_output_gso(net, sk, skb, mtu); 311 312 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 313 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 314 315 return ip_finish_output2(net, sk, skb); 316 } 317 318 static int ip_mc_finish_output(struct net *net, struct sock *sk, 319 struct sk_buff *skb) 320 { 321 int ret; 322 323 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 324 if (ret) { 325 kfree_skb(skb); 326 return ret; 327 } 328 329 return dev_loopback_xmit(net, sk, skb); 330 } 331 332 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 333 { 334 struct rtable *rt = skb_rtable(skb); 335 struct net_device *dev = rt->dst.dev; 336 337 /* 338 * If the indicated interface is up and running, send the packet. 339 */ 340 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 341 342 skb->dev = dev; 343 skb->protocol = htons(ETH_P_IP); 344 345 /* 346 * Multicasts are looped back for other local users 347 */ 348 349 if (rt->rt_flags&RTCF_MULTICAST) { 350 if (sk_mc_loop(sk) 351 #ifdef CONFIG_IP_MROUTE 352 /* Small optimization: do not loopback not local frames, 353 which returned after forwarding; they will be dropped 354 by ip_mr_input in any case. 355 Note, that local frames are looped back to be delivered 356 to local recipients. 357 358 This check is duplicated in ip_mr_input at the moment. 359 */ 360 && 361 ((rt->rt_flags & RTCF_LOCAL) || 362 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 363 #endif 364 ) { 365 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 366 if (newskb) 367 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 368 net, sk, newskb, NULL, newskb->dev, 369 ip_mc_finish_output); 370 } 371 372 /* Multicasts with ttl 0 must not go beyond the host */ 373 374 if (ip_hdr(skb)->ttl == 0) { 375 kfree_skb(skb); 376 return 0; 377 } 378 } 379 380 if (rt->rt_flags&RTCF_BROADCAST) { 381 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 382 if (newskb) 383 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 384 net, sk, newskb, NULL, newskb->dev, 385 ip_mc_finish_output); 386 } 387 388 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 389 net, sk, skb, NULL, skb->dev, 390 ip_finish_output, 391 !(IPCB(skb)->flags & IPSKB_REROUTED)); 392 } 393 394 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 395 { 396 struct net_device *dev = skb_dst(skb)->dev; 397 398 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 399 400 skb->dev = dev; 401 skb->protocol = htons(ETH_P_IP); 402 403 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 404 net, sk, skb, NULL, dev, 405 ip_finish_output, 406 !(IPCB(skb)->flags & IPSKB_REROUTED)); 407 } 408 409 /* 410 * copy saddr and daddr, possibly using 64bit load/stores 411 * Equivalent to : 412 * iph->saddr = fl4->saddr; 413 * iph->daddr = fl4->daddr; 414 */ 415 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 416 { 417 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 418 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 419 memcpy(&iph->saddr, &fl4->saddr, 420 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 421 } 422 423 /* Note: skb->sk can be different from sk, in case of tunnels */ 424 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, 425 __u8 tos) 426 { 427 struct inet_sock *inet = inet_sk(sk); 428 struct net *net = sock_net(sk); 429 struct ip_options_rcu *inet_opt; 430 struct flowi4 *fl4; 431 struct rtable *rt; 432 struct iphdr *iph; 433 int res; 434 435 /* Skip all of this if the packet is already routed, 436 * f.e. by something like SCTP. 437 */ 438 rcu_read_lock(); 439 inet_opt = rcu_dereference(inet->inet_opt); 440 fl4 = &fl->u.ip4; 441 rt = skb_rtable(skb); 442 if (rt) 443 goto packet_routed; 444 445 /* Make sure we can route this packet. */ 446 rt = (struct rtable *)__sk_dst_check(sk, 0); 447 if (!rt) { 448 __be32 daddr; 449 450 /* Use correct destination address if we have options. */ 451 daddr = inet->inet_daddr; 452 if (inet_opt && inet_opt->opt.srr) 453 daddr = inet_opt->opt.faddr; 454 455 /* If this fails, retransmit mechanism of transport layer will 456 * keep trying until route appears or the connection times 457 * itself out. 458 */ 459 rt = ip_route_output_ports(net, fl4, sk, 460 daddr, inet->inet_saddr, 461 inet->inet_dport, 462 inet->inet_sport, 463 sk->sk_protocol, 464 RT_CONN_FLAGS_TOS(sk, tos), 465 sk->sk_bound_dev_if); 466 if (IS_ERR(rt)) 467 goto no_route; 468 sk_setup_caps(sk, &rt->dst); 469 } 470 skb_dst_set_noref(skb, &rt->dst); 471 472 