1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The Internet Protocol (IP) output module. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Donald Becker, <becker@super.org> 11 * Alan Cox, <Alan.Cox@linux.org> 12 * Richard Underwood 13 * Stefan Becker, <stefanb@yello.ping.de> 14 * Jorge Cwik, <jorge@laser.satlink.net> 15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 16 * Hirokazu Takahashi, <taka@valinux.co.jp> 17 * 18 * See ip_input.c for original log 19 * 20 * Fixes: 21 * Alan Cox : Missing nonblock feature in ip_build_xmit. 22 * Mike Kilburn : htons() missing in ip_build_xmit. 23 * Bradford Johnson: Fix faulty handling of some frames when 24 * no route is found. 25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 26 * (in case if packet not accepted by 27 * output firewall rules) 28 * Mike McLagan : Routing by source 29 * Alexey Kuznetsov: use new route cache 30 * Andi Kleen: Fix broken PMTU recovery and remove 31 * some redundant tests. 32 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 33 * Andi Kleen : Replace ip_reply with ip_send_reply. 34 * Andi Kleen : Split fast and slow ip_build_xmit path 35 * for decreased register pressure on x86 36 * and more readibility. 37 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 38 * silently drop skb instead of failing with -EPERM. 39 * Detlev Wengorz : Copy protocol for fragments. 40 * Hirokazu Takahashi: HW checksumming for outgoing UDP 41 * datagrams. 42 * Hirokazu Takahashi: sendfile() on UDP works now. 43 */ 44 45 #include <asm/uaccess.h> 46 #include <linux/module.h> 47 #include <linux/types.h> 48 #include <linux/kernel.h> 49 #include <linux/mm.h> 50 #include <linux/string.h> 51 #include <linux/errno.h> 52 #include <linux/highmem.h> 53 #include <linux/slab.h> 54 55 #include <linux/socket.h> 56 #include <linux/sockios.h> 57 #include <linux/in.h> 58 #include <linux/inet.h> 59 #include <linux/netdevice.h> 60 #include <linux/etherdevice.h> 61 #include <linux/proc_fs.h> 62 #include <linux/stat.h> 63 #include <linux/init.h> 64 65 #include <net/snmp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/xfrm.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <net/arp.h> 73 #include <net/icmp.h> 74 #include <net/checksum.h> 75 #include <net/inetpeer.h> 76 #include <linux/igmp.h> 77 #include <linux/netfilter_ipv4.h> 78 #include <linux/netfilter_bridge.h> 79 #include <linux/netlink.h> 80 #include <linux/tcp.h> 81 82 static int 83 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 84 unsigned int mtu, 85 int (*output)(struct net *, struct sock *, struct sk_buff *)); 86 87 /* Generate a checksum for an outgoing IP datagram. */ 88 void ip_send_check(struct iphdr *iph) 89 { 90 iph->check = 0; 91 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 92 } 93 EXPORT_SYMBOL(ip_send_check); 94 95 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 96 { 97 struct iphdr *iph = ip_hdr(skb); 98 99 iph->tot_len = htons(skb->len); 100 ip_send_check(iph); 101 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 102 net, sk, skb, NULL, skb_dst(skb)->dev, 103 dst_output); 104 } 105 106 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 107 { 108 int err; 109 110 err = __ip_local_out(net, sk, skb); 111 if (likely(err == 1)) 112 err = dst_output(net, sk, skb); 113 114 return err; 115 } 116 EXPORT_SYMBOL_GPL(ip_local_out); 117 118 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 119 { 120 int ttl = inet->uc_ttl; 121 122 if (ttl < 0) 123 ttl = ip4_dst_hoplimit(dst); 124 return ttl; 125 } 126 127 /* 128 * Add an ip header to a skbuff and send it out. 129 * 130 */ 131 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 132 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 133 { 134 struct inet_sock *inet = inet_sk(sk); 135 struct rtable *rt = skb_rtable(skb); 136 struct net *net = sock_net(sk); 137 struct iphdr *iph; 138 139 /* Build the IP header. */ 140 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 141 skb_reset_network_header(skb); 142 iph = ip_hdr(skb); 143 iph->version = 4; 144 iph->ihl = 5; 145 iph->tos = inet->tos; 146 iph->ttl = ip_select_ttl(inet, &rt->dst); 147 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 148 iph->saddr = saddr; 149 iph->protocol = sk->sk_protocol; 150 if (ip_dont_fragment(sk, &rt->dst)) { 151 iph->frag_off = htons(IP_DF); 152 iph->id = 0; 153 } else { 154 iph->frag_off = 0; 155 __ip_select_ident(net, iph, 1); 156 } 157 158 if (opt && opt->opt.optlen) { 159 iph->ihl += opt->opt.optlen>>2; 160 ip_options_build(skb, &opt->opt, daddr, rt, 0); 161 } 162 163 skb->priority = sk->sk_priority; 164 skb->mark = sk->sk_mark; 165 166 /* Send it out. */ 167 return ip_local_out(net, skb->sk, skb); 168 } 169 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 170 171 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 172 { 173 struct dst_entry *dst = skb_dst(skb); 174 struct rtable *rt = (struct rtable *)dst; 175 struct net_device *dev = dst->dev; 176 unsigned int hh_len = LL_RESERVED_SPACE(dev); 177 struct neighbour *neigh; 178 u32 nexthop; 179 180 if (rt->rt_type == RTN_MULTICAST) { 181 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 182 } else if (rt->rt_type == RTN_BROADCAST) 183 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 184 185 /* Be paranoid, rather than too clever. */ 186 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 187 struct sk_buff *skb2; 188 189 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 190 if (!skb2) { 191 kfree_skb(skb); 192 return -ENOMEM; 193 } 194 if (skb->sk) 195 skb_set_owner_w(skb2, skb->sk); 196 consume_skb(skb); 197 skb = skb2; 198 } 199 200 rcu_read_lock_bh(); 201 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr); 202 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 203 if (unlikely(!neigh)) 204 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 205 if (!IS_ERR(neigh)) { 206 int res = dst_neigh_output(dst, neigh, skb); 207 208 rcu_read_unlock_bh(); 209 return res; 210 } 211 rcu_read_unlock_bh(); 212 213 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 214 __func__); 215 kfree_skb(skb); 216 return -EINVAL; 217 } 218 219 static int ip_finish_output_gso(struct net *net, struct sock *sk, 220 struct sk_buff *skb, unsigned int mtu) 221 { 222 netdev_features_t features; 223 struct sk_buff *segs; 224 int ret = 0; 225 226 /* common case: fragmentation of segments is not allowed, 227 * or seglen is <= mtu 228 */ 229 if (((IPCB(skb)->flags & IPSKB_FRAG_SEGS) == 0) || 230 skb_gso_validate_mtu(skb, mtu)) 231 return ip_finish_output2(net, sk, skb); 232 233 /* Slowpath - GSO segment length is exceeding the dst MTU. 234 * 235 * This can happen in two cases: 236 * 1) TCP GRO packet, DF bit not set 237 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly 238 * from host network stack. 239 */ 240 features = netif_skb_features(skb); 241 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET); 242 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 243 if (IS_ERR_OR_NULL(segs)) { 244 kfree_skb(skb); 245 return -ENOMEM; 246 } 247 248 consume_skb(skb); 249 250 do { 251 struct sk_buff *nskb = segs->next; 252 int err; 253 254 segs->next = NULL; 255 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 256 257 if (err && ret == 0) 258 ret = err; 259 segs = nskb; 260 } while (segs); 261 262 return ret; 263 } 264 265 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 266 { 267 unsigned int mtu; 268 269 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 270 /* Policy lookup after SNAT