xref: /openbmc/linux/net/ipv4/ip_output.c (revision 77a87824)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/netlink.h>
80 #include <linux/tcp.h>
81 
82 static int
83 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
84 	    unsigned int mtu,
85 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
86 
87 /* Generate a checksum for an outgoing IP datagram. */
88 void ip_send_check(struct iphdr *iph)
89 {
90 	iph->check = 0;
91 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
92 }
93 EXPORT_SYMBOL(ip_send_check);
94 
95 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
96 {
97 	struct iphdr *iph = ip_hdr(skb);
98 
99 	iph->tot_len = htons(skb->len);
100 	ip_send_check(iph);
101 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
102 		       net, sk, skb, NULL, skb_dst(skb)->dev,
103 		       dst_output);
104 }
105 
106 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
107 {
108 	int err;
109 
110 	err = __ip_local_out(net, sk, skb);
111 	if (likely(err == 1))
112 		err = dst_output(net, sk, skb);
113 
114 	return err;
115 }
116 EXPORT_SYMBOL_GPL(ip_local_out);
117 
118 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
119 {
120 	int ttl = inet->uc_ttl;
121 
122 	if (ttl < 0)
123 		ttl = ip4_dst_hoplimit(dst);
124 	return ttl;
125 }
126 
127 /*
128  *		Add an ip header to a skbuff and send it out.
129  *
130  */
131 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
132 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
133 {
134 	struct inet_sock *inet = inet_sk(sk);
135 	struct rtable *rt = skb_rtable(skb);
136 	struct net *net = sock_net(sk);
137 	struct iphdr *iph;
138 
139 	/* Build the IP header. */
140 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
141 	skb_reset_network_header(skb);
142 	iph = ip_hdr(skb);
143 	iph->version  = 4;
144 	iph->ihl      = 5;
145 	iph->tos      = inet->tos;
146 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
147 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
148 	iph->saddr    = saddr;
149 	iph->protocol = sk->sk_protocol;
150 	if (ip_dont_fragment(sk, &rt->dst)) {
151 		iph->frag_off = htons(IP_DF);
152 		iph->id = 0;
153 	} else {
154 		iph->frag_off = 0;
155 		__ip_select_ident(net, iph, 1);
156 	}
157 
158 	if (opt && opt->opt.optlen) {
159 		iph->ihl += opt->opt.optlen>>2;
160 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
161 	}
162 
163 	skb->priority = sk->sk_priority;
164 	skb->mark = sk->sk_mark;
165 
166 	/* Send it out. */
167 	return ip_local_out(net, skb->sk, skb);
168 }
169 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
170 
171 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
172 {
173 	struct dst_entry *dst = skb_dst(skb);
174 	struct rtable *rt = (struct rtable *)dst;
175 	struct net_device *dev = dst->dev;
176 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
177 	struct neighbour *neigh;
178 	u32 nexthop;
179 
180 	if (rt->rt_type == RTN_MULTICAST) {
181 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
182 	} else if (rt->rt_type == RTN_BROADCAST)
183 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
184 
185 	/* Be paranoid, rather than too clever. */
186 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
187 		struct sk_buff *skb2;
188 
189 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
190 		if (!skb2) {
191 			kfree_skb(skb);
192 			return -ENOMEM;
193 		}
194 		if (skb->sk)
195 			skb_set_owner_w(skb2, skb->sk);
196 		consume_skb(skb);
197 		skb = skb2;
198 	}
199 
200 	rcu_read_lock_bh();
201 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
202 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
203 	if (unlikely(!neigh))
204 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
205 	if (!IS_ERR(neigh)) {
206 		int res = dst_neigh_output(dst, neigh, skb);
207 
208 		rcu_read_unlock_bh();
209 		return res;
210 	}
211 	rcu_read_unlock_bh();
212 
213 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
214 			    __func__);
215 	kfree_skb(skb);
216 	return -EINVAL;
217 }
218 
219 static int ip_finish_output_gso(struct net *net, struct sock *sk,
220 				struct sk_buff *skb, unsigned int mtu)
221 {
222 	netdev_features_t features;
223 	struct sk_buff *segs;
224 	int ret = 0;
225 
226 	/* common case: fragmentation of segments is not allowed,
227 	 * or seglen is <= mtu
228 	 */
229 	if (((IPCB(skb)->flags & IPSKB_FRAG_SEGS) == 0) ||
230 	      skb_gso_validate_mtu(skb, mtu))
231 		return ip_finish_output2(net, sk, skb);
232 
233 	/* Slowpath -  GSO segment length is exceeding the dst MTU.
234 	 *
235 	 * This can happen in two cases:
236 	 * 1) TCP GRO packet, DF bit not set
237 	 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
238 	 * from host network stack.
239 	 */
240 	features = netif_skb_features(skb);
241 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
242 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
243 	if (IS_ERR_OR_NULL(segs)) {
244 		kfree_skb(skb);
245 		return -ENOMEM;
246 	}
247 
248 	consume_skb(skb);
249 
250 	do {
251 		struct sk_buff *nskb = segs->next;
252 		int err;
253 
254 		segs->next = NULL;
255 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
256 
257 		if (err && ret == 0)
258 			ret = err;
259 		segs = nskb;
260 	} while (segs);
261 
262 	return ret;
263 }
264 
265 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
266 {
267 	unsigned int mtu;
268 
269 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
270 	/* Policy lookup after SNAT yielded a new policy */
271 	if (skb_dst(skb)->xfrm) {
272 		IPCB(skb)->flags |= IPSKB_REROUTED;
273 		return dst_output(net, sk, skb);
274 	}
275 #endif
276 	mtu = ip_skb_dst_mtu(sk, skb);
277 	if (skb_is_gso(skb))
278 		return ip_finish_output_gso(net, sk, skb, mtu);
279 
280 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
281 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
282 
283 	return ip_finish_output2(net, sk, skb);
284 }
285 
286 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
287 {
288 	struct rtable *rt = skb_rtable(skb);
289 	struct net_device *dev = rt->dst.dev;
290 
291 	/*
292 	 *	If the indicated interface is up and running, send the packet.