packet_routed: 473 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_gw_family) 474 goto no_route; 475 476 /* OK, we know where to send it, allocate and build IP header. */ 477 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 478 skb_reset_network_header(skb); 479 iph = ip_hdr(skb); 480 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); 481 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 482 iph->frag_off = htons(IP_DF); 483 else 484 iph->frag_off = 0; 485 iph->ttl = ip_select_ttl(inet, &rt->dst); 486 iph->protocol = sk->sk_protocol; 487 ip_copy_addrs(iph, fl4); 488 489 /* Transport layer set skb->h.foo itself. */ 490 491 if (inet_opt && inet_opt->opt.optlen) { 492 iph->ihl += inet_opt->opt.optlen >> 2; 493 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 494 } 495 496 ip_select_ident_segs(net, skb, sk, 497 skb_shinfo(skb)->gso_segs ?: 1); 498 499 /* TODO : should we use skb->sk here instead of sk ? */ 500 skb->priority = sk->sk_priority; 501 skb->mark = sk->sk_mark; 502 503 res = ip_local_out(net, sk, skb); 504 rcu_read_unlock(); 505 return res; 506 507 no_route: 508 rcu_read_unlock(); 509 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 510 kfree_skb(skb); 511 return -EHOSTUNREACH; 512 } 513 EXPORT_SYMBOL(__ip_queue_xmit); 514 515 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 516 { 517 to->pkt_type = from->pkt_type; 518 to->priority = from->priority; 519 to->protocol = from->protocol; 520 to->skb_iif = from->skb_iif; 521 skb_dst_drop(to); 522 skb_dst_copy(to, from); 523 to->dev = from->dev; 524 to->mark = from->mark; 525 526 skb_copy_hash(to, from); 527 528 /* Copy the flags to each fragment. */ 529 IPCB(to)->flags = IPCB(from)->flags; 530 531 #ifdef CONFIG_NET_SCHED 532 to->tc_index = from->tc_index; 533 #endif 534 nf_copy(to, from); 535 skb_ext_copy(to, from); 536 #if IS_ENABLED(CONFIG_IP_VS) 537 to->ipvs_property = from->ipvs_property; 538 #endif 539 skb_copy_secmark(to, from); 540 } 541 542 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 543 unsigned int mtu, 544 int (*output)(struct net *, struct sock *, struct sk_buff *)) 545 { 546 struct iphdr *iph = ip_hdr(skb); 547 548 if ((iph->frag_off & htons(IP_DF)) == 0) 549 return ip_do_fragment(net, sk, skb, output); 550 551 if (unlikely(!skb->ignore_df || 552 (IPCB(skb)->frag_max_size && 553 IPCB(skb)->frag_max_size > mtu))) { 554 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 555 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 556 htonl(mtu)); 557 kfree_skb(skb); 558 return -EMSGSIZE; 559 } 560 561 return ip_do_fragment(net, sk, skb, output); 562 } 563 564 /* 565 * This IP datagram is too large to be sent in one piece. Break it up into 566 * smaller pieces (each of size equal to IP header plus 567 * a block of the data of the original IP data part) that will yet fit in a 568 * single device frame, and queue such a frame for sending. 569 */ 570 571 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 572 int (*output)(struct net *, struct sock *, struct sk_buff *)) 573 { 574 struct iphdr *iph; 575 int ptr; 576 struct sk_buff *skb2; 577 unsigned int mtu, hlen, left, len, ll_rs; 578 int offset; 579 __be16 not_last_frag; 580 struct rtable *rt = skb_rtable(skb); 581 int err = 0; 582 583 /* for offloaded checksums cleanup checksum before fragmentation */ 584 if (skb->ip_summed == CHECKSUM_PARTIAL && 585 (err = skb_checksum_help(skb))) 586 goto fail; 587 588 /* 589 * Point into the IP datagram header. 590 */ 591 592 iph = ip_hdr(skb); 593 594 mtu = ip_skb_dst_mtu(sk, skb); 595 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 596 mtu = IPCB(skb)->frag_max_size; 597 598 /* 599 * Setup starting values. 600 */ 601 602 hlen = iph->ihl * 4; 603 mtu = mtu - hlen; /* Size of data space */ 604 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 605 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 606 607 /* When frag_list is given, use it. First, check its validity: 608 * some transformers could create wrong frag_list or break existing 609 * one, it is not prohibited. In this case fall back to copying. 610 * 611 * LATER: this step can be merged to real generation of fragments, 612 * we can switch to copy when see the first bad fragment. 