yielded a new policy */ 271 if (skb_dst(skb)->xfrm) { 272 IPCB(skb)->flags |= IPSKB_REROUTED; 273 return dst_output(net, sk, skb); 274 } 275 #endif 276 mtu = ip_skb_dst_mtu(sk, skb); 277 if (skb_is_gso(skb)) 278 return ip_finish_output_gso(net, sk, skb, mtu); 279 280 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 281 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 282 283 return ip_finish_output2(net, sk, skb); 284 } 285 286 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 287 { 288 struct rtable *rt = skb_rtable(skb); 289 struct net_device *dev = rt->dst.dev; 290 291 /* 292 * If the indicated interface is up and running, send the packet. 293 */ 294 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 295 296 skb->dev = dev; 297 skb->protocol = htons(ETH_P_IP); 298 299 /* 300 * Multicasts are looped back for other local users 301 */ 302 303 if (rt->rt_flags&RTCF_MULTICAST) { 304 if (sk_mc_loop(sk) 305 #ifdef CONFIG_IP_MROUTE 306 /* Small optimization: do not loopback not local frames, 307 which returned after forwarding; they will be dropped 308 by ip_mr_input in any case. 309 Note, that local frames are looped back to be delivered 310 to local recipients. 311 312 This check is duplicated in ip_mr_input at the moment. 313 */ 314 && 315 ((rt->rt_flags & RTCF_LOCAL) || 316 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 317 #endif 318 ) { 319 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 320 if (newskb) 321 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 322 net, sk, newskb, NULL, newskb->dev, 323 dev_loopback_xmit); 324 } 325 326 /* Multicasts with ttl 0 must not go beyond the host */ 327 328 if (ip_hdr(skb)->ttl == 0) { 329 kfree_skb(skb); 330 return 0; 331 } 332 } 333 334 if (rt->rt_flags&RTCF_BROADCAST) { 335 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 336 if (newskb) 337 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 338 net, sk, newskb, NULL, newskb->dev, 339 dev_loopback_xmit); 340 } 341 342 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 343 net, sk, skb, NULL, skb->dev, 344 ip_finish_output, 345 !(IPCB(skb)->flags & IPSKB_REROUTED)); 346 } 347 348 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 349 { 350 struct net_device *dev = skb_dst(skb)->dev; 351 352 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 353 354 skb->dev = dev; 355 skb->protocol = htons(ETH_P_IP); 356 357 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 358 net, sk, skb, NULL, dev, 359 ip_finish_output, 360 !(IPCB(skb)->flags & IPSKB_REROUTED)); 361 } 362 363 /* 364 * copy saddr and daddr, possibly using 64bit load/stores 365 * Equivalent to : 366 * iph->saddr = fl4->saddr; 367 * iph->daddr = fl4->daddr; 368 */ 369 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 370 { 371 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 372 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 373 memcpy(&iph->saddr, &fl4->saddr, 374 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 375 } 376 377 /* Note: skb->sk can be different from sk, in case of tunnels */ 378 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 379 { 380 struct inet_sock *inet = inet_sk(sk); 381 struct net *net = sock_net(sk); 382 struct ip_options_rcu *inet_opt; 383 struct flowi4 *fl4; 384 struct rtable *rt; 385 struct iphdr *iph; 386 int res; 387 388 /* Skip all of this if the packet is already routed, 389 * f.e. by something like SCTP. 390 */ 391 rcu_read_lock(); 392 inet_opt = rcu_dereference(inet->inet_opt); 393 fl4 = &fl->u.ip4; 394 rt = skb_rtable(skb); 395 if (rt) 396 goto packet_routed; 397 398 /* Make sure we can route this packet. */ 399 rt = (struct rtable *)__sk_dst_check(sk, 0); 400 if (!rt) { 401 __be32 daddr; 402 403 /* Use correct