293 	 */
294 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
295 
296 	skb->dev = dev;
297 	skb->protocol = htons(ETH_P_IP);
298 
299 	/*
300 	 *	Multicasts are looped back for other local users
301 	 */
302 
303 	if (rt->rt_flags&RTCF_MULTICAST) {
304 		if (sk_mc_loop(sk)
305 #ifdef CONFIG_IP_MROUTE
306 		/* Small optimization: do not loopback not local frames,
307 		   which returned after forwarding; they will be  dropped
308 		   by ip_mr_input in any case.
309 		   Note, that local frames are looped back to be delivered
310 		   to local recipients.
311 
312 		   This check is duplicated in ip_mr_input at the moment.
313 		 */
314 		    &&
315 		    ((rt->rt_flags & RTCF_LOCAL) ||
316 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
317 #endif
318 		   ) {
319 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
320 			if (newskb)
321 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
322 					net, sk, newskb, NULL, newskb->dev,
323 					dev_loopback_xmit);
324 		}
325 
326 		/* Multicasts with ttl 0 must not go beyond the host */
327 
328 		if (ip_hdr(skb)->ttl == 0) {
329 			kfree_skb(skb);
330 			return 0;
331 		}
332 	}
333 
334 	if (rt->rt_flags&RTCF_BROADCAST) {
335 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
336 		if (newskb)
337 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
338 				net, sk, newskb, NULL, newskb->dev,
339 				dev_loopback_xmit);
340 	}
341 
342 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
343 			    net, sk, skb, NULL, skb->dev,
344 			    ip_finish_output,
345 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
346 }
347 
348 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
349 {
350 	struct net_device *dev = skb_dst(skb)->dev;
351 
352 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
353 
354 	skb->dev = dev;
355 	skb->protocol = htons(ETH_P_IP);
356 
357 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
358 			    net, sk, skb, NULL, dev,
359 			    ip_finish_output,
360 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
361 }
362 
363 /*
364  * copy saddr and daddr, possibly using 64bit load/stores
365  * Equivalent to :
366  *   iph->saddr = fl4->saddr;
367  *   iph->daddr = fl4->daddr;
368  */
369 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
370 {
371 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
372 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
373 	memcpy(&iph->saddr, &fl4->saddr,
374 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
375 }
376 
377 /* Note: skb->sk can be different from sk, in case of tunnels */
378 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
379 {
380 	struct inet_sock *inet = inet_sk(sk);
381 	struct net *net = sock_net(sk);
382 	struct ip_options_rcu *inet_opt;
383 	struct flowi4 *fl4;
384 	struct rtable *rt;
385 	struct iphdr *iph;
386 	int res;
387 
388 	/* Skip all of this if the packet is already routed,
389 	 * f.e. by something like SCTP.
390 	 */
391 	rcu_read_lock();
392 	inet_opt = rcu_dereference(inet->inet_opt);
393 	fl4 = &fl->u.ip4;
394 	rt = skb_rtable(skb);
395 	if (rt)
396 		goto packet_routed;
397 
398 	/* Make sure we can route this packet. */
399 	rt = (struct rtable *)__sk_dst_check(sk, 0);
400 	if (!rt) {
401 		__be32 daddr;
402 
403 		/* Use correct destination address if we have options. */
404 		daddr = inet->inet_daddr;
405 		if (inet_opt && inet_opt->opt.srr)
406 			daddr = inet_opt->opt.faddr;
407 
408 		/* If this fails, retransmit mechanism of transport layer will
409 		 * keep trying until route appears or the connection times
410 		 * itself out.
411 		 */
412 		rt = ip_route_output_ports(net, fl4, sk,
413 					   daddr, inet->inet_saddr,
414 					   inet->inet_dport,
415 					   inet->inet_sport,
416 					   sk->sk_protocol,
417 					   RT_CONN_FLAGS(sk),
418 					   sk->sk_bound_dev_if);
419 		if (IS_ERR(rt))
420 			goto no_route;
421 		sk_setup_caps(sk, &rt->dst);
422 	}
423 	skb_dst_set_noref(skb, &rt->dst);
424 
425 packet_routed:
426 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
427 		goto no_route;
428 
429 	/* OK, we know where to send it, allocate and build IP header. */
430 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
431 	skb_reset_network_header(skb);
432 	iph = ip_hdr(skb);
433 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
434 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
435 		iph->frag_off = htons(IP_DF);
436 	else
437 		iph->frag_off = 0;
438 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
439 	iph->protocol = sk->sk_protocol;
440 	ip_copy_addrs(iph, fl4);
441 
442 	/* Transport layer set skb->h.foo itself. */
443 
444 	if (inet_opt && inet_opt->opt.optlen) {
445 		iph->ihl += inet_opt->opt.optlen >> 2;
446 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
447 	}
448 
449 	ip_select_ident_segs(net, skb, sk,
450 			     skb_shinfo(skb)->gso_segs ?: 1);
451 
452 	/* TODO : should we use skb->sk here instead of sk ? */
453 	skb->priority = sk->sk_priority;
454 	skb->mark = sk->sk_mark;
455 
456 	res = ip_local_out(net, sk, skb);
457 	rcu_read_unlock();
458 	return res;
459 
460 no_route:
461 	rcu_read_unlock();
462 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
463 	kfree_skb(skb);
464 	return -EHOSTUNREACH;
465 }
466 EXPORT_SYMBOL(ip_queue_xmit);
467 
468 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
469 {
470 	to->pkt_type = from->pkt_type;
471 	to->priority = from->priority;
472 	to->protocol = from->protocol;
473 	skb_dst_drop(to);
474 	skb_dst_copy(to, from);
475 	to->dev = from->dev;
476 	to->mark = from->mark;
477 
478 	/* Copy the flags to each fragment. */
479 	IPCB(to)->flags = IPCB(from)->flags;
480 
481 #ifdef CONFIG_NET_SCHED
482 	to->tc_index = from->tc_index;
483 #endif
484 	nf_copy(to, from);
485 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
486 	to->ipvs_property = from->ipvs_property;
487 #endif
488 	skb_copy_secmark(to, from);
489 }
490 
491 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
492 		       unsigned int mtu,
493 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
494 {
495 	struct iphdr *iph = ip_hdr(skb);
496 
497 	if ((iph->frag_off & htons(IP_DF)) == 0)
498 		return ip_do_fragment(net, sk, skb, output);
499 
500 	if (unlikely(!skb->ignore_df ||
501 		     (IPCB(skb)->frag_max_size &&
502 		      IPCB(skb)->frag_max_size > mtu))) {
503 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
504 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
505 			  htonl(mtu));
506 		kfree_skb(skb);
507 		return -EMSGSIZE;
508 	}
509 
510 	return ip_do_fragment(net, sk, skb, output);
511 }
512 
513 /*
514  *	This IP datagram is too large to be sent in one piece.  Break it up into
515  *	smaller pieces (each of size equal to IP header plus
516  *	a block of the data of the original IP data part) that will yet fit in a
517  *	single device frame, and queue such a frame for sending.