613 */ 614 if (skb_has_frag_list(skb)) { 615 struct sk_buff *frag, *frag2; 616 unsigned int first_len = skb_pagelen(skb); 617 618 if (first_len - hlen > mtu || 619 ((first_len - hlen) & 7) || 620 ip_is_fragment(iph) || 621 skb_cloned(skb) || 622 skb_headroom(skb) < ll_rs) 623 goto slow_path; 624 625 skb_walk_frags(skb, frag) { 626 /* Correct geometry. */ 627 if (frag->len > mtu || 628 ((frag->len & 7) && frag->next) || 629 skb_headroom(frag) < hlen + ll_rs) 630 goto slow_path_clean; 631 632 /* Partially cloned skb? */ 633 if (skb_shared(frag)) 634 goto slow_path_clean; 635 636 BUG_ON(frag->sk); 637 if (skb->sk) { 638 frag->sk = skb->sk; 639 frag->destructor = sock_wfree; 640 } 641 skb->truesize -= frag->truesize; 642 } 643 644 /* Everything is OK. Generate! */ 645 646 err = 0; 647 offset = 0; 648 frag = skb_shinfo(skb)->frag_list; 649 skb_frag_list_init(skb); 650 skb->data_len = first_len - skb_headlen(skb); 651 skb->len = first_len; 652 iph->tot_len = htons(first_len); 653 iph->frag_off = htons(IP_MF); 654 ip_send_check(iph); 655 656 for (;;) { 657 /* Prepare header of the next frame, 658 * before previous one went down. */ 659 if (frag) { 660 frag->ip_summed = CHECKSUM_NONE; 661 skb_reset_transport_header(frag); 662 __skb_push(frag, hlen); 663 skb_reset_network_header(frag); 664 memcpy(skb_network_header(frag), iph, hlen); 665 iph = ip_hdr(frag); 666 iph->tot_len = htons(frag->len); 667 ip_copy_metadata(frag, skb); 668 if (offset == 0) 669 ip_options_fragment(frag); 670 offset += skb->len - hlen; 671 iph->frag_off = htons(offset>>3); 672 if (frag->next) 673 iph->frag_off |= htons(IP_MF); 674 /* Ready, complete checksum */ 675 ip_send_check(iph); 676 } 677 678 err = output(net, sk, skb); 679 680 if (!err) 681 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 682 if (err || !frag) 683 break; 684 685 skb = frag; 686 frag = skb->next; 687 skb_mark_not_on_list(skb); 688 } 689 690 if (err == 0) { 691 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 692 return 0; 693 } 694 695 kfree_skb_list(frag); 696 697 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 698 return err; 699 700 slow_path_clean: 701 skb_walk_frags(skb, frag2) { 702 if (frag2 == frag) 703 break; 704 frag2->sk = NULL; 705 frag2->destructor = NULL; 706 skb->truesize += frag2->truesize; 707 } 708 } 709 710 slow_path: 711 iph = ip_hdr(skb); 712 713 left = skb->len - hlen; /* Space per frame */ 714 ptr = hlen; /* Where to start from */ 715 716 /* 717 * Fragment the datagram. 718 */ 719 720 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 721 not_last_frag = iph->frag_off & htons(IP_MF); 722 723 /* 724 * Keep copying data until we run out. 725 */ 726 727 while (left > 0) { 728 len = left; 729 /* IF: it doesn't fit, use 'mtu' - the data space left */ 730 if (len > mtu) 731 len = mtu; 732 /* IF: we are not sending up to and including the packet end 733 then align the next start on an eight byte boundary */ 734 if (len < left) { 735 len &= ~7; 736 } 737 738 /* Allocate buffer */ 739 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 740 if (!skb2) { 741 err = -ENOMEM; 742 goto fail; 743 } 744 745 /* 746 * Set up data on packet 747 */ 748 749 ip_copy_metadata(skb2, skb); 750 skb_reserve(skb2, ll_rs); 751 skb_put(skb2, len + hlen); 752 skb_reset_network_header(skb2); 753 skb2->transport_header = skb2->network_header + hlen; 754 755 /* 756 * Charge the memory for the fragment to any owner 757 * it might possess 758 */ 759 760 if (skb->sk) 761 skb_set_owner_w(skb2, skb->sk); 762 763 /* 764 * Copy the packet header into the new buffer. 765 */ 766 767 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 768 769 /* 770 * Copy a block of the IP datagram. 771 */ 772 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 773 BUG(); 774 left -= len; 775 776 /* 777 * Fill in the new header fields. 778 */ 779 iph = ip_hdr(skb2); 780 iph->frag_off = htons((offset >> 3)); 781 782 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 783 iph->frag_off |= htons(IP_DF); 784 785 /* ANK: dirty, but effective trick. Upgrade options only if 786 * the segment to be fragmented was THE FIRST (otherwise, 787 * options are already fixed) and make it ONCE 788 * on the initial skb, so that all the following fragments 789 * will inherit fixed options. 790 */ 791 if (offset == 0) 792 ip_options_fragment(skb); 793 794 /* 795 * Added AC : If we are fragmenting a fragment that's not the 796 * last fragment then keep MF on each bit 797 */ 798 if (left > 0 || not_last_frag) 799 iph->frag_off |= htons(IP_MF); 800 ptr += len; 801 offset += len; 802 803 /* 804 * Put this fragment into the sending queue. 