xref: /openbmc/linux/net/ipv4/ip_output.c (revision 7d9e5f422150ed00de744e02a80734d74cc9704d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) output module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <Alan.Cox@linux.org>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *		Hirokazu Takahashi, <taka@valinux.co.jp>
18  *
19  *	See ip_input.c for original log
20  *
21  *	Fixes:
22  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
23  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
24  *		Bradford Johnson:	Fix faulty handling of some frames when
25  *					no route is found.
26  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
27  *					(in case if packet not accepted by
28  *					output firewall rules)
29  *		Mike McLagan	:	Routing by source
30  *		Alexey Kuznetsov:	use new route cache
31  *		Andi Kleen:		Fix broken PMTU recovery and remove
32  *					some redundant tests.
33  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
34  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
35  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
36  *					for decreased register pressure on x86
37  *					and more readibility.
38  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
39  *					silently drop skb instead of failing with -EPERM.
40  *		Detlev Wengorz	:	Copy protocol for fragments.
41  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
42  *					datagrams.
43  *		Hirokazu Takahashi:	sendfile() on UDP works now.
44  */
45 
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55 
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65 
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <net/lwtunnel.h>
78 #include <linux/bpf-cgroup.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
84 
85 static int
86 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
87 	    unsigned int mtu,
88 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
89 
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr *iph)
92 {
93 	iph->check = 0;
94 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 }
96 EXPORT_SYMBOL(ip_send_check);
97 
98 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
99 {
100 	struct iphdr *iph = ip_hdr(skb);
101 
102 	iph->tot_len = htons(skb->len);
103 	ip_send_check(iph);
104 
105 	/* if egress device is enslaved to an L3 master device pass the
106 	 * skb to its handler for processing
107 	 */
108 	skb = l3mdev_ip_out(sk, skb);
109 	if (unlikely(!skb))
110 		return 0;
111 
112 	skb->protocol = htons(ETH_P_IP);
113 
114 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
115 		       net, sk, skb, NULL, skb_dst(skb)->dev,
116 		       dst_output);
117 }
118 
119 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
120 {
121 	int err;
122 
123 	err = __ip_local_out(net, sk, skb);
124 	if (likely(err == 1))
125 		err = dst_output(net, sk, skb);
126 
127 	return err;
128 }
129 EXPORT_SYMBOL_GPL(ip_local_out);
130 
131 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
132 {
133 	int ttl = inet->uc_ttl;
134 
135 	if (ttl < 0)
136 		ttl = ip4_dst_hoplimit(dst);
137 	return ttl;
138 }
139 
140 /*
141  *		Add an ip header to a skbuff and send it out.
142  *
143  */
144 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
145 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
146 {
147 	struct inet_sock *inet = inet_sk(sk);
148 	struct rtable *rt = skb_rtable(skb);
149 	struct net *net = sock_net(sk);
150 	struct iphdr *iph;
151 
152 	/* Build the IP header. */
153 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
154 	skb_reset_network_header(skb);
155 	iph = ip_hdr(skb);
156 	iph->version  = 4;
157 	iph->ihl      = 5;
158 	iph->tos      = inet->tos;
159 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
160 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
161 	iph->saddr    = saddr;
162 	iph->protocol = sk->sk_protocol;
163 	if (ip_dont_fragment(sk, &rt->dst)) {
164 		iph->frag_off = htons(IP_DF);
165 		iph->id = 0;
166 	} else {
167 		iph->frag_off = 0;
168 		__ip_select_ident(net, iph, 1);
169 	}
170 
171 	if (opt && opt->opt.optlen) {
172 		iph->ihl += opt->opt.optlen>>2;
173 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
174 	}
175 
176 	skb->priority = sk->sk_priority;
177 	if (!skb->mark)
178 		skb->mark = sk->sk_mark;
179 
180 	/* Send it out. */
181 	return ip_local_out(net, skb->sk, skb);
182 }
183 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
184 
185 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
186 {
187 	struct dst_entry *dst = skb_dst(skb);
188 	struct rtable *rt = (struct rtable *)dst;
189 	struct net_device *dev = dst->dev;
190 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
191 	struct neighbour *neigh;
192 	bool is_v6gw = false;
193 
194 	if (rt->rt_type == RTN_MULTICAST) {
195 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
196 	} else if (rt->rt_type == RTN_BROADCAST)
197 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
198 
199 	/* Be paranoid, rather than too clever. */
200 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
201 		struct sk_buff *skb2;
202 
203 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
204 		if (!skb2) {
205 			kfree_skb(skb);
206 			return -ENOMEM;
207 		}
208 		if (skb->sk)
209 			skb_set_owner_w(skb2, skb->sk);
210 		consume_skb(skb);
211 		skb = skb2;
212 	}
213 
214 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
215 		int res = lwtunnel_xmit(skb);
216 
217 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
218 			return res;
219 	}
220 
221 	rcu_read_lock_bh();
222 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
223 	if (!IS_ERR(neigh)) {
224 		int res;
225 
226 		sock_confirm_neigh(skb, neigh);
227 		/* if crossing protocols, can not use the cached header */
228 		res = neigh_output(neigh, skb, is_v6gw);
229 		rcu_read_unlock_bh();
230 		return res;
231 	}
232 	rcu_read_unlock_bh();
233 
234 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
235 			    __func__);
236 	kfree_skb(skb);
237 	return -EINVAL;
238 }
239 
240 static int ip_finish_output_gso(struct net *net, struct sock *sk,
241 				struct sk_buff *skb, unsigned int mtu)
242 {
243 	netdev_features_t features;
244 	struct sk_buff *segs;
245 	int ret = 0;
246 
247 	/* common case: seglen is <= mtu
248 	 */
249 	if (skb_gso_validate_network_len(skb, mtu))
250 		return ip_finish_output2(net, sk, skb);
251 
252 	/* Slowpath -  GSO segment length exceeds the egress MTU.
253 	 *
254 	 * This can happen in several cases:
255 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
256 	 *  - Forwarding of an skb that arrived on a virtualization interface
257 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
258 	 *    stack.
259 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
260 	 *    interface with a smaller MTU.
261 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
262 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
263 	 *    insufficent MTU.