518  */
519 
520 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
521 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
522 {
523 	struct iphdr *iph;
524 	int ptr;
525 	struct net_device *dev;
526 	struct sk_buff *skb2;
527 	unsigned int mtu, hlen, left, len, ll_rs;
528 	int offset;
529 	__be16 not_last_frag;
530 	struct rtable *rt = skb_rtable(skb);
531 	int err = 0;
532 
533 	dev = rt->dst.dev;
534 
535 	/* for offloaded checksums cleanup checksum before fragmentation */
536 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
537 	    (err = skb_checksum_help(skb)))
538 		goto fail;
539 
540 	/*
541 	 *	Point into the IP datagram header.
542 	 */
543 
544 	iph = ip_hdr(skb);
545 
546 	mtu = ip_skb_dst_mtu(sk, skb);
547 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
548 		mtu = IPCB(skb)->frag_max_size;
549 
550 	/*
551 	 *	Setup starting values.
552 	 */
553 
554 	hlen = iph->ihl * 4;
555 	mtu = mtu - hlen;	/* Size of data space */
556 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
557 
558 	/* When frag_list is given, use it. First, check its validity:
559 	 * some transformers could create wrong frag_list or break existing
560 	 * one, it is not prohibited. In this case fall back to copying.
561 	 *
562 	 * LATER: this step can be merged to real generation of fragments,
563 	 * we can switch to copy when see the first bad fragment.
564 	 */
565 	if (skb_has_frag_list(skb)) {
566 		struct sk_buff *frag, *frag2;
567 		int first_len = skb_pagelen(skb);
568 
569 		if (first_len - hlen > mtu ||
570 		    ((first_len - hlen) & 7) ||
571 		    ip_is_fragment(iph) ||
572 		    skb_cloned(skb))
573 			goto slow_path;
574 
575 		skb_walk_frags(skb, frag) {
576 			/* Correct geometry. */
577 			if (frag->len > mtu ||
578 			    ((frag->len & 7) && frag->next) ||
579 			    skb_headroom(frag) < hlen)
580 				goto slow_path_clean;
581 
582 			/* Partially cloned skb? */
583 			if (skb_shared(frag))
584 				goto slow_path_clean;
585 
586 			BUG_ON(frag->sk);
587 			if (skb->sk) {
588 				frag->sk = skb->sk;
589 				frag->destructor = sock_wfree;
590 			}
591 			skb->truesize -= frag->truesize;
592 		}
593 
594 		/* Everything is OK. Generate! */
595 
596 		err = 0;
597 		offset = 0;
598 		frag = skb_shinfo(skb)->frag_list;
599 		skb_frag_list_init(skb);
600 		skb->data_len = first_len - skb_headlen(skb);
601 		skb->len = first_len;
602 		iph->tot_len = htons(first_len);
603 		iph->frag_off = htons(IP_MF);
604 		ip_send_check(iph);
605 
606 		for (;;) {
607 			/* Prepare header of the next frame,
608 			 * before previous one went down. */
609 			if (frag) {
610 				frag->ip_summed = CHECKSUM_NONE;
611 				skb_reset_transport_header(frag);
612 				__skb_push(frag, hlen);
613 				skb_reset_network_header(frag);
614 				memcpy(skb_network_header(frag), iph, hlen);
615 				iph = ip_hdr(frag);
616 				iph->tot_len = htons(frag->len);
617 				ip_copy_metadata(frag, skb);
618 				if (offset == 0)
619 					ip_options_fragment(frag);
620 				offset += skb->len - hlen;
621 				iph->frag_off = htons(offset>>3);
622 				if (frag->next)
623 					iph->frag_off |= htons(IP_MF);
624 				/* Ready, complete checksum */
625 				ip_send_check(iph);
626 			}
627 
628 			err = output(net, sk, skb);
629 
630 			if (!err)
631 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
632 			if (err || !frag)
633 				break;
634 
635 			skb = frag;
636 			frag = skb->next;
637 			skb->next = NULL;
638 		}
639 
640 		if (err == 0) {
641 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
642 			return 0;
643 		}
644 
645 		while (frag) {
646 			skb = frag->next;
647 			kfree_skb(frag);
648 			frag = skb;
649 		}
650 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
651 		return err;
652 
653 slow_path_clean:
654 		skb_walk_frags(skb, frag2) {
655 			if (frag2 == frag)
656 				break;
657 			frag2->sk = NULL;
658 			frag2->destructor = NULL;
659 			skb->truesize += frag2->truesize;
660 		}
661 	}
662 
663 slow_path:
664 	iph = ip_hdr(skb);
665 
666 	left = skb->len - hlen;		/* Space per frame */
667 	ptr = hlen;		/* Where to start from */
668 
669 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
670 
671 	/*
672 	 *	Fragment the datagram.