destination address if we have options. */ 404 daddr = inet->inet_daddr; 405 if (inet_opt && inet_opt->opt.srr) 406 daddr = inet_opt->opt.faddr; 407 408 /* If this fails, retransmit mechanism of transport layer will 409 * keep trying until route appears or the connection times 410 * itself out. 411 */ 412 rt = ip_route_output_ports(net, fl4, sk, 413 daddr, inet->inet_saddr, 414 inet->inet_dport, 415 inet->inet_sport, 416 sk->sk_protocol, 417 RT_CONN_FLAGS(sk), 418 sk->sk_bound_dev_if); 419 if (IS_ERR(rt)) 420 goto no_route; 421 sk_setup_caps(sk, &rt->dst); 422 } 423 skb_dst_set_noref(skb, &rt->dst); 424 425 packet_routed: 426 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 427 goto no_route; 428 429 /* OK, we know where to send it, allocate and build IP header. */ 430 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 431 skb_reset_network_header(skb); 432 iph = ip_hdr(skb); 433 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff)); 434 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 435 iph->frag_off = htons(IP_DF); 436 else 437 iph->frag_off = 0; 438 iph->ttl = ip_select_ttl(inet, &rt->dst); 439 iph->protocol = sk->sk_protocol; 440 ip_copy_addrs(iph, fl4); 441 442 /* Transport layer set skb->h.foo itself. */ 443 444 if (inet_opt && inet_opt->opt.optlen) { 445 iph->ihl += inet_opt->opt.optlen >> 2; 446 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 447 } 448 449 ip_select_ident_segs(net, skb, sk, 450 skb_shinfo(skb)->gso_segs ?: 1); 451 452 /* TODO : should we use skb->sk here instead of sk ? */ 453 skb->priority = sk->sk_priority; 454 skb->mark = sk->sk_mark; 455 456 res = ip_local_out(net, sk, skb); 457 rcu_read_unlock(); 458 return res; 459 460 no_route: 461 rcu_read_unlock(); 462 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 463 kfree_skb(skb); 464 return -EHOSTUNREACH; 465 } 466 EXPORT_SYMBOL(ip_queue_xmit); 467 468 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 469 { 470 to->pkt_type = from->pkt_type; 471 to->priority = from->priority; 472 to->protocol = from->protocol; 473 skb_dst_drop(to); 474 skb_dst_copy(to, from); 475 to->dev = from->dev; 476 to->mark = from->mark; 477 478 /* Copy the flags to each fragment. */ 479 IPCB(to)->flags = IPCB(from)->flags; 480 481 #ifdef CONFIG_NET_SCHED 482 to->tc_index = from->tc_index; 483 #endif 484 nf_copy(to, from); 485 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 486 to->ipvs_property = from->ipvs_property; 487 #endif 488 skb_copy_secmark(to, from); 489 } 490 491 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 492 unsigned int mtu, 493 int (*output)(struct net *, struct sock *, struct sk_buff *)) 494 { 495 struct iphdr *iph = ip_hdr(skb); 496 497 if ((iph->frag_off & htons(IP_DF)) == 0) 498 return ip_do_fragment(net, sk, skb, output); 499 500 if (unlikely(!skb->ignore_df || 501 (IPCB(skb)->frag_max_size && 502 IPCB(skb)->frag_max_size > mtu))) { 503 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 504 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 505 htonl(mtu)); 506 kfree_skb(skb); 507 return -EMSGSIZE; 508 } 509 510 return ip_do_fragment(net, sk, skb, output); 511 } 512 513 /* 514 * This IP datagram is too large to be sent in one piece. Break it up into 515 * smaller pieces (each of size equal to IP header plus 516 * a block of the data of the original IP data part) that will yet fit in a 517 * single device frame, and queue such a frame for sending. 518 */ 519 520 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 521 int (*output)(struct net *, struct sock *, struct sk_buff *)) 522 { 523 struct iphdr *iph; 524 int ptr; 525 struct net_device *dev; 526 struct sk_buff *skb2; 527 unsigned int mtu, hlen, left, len, ll_rs; 528 int offset; 529 __be16 not_last_frag; 530 struct rtable *rt = skb_rtable(skb); 531 int err = 0; 532 533 dev = rt->dst.dev; 534 535 /* for offloaded checksums cleanup checksum before fragmentation */ 536 if (skb->ip_summed == CHECKSUM_PARTIAL && 537 (err = skb_checksum_help(skb))) 538 goto fail; 539 540 /* 541 * Point into the IP datagram header. 