264 	 */
265 	features = netif_skb_features(skb);
266 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
267 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
268 	if (IS_ERR_OR_NULL(segs)) {
269 		kfree_skb(skb);
270 		return -ENOMEM;
271 	}
272 
273 	consume_skb(skb);
274 
275 	do {
276 		struct sk_buff *nskb = segs->next;
277 		int err;
278 
279 		skb_mark_not_on_list(segs);
280 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
281 
282 		if (err && ret == 0)
283 			ret = err;
284 		segs = nskb;
285 	} while (segs);
286 
287 	return ret;
288 }
289 
290 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
291 {
292 	unsigned int mtu;
293 
294 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
295 	/* Policy lookup after SNAT yielded a new policy */
296 	if (skb_dst(skb)->xfrm) {
297 		IPCB(skb)->flags |= IPSKB_REROUTED;
298 		return dst_output(net, sk, skb);
299 	}
300 #endif
301 	mtu = ip_skb_dst_mtu(sk, skb);
302 	if (skb_is_gso(skb))
303 		return ip_finish_output_gso(net, sk, skb, mtu);
304 
305 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
306 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
307 
308 	return ip_finish_output2(net, sk, skb);
309 }
310 
311 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
312 {
313 	int ret;
314 
315 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
316 	switch (ret) {
317 	case NET_XMIT_SUCCESS:
318 		return __ip_finish_output(net, sk, skb);
319 	case NET_XMIT_CN:
320 		return __ip_finish_output(net, sk, skb) ? : ret;
321 	default:
322 		kfree_skb(skb);
323 		return ret;
324 	}
325 }
326 
327 static int ip_mc_finish_output(struct net *net, struct sock *sk,
328 			       struct sk_buff *skb)
329 {
330 	int ret;
331 
332 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
333 	switch (ret) {
334 	case NET_XMIT_SUCCESS:
335 		return dev_loopback_xmit(net, sk, skb);
336 	case NET_XMIT_CN:
337 		return dev_loopback_xmit(net, sk, skb) ? : ret;
338 	default:
339 		kfree_skb(skb);
340 		return ret;
341 	}
342 }
343 
344 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
345 {
346 	struct rtable *rt = skb_rtable(skb);
347 	struct net_device *dev = rt->dst.dev;
348 
349 	/*
350 	 *	If the indicated interface is up and running, send the packet.
351 	 */
352 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
353 
354 	skb->dev = dev;
355 	skb->protocol = htons(ETH_P_IP);
356 
357 	/*
358 	 *	Multicasts are looped back for other local users
359 	 */
360 
361 	if (rt->rt_flags&RTCF_MULTICAST) {
362 		if (sk_mc_loop(sk)
363 #ifdef CONFIG_IP_MROUTE
364 		/* Small optimization: do not loopback not local frames,
365 		   which returned after forwarding; they will be  dropped
366 		   by ip_mr_input in any case.
367 		   Note, that local frames are looped back to be delivered
368 		   to local recipients.
369 
370 		   This check is duplicated in ip_mr_input at the moment.
371 		 */
372 		    &&
373 		    ((rt->rt_flags & RTCF_LOCAL) ||
374 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
375 #endif
376 		   ) {
377 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
378 			if (newskb)
379 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
380 					net, sk, newskb, NULL, newskb->dev,
381 					ip_mc_finish_output);
382 		}
383 
384 		/* Multicasts with ttl 0 must not go beyond the host */
385 
386 		if (ip_hdr(skb)->ttl == 0) {
387 			kfree_skb(skb);
388 			return 0;
389 		}
390 	}
391 
392 	if (rt->rt_flags&RTCF_BROADCAST) {
393 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
394 		if (newskb)
395 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
396 				net, sk, newskb, NULL, newskb->dev,
397 				ip_mc_finish_output);
398 	}
399 
400 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
401 			    net, sk, skb, NULL, skb->dev,
402 			    ip_finish_output,
403 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
404 }
405 
406 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
407 {
408 	struct net_device *dev = skb_dst(skb)->dev;
409 
410 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
411 
412 	skb->dev = dev;
413 	skb->protocol = htons(ETH_P_IP);
414 
415 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
416 			    net, sk, skb, NULL, dev,
417 			    ip_finish_output,
418 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
419 }
420 
421 /*
422  * copy saddr and daddr, possibly using 64bit load/stores
423  * Equivalent to :
424  *   iph->saddr = fl4->saddr;
425  *   iph->daddr = fl4->daddr;
426  */
427 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
428 {
429 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
430 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
431 	memcpy(&iph->saddr, &fl4->saddr,
432 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
433 }
434 
435 /* Note: skb->sk can be different from sk, in case of tunnels */
436 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
437 		    __u8 tos)
438 {
439 	struct inet_sock *inet = inet_sk(sk);
440 	struct net *net = sock_net(sk);
441 	struct ip_options_rcu *inet_opt;
442 	struct flowi4 *fl4;
443 	struct rtable *rt;
444 	struct iphdr *iph;
445 	int res;
446 
447 	/* Skip all of this if the packet is already routed,
448 	 * f.e. by something like SCTP.
449 	 */
450 	rcu_read_lock();
451 	inet_opt = rcu_dereference(inet->inet_opt);
452 	fl4 = &fl->u.ip4;
453 	rt = skb_rtable(skb);
454 	if (rt)
455 		goto packet_routed;
456 
457 	/* Make sure we can route this packet. */
458 	rt = (struct rtable *)__sk_dst_check(sk, 0);
459 	if (!rt) {
460 		__be32 daddr;
461 
462 		/* Use correct destination address if we have options. */
463 		daddr = inet->inet_daddr;
464 		if (inet_opt && inet_opt->opt.srr)
465 			daddr = inet_opt->opt.faddr;
466 
467 		/* If this fails, retransmit mechanism of transport layer will
468 		 * keep trying until route appears or the connection times
469 		 * itself out.