805 */ 806 iph->tot_len = htons(len + hlen); 807 808 ip_send_check(iph); 809 810 err = output(net, sk, skb2); 811 if (err) 812 goto fail; 813 814 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 815 } 816 consume_skb(skb); 817 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 818 return err; 819 820 fail: 821 kfree_skb(skb); 822 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 823 return err; 824 } 825 EXPORT_SYMBOL(ip_do_fragment); 826 827 int 828 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 829 { 830 struct msghdr *msg = from; 831 832 if (skb->ip_summed == CHECKSUM_PARTIAL) { 833 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 834 return -EFAULT; 835 } else { 836 __wsum csum = 0; 837 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 838 return -EFAULT; 839 skb->csum = csum_block_add(skb->csum, csum, odd); 840 } 841 return 0; 842 } 843 EXPORT_SYMBOL(ip_generic_getfrag); 844 845 static inline __wsum 846 csum_page(struct page *page, int offset, int copy) 847 { 848 char *kaddr; 849 __wsum csum; 850 kaddr = kmap(page); 851 csum = csum_partial(kaddr + offset, copy, 0); 852 kunmap(page); 853 return csum; 854 } 855 856 static int __ip_append_data(struct sock *sk, 857 struct flowi4 *fl4, 858 struct sk_buff_head *queue, 859 struct inet_cork *cork, 860 struct page_frag *pfrag, 861 int getfrag(void *from, char *to, int offset, 862 int len, int odd, struct sk_buff *skb), 863 void *from, int length, int transhdrlen, 864 unsigned int flags) 865 { 866 struct inet_sock *inet = inet_sk(sk); 867 struct ubuf_info *uarg = NULL; 868 struct sk_buff *skb; 869 870 struct ip_options *opt = cork->opt; 871 int hh_len; 872 int exthdrlen; 873 int mtu; 874 int copy; 875 int err; 876 int offset = 0; 877 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 878 int csummode = CHECKSUM_NONE; 879 struct rtable *rt = (struct rtable *)cork->dst; 880 unsigned int wmem_alloc_delta = 0; 881 bool paged, extra_uref = false; 882 u32 tskey = 0; 883 884 skb = skb_peek_tail(queue); 885 886 exthdrlen = !skb ? rt->dst.header_len : 0; 887 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 888 paged = !!cork->gso_size; 889 890 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 891 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 892 tskey = sk->sk_tskey++; 893 894 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 895 896 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 897 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 898 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 899 900 if (cork->length + length > maxnonfragsize - fragheaderlen) { 901 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 902 mtu - (opt ? opt->optlen : 0)); 903 return -EMSGSIZE; 904 } 905 906 /* 907 * transhdrlen > 0 means that this is the first fragment and we wish 908 * it won't be fragmented in the future. 909 */ 910 if (transhdrlen && 911 length + fragheaderlen <= mtu && 912 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 913 (!(flags & MSG_MORE) || cork->gso_size) && 914 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 915 csummode = CHECKSUM_PARTIAL; 916 917 if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) { 918 uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb)); 919 if (!uarg) 920 return -ENOBUFS; 921 extra_uref = !skb; /* only extra ref if !MSG_MORE */ 922 if (rt->dst.dev->features & NETIF_F_SG && 923 csummode == CHECKSUM_PARTIAL) { 924 paged = true; 925 } else { 926 uarg->zerocopy = 0; 927 skb_zcopy_set(skb, uarg, &extra_uref); 928 } 929 } 930 931 cork->length += length; 932 933 /* So, what's going on in the loop below? 934 * 935 * We use calculated fragment length to generate chained skb, 936 * each of segments is IP fragment ready for sending to network after 937 * adding appropriate IP header. 938 */ 939 940 if (!skb) 941 goto alloc_new_skb; 942 943 while (length > 0) { 944 /* Check if the remaining data fits into current packet. */ 945 copy = mtu - skb->len; 946 if (copy < length) 947 copy = maxfraglen - skb->len; 948 if (copy <= 0) { 949 char *data; 950 unsigned int datalen; 951 unsigned int fraglen; 952 unsigned int fraggap; 953 unsigned int alloclen; 954 unsigned int pagedlen; 955 struct sk_buff *skb_prev; 956 alloc_new_skb: 957 skb_prev = skb; 958 if (skb_prev) 959 fraggap = skb_prev->len - maxfraglen; 960 else 961 fraggap = 0; 962 963 /* 964 * If remaining data exceeds the mtu, 965 * we know we need more fragment(s). 