673 	 */
674 
675 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
676 	not_last_frag = iph->frag_off & htons(IP_MF);
677 
678 	/*
679 	 *	Keep copying data until we run out.
680 	 */
681 
682 	while (left > 0) {
683 		len = left;
684 		/* IF: it doesn't fit, use 'mtu' - the data space left */
685 		if (len > mtu)
686 			len = mtu;
687 		/* IF: we are not sending up to and including the packet end
688 		   then align the next start on an eight byte boundary */
689 		if (len < left)	{
690 			len &= ~7;
691 		}
692 
693 		/* Allocate buffer */
694 		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
695 		if (!skb2) {
696 			err = -ENOMEM;
697 			goto fail;
698 		}
699 
700 		/*
701 		 *	Set up data on packet
702 		 */
703 
704 		ip_copy_metadata(skb2, skb);
705 		skb_reserve(skb2, ll_rs);
706 		skb_put(skb2, len + hlen);
707 		skb_reset_network_header(skb2);
708 		skb2->transport_header = skb2->network_header + hlen;
709 
710 		/*
711 		 *	Charge the memory for the fragment to any owner
712 		 *	it might possess
713 		 */
714 
715 		if (skb->sk)
716 			skb_set_owner_w(skb2, skb->sk);
717 
718 		/*
719 		 *	Copy the packet header into the new buffer.
720 		 */
721 
722 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
723 
724 		/*
725 		 *	Copy a block of the IP datagram.
726 		 */
727 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
728 			BUG();
729 		left -= len;
730 
731 		/*
732 		 *	Fill in the new header fields.
733 		 */
734 		iph = ip_hdr(skb2);
735 		iph->frag_off = htons((offset >> 3));
736 
737 		if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
738 			iph->frag_off |= htons(IP_DF);
739 
740 		/* ANK: dirty, but effective trick. Upgrade options only if
741 		 * the segment to be fragmented was THE FIRST (otherwise,
742 		 * options are already fixed) and make it ONCE
743 		 * on the initial skb, so that all the following fragments
744 		 * will inherit fixed options.
745 		 */
746 		if (offset == 0)
747 			ip_options_fragment(skb);
748 
749 		/*
750 		 *	Added AC : If we are fragmenting a fragment that's not the
751 		 *		   last fragment then keep MF on each bit
752 		 */
753 		if (left > 0 || not_last_frag)
754 			iph->frag_off |= htons(IP_MF);
755 		ptr += len;
756 		offset += len;
757 
758 		/*
759 		 *	Put this fragment into the sending queue.
760 		 */
761 		iph->tot_len = htons(len + hlen);
762 
763 		ip_send_check(iph);
764 
765 		err = output(net, sk, skb2);
766 		if (err)
767 			goto fail;
768 
769 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
770 	}
771 	consume_skb(skb);
772 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
773 	return err;
774 
775 fail:
776 	kfree_skb(skb);
777 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
778 	return err;
779 }
780 EXPORT_SYMBOL(ip_do_fragment);
781 
782 int
783 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
784 {
785 	struct msghdr *msg = from;
786 
787 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
788 		if (copy_from_iter(to, len, &msg->msg_iter) != len)
789 			return -EFAULT;
790 	} else {
791 		__wsum csum = 0;
792 		if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
793 			return -EFAULT;
794 		skb->csum = csum_block_add(skb->csum, csum, odd);
795 	}
796 	return 0;
797 }
798 EXPORT_SYMBOL(ip_generic_getfrag);
799 
800 static inline __wsum
801 csum_page(struct page *page, int offset, int copy)
802 {
803 	char *kaddr;
804 	__wsum csum;
805 	kaddr = kmap(page);
806 	csum = csum_partial(kaddr + offset, copy, 0);
807 	kunmap(page);
808 	return csum;
809 }
810 
811 static inline int ip_ufo_append_data(struct sock *sk,
812 			struct sk_buff_head *queue,
813 			int getfrag(void *from, char *to, int offset, int len,
814 			       int odd, struct sk_buff *skb),
815 			void *from, int length, int hh_len, int fragheaderlen,
816 			int transhdrlen, int maxfraglen, unsigned int flags)
817 {
818 	struct sk_buff *skb;
819 	int err;
820 
821 	/* There is support for UDP fragmentation offload by network
822 	 * device, so create one single skb packet containing complete
823 	 * udp datagram
824 	 */
825 	skb = skb_peek_tail(queue);
826 	if (!skb) {
827 		skb = sock_alloc_send_skb(sk,
828 			hh_len + fragheaderlen + transhdrlen + 20,
829 			(flags & MSG_DONTWAIT), &err);
830 
831 		if (!skb)
832 			return err;
833 
834 		/* reserve space for Hardware header */
835 		skb_reserve(skb, hh_len);
836 
837 		/* create space for UDP/IP header */
838 		skb_put(skb, fragheaderlen + transhdrlen);
839 
840 		/* initialize network header pointer */
841 		skb_reset_network_header(skb);
842 
843 		/* initialize protocol header pointer */
844 		skb->transport_header = skb->network_header + fragheaderlen;
845 
846 		skb->csum = 0;
847 
848 		__skb_queue_tail(queue, skb);
849 	} else if (skb_is_gso(skb)) {
850 		goto append;
851 	}
852 
853 	skb->ip_summed = CHECKSUM_PARTIAL;
854 	/* specify the length of each IP datagram fragment */
855 	skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
856 	skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
857 
858 append:
859 	return skb_append_datato_frags(sk, skb, getfrag, from,
860 				       (length - transhdrlen));
861 }
862 
863 static int __ip_append_data(struct sock *sk,
864 			    struct flowi4 *fl4,
865 			    struct sk_buff_head *queue,
866 			    struct inet_cork *cork,
867 			    struct page_frag *pfrag,
868 			    int getfrag(void *from, char *to, int offset,
869 					int len, int odd, struct sk_buff *skb),
870 			    void *from, int length, int transhdrlen,
871 			    unsigned int flags)
872 {
873 	struct inet_sock *inet = inet_sk(sk);
874 	struct sk_buff *skb;
875 
876 	struct ip_options *opt = cork->opt;
877 	int hh_len;
878 	int exthdrlen;
879 	int mtu;
880 	int copy;
881 	int err;
882 	int offset = 0;
883 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
884 	int csummode = CHECKSUM_NONE;
885 	struct rtable *rt = (struct rtable *)cork->dst;
886 	u32 tskey = 0;
887 
888 	skb = skb_peek_tail(queue);
889 
890 	exthdrlen = !skb ? rt->dst.header_len : 0;
891 	mtu = cork->fragsize;
892 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
893 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
894 		tskey = sk->sk_tskey++;
895 
896 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
897 
898 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
899 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
900 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
901 
902 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
903 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
904 			       mtu - (opt ? opt->optlen : 0));
905 		return -EMSGSIZE;
906 	}
907 
908 	/*
909 	 * transhdrlen > 0 means that this is the first fragment and we wish
910 	 * it won't be fragmented in the future.