470 		 */
471 		rt = ip_route_output_ports(net, fl4, sk,
472 					   daddr, inet->inet_saddr,
473 					   inet->inet_dport,
474 					   inet->inet_sport,
475 					   sk->sk_protocol,
476 					   RT_CONN_FLAGS_TOS(sk, tos),
477 					   sk->sk_bound_dev_if);
478 		if (IS_ERR(rt))
479 			goto no_route;
480 		sk_setup_caps(sk, &rt->dst);
481 	}
482 	skb_dst_set_noref(skb, &rt->dst);
483 
484 packet_routed:
485 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_gw_family)
486 		goto no_route;
487 
488 	/* OK, we know where to send it, allocate and build IP header. */
489 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
490 	skb_reset_network_header(skb);
491 	iph = ip_hdr(skb);
492 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
493 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
494 		iph->frag_off = htons(IP_DF);
495 	else
496 		iph->frag_off = 0;
497 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
498 	iph->protocol = sk->sk_protocol;
499 	ip_copy_addrs(iph, fl4);
500 
501 	/* Transport layer set skb->h.foo itself. */
502 
503 	if (inet_opt && inet_opt->opt.optlen) {
504 		iph->ihl += inet_opt->opt.optlen >> 2;
505 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
506 	}
507 
508 	ip_select_ident_segs(net, skb, sk,
509 			     skb_shinfo(skb)->gso_segs ?: 1);
510 
511 	/* TODO : should we use skb->sk here instead of sk ? */
512 	skb->priority = sk->sk_priority;
513 	skb->mark = sk->sk_mark;
514 
515 	res = ip_local_out(net, sk, skb);
516 	rcu_read_unlock();
517 	return res;
518 
519 no_route:
520 	rcu_read_unlock();
521 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
522 	kfree_skb(skb);
523 	return -EHOSTUNREACH;
524 }
525 EXPORT_SYMBOL(__ip_queue_xmit);
526 
527 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
528 {
529 	to->pkt_type = from->pkt_type;
530 	to->priority = from->priority;
531 	to->protocol = from->protocol;
532 	to->skb_iif = from->skb_iif;
533 	skb_dst_drop(to);
534 	skb_dst_copy(to, from);
535 	to->dev = from->dev;
536 	to->mark = from->mark;
537 
538 	skb_copy_hash(to, from);
539 
540 #ifdef CONFIG_NET_SCHED
541 	to->tc_index = from->tc_index;
542 #endif
543 	nf_copy(to, from);
544 	skb_ext_copy(to, from);
545 #if IS_ENABLED(CONFIG_IP_VS)
546 	to->ipvs_property = from->ipvs_property;
547 #endif
548 	skb_copy_secmark(to, from);
549 }
550 
551 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
552 		       unsigned int mtu,
553 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
554 {
555 	struct iphdr *iph = ip_hdr(skb);
556 
557 	if ((iph->frag_off & htons(IP_DF)) == 0)
558 		return ip_do_fragment(net, sk, skb, output);
559 
560 	if (unlikely(!skb->ignore_df ||
561 		     (IPCB(skb)->frag_max_size &&
562 		      IPCB(skb)->frag_max_size > mtu))) {
563 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
564 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
565 			  htonl(mtu));
566 		kfree_skb(skb);
567 		return -EMSGSIZE;
568 	}
569 
570 	return ip_do_fragment(net, sk, skb, output);
571 }
572 
573 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
574 		      unsigned int hlen, struct ip_fraglist_iter *iter)
575 {
576 	unsigned int first_len = skb_pagelen(skb);
577 
578 	iter->frag = skb_shinfo(skb)->frag_list;
579 	skb_frag_list_init(skb);
580 
581 	iter->offset = 0;
582 	iter->iph = iph;
583 	iter->hlen = hlen;
584 
585 	skb->data_len = first_len - skb_headlen(skb);
586 	skb->len = first_len;
587 	iph->tot_len = htons(first_len);
588 	iph->frag_off = htons(IP_MF);
589 	ip_send_check(iph);
590 }
591 EXPORT_SYMBOL(ip_fraglist_init);
592 
593 static void ip_fraglist_ipcb_prepare(struct sk_buff *skb,
594 				     struct ip_fraglist_iter *iter)
595 {
596 	struct sk_buff *to = iter->frag;
597 
598 	/* Copy the flags to each fragment. */
599 	IPCB(to)->flags = IPCB(skb)->flags;
600 
601 	if (iter->offset == 0)
602 		ip_options_fragment(to);
603 }
604 
605 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
606 {
607 	unsigned int hlen = iter->hlen;
608 	struct iphdr *iph = iter->iph;
609 	struct sk_buff *frag;
610 
611 	frag = iter->frag;
612 	frag->ip_summed = CHECKSUM_NONE;
613 	skb_reset_transport_header(frag);
614 	__skb_push(frag, hlen);
615 	skb_reset_network_header(frag);
616 	memcpy(skb_network_header(frag), iph, hlen);
617 	iter->iph = ip_hdr(frag);
618 	iph = iter->iph;
619 	iph->tot_len = htons(frag->len);
620 	ip_copy_metadata(frag, skb);
621 	iter->offset += skb->len - hlen;
622 	iph->frag_off = htons(iter->offset >> 3);
623 	if (frag->next)
624 		iph->frag_off |= htons(IP_MF);
625 	/* Ready, complete checksum */
626 	ip_send_check(iph);
627 }
628 EXPORT_SYMBOL(ip_fraglist_prepare);
629 
630 void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
631 		  unsigned int ll_rs, unsigned int mtu,
632 		  struct ip_frag_state *state)
633 {
634 	struct iphdr *iph = ip_hdr(skb);
635 
636 	state->hlen = hlen;
637 	state->ll_rs = ll_rs;
638 	state->mtu = mtu;
639 
640 	state->left = skb->len - hlen;	/* Space per frame */
641 	state->ptr = hlen;		/* Where to start from */
642 
643 	state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
644 	state->not_last_frag = iph->frag_off & htons(IP_MF);
645 }
646 EXPORT_SYMBOL(ip_frag_init);
647 
648 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
649 			 bool first_frag, struct ip_frag_state *state)
650 {
651 	/* Copy the flags to each fragment. */
652 	IPCB(to)->flags = IPCB(from)->flags;
653 
654 	if (IPCB(from)->flags & IPSKB_FRAG_PMTU)
655 		state->iph->frag_off |= htons(IP_DF);
656 
657 	/* ANK: dirty, but effective trick. Upgrade options only if
658 	 * the segment to be fragmented was THE FIRST (otherwise,
659 	 * options are already fixed) and make it ONCE
660 	 * on the initial skb, so that all the following fragments
661 	 * will inherit fixed options.
662 	 */
663 	if (first_frag)
664 		ip_options_fragment(from);
665 }
666 
667 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
668 {
669 	unsigned int len = state->left;
670 	struct sk_buff *skb2;
671 	struct iphdr *iph;
672 
673 	len = state->left;
674 	/* IF: it doesn't fit, use 'mtu' - the data space left */
675 	if (len > state->mtu)
676 		len = state->mtu;
677 	/* IF: we are not sending up to and including the packet end
678 	   then align the next start on an eight byte boundary */
679 	if (len < state->left)	{
680 		len &= ~7;
681 	}
682 
683 	/* Allocate buffer */
684 	skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
685 	if (!skb2)
686 		return ERR_PTR(-ENOMEM);
687 
688 	/*
689 	 *	Set up data on packet
690 	 */
691 
692 	ip_copy_metadata(skb2, skb);
693 	skb_reserve(skb2, state->ll_rs);
694 	skb_put(skb2, len + state->hlen);
695 	skb_reset_network_header(skb2);
696 	skb2->transport_header = skb2->network_header + state->hlen;
697 
698 	/*
699 	 *	Charge the memory for the fragment to any owner
700 	 *	it might possess
701 	 */
702 
703 	if (skb->sk)
704 		skb_set_owner_w(skb2, skb->sk);
705 
706 	/*
707 	 *	Copy the packet header into the new buffer.