966 */ 967 datalen = length + fraggap; 968 if (datalen > mtu - fragheaderlen) 969 datalen = maxfraglen - fragheaderlen; 970 fraglen = datalen + fragheaderlen; 971 pagedlen = 0; 972 973 if ((flags & MSG_MORE) && 974 !(rt->dst.dev->features&NETIF_F_SG)) 975 alloclen = mtu; 976 else if (!paged) 977 alloclen = fraglen; 978 else { 979 alloclen = min_t(int, fraglen, MAX_HEADER); 980 pagedlen = fraglen - alloclen; 981 } 982 983 alloclen += exthdrlen; 984 985 /* The last fragment gets additional space at tail. 986 * Note, with MSG_MORE we overallocate on fragments, 987 * because we have no idea what fragment will be 988 * the last. 989 */ 990 if (datalen == length + fraggap) 991 alloclen += rt->dst.trailer_len; 992 993 if (transhdrlen) { 994 skb = sock_alloc_send_skb(sk, 995 alloclen + hh_len + 15, 996 (flags & MSG_DONTWAIT), &err); 997 } else { 998 skb = NULL; 999 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 1000 2 * sk->sk_sndbuf) 1001 skb = alloc_skb(alloclen + hh_len + 15, 1002 sk->sk_allocation); 1003 if (unlikely(!skb)) 1004 err = -ENOBUFS; 1005 } 1006 if (!skb) 1007 goto error; 1008 1009 /* 1010 * Fill in the control structures 1011 */ 1012 skb->ip_summed = csummode; 1013 skb->csum = 0; 1014 skb_reserve(skb, hh_len); 1015 1016 /* 1017 * Find where to start putting bytes. 1018 */ 1019 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1020 skb_set_network_header(skb, exthdrlen); 1021 skb->transport_header = (skb->network_header + 1022 fragheaderlen); 1023 data += fragheaderlen + exthdrlen; 1024 1025 if (fraggap) { 1026 skb->csum = skb_copy_and_csum_bits( 1027 skb_prev, maxfraglen, 1028 data + transhdrlen, fraggap, 0); 1029 skb_prev->csum = csum_sub(skb_prev->csum, 1030 skb->csum); 1031 data += fraggap; 1032 pskb_trim_unique(skb_prev, maxfraglen); 1033 } 1034 1035 copy = datalen - transhdrlen - fraggap - pagedlen; 1036 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1037 err = -EFAULT; 1038 kfree_skb(skb); 1039 goto error; 1040 } 1041 1042 offset += copy; 1043 length -= copy + transhdrlen; 1044 transhdrlen = 0; 1045 exthdrlen = 0; 1046 csummode = CHECKSUM_NONE; 1047 1048 /* only the initial fragment is time stamped */ 1049 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1050 cork->tx_flags = 0; 1051 skb_shinfo(skb)->tskey = tskey; 1052 tskey = 0; 1053 skb_zcopy_set(skb, uarg, &extra_uref); 1054 1055 if ((flags & MSG_CONFIRM) && !skb_prev) 1056 skb_set_dst_pending_confirm(skb, 1); 1057 1058 /* 1059 * Put the packet on the pending queue. 1060 */ 1061 if (!skb->destructor) { 1062 skb->destructor = sock_wfree; 1063 skb->sk = sk; 1064 wmem_alloc_delta += skb->truesize; 1065 } 1066 __skb_queue_tail(queue, skb); 1067 continue; 1068 } 1069 1070 if (copy > length) 1071 copy = length; 1072 1073 if (!(rt->dst.dev->features&NETIF_F_SG) && 1074 skb_tailroom(skb) >= copy) { 1075 unsigned int off; 1076 1077 off = skb->len; 1078 if (getfrag(from, skb_put(skb, copy), 1079 offset, copy, off, skb) < 0) { 1080 __skb_trim(skb, off); 1081 err = -EFAULT; 1082 goto error; 1083 } 1084 } else if (!uarg || !uarg->zerocopy) { 1085 int i = skb_shinfo(skb)->nr_frags; 1086 1087 err = -ENOMEM; 1088 if (!sk_page_frag_refill(sk, pfrag)) 1089 goto error; 1090 1091 if (!skb_can_coalesce(skb, i, pfrag->page, 1092 pfrag->offset)) { 1093 err = -EMSGSIZE; 1094 if (i == MAX_SKB_FRAGS) 1095 goto error; 1096 1097 __skb_fill_page_desc(skb, i, pfrag->page, 1098 pfrag->offset, 0); 1099 skb_shinfo(skb)->nr_frags = ++i; 1100 get_page(pfrag->page); 1101 } 1102 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1103 if (getfrag(from, 1104 page_address(pfrag->page) + pfrag->offset, 1105 offset, copy, skb->len, skb) < 0) 1106 goto error_efault; 1107 1108 pfrag->offset += copy; 1109 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1110 skb->len += copy; 1111 skb->data_len += copy; 1112 skb->truesize += copy; 1113 wmem_alloc_delta += copy; 1114 } else { 1115 err = skb_zerocopy_iter_dgram(skb, from, copy); 1116 if (err < 0) 1117 goto error; 1118 } 1119 offset += copy; 1120 length -= copy; 1121 } 1122 1123 if (wmem_alloc_delta) 1124 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1125 return 0; 1126 1127 error_efault: 1128 err = -EFAULT; 1129 error: 1130 if (uarg) 1131 sock_zerocopy_put_abort(uarg, extra_uref); 1132 cork->length -= length; 1133 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1134 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1135 return err; 1136 } 1137 1138 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1139 struct ipcm_cookie *ipc, struct rtable **rtp) 1140 { 1141 struct ip_options_rcu *opt; 1142 struct rtable *rt; 1143 1144 rt = *rtp; 1145 if (unlikely(!rt)) 1146 return -EFAULT; 1147 1148 /* 1149 * setup for corking. 