911 	 */
912 	if (transhdrlen &&
913 	    length + fragheaderlen <= mtu &&
914 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
915 	    !(flags & MSG_MORE) &&
916 	    !exthdrlen)
917 		csummode = CHECKSUM_PARTIAL;
918 
919 	cork->length += length;
920 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
921 	    (sk->sk_protocol == IPPROTO_UDP) &&
922 	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
923 	    (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
924 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
925 					 hh_len, fragheaderlen, transhdrlen,
926 					 maxfraglen, flags);
927 		if (err)
928 			goto error;
929 		return 0;
930 	}
931 
932 	/* So, what's going on in the loop below?
933 	 *
934 	 * We use calculated fragment length to generate chained skb,
935 	 * each of segments is IP fragment ready for sending to network after
936 	 * adding appropriate IP header.
937 	 */
938 
939 	if (!skb)
940 		goto alloc_new_skb;
941 
942 	while (length > 0) {
943 		/* Check if the remaining data fits into current packet. */
944 		copy = mtu - skb->len;
945 		if (copy < length)
946 			copy = maxfraglen - skb->len;
947 		if (copy <= 0) {
948 			char *data;
949 			unsigned int datalen;
950 			unsigned int fraglen;
951 			unsigned int fraggap;
952 			unsigned int alloclen;
953 			struct sk_buff *skb_prev;
954 alloc_new_skb:
955 			skb_prev = skb;
956 			if (skb_prev)
957 				fraggap = skb_prev->len - maxfraglen;
958 			else
959 				fraggap = 0;
960 
961 			/*
962 			 * If remaining data exceeds the mtu,
963 			 * we know we need more fragment(s).
964 			 */
965 			datalen = length + fraggap;
966 			if (datalen > mtu - fragheaderlen)
967 				datalen = maxfraglen - fragheaderlen;
968 			fraglen = datalen + fragheaderlen;
969 
970 			if ((flags & MSG_MORE) &&
971 			    !(rt->dst.dev->features&NETIF_F_SG))
972 				alloclen = mtu;
973 			else
974 				alloclen = fraglen;
975 
976 			alloclen += exthdrlen;
977 
978 			/* The last fragment gets additional space at tail.
979 			 * Note, with MSG_MORE we overallocate on fragments,
980 			 * because we have no idea what fragment will be
981 			 * the last.
982 			 */
983 			if (datalen == length + fraggap)
984 				alloclen += rt->dst.trailer_len;
985 
986 			if (transhdrlen) {
987 				skb = sock_alloc_send_skb(sk,
988 						alloclen + hh_len + 15,
989 						(flags & MSG_DONTWAIT), &err);
990 			} else {
991 				skb = NULL;
992 				if (atomic_read(&sk->sk_wmem_alloc) <=
993 				    2 * sk->sk_sndbuf)
994 					skb = sock_wmalloc(sk,
995 							   alloclen + hh_len + 15, 1,
996 							   sk->sk_allocation);
997 				if (unlikely(!skb))
998 					err = -ENOBUFS;
999 			}
1000 			if (!skb)
1001 				goto error;
1002 
1003 			/*
1004 			 *	Fill in the control structures
1005 			 */
1006 			skb->ip_summed = csummode;
1007 			skb->csum = 0;
1008 			skb_reserve(skb, hh_len);
1009 
1010 			/* only the initial fragment is time stamped */
1011 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1012 			cork->tx_flags = 0;
1013 			skb_shinfo(skb)->tskey = tskey;
1014 			tskey = 0;
1015 
1016 			/*
1017 			 *	Find where to start putting bytes.
1018 			 */
1019 			data = skb_put(skb, fraglen + exthdrlen);
1020 			skb_set_network_header(skb, exthdrlen);
1021 			skb->transport_header = (skb->network_header +
1022 						 fragheaderlen);
1023 			data += fragheaderlen + exthdrlen;
1024 
1025 			if (fraggap) {
1026 				skb->csum = skb_copy_and_csum_bits(
1027 					skb_prev, maxfraglen,
1028 					data + transhdrlen, fraggap, 0);
1029 				skb_prev->csum = csum_sub(skb_prev->csum,
1030 							  skb->csum);
1031 				data += fraggap;
1032 				pskb_trim_unique(skb_prev, maxfraglen);
1033 			}
1034 
1035 			copy = datalen - transhdrlen - fraggap;
1036 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1037 				err = -EFAULT;
1038 				kfree_skb(skb);
1039 				goto error;
1040 			}
1041 
1042 			offset += copy;
1043 			length -= datalen - fraggap;
1044 			transhdrlen = 0;
1045 			exthdrlen = 0;
1046 			csummode = CHECKSUM_NONE;
1047 
1048 			/*
1049 			 * Put the packet on the pending queue.