708 	 */
709 
710 	skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
711 
712 	/*
713 	 *	Copy a block of the IP datagram.
714 	 */
715 	if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
716 		BUG();
717 	state->left -= len;
718 
719 	/*
720 	 *	Fill in the new header fields.
721 	 */
722 	iph = ip_hdr(skb2);
723 	iph->frag_off = htons((state->offset >> 3));
724 
725 	/*
726 	 *	Added AC : If we are fragmenting a fragment that's not the
727 	 *		   last fragment then keep MF on each bit
728 	 */
729 	if (state->left > 0 || state->not_last_frag)
730 		iph->frag_off |= htons(IP_MF);
731 	state->ptr += len;
732 	state->offset += len;
733 
734 	iph->tot_len = htons(len + state->hlen);
735 
736 	ip_send_check(iph);
737 
738 	return skb2;
739 }
740 EXPORT_SYMBOL(ip_frag_next);
741 
742 /*
743  *	This IP datagram is too large to be sent in one piece.  Break it up into
744  *	smaller pieces (each of size equal to IP header plus
745  *	a block of the data of the original IP data part) that will yet fit in a
746  *	single device frame, and queue such a frame for sending.
747  */
748 
749 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
750 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
751 {
752 	struct iphdr *iph;
753 	struct sk_buff *skb2;
754 	struct rtable *rt = skb_rtable(skb);
755 	unsigned int mtu, hlen, ll_rs;
756 	struct ip_fraglist_iter iter;
757 	struct ip_frag_state state;
758 	int err = 0;
759 
760 	/* for offloaded checksums cleanup checksum before fragmentation */
761 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
762 	    (err = skb_checksum_help(skb)))
763 		goto fail;
764 
765 	/*
766 	 *	Point into the IP datagram header.
767 	 */
768 
769 	iph = ip_hdr(skb);
770 
771 	mtu = ip_skb_dst_mtu(sk, skb);
772 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
773 		mtu = IPCB(skb)->frag_max_size;
774 
775 	/*
776 	 *	Setup starting values.
777 	 */
778 
779 	hlen = iph->ihl * 4;
780 	mtu = mtu - hlen;	/* Size of data space */
781 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
782 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
783 
784 	/* When frag_list is given, use it. First, check its validity:
785 	 * some transformers could create wrong frag_list or break existing
786 	 * one, it is not prohibited. In this case fall back to copying.
787 	 *
788 	 * LATER: this step can be merged to real generation of fragments,
789 	 * we can switch to copy when see the first bad fragment.
790 	 */
791 	if (skb_has_frag_list(skb)) {
792 		struct sk_buff *frag, *frag2;
793 		unsigned int first_len = skb_pagelen(skb);
794 
795 		if (first_len - hlen > mtu ||
796 		    ((first_len - hlen) & 7) ||
797 		    ip_is_fragment(iph) ||
798 		    skb_cloned(skb) ||
799 		    skb_headroom(skb) < ll_rs)
800 			goto slow_path;
801 
802 		skb_walk_frags(skb, frag) {
803 			/* Correct geometry. */
804 			if (frag->len > mtu ||
805 			    ((frag->len & 7) && frag->next) ||
806 			    skb_headroom(frag) < hlen + ll_rs)
807 				goto slow_path_clean;
808 
809 			/* Partially cloned skb? */
810 			if (skb_shared(frag))
811 				goto slow_path_clean;
812 
813 			BUG_ON(frag->sk);
814 			if (skb->sk) {
815 				frag->sk = skb->sk;
816 				frag->destructor = sock_wfree;
817 			}
818 			skb->truesize -= frag->truesize;
819 		}
820 
821 		/* Everything is OK. Generate! */
822 		ip_fraglist_init(skb, iph, hlen, &iter);
823 
824 		for (;;) {
825 			/* Prepare header of the next frame,
826 			 * before previous one went down. */
827 			if (iter.frag) {
828 				ip_fraglist_ipcb_prepare(skb, &iter);
829 				ip_fraglist_prepare(skb, &iter);
830 			}
831 
832 			err = output(net, sk, skb);
833 
834 			if (!err)
835 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
836 			if (err || !iter.frag)
837 				break;
838 
839 			skb = ip_fraglist_next(&iter);
840 		}
841 
842 		if (err == 0) {
843 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
844 			return 0;
845 		}
846 
847 		kfree_skb_list(iter.frag);
848 
849 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
850 		return err;
851 
852 slow_path_clean:
853 		skb_walk_frags(skb, frag2) {
854 			if (frag2 == frag)
855 				break;
856 			frag2->sk = NULL;
857 			frag2->destructor = NULL;
858 			skb->truesize += frag2->truesize;
859 		}
860 	}
861 
862 slow_path:
863 	/*
864 	 *	Fragment the datagram.
865 	 */
866 
867 	ip_frag_init(skb, hlen, ll_rs, mtu, &state);
868 
869 	/*
870 	 *	Keep copying data until we run out.
871 	 */
872 
873 	while (state.left > 0) {
874 		bool first_frag = (state.offset == 0);
875 
876 		skb2 = ip_frag_next(skb, &state);
877 		if (IS_ERR(skb2)) {
878 			err = PTR_ERR(skb2);
879 			goto fail;
880 		}
881 		ip_frag_ipcb(skb, skb2, first_frag, &state);
882 
883 		/*
884 		 *	Put this fragment into the sending queue.