1150 */ 1151 opt = ipc->opt; 1152 if (opt) { 1153 if (!cork->opt) { 1154 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1155 sk->sk_allocation); 1156 if (unlikely(!cork->opt)) 1157 return -ENOBUFS; 1158 } 1159 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1160 cork->flags |= IPCORK_OPT; 1161 cork->addr = ipc->addr; 1162 } 1163 1164 /* 1165 * We steal reference to this route, caller should not release it 1166 */ 1167 *rtp = NULL; 1168 cork->fragsize = ip_sk_use_pmtu(sk) ? 1169 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1170 1171 cork->gso_size = ipc->gso_size; 1172 cork->dst = &rt->dst; 1173 cork->length = 0; 1174 cork->ttl = ipc->ttl; 1175 cork->tos = ipc->tos; 1176 cork->priority = ipc->priority; 1177 cork->transmit_time = ipc->sockc.transmit_time; 1178 cork->tx_flags = 0; 1179 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); 1180 1181 return 0; 1182 } 1183 1184 /* 1185 * ip_append_data() and ip_append_page() can make one large IP datagram 1186 * from many pieces of data. Each pieces will be holded on the socket 1187 * until ip_push_pending_frames() is called. Each piece can be a page 1188 * or non-page data. 1189 * 1190 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1191 * this interface potentially. 1192 * 1193 * LATER: length must be adjusted by pad at tail, when it is required. 1194 */ 1195 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1196 int getfrag(void *from, char *to, int offset, int len, 1197 int odd, struct sk_buff *skb), 1198 void *from, int length, int transhdrlen, 1199 struct ipcm_cookie *ipc, struct rtable **rtp, 1200 unsigned int flags) 1201 { 1202 struct inet_sock *inet = inet_sk(sk); 1203 int err; 1204 1205 if (flags&MSG_PROBE) 1206 return 0; 1207 1208 if (skb_queue_empty(&sk->sk_write_queue)) { 1209 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1210 if (err) 1211 return err; 1212 } else { 1213 transhdrlen = 0; 1214 } 1215 1216 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1217 sk_page_frag(sk), getfrag, 1218 from, length, transhdrlen, flags); 1219 } 1220 1221 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1222 int offset, size_t size, int flags) 1223 { 1224 struct inet_sock *inet = inet_sk(sk); 1225 struct sk_buff *skb; 1226 struct rtable *rt; 1227 struct ip_options *opt = NULL; 1228 struct inet_cork *cork; 1229 int hh_len; 1230 int mtu; 1231 int len; 1232 int err; 1233 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1234 1235 if (inet->hdrincl) 1236 return -EPERM; 1237 1238 if (flags&MSG_PROBE) 1239 return 0; 1240 1241 if (skb_queue_empty(&sk->sk_write_queue)) 1242 return -EINVAL; 1243 1244 cork = &inet->cork.base; 1245 rt = (struct rtable *)cork->dst; 1246 if (cork->flags & IPCORK_OPT) 1247 opt = cork->opt; 1248 1249 if (!(rt->dst.dev->features&NETIF_F_SG)) 1250 return -EOPNOTSUPP; 1251 1252 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1253 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 1254 1255 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1256 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1257 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1258 1259 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1260 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1261 mtu - (opt ? opt->optlen : 0)); 1262 return -EMSGSIZE; 1263 } 1264 1265 skb = skb_peek_tail(&sk->sk_write_queue); 1266 if (!skb) 1267 return -EINVAL; 1268 1269 cork->length += size; 1270 1271 while (size > 0) { 1272 /* Check if the remaining data fits into current packet. */ 1273 len = mtu - skb->len; 1274 if (len < size) 1275 len = maxfraglen - skb->len; 1276 1277 if (len <= 0) { 1278 struct sk_buff *skb_prev; 1279 int alloclen; 1280 1281 skb_prev = skb; 1282 fraggap = skb_prev->len - maxfraglen; 1283 1284 alloclen = fragheaderlen + hh_len + fraggap + 15; 1285 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1286 if (unlikely(!skb)) { 1287 err = -ENOBUFS; 1288 goto error; 1289 } 1290 1291 /* 1292 * Fill in the control structures 1293 */ 1294 skb->ip_summed = CHECKSUM_NONE; 1295 skb->csum = 0; 1296 skb_reserve(skb, hh_len); 1297 1298 /* 1299 * Find where to start putting bytes. 