542 */ 543 544 iph = ip_hdr(skb); 545 546 mtu = ip_skb_dst_mtu(sk, skb); 547 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 548 mtu = IPCB(skb)->frag_max_size; 549 550 /* 551 * Setup starting values. 552 */ 553 554 hlen = iph->ihl * 4; 555 mtu = mtu - hlen; /* Size of data space */ 556 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 557 558 /* When frag_list is given, use it. First, check its validity: 559 * some transformers could create wrong frag_list or break existing 560 * one, it is not prohibited. In this case fall back to copying. 561 * 562 * LATER: this step can be merged to real generation of fragments, 563 * we can switch to copy when see the first bad fragment. 564 */ 565 if (skb_has_frag_list(skb)) { 566 struct sk_buff *frag, *frag2; 567 int first_len = skb_pagelen(skb); 568 569 if (first_len - hlen > mtu || 570 ((first_len - hlen) & 7) || 571 ip_is_fragment(iph) || 572 skb_cloned(skb)) 573 goto slow_path; 574 575 skb_walk_frags(skb, frag) { 576 /* Correct geometry. */ 577 if (frag->len > mtu || 578 ((frag->len & 7) && frag->next) || 579 skb_headroom(frag) < hlen) 580 goto slow_path_clean; 581 582 /* Partially cloned skb? */ 583 if (skb_shared(frag)) 584 goto slow_path_clean; 585 586 BUG_ON(frag->sk); 587 if (skb->sk) { 588 frag->sk = skb->sk; 589 frag->destructor = sock_wfree; 590 } 591 skb->truesize -= frag->truesize; 592 } 593 594 /* Everything is OK. Generate! */ 595 596 err = 0; 597 offset = 0; 598 frag = skb_shinfo(skb)->frag_list; 599 skb_frag_list_init(skb); 600 skb->data_len = first_len - skb_headlen(skb); 601 skb->len = first_len; 602 iph->tot_len = htons(first_len); 603 iph->frag_off = htons(IP_MF); 604 ip_send_check(iph); 605 606 for (;;) { 607 /* Prepare header of the next frame, 608 * before previous one went down. */ 609 if (frag) { 610 frag->ip_summed = CHECKSUM_NONE; 611 skb_reset_transport_header(frag); 612 __skb_push(frag, hlen); 613 skb_reset_network_header(frag); 614 memcpy(skb_network_header(frag), iph, hlen); 615 iph = ip_hdr(frag); 616 iph->tot_len = htons(frag->len); 617 ip_copy_metadata(frag, skb); 618 if (offset == 0) 619 ip_options_fragment(frag); 620 offset += skb->len - hlen; 621 iph->frag_off = htons(offset>>3); 622 if (frag->next) 623 iph->frag_off |= htons(IP_MF); 624 /* Ready, complete checksum */ 625 ip_send_check(iph); 626 } 627 628 err = output(net, sk, skb); 629 630 if (!err) 631 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 632 if (err || !frag) 633 break; 634 635 skb = frag; 636 frag = skb->next; 637 skb->next = NULL; 638 } 639 640 if (err == 0) { 641 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 642 return 0; 643 } 644 645 while (frag) { 646 skb = frag->next; 647 kfree_skb(frag); 648 frag = skb; 649 } 650 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 651 return err; 652 653 slow_path_clean: 654 skb_walk_frags(skb, frag2) { 655 if (frag2 == frag) 656 break; 657 frag2->sk = NULL; 658 frag2->destructor = NULL; 659 skb->truesize += frag2->truesize; 660 } 661 } 662 663 slow_path: 664 iph = ip_hdr(skb); 665 666 left = skb->len - hlen; /* Space per frame */ 667 ptr = hlen; /* Where to start from */ 668 669 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 670 671 /* 672 * Fragment the datagram. 