885 		 */
886 		err = output(net, sk, skb2);
887 		if (err)
888 			goto fail;
889 
890 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
891 	}
892 	consume_skb(skb);
893 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
894 	return err;
895 
896 fail:
897 	kfree_skb(skb);
898 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
899 	return err;
900 }
901 EXPORT_SYMBOL(ip_do_fragment);
902 
903 int
904 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
905 {
906 	struct msghdr *msg = from;
907 
908 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
909 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
910 			return -EFAULT;
911 	} else {
912 		__wsum csum = 0;
913 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
914 			return -EFAULT;
915 		skb->csum = csum_block_add(skb->csum, csum, odd);
916 	}
917 	return 0;
918 }
919 EXPORT_SYMBOL(ip_generic_getfrag);
920 
921 static inline __wsum
922 csum_page(struct page *page, int offset, int copy)
923 {
924 	char *kaddr;
925 	__wsum csum;
926 	kaddr = kmap(page);
927 	csum = csum_partial(kaddr + offset, copy, 0);
928 	kunmap(page);
929 	return csum;
930 }
931 
932 static int __ip_append_data(struct sock *sk,
933 			    struct flowi4 *fl4,
934 			    struct sk_buff_head *queue,
935 			    struct inet_cork *cork,
936 			    struct page_frag *pfrag,
937 			    int getfrag(void *from, char *to, int offset,
938 					int len, int odd, struct sk_buff *skb),
939 			    void *from, int length, int transhdrlen,
940 			    unsigned int flags)
941 {
942 	struct inet_sock *inet = inet_sk(sk);
943 	struct ubuf_info *uarg = NULL;
944 	struct sk_buff *skb;
945 
946 	struct ip_options *opt = cork->opt;
947 	int hh_len;
948 	int exthdrlen;
949 	int mtu;
950 	int copy;
951 	int err;
952 	int offset = 0;
953 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
954 	int csummode = CHECKSUM_NONE;
955 	struct rtable *rt = (struct rtable *)cork->dst;
956 	unsigned int wmem_alloc_delta = 0;
957 	bool paged, extra_uref = false;
958 	u32 tskey = 0;
959 
960 	skb = skb_peek_tail(queue);
961 
962 	exthdrlen = !skb ? rt->dst.header_len : 0;
963 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
964 	paged = !!cork->gso_size;
965 
966 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
967 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
968 		tskey = sk->sk_tskey++;
969 
970 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
971 
972 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
973 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
974 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
975 
976 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
977 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
978 			       mtu - (opt ? opt->optlen : 0));
979 		return -EMSGSIZE;
980 	}
981 
982 	/*
983 	 * transhdrlen > 0 means that this is the first fragment and we wish
984 	 * it won't be fragmented in the future.
985 	 */
986 	if (transhdrlen &&
987 	    length + fragheaderlen <= mtu &&
988 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
989 	    (!(flags & MSG_MORE) || cork->gso_size) &&
990 	    (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
991 		csummode = CHECKSUM_PARTIAL;
992 
993 	if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
994 		uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
995 		if (!uarg)
996 			return -ENOBUFS;
997 		extra_uref = !skb_zcopy(skb);	/* only ref on new uarg */
998 		if (rt->dst.dev->features & NETIF_F_SG &&
999 		    csummode == CHECKSUM_PARTIAL) {
1000 			paged = true;
1001 		} else {
1002 			uarg->zerocopy = 0;
1003 			skb_zcopy_set(skb, uarg, &extra_uref);
1004 		}
1005 	}
1006 
1007 	cork->length += length;
1008 
1009 	/* So, what's going on in the loop below?
1010 	 *
1011 	 * We use calculated fragment length to generate chained skb,
1012 	 * each of segments is IP fragment ready for sending to network after
1013 	 * adding appropriate IP header.
1014 	 */
1015 
1016 	if (!skb)
1017 		goto alloc_new_skb;
1018 
1019 	while (length > 0) {
1020 		/* Check if the remaining data fits into current packet. */
1021 		copy = mtu - skb->len;
1022 		if (copy < length)
1023 			copy = maxfraglen - skb->len;
1024 		if (copy <= 0) {
1025 			char *data;
1026 			unsigned int datalen;
1027 			unsigned int fraglen;
1028 			unsigned int fraggap;
1029 			unsigned int alloclen;
1030 			unsigned int pagedlen;
1031 			struct sk_buff *skb_prev;
1032 alloc_new_skb:
1033 			skb_prev = skb;
1034 			if (skb_prev)
1035 				fraggap = skb_prev->len - maxfraglen;
1036 			else
1037 				fraggap = 0;
1038 
1039 			/*
1040 			 * If remaining data exceeds the mtu,
1041 			 * we know we need more fragment(s).
1042 			 */
1043 			datalen = length + fraggap;
1044 			if (datalen > mtu - fragheaderlen)
1045 				datalen = maxfraglen - fragheaderlen;
1046 			fraglen = datalen + fragheaderlen;
1047 			pagedlen = 0;
1048 
1049 			if ((flags & MSG_MORE) &&
1050 			    !(rt->dst.dev->features&NETIF_F_SG))
1051 				alloclen = mtu;
1052 			else if (!paged)
1053 				alloclen = fraglen;
1054 			else {
1055 				alloclen = min_t(int, fraglen, MAX_HEADER);
1056 				pagedlen = fraglen - alloclen;
1057 			}
1058 
1059 			alloclen += exthdrlen;
1060 
1061 			/* The last fragment gets additional space at tail.
1062 			 * Note, with MSG_MORE we overallocate on fragments,
1063 			 * because we have no idea what fragment will be
1064 			 * the last.
1065 			 */
1066 			if (datalen == length + fraggap)
1067 				alloclen += rt->dst.trailer_len;
1068 
1069 			if (transhdrlen) {
1070 				skb = sock_alloc_send_skb(sk,
1071 						alloclen + hh_len + 15,
1072 						(flags & MSG_DONTWAIT), &err);
1073 			} else {
1074 				skb = NULL;
1075 				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1076 				    2 * sk->sk_sndbuf)
1077 					skb = alloc_skb(alloclen + hh_len + 15,
1078 							sk->sk_allocation);
1079 				if (unlikely(!skb))
1080 					err = -ENOBUFS;
1081 			}
1082 			if (!skb)
1083 				goto error;
1084 
1085 			/*
1086 			 *	Fill in the control structures
1087 			 */
1088 			skb->ip_summed = csummode;
1089 			skb->csum = 0;
1090 			skb_reserve(skb, hh_len);
1091 
1092 			/*
1093 			 *	Find where to start putting bytes.