1300 */ 1301 skb_put(skb, fragheaderlen + fraggap); 1302 skb_reset_network_header(skb); 1303 skb->transport_header = (skb->network_header + 1304 fragheaderlen); 1305 if (fraggap) { 1306 skb->csum = skb_copy_and_csum_bits(skb_prev, 1307 maxfraglen, 1308 skb_transport_header(skb), 1309 fraggap, 0); 1310 skb_prev->csum = csum_sub(skb_prev->csum, 1311 skb->csum); 1312 pskb_trim_unique(skb_prev, maxfraglen); 1313 } 1314 1315 /* 1316 * Put the packet on the pending queue. 1317 */ 1318 __skb_queue_tail(&sk->sk_write_queue, skb); 1319 continue; 1320 } 1321 1322 if (len > size) 1323 len = size; 1324 1325 if (skb_append_pagefrags(skb, page, offset, len)) { 1326 err = -EMSGSIZE; 1327 goto error; 1328 } 1329 1330 if (skb->ip_summed == CHECKSUM_NONE) { 1331 __wsum csum; 1332 csum = csum_page(page, offset, len); 1333 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1334 } 1335 1336 skb->len += len; 1337 skb->data_len += len; 1338 skb->truesize += len; 1339 refcount_add(len, &sk->sk_wmem_alloc); 1340 offset += len; 1341 size -= len; 1342 } 1343 return 0; 1344 1345 error: 1346 cork->length -= size; 1347 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1348 return err; 1349 } 1350 1351 static void ip_cork_release(struct inet_cork *cork) 1352 { 1353 cork->flags &= ~IPCORK_OPT; 1354 kfree(cork->opt); 1355 cork->opt = NULL; 1356 dst_release(cork->dst); 1357 cork->dst = NULL; 1358 } 1359 1360 /* 1361 * Combined all pending IP fragments on the socket as one IP datagram 1362 * and push them out. 1363 */ 1364 struct sk_buff *__ip_make_skb(struct sock *sk, 1365 struct flowi4 *fl4, 1366 struct sk_buff_head *queue, 1367 struct inet_cork *cork) 1368 { 1369 struct sk_buff *skb, *tmp_skb; 1370 struct sk_buff **tail_skb; 1371 struct inet_sock *inet = inet_sk(sk); 1372 struct net *net = sock_net(sk); 1373 struct ip_options *opt = NULL; 1374 struct rtable *rt = (struct rtable *)cork->dst; 1375 struct iphdr *iph; 1376 __be16 df = 0; 1377 __u8 ttl; 1378 1379 skb = __skb_dequeue(queue); 1380 if (!skb) 1381 goto out; 1382 tail_skb = &(skb_shinfo(skb)->frag_list); 1383 1384 /* move skb->data to ip header from ext header */ 1385 if (skb->data < skb_network_header(skb)) 1386 __skb_pull(skb, skb_network_offset(skb)); 1387 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1388 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1389 *tail_skb = tmp_skb; 1390 tail_skb = &(tmp_skb->next); 1391 skb->len += tmp_skb->len; 1392 skb->data_len += tmp_skb->len; 1393 skb->truesize += tmp_skb->truesize; 1394 tmp_skb->destructor = NULL; 1395 tmp_skb->sk = NULL; 1396 } 1397 1398 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1399 * to fragment the frame generated here. No matter, what transforms 1400 * how transforms change size of the packet, it will come out. 1401 */ 1402 skb->ignore_df = ip_sk_ignore_df(sk); 1403 1404 /* DF bit is set when we want to see DF on outgoing frames. 1405 * If ignore_df is set too, we still allow to fragment this frame 1406 * locally. */ 1407 if (inet->pmtudisc == IP_PMTUDISC_DO || 1408 inet->pmtudisc == IP_PMTUDISC_PROBE || 1409 (skb->len <= dst_mtu(&rt->dst) && 1410 ip_dont_fragment(sk, &rt->dst))) 1411 df = htons(IP_DF); 1412 1413 if (cork->flags & IPCORK_OPT) 1414 opt = cork->opt; 1415 1416 if (cork->ttl != 0) 1417 ttl = cork->ttl; 1418 else if (rt->rt_type == RTN_MULTICAST) 1419 ttl = inet->mc_ttl; 1420 else 1421 ttl = ip_select_ttl(inet, &rt->dst); 1422 1423 iph = ip_hdr(skb); 1424 iph->version = 4; 1425 iph->ihl = 5; 1426 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1427 iph->frag_off = df; 1428 iph->ttl = ttl; 1429 iph->protocol = sk->sk_protocol; 1430 ip_copy_addrs(iph, fl4); 1431 ip_select_ident(net, skb, sk); 1432 1433 if (opt) { 1434 iph->ihl += opt->optlen>>2; 1435 ip_options_build(skb, opt, cork->addr, rt, 0); 1436 } 1437 1438 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1439 skb->mark = sk->sk_mark; 1440 skb->tstamp = cork->transmit_time; 1441 /* 1442 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1443 * on dst refcount 1444 */ 1445 cork->dst = NULL; 1446 skb_dst_set(skb, &rt->dst); 1447 1448 if (iph->protocol == IPPROTO_ICMP) 1449 icmp_out_count(net, ((struct icmphdr *) 1450 skb_transport_header(skb))->type); 1451 1452 ip_cork_release(cork); 1453 out: 1454 return skb; 1455 } 1456 1457 int ip_send_skb(struct net *net, struct sk_buff *skb) 1458 { 1459 int err; 1460 1461 err = ip_local_out(net, skb->sk, skb); 1462 if (err) { 1463 if (err > 0) 1464 err = net_xmit_errno(err); 1465 if (err) 1466 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1467 } 1468 1469 return err; 1470 } 1471 1472 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1473 { 1474 struct sk_buff *skb; 1475 1476 skb = ip_finish_skb(sk, fl4); 1477 if (!skb) 1478 return 0; 1479 1480 /* Netfilter gets whole the not fragmented skb. */ 1481 return ip_send_skb(sock_net(sk), skb); 1482 } 1483 1484 /* 1485 * Throw away all pending data on the socket. 