673 */ 674 675 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 676 not_last_frag = iph->frag_off & htons(IP_MF); 677 678 /* 679 * Keep copying data until we run out. 680 */ 681 682 while (left > 0) { 683 len = left; 684 /* IF: it doesn't fit, use 'mtu' - the data space left */ 685 if (len > mtu) 686 len = mtu; 687 /* IF: we are not sending up to and including the packet end 688 then align the next start on an eight byte boundary */ 689 if (len < left) { 690 len &= ~7; 691 } 692 693 /* Allocate buffer */ 694 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 695 if (!skb2) { 696 err = -ENOMEM; 697 goto fail; 698 } 699 700 /* 701 * Set up data on packet 702 */ 703 704 ip_copy_metadata(skb2, skb); 705 skb_reserve(skb2, ll_rs); 706 skb_put(skb2, len + hlen); 707 skb_reset_network_header(skb2); 708 skb2->transport_header = skb2->network_header + hlen; 709 710 /* 711 * Charge the memory for the fragment to any owner 712 * it might possess 713 */ 714 715 if (skb->sk) 716 skb_set_owner_w(skb2, skb->sk); 717 718 /* 719 * Copy the packet header into the new buffer. 720 */ 721 722 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 723 724 /* 725 * Copy a block of the IP datagram. 726 */ 727 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 728 BUG(); 729 left -= len; 730 731 /* 732 * Fill in the new header fields. 733 */ 734 iph = ip_hdr(skb2); 735 iph->frag_off = htons((offset >> 3)); 736 737 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 738 iph->frag_off |= htons(IP_DF); 739 740 /* ANK: dirty, but effective trick. Upgrade options only if 741 * the segment to be fragmented was THE FIRST (otherwise, 742 * options are already fixed) and make it ONCE 743 * on the initial skb, so that all the following fragments 744 * will inherit fixed options. 745 */ 746 if (offset == 0) 747 ip_options_fragment(skb); 748 749 /* 750 * Added AC : If we are fragmenting a fragment that's not the 751 * last fragment then keep MF on each bit 752 */ 753 if (left > 0 || not_last_frag) 754 iph->frag_off |= htons(IP_MF); 755 ptr += len; 756 offset += len; 757 758 /* 759 * Put this fragment into the sending queue. 760 */ 761 iph->tot_len = htons(len + hlen); 762 763 ip_send_check(iph); 764 765 err = output(net, sk, skb2); 766 if (err) 767 goto fail; 768 769 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 770 } 771 consume_skb(skb); 772 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 773 return err; 774 775 fail: 776 kfree_skb(skb); 777 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 778 return err; 779 } 780 EXPORT_SYMBOL(ip_do_fragment); 781 782 int 783 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 784 { 785 struct msghdr *msg = from; 786 787 if (skb->ip_summed == CHECKSUM_PARTIAL) { 788 if (copy_from_iter(to, len, &msg->msg_iter) != len) 789 return -EFAULT; 790 } else { 791 __wsum csum = 0; 792 if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len) 793 return -EFAULT; 794 skb->csum = csum_block_add(skb->csum, csum, odd); 795 } 796 return 0; 797 } 798 EXPORT_SYMBOL(ip_generic_getfrag); 799 800 static inline __wsum 801 csum_page(struct page *page, int offset, int copy) 802 { 803 char *kaddr; 804 __wsum csum; 805 kaddr = kmap(page); 806 csum = csum_partial(kaddr + offset, copy, 0); 807 kunmap(page); 808 return csum; 809 } 810 811 static inline int ip_ufo_append_data(struct sock *sk, 812 struct sk_buff_head *queue, 813 int getfrag(void *from, char *to, int offset, int len, 814 int odd, struct sk_buff *skb), 815 void *from, int length, int hh_len, int fragheaderlen, 816 int transhdrlen, int maxfraglen, unsigned int flags) 817 { 818 struct sk_buff *skb; 819 int err; 820 821 /* There is support for UDP fragmentation offload by network 822 * device, so create one single skb packet containing complete 823 * udp datagram 824 */ 825 skb = skb_peek_tail(queue); 826 if (!skb) { 827 skb = sock_alloc_send_skb(sk, 828 hh_len + fragheaderlen + transhdrlen + 20, 