1094 			 */
1095 			data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1096 			skb_set_network_header(skb, exthdrlen);
1097 			skb->transport_header = (skb->network_header +
1098 						 fragheaderlen);
1099 			data += fragheaderlen + exthdrlen;
1100 
1101 			if (fraggap) {
1102 				skb->csum = skb_copy_and_csum_bits(
1103 					skb_prev, maxfraglen,
1104 					data + transhdrlen, fraggap, 0);
1105 				skb_prev->csum = csum_sub(skb_prev->csum,
1106 							  skb->csum);
1107 				data += fraggap;
1108 				pskb_trim_unique(skb_prev, maxfraglen);
1109 			}
1110 
1111 			copy = datalen - transhdrlen - fraggap - pagedlen;
1112 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1113 				err = -EFAULT;
1114 				kfree_skb(skb);
1115 				goto error;
1116 			}
1117 
1118 			offset += copy;
1119 			length -= copy + transhdrlen;
1120 			transhdrlen = 0;
1121 			exthdrlen = 0;
1122 			csummode = CHECKSUM_NONE;
1123 
1124 			/* only the initial fragment is time stamped */
1125 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1126 			cork->tx_flags = 0;
1127 			skb_shinfo(skb)->tskey = tskey;
1128 			tskey = 0;
1129 			skb_zcopy_set(skb, uarg, &extra_uref);
1130 
1131 			if ((flags & MSG_CONFIRM) && !skb_prev)
1132 				skb_set_dst_pending_confirm(skb, 1);
1133 
1134 			/*
1135 			 * Put the packet on the pending queue.
1136 			 */
1137 			if (!skb->destructor) {
1138 				skb->destructor = sock_wfree;
1139 				skb->sk = sk;
1140 				wmem_alloc_delta += skb->truesize;
1141 			}
1142 			__skb_queue_tail(queue, skb);
1143 			continue;
1144 		}
1145 
1146 		if (copy > length)
1147 			copy = length;
1148 
1149 		if (!(rt->dst.dev->features&NETIF_F_SG) &&
1150 		    skb_tailroom(skb) >= copy) {
1151 			unsigned int off;
1152 
1153 			off = skb->len;
1154 			if (getfrag(from, skb_put(skb, copy),
1155 					offset, copy, off, skb) < 0) {
1156 				__skb_trim(skb, off);
1157 				err = -EFAULT;
1158 				goto error;
1159 			}
1160 		} else if (!uarg || !uarg->zerocopy) {
1161 			int i = skb_shinfo(skb)->nr_frags;
1162 
1163 			err = -ENOMEM;
1164 			if (!sk_page_frag_refill(sk, pfrag))
1165 				goto error;
1166 
1167 			if (!skb_can_coalesce(skb, i, pfrag->page,
1168 					      pfrag->offset)) {
1169 				err = -EMSGSIZE;
1170 				if (i == MAX_SKB_FRAGS)
1171 					goto error;
1172 
1173 				__skb_fill_page_desc(skb, i, pfrag->page,
1174 						     pfrag->offset, 0);
1175 				skb_shinfo(skb)->nr_frags = ++i;
1176 				get_page(pfrag->page);
1177 			}
1178 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1179 			if (getfrag(from,
1180 				    page_address(pfrag->page) + pfrag->offset,
1181 				    offset, copy, skb->len, skb) < 0)
1182 				goto error_efault;
1183 
1184 			pfrag->offset += copy;
1185 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1186 			skb->len += copy;
1187 			skb->data_len += copy;
1188 			skb->truesize += copy;
1189 			wmem_alloc_delta += copy;
1190 		} else {
1191 			err = skb_zerocopy_iter_dgram(skb, from, copy);
1192 			if (err < 0)
1193 				goto error;
1194 		}
1195 		offset += copy;
1196 		length -= copy;
1197 	}
1198 
1199 	if (wmem_alloc_delta)
1200 		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1201 	return 0;
1202 
1203 error_efault:
1204 	err = -EFAULT;
1205 error:
1206 	if (uarg)
1207 		sock_zerocopy_put_abort(uarg, extra_uref);
1208 	cork->length -= length;
1209 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1210 	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1211 	return err;
1212 }
1213 
1214 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1215 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1216 {
1217 	struct ip_options_rcu *opt;
1218 	struct rtable *rt;
1219 
1220 	rt = *rtp;
1221 	if (unlikely(!rt))
1222 		return -EFAULT;
1223 
1224 	/*
1225 	 * setup for corking.
1226 	 */
1227 	opt = ipc->opt;
1228 	if (opt) {
1229 		if (!cork->opt) {
1230 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1231 					    sk->sk_allocation);
1232 			if (unlikely(!cork->opt))
1233 				return -ENOBUFS;
1234 		}
1235 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1236 		cork->flags |= IPCORK_OPT;
1237 		cork->addr = ipc->addr;
1238 	}
1239 
1240 	/*
1241 	 * We steal reference to this route, caller should not release it
1242 	 */
1243 	*rtp = NULL;
1244 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1245 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1246 
1247 	cork->gso_size = ipc->gso_size;
1248 	cork->dst = &rt->dst;
1249 	cork->length = 0;
1250 	cork->ttl = ipc->ttl;
1251 	cork->tos = ipc->tos;
1252 	cork->priority = ipc->priority;
1253 	cork->transmit_time = ipc->sockc.transmit_time;
1254 	cork->tx_flags = 0;
1255 	sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1256 
1257 	return 0;
1258 }
1259 
1260 /*
1261  *	ip_append_data() and ip_append_page() can make one large IP datagram
1262  *	from many pieces of data. Each pieces will be holded on the socket
1263  *	until ip_push_pending_frames() is called. Each piece can be a page
1264  *	or non-page data.
1265  *
1266  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1267  *	this interface potentially.
1268  *
1269  *	LATER: length must be adjusted by pad at tail, when it is required.