1486 */ 1487 static void __ip_flush_pending_frames(struct sock *sk, 1488 struct sk_buff_head *queue, 1489 struct inet_cork *cork) 1490 { 1491 struct sk_buff *skb; 1492 1493 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1494 kfree_skb(skb); 1495 1496 ip_cork_release(cork); 1497 } 1498 1499 void ip_flush_pending_frames(struct sock *sk) 1500 { 1501 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1502 } 1503 1504 struct sk_buff *ip_make_skb(struct sock *sk, 1505 struct flowi4 *fl4, 1506 int getfrag(void *from, char *to, int offset, 1507 int len, int odd, struct sk_buff *skb), 1508 void *from, int length, int transhdrlen, 1509 struct ipcm_cookie *ipc, struct rtable **rtp, 1510 struct inet_cork *cork, unsigned int flags) 1511 { 1512 struct sk_buff_head queue; 1513 int err; 1514 1515 if (flags & MSG_PROBE) 1516 return NULL; 1517 1518 __skb_queue_head_init(&queue); 1519 1520 cork->flags = 0; 1521 cork->addr = 0; 1522 cork->opt = NULL; 1523 err = ip_setup_cork(sk, cork, ipc, rtp); 1524 if (err) 1525 return ERR_PTR(err); 1526 1527 err = __ip_append_data(sk, fl4, &queue, cork, 1528 ¤t->task_frag, getfrag, 1529 from, length, transhdrlen, flags); 1530 if (err) { 1531 __ip_flush_pending_frames(sk, &queue, cork); 1532 return ERR_PTR(err); 1533 } 1534 1535 return __ip_make_skb(sk, fl4, &queue, cork); 1536 } 1537 1538 /* 1539 * Fetch data from kernel space and fill in checksum if needed. 1540 */ 1541 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1542 int len, int odd, struct sk_buff *skb) 1543 { 1544 __wsum csum; 1545 1546 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1547 skb->csum = csum_block_add(skb->csum, csum, odd); 1548 return 0; 1549 } 1550 1551 /* 1552 * Generic function to send a packet as reply to another packet. 1553 * Used to send some TCP resets/acks so far. 1554 */ 1555 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1556 const struct ip_options *sopt, 1557 __be32 daddr, __be32 saddr, 1558 const struct ip_reply_arg *arg, 1559 unsigned int len) 1560 { 1561 struct ip_options_data replyopts; 1562 struct ipcm_cookie ipc; 1563 struct flowi4 fl4; 1564 struct rtable *rt = skb_rtable(skb); 1565 struct net *net = sock_net(sk); 1566 struct sk_buff *nskb; 1567 int err; 1568 int oif; 1569 1570 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1571 return; 1572 1573 ipcm_init(&ipc); 1574 ipc.addr = daddr; 1575 1576 if (replyopts.opt.opt.optlen) { 1577 ipc.opt = &replyopts.opt; 1578 1579 if (replyopts.opt.opt.srr) 1580 daddr = replyopts.opt.opt.faddr; 1581 } 1582 1583 oif = arg->bound_dev_if; 1584 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1585 oif = skb->skb_iif; 1586 1587 flowi4_init_output(&fl4, oif, 1588 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1589 RT_TOS(arg->tos), 1590 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1591 ip_reply_arg_flowi_flags(arg), 1592 daddr, saddr, 1593 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1594 arg->uid); 1595 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1596 rt = ip_route_output_key(net, &fl4); 1597 if (IS_ERR(rt)) 1598 return; 1599 1600 inet_sk(sk)->tos = arg->tos; 1601 1602 sk->sk_priority = skb->priority; 1603 sk->sk_protocol = ip_hdr(skb)->protocol; 1604 sk->sk_bound_dev_if = arg->bound_dev_if; 1605 sk->sk_sndbuf = sysctl_wmem_default; 1606 sk->sk_mark = fl4.flowi4_mark; 1607 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1608 len, 0, &ipc, &rt, MSG_DONTWAIT); 1609 if (unlikely(err)) { 1610 ip_flush_pending_frames(sk); 1611 goto out; 1612 } 1613 1614 nskb = skb_peek(&sk->sk_write_queue); 1615 if (nskb) { 1616 if (arg->csumoffset >= 0) 1617 *((__sum16 *)skb_transport_header(nskb) + 1618 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1619 arg->csum)); 1620 nskb->ip_summed = CHECKSUM_NONE; 1621 ip_push_pending_frames(sk, &fl4); 1622 } 1623 out: 1624 ip_rt_put(rt); 1625 } 1626 1627 void __init ip_init(void) 1628 { 1629 ip_rt_init(); 1630 inet_initpeers(); 1631 1632 #if defined(CONFIG_IP_MULTICAST) 1633 igmp_mc_init(); 1634 #endif 1635 } 1636