1050 			 */
1051 			__skb_queue_tail(queue, skb);
1052 			continue;
1053 		}
1054 
1055 		if (copy > length)
1056 			copy = length;
1057 
1058 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
1059 			unsigned int off;
1060 
1061 			off = skb->len;
1062 			if (getfrag(from, skb_put(skb, copy),
1063 					offset, copy, off, skb) < 0) {
1064 				__skb_trim(skb, off);
1065 				err = -EFAULT;
1066 				goto error;
1067 			}
1068 		} else {
1069 			int i = skb_shinfo(skb)->nr_frags;
1070 
1071 			err = -ENOMEM;
1072 			if (!sk_page_frag_refill(sk, pfrag))
1073 				goto error;
1074 
1075 			if (!skb_can_coalesce(skb, i, pfrag->page,
1076 					      pfrag->offset)) {
1077 				err = -EMSGSIZE;
1078 				if (i == MAX_SKB_FRAGS)
1079 					goto error;
1080 
1081 				__skb_fill_page_desc(skb, i, pfrag->page,
1082 						     pfrag->offset, 0);
1083 				skb_shinfo(skb)->nr_frags = ++i;
1084 				get_page(pfrag->page);
1085 			}
1086 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1087 			if (getfrag(from,
1088 				    page_address(pfrag->page) + pfrag->offset,
1089 				    offset, copy, skb->len, skb) < 0)
1090 				goto error_efault;
1091 
1092 			pfrag->offset += copy;
1093 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1094 			skb->len += copy;
1095 			skb->data_len += copy;
1096 			skb->truesize += copy;
1097 			atomic_add(copy, &sk->sk_wmem_alloc);
1098 		}
1099 		offset += copy;
1100 		length -= copy;
1101 	}
1102 
1103 	return 0;
1104 
1105 error_efault:
1106 	err = -EFAULT;
1107 error:
1108 	cork->length -= length;
1109 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1110 	return err;
1111 }
1112 
1113 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1114 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1115 {
1116 	struct ip_options_rcu *opt;
1117 	struct rtable *rt;
1118 
1119 	/*
1120 	 * setup for corking.
1121 	 */
1122 	opt = ipc->opt;
1123 	if (opt) {
1124 		if (!cork->opt) {
1125 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1126 					    sk->sk_allocation);
1127 			if (unlikely(!cork->opt))
1128 				return -ENOBUFS;
1129 		}
1130 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1131 		cork->flags |= IPCORK_OPT;
1132 		cork->addr = ipc->addr;
1133 	}
1134 	rt = *rtp;
1135 	if (unlikely(!rt))
1136 		return -EFAULT;
1137 	/*
1138 	 * We steal reference to this route, caller should not release it
1139 	 */
1140 	*rtp = NULL;
1141 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1142 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1143 	cork->dst = &rt->dst;
1144 	cork->length = 0;
1145 	cork->ttl = ipc->ttl;
1146 	cork->tos = ipc->tos;
1147 	cork->priority = ipc->priority;
1148 	cork->tx_flags = ipc->tx_flags;
1149 
1150 	return 0;
1151 }
1152 
1153 /*
1154  *	ip_append_data() and ip_append_page() can make one large IP datagram
1155  *	from many pieces of data. Each pieces will be holded on the socket
1156  *	until ip_push_pending_frames() is called. Each piece can be a page
1157  *	or non-page data.
1158  *
1159  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1160  *	this interface potentially.
1161  *
1162  *	LATER: length must be adjusted by pad at tail, when it is required.
1163  */
1164 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1165 		   int getfrag(void *from, char *to, int offset, int len,
1166 			       int odd, struct sk_buff *skb),
1167 		   void *from, int length, int transhdrlen,
1168 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1169 		   unsigned int flags)
1170 {
1171 	struct inet_sock *inet = inet_sk(sk);
1172 	int err;
1173 
1174 	if (flags&MSG_PROBE)
1175 		return 0;
1176 
1177 	if (skb_queue_empty(&sk->sk_write_queue)) {
1178 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1179 		if (err)
1180 			return err;
1181 	} else {
1182 		transhdrlen = 0;
1183 	}
1184 
1185 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1186 				sk_page_frag(sk), getfrag,
1187 				from, length, transhdrlen, flags);
1188 }
1189 
1190 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1191 		       int offset, size_t size, int flags)
1192 {
1193 	struct inet_sock *inet = inet_sk(sk);
1194 	struct sk_buff *skb;
1195 	struct rtable *rt;
1196 	struct ip_options *opt = NULL;
1197 	struct inet_cork *cork;
1198 	int hh_len;
1199 	int mtu;
1200 	int len;
1201 	int err;
1202 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1203 
1204 	if (inet->hdrincl)
1205 		return -EPERM;
1206 
1207 	if (flags&MSG_PROBE)
1208 		return 0;
1209 
1210 	if (skb_queue_empty(&sk->sk_write_queue))
1211 		return -EINVAL;
1212 
1213 	cork = &inet->cork.base;
1214 	rt = (struct rtable *)cork->dst;
1215 	if (cork->flags & IPCORK_OPT)
1216 		opt = cork->opt;
1217 
1218 	if (!(rt->dst.dev->features&NETIF_F_SG))
1219 		return -EOPNOTSUPP;
1220 
1221 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1222 	mtu = cork->fragsize;
1223 
1224 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1225 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1226 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1227 
1228 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1229 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1230 			       mtu - (opt ? opt->optlen : 0));
1231 		return -EMSGSIZE;
1232 	}
1233 
1234 	skb = skb_peek_tail(&sk->sk_write_queue);
1235 	if (!skb)
1236 		return -EINVAL;
1237 
1238 	if ((size + skb->len > mtu) &&
1239 	    (sk->sk_protocol == IPPROTO_UDP) &&
1240 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1241 		if (skb->ip_summed != CHECKSUM_PARTIAL)
1242 			return -EOPNOTSUPP;
1243 
1244 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1245 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1246 	}
1247 	cork->length += size;
1248 
1249 	while (size > 0) {
1250 		if (skb_is_gso(skb)) {
1251 			len = size;
1252 		} else {
1253 
1254 			/* Check if the remaining data fits into current packet. */
1255 			len = mtu - skb->len;
1256 			if (len < size)
1257 				len = maxfraglen - skb->len;
1258 		}
1259 		if (len <= 0) {
1260 			struct sk_buff *skb_prev;
1261 			int alloclen;
1262 
1263 			skb_prev = skb;
1264 			fraggap = skb_prev->len - maxfraglen;
1265 
1266 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1267 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1268 			if (unlikely(!skb)) {
1269 				err = -ENOBUFS;
1270 				goto error;
1271 			}
1272 
1273 			/*
1274 			 *	Fill in the control structures
1275 			 */
1276 			skb->ip_summed = CHECKSUM_NONE;
1277 			skb->csum = 0;
1278 			skb_reserve(skb, hh_len);
1279 
1280 			/*
1281 			 *	Find where to start putting bytes.