1270  */
1271 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1272 		   int getfrag(void *from, char *to, int offset, int len,
1273 			       int odd, struct sk_buff *skb),
1274 		   void *from, int length, int transhdrlen,
1275 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1276 		   unsigned int flags)
1277 {
1278 	struct inet_sock *inet = inet_sk(sk);
1279 	int err;
1280 
1281 	if (flags&MSG_PROBE)
1282 		return 0;
1283 
1284 	if (skb_queue_empty(&sk->sk_write_queue)) {
1285 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1286 		if (err)
1287 			return err;
1288 	} else {
1289 		transhdrlen = 0;
1290 	}
1291 
1292 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1293 				sk_page_frag(sk), getfrag,
1294 				from, length, transhdrlen, flags);
1295 }
1296 
1297 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1298 		       int offset, size_t size, int flags)
1299 {
1300 	struct inet_sock *inet = inet_sk(sk);
1301 	struct sk_buff *skb;
1302 	struct rtable *rt;
1303 	struct ip_options *opt = NULL;
1304 	struct inet_cork *cork;
1305 	int hh_len;
1306 	int mtu;
1307 	int len;
1308 	int err;
1309 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1310 
1311 	if (inet->hdrincl)
1312 		return -EPERM;
1313 
1314 	if (flags&MSG_PROBE)
1315 		return 0;
1316 
1317 	if (skb_queue_empty(&sk->sk_write_queue))
1318 		return -EINVAL;
1319 
1320 	cork = &inet->cork.base;
1321 	rt = (struct rtable *)cork->dst;
1322 	if (cork->flags & IPCORK_OPT)
1323 		opt = cork->opt;
1324 
1325 	if (!(rt->dst.dev->features&NETIF_F_SG))
1326 		return -EOPNOTSUPP;
1327 
1328 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1329 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1330 
1331 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1332 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1333 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1334 
1335 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1336 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1337 			       mtu - (opt ? opt->optlen : 0));
1338 		return -EMSGSIZE;
1339 	}
1340 
1341 	skb = skb_peek_tail(&sk->sk_write_queue);
1342 	if (!skb)
1343 		return -EINVAL;
1344 
1345 	cork->length += size;
1346 
1347 	while (size > 0) {
1348 		/* Check if the remaining data fits into current packet. */
1349 		len = mtu - skb->len;
1350 		if (len < size)
1351 			len = maxfraglen - skb->len;
1352 
1353 		if (len <= 0) {
1354 			struct sk_buff *skb_prev;
1355 			int alloclen;
1356 
1357 			skb_prev = skb;
1358 			fraggap = skb_prev->len - maxfraglen;
1359 
1360 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1361 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1362 			if (unlikely(!skb)) {
1363 				err = -ENOBUFS;
1364 				goto error;
1365 			}
1366 
1367 			/*
1368 			 *	Fill in the control structures
1369 			 */
1370 			skb->ip_summed = CHECKSUM_NONE;
1371 			skb->csum = 0;
1372 			skb_reserve(skb, hh_len);
1373 
1374 			/*
1375 			 *	Find where to start putting bytes.
1376 			 */
1377 			skb_put(skb, fragheaderlen + fraggap);
1378 			skb_reset_network_header(skb);
1379 			skb->transport_header = (skb->network_header +
1380 						 fragheaderlen);
1381 			if (fraggap) {
1382 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1383 								   maxfraglen,
1384 						    skb_transport_header(skb),
1385 								   fraggap, 0);
1386 				skb_prev->csum = csum_sub(skb_prev->csum,
1387 							  skb->csum);
1388 				pskb_trim_unique(skb_prev, maxfraglen);
1389 			}
1390 
1391 			/*
1392 			 * Put the packet on the pending queue.
1393 			 */
1394 			__skb_queue_tail(&sk->sk_write_queue, skb);
1395 			continue;
1396 		}
1397 
1398 		if (len > size)
1399 			len = size;
1400 
1401 		if (skb_append_pagefrags(skb, page, offset, len)) {
1402 			err = -EMSGSIZE;
1403 			goto error;
1404 		}
1405 
1406 		if (skb->ip_summed == CHECKSUM_NONE) {
1407 			__wsum csum;
1408 			csum = csum_page(page, offset, len);
1409 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1410 		}
1411 
1412 		skb->len += len;
1413 		skb->data_len += len;
1414 		skb->truesize += len;
1415 		refcount_add(len, &sk->sk_wmem_alloc);
1416 		offset += len;
1417 		size -= len;
1418 	}
1419 	return 0;
1420 
1421 error:
1422 	cork->length -= size;
1423 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1424 	return err;
1425 }
1426 
1427 static void ip_cork_release(struct inet_cork *cork)
1428 {
1429 	cork->flags &= ~IPCORK_OPT;
1430 	kfree(cork->opt);
1431 	cork->opt = NULL;
1432 	dst_release(cork->dst);
1433 	cork->dst = NULL;
1434 }
1435 
1436 /*
1437  *	Combined all pending IP fragments on the socket as one IP datagram
1438  *	and push them out.
1439  */
1440 struct sk_buff *__ip_make_skb(struct sock *sk,
1441 			      struct flowi4 *fl4,
1442 			      struct sk_buff_head *queue,
1443 			      struct inet_cork *cork)
1444 {
1445 	struct sk_buff *skb, *tmp_skb;
1446 	struct sk_buff **tail_skb;
1447 	struct inet_sock *inet = inet_sk(sk);
1448 	struct net *net = sock_net(sk);
1449 	struct ip_options *opt = NULL;
1450 	struct rtable *rt = (struct rtable *)cork->dst;
1451 	struct iphdr *iph;
1452 	__be16 df = 0;
1453 	__u8 ttl;
1454 
1455 	skb = __skb_dequeue(queue);
1456 	if (!skb)
1457 		goto out;
1458 	tail_skb = &(skb_shinfo(skb)->frag_list);
1459 
1460 	/* move skb->data to ip header from ext header */
1461 	if (skb->data < skb_network_header(skb))
1462 		__skb_pull(skb, skb_network_offset(skb));
1463 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1464 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1465 		*tail_skb = tmp_skb;
1466 		tail_skb = &(tmp_skb->next);
1467 		skb->len += tmp_skb->len;
1468 		skb->data_len += tmp_skb->len;
1469 		skb->truesize += tmp_skb->truesize;
1470 		tmp_skb->destructor = NULL;
1471 		tmp_skb->sk = NULL;
1472 	}
1473 
1474 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1475 	 * to fragment the frame generated here. No matter, what transforms
1476 	 * how transforms change size of the packet, it will come out.
1477 	 */
1478 	skb->ignore_df = ip_sk_ignore_df(sk);
1479 
1480 	/* DF bit is set when we want to see DF on outgoing frames.