1282 			 */
1283 			skb_put(skb, fragheaderlen + fraggap);
1284 			skb_reset_network_header(skb);
1285 			skb->transport_header = (skb->network_header +
1286 						 fragheaderlen);
1287 			if (fraggap) {
1288 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1289 								   maxfraglen,
1290 						    skb_transport_header(skb),
1291 								   fraggap, 0);
1292 				skb_prev->csum = csum_sub(skb_prev->csum,
1293 							  skb->csum);
1294 				pskb_trim_unique(skb_prev, maxfraglen);
1295 			}
1296 
1297 			/*
1298 			 * Put the packet on the pending queue.
1299 			 */
1300 			__skb_queue_tail(&sk->sk_write_queue, skb);
1301 			continue;
1302 		}
1303 
1304 		if (len > size)
1305 			len = size;
1306 
1307 		if (skb_append_pagefrags(skb, page, offset, len)) {
1308 			err = -EMSGSIZE;
1309 			goto error;
1310 		}
1311 
1312 		if (skb->ip_summed == CHECKSUM_NONE) {
1313 			__wsum csum;
1314 			csum = csum_page(page, offset, len);
1315 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1316 		}
1317 
1318 		skb->len += len;
1319 		skb->data_len += len;
1320 		skb->truesize += len;
1321 		atomic_add(len, &sk->sk_wmem_alloc);
1322 		offset += len;
1323 		size -= len;
1324 	}
1325 	return 0;
1326 
1327 error:
1328 	cork->length -= size;
1329 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1330 	return err;
1331 }
1332 
1333 static void ip_cork_release(struct inet_cork *cork)
1334 {
1335 	cork->flags &= ~IPCORK_OPT;
1336 	kfree(cork->opt);
1337 	cork->opt = NULL;
1338 	dst_release(cork->dst);
1339 	cork->dst = NULL;
1340 }
1341 
1342 /*
1343  *	Combined all pending IP fragments on the socket as one IP datagram
1344  *	and push them out.
1345  */
1346 struct sk_buff *__ip_make_skb(struct sock *sk,
1347 			      struct flowi4 *fl4,
1348 			      struct sk_buff_head *queue,
1349 			      struct inet_cork *cork)
1350 {
1351 	struct sk_buff *skb, *tmp_skb;
1352 	struct sk_buff **tail_skb;
1353 	struct inet_sock *inet = inet_sk(sk);
1354 	struct net *net = sock_net(sk);
1355 	struct ip_options *opt = NULL;
1356 	struct rtable *rt = (struct rtable *)cork->dst;
1357 	struct iphdr *iph;
1358 	__be16 df = 0;
1359 	__u8 ttl;
1360 
1361 	skb = __skb_dequeue(queue);
1362 	if (!skb)
1363 		goto out;
1364 	tail_skb = &(skb_shinfo(skb)->frag_list);
1365 
1366 	/* move skb->data to ip header from ext header */
1367 	if (skb->data < skb_network_header(skb))
1368 		__skb_pull(skb, skb_network_offset(skb));
1369 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1370 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1371 		*tail_skb = tmp_skb;
1372 		tail_skb = &(tmp_skb->next);
1373 		skb->len += tmp_skb->len;
1374 		skb->data_len += tmp_skb->len;
1375 		skb->truesize += tmp_skb->truesize;
1376 		tmp_skb->destructor = NULL;
1377 		tmp_skb->sk = NULL;
1378 	}
1379 
1380 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1381 	 * to fragment the frame generated here. No matter, what transforms
1382 	 * how transforms change size of the packet, it will come out.
1383 	 */
1384 	skb->ignore_df = ip_sk_ignore_df(sk);
1385 
1386 	/* DF bit is set when we want to see DF on outgoing frames.
1387 	 * If ignore_df is set too, we still allow to fragment this frame
1388 	 * locally. */
1389 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1390 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1391 	    (skb->len <= dst_mtu(&rt->dst) &&
1392 	     ip_dont_fragment(sk, &rt->dst)))
1393 		df = htons(IP_DF);
1394 
1395 	if (cork->flags & IPCORK_OPT)
1396 		opt = cork->opt;
1397 
1398 	if (cork->ttl != 0)
1399 		ttl = cork->ttl;
1400 	else if (rt->rt_type == RTN_MULTICAST)
1401 		ttl = inet->mc_ttl;
1402 	else
1403 		ttl = ip_select_ttl(inet, &rt->dst);
1404 
1405 	iph = ip_hdr(skb);
1406 	iph->version = 4;
1407 	iph->ihl = 5;
1408 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1409 	iph->frag_off = df;
1410 	iph->ttl = ttl;
1411 	iph->protocol = sk->sk_protocol;
1412 	ip_copy_addrs(iph, fl4);
1413 	ip_select_ident(net, skb, sk);
1414 
1415 	if (opt) {
1416 		iph->ihl += opt->optlen>>2;
1417 		ip_options_build(skb, opt, cork->addr, rt, 0);
1418 	}
1419 
1420 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1421 	skb->mark = sk->sk_mark;
1422 	/*
1423 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1424 	 * on dst refcount
1425 	 */
1426 	cork->dst = NULL;
1427 	skb_dst_set(skb, &rt->dst);
1428 
1429 	if (iph->protocol == IPPROTO_ICMP)
1430 		icmp_out_count(net, ((struct icmphdr *)
1431 			skb_transport_header(skb))->type);
1432 
1433 	ip_cork_release(cork);
1434 out:
1435 	return skb;
1436 }
1437 
1438 int ip_send_skb(struct net *net, struct sk_buff *skb)
1439 {
1440 	int err;
1441 
1442 	err = ip_local_out(net, skb->sk, skb);
1443 	if (err) {
1444 		if (err > 0)
1445 			err = net_xmit_errno(err);
1446 		if (err)
1447 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1448 	}
1449 
1450 	return err;
1451 }
1452 
1453 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1454 {
1455 	struct sk_buff *skb;
1456 
1457 	skb = ip_finish_skb(sk, fl4);
1458 	if (!skb)
1459 		return 0;
1460 
1461 	/* Netfilter gets whole the not fragmented skb. */
1462 	return ip_send_skb(sock_net(sk), skb);
1463 }
1464 
1465 /*
1466  *	Throw away all pending data on the socket.