1481 	 * If ignore_df is set too, we still allow to fragment this frame
1482 	 * locally. */
1483 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1484 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1485 	    (skb->len <= dst_mtu(&rt->dst) &&
1486 	     ip_dont_fragment(sk, &rt->dst)))
1487 		df = htons(IP_DF);
1488 
1489 	if (cork->flags & IPCORK_OPT)
1490 		opt = cork->opt;
1491 
1492 	if (cork->ttl != 0)
1493 		ttl = cork->ttl;
1494 	else if (rt->rt_type == RTN_MULTICAST)
1495 		ttl = inet->mc_ttl;
1496 	else
1497 		ttl = ip_select_ttl(inet, &rt->dst);
1498 
1499 	iph = ip_hdr(skb);
1500 	iph->version = 4;
1501 	iph->ihl = 5;
1502 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1503 	iph->frag_off = df;
1504 	iph->ttl = ttl;
1505 	iph->protocol = sk->sk_protocol;
1506 	ip_copy_addrs(iph, fl4);
1507 	ip_select_ident(net, skb, sk);
1508 
1509 	if (opt) {
1510 		iph->ihl += opt->optlen>>2;
1511 		ip_options_build(skb, opt, cork->addr, rt, 0);
1512 	}
1513 
1514 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1515 	skb->mark = sk->sk_mark;
1516 	skb->tstamp = cork->transmit_time;
1517 	/*
1518 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1519 	 * on dst refcount
1520 	 */
1521 	cork->dst = NULL;
1522 	skb_dst_set(skb, &rt->dst);
1523 
1524 	if (iph->protocol == IPPROTO_ICMP)
1525 		icmp_out_count(net, ((struct icmphdr *)
1526 			skb_transport_header(skb))->type);
1527 
1528 	ip_cork_release(cork);
1529 out:
1530 	return skb;
1531 }
1532 
1533 int ip_send_skb(struct net *net, struct sk_buff *skb)
1534 {
1535 	int err;
1536 
1537 	err = ip_local_out(net, skb->sk, skb);
1538 	if (err) {
1539 		if (err > 0)
1540 			err = net_xmit_errno(err);
1541 		if (err)
1542 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1543 	}
1544 
1545 	return err;
1546 }
1547 
1548 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1549 {
1550 	struct sk_buff *skb;
1551 
1552 	skb = ip_finish_skb(sk, fl4);
1553 	if (!skb)
1554 		return 0;
1555 
1556 	/* Netfilter gets whole the not fragmented skb. */
1557 	return ip_send_skb(sock_net(sk), skb);
1558 }
1559 
1560 /*
1561  *	Throw away all pending data on the socket.
1562  */
1563 static void __ip_flush_pending_frames(struct sock *sk,
1564 				      struct sk_buff_head *queue,
1565 				      struct inet_cork *cork)
1566 {
1567 	struct sk_buff *skb;
1568 
1569 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1570 		kfree_skb(skb);
1571 
1572 	ip_cork_release(cork);
1573 }
1574 
1575 void ip_flush_pending_frames(struct sock *sk)
1576 {
1577 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1578 }
1579 
1580 struct sk_buff *ip_make_skb(struct sock *sk,
1581 			    struct flowi4 *fl4,
1582 			    int getfrag(void *from, char *to, int offset,
1583 					int len, int odd, struct sk_buff *skb),
1584 			    void *from, int length, int transhdrlen,
1585 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1586 			    struct inet_cork *cork, unsigned int flags)
1587 {
1588 	struct sk_buff_head queue;
1589 	int err;
1590 
1591 	if (flags & MSG_PROBE)
1592 		return NULL;
1593 
1594 	__skb_queue_head_init(&queue);
1595 
1596 	cork->flags = 0;
1597 	cork->addr = 0;
1598 	cork->opt = NULL;
1599 	err = ip_setup_cork(sk, cork, ipc, rtp);
1600 	if (err)
1601 		return ERR_PTR(err);
1602 
1603 	err = __ip_append_data(sk, fl4, &queue, cork,
1604 			       &current->task_frag, getfrag,
1605 			       from, length, transhdrlen, flags);
1606 	if (err) {
1607 		__ip_flush_pending_frames(sk, &queue, cork);
1608 		return ERR_PTR(err);
1609 	}
1610 
1611 	return __ip_make_skb(sk, fl4, &queue, cork);
1612 }
1613 
1614 /*
1615  *	Fetch data from kernel space and fill in checksum if needed.
1616  */
1617 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1618 			      int len, int odd, struct sk_buff *skb)
1619 {
1620 	__wsum csum;
1621 
1622 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1623 	skb->csum = csum_block_add(skb->csum, csum, odd);
1624 	return 0;
1625 }
1626 
1627 /*
1628  *	Generic function to send a packet as reply to another packet.
1629  *	Used to send some TCP resets/acks so far.
1630  */
1631 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1632 			   const struct ip_options *sopt,
1633 			   __be32 daddr, __be32 saddr,
1634 			   const struct ip_reply_arg *arg,
1635 			   unsigned int len, u64 transmit_time)
1636 {
1637 	struct ip_options_data replyopts;
1638 	struct ipcm_cookie ipc;
1639 	struct flowi4 fl4;
1640 	struct rtable *rt = skb_rtable(skb);
1641 	struct net *net = sock_net(sk);
1642 	struct sk_buff *nskb;
1643 	int err;
1644 	int oif;
1645 
1646 	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1647 		return;
1648 
1649 	ipcm_init(&ipc);
1650 	ipc.addr = daddr;
1651 	ipc.sockc.transmit_time = transmit_time;
1652 
1653 	if (replyopts.opt.opt.optlen) {
1654 		ipc.opt = &replyopts.opt;
1655 
1656 		if (replyopts.opt.opt.srr)
1657 			daddr = replyopts.opt.opt.faddr;
1658 	}
1659 
1660 	oif = arg->bound_dev_if;
1661 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1662 		oif = skb->skb_iif;
1663 
1664 	flowi4_init_output(&fl4, oif,
1665 			   IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1666 			   RT_TOS(arg->tos),
1667 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1668 			   ip_reply_arg_flowi_flags(arg),
1669 			   daddr, saddr,
1670 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1671 			   arg->uid);
1672 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1673 	rt = ip_route_output_key(net, &fl4);
1674 	if (IS_ERR(rt))
1675 		return;
1676 
1677 	inet_sk(sk)->tos = arg->tos;
1678 
1679 	sk->sk_priority = skb->priority;
1680 	sk->sk_protocol = ip_hdr(skb)->protocol;
1681 	sk->sk_bound_dev_if = arg->bound_dev_if;
1682 	sk->sk_sndbuf = sysctl_wmem_default;
1683 	sk->sk_mark = fl4.flowi4_mark;
1684 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1685 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1686 	if (unlikely(err)) {
1687 		ip_flush_pending_frames(sk);
1688 		goto out;
1689 	}
1690 
1691 	nskb = skb_peek(&sk->sk_write_queue);
1692 	if (nskb) {
1693 		if (arg->csumoffset >= 0)
1694 			*((__sum16 *)skb_transport_header(nskb) +
1695 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1696 								arg->csum));
1697 		nskb->ip_summed = CHECKSUM_NONE;
1698 		ip_push_pending_frames(sk, &fl4);
1699 	}
1700 out:
1701 	ip_rt_put(rt);
1702 }
1703 
1704 void __init ip_init(void)
1705 {
1706 	ip_rt_init();
1707 	inet_initpeers();
1708 
1709 #if defined(CONFIG_IP_MULTICAST)
1710 	igmp_mc_init();
1711 #endif
1712 }
1713