1467  */
1468 static void __ip_flush_pending_frames(struct sock *sk,
1469 				      struct sk_buff_head *queue,
1470 				      struct inet_cork *cork)
1471 {
1472 	struct sk_buff *skb;
1473 
1474 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1475 		kfree_skb(skb);
1476 
1477 	ip_cork_release(cork);
1478 }
1479 
1480 void ip_flush_pending_frames(struct sock *sk)
1481 {
1482 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1483 }
1484 
1485 struct sk_buff *ip_make_skb(struct sock *sk,
1486 			    struct flowi4 *fl4,
1487 			    int getfrag(void *from, char *to, int offset,
1488 					int len, int odd, struct sk_buff *skb),
1489 			    void *from, int length, int transhdrlen,
1490 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1491 			    unsigned int flags)
1492 {
1493 	struct inet_cork cork;
1494 	struct sk_buff_head queue;
1495 	int err;
1496 
1497 	if (flags & MSG_PROBE)
1498 		return NULL;
1499 
1500 	__skb_queue_head_init(&queue);
1501 
1502 	cork.flags = 0;
1503 	cork.addr = 0;
1504 	cork.opt = NULL;
1505 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1506 	if (err)
1507 		return ERR_PTR(err);
1508 
1509 	err = __ip_append_data(sk, fl4, &queue, &cork,
1510 			       &current->task_frag, getfrag,
1511 			       from, length, transhdrlen, flags);
1512 	if (err) {
1513 		__ip_flush_pending_frames(sk, &queue, &cork);
1514 		return ERR_PTR(err);
1515 	}
1516 
1517 	return __ip_make_skb(sk, fl4, &queue, &cork);
1518 }
1519 
1520 /*
1521  *	Fetch data from kernel space and fill in checksum if needed.
1522  */
1523 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1524 			      int len, int odd, struct sk_buff *skb)
1525 {
1526 	__wsum csum;
1527 
1528 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1529 	skb->csum = csum_block_add(skb->csum, csum, odd);
1530 	return 0;
1531 }
1532 
1533 /*
1534  *	Generic function to send a packet as reply to another packet.
1535  *	Used to send some TCP resets/acks so far.
1536  */
1537 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1538 			   const struct ip_options *sopt,
1539 			   __be32 daddr, __be32 saddr,
1540 			   const struct ip_reply_arg *arg,
1541 			   unsigned int len)
1542 {
1543 	struct ip_options_data replyopts;
1544 	struct ipcm_cookie ipc;
1545 	struct flowi4 fl4;
1546 	struct rtable *rt = skb_rtable(skb);
1547 	struct net *net = sock_net(sk);
1548 	struct sk_buff *nskb;
1549 	int err;
1550 	int oif;
1551 
1552 	if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1553 		return;
1554 
1555 	ipc.addr = daddr;
1556 	ipc.opt = NULL;
1557 	ipc.tx_flags = 0;
1558 	ipc.ttl = 0;
1559 	ipc.tos = -1;
1560 
1561 	if (replyopts.opt.opt.optlen) {
1562 		ipc.opt = &replyopts.opt;
1563 
1564 		if (replyopts.opt.opt.srr)
1565 			daddr = replyopts.opt.opt.faddr;
1566 	}
1567 
1568 	oif = arg->bound_dev_if;
1569 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1570 		oif = skb->skb_iif;
1571 
1572 	flowi4_init_output(&fl4, oif,
1573 			   IP4_REPLY_MARK(net, skb->mark),
1574 			   RT_TOS(arg->tos),
1575 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1576 			   ip_reply_arg_flowi_flags(arg),
1577 			   daddr, saddr,
1578 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1579 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1580 	rt = ip_route_output_key(net, &fl4);
1581 	if (IS_ERR(rt))
1582 		return;
1583 
1584 	inet_sk(sk)->tos = arg->tos;
1585 
1586 	sk->sk_priority = skb->priority;
1587 	sk->sk_protocol = ip_hdr(skb)->protocol;
1588 	sk->sk_bound_dev_if = arg->bound_dev_if;
1589 	sk->sk_sndbuf = sysctl_wmem_default;
1590 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1591 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1592 	if (unlikely(err)) {
1593 		ip_flush_pending_frames(sk);
1594 		goto out;
1595 	}
1596 
1597 	nskb = skb_peek(&sk->sk_write_queue);
1598 	if (nskb) {
1599 		if (arg->csumoffset >= 0)
1600 			*((__sum16 *)skb_transport_header(nskb) +
1601 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1602 								arg->csum));
1603 		nskb->ip_summed = CHECKSUM_NONE;
1604 		ip_push_pending_frames(sk, &fl4);
1605 	}
1606 out:
1607 	ip_rt_put(rt);
1608 }
1609 
1610 void __init ip_init(void)
1611 {
1612 	ip_rt_init();
1613 	inet_initpeers();
1614 
1615 #if defined(CONFIG_IP_MULTICAST)
1616 	igmp_mc_init();
1617 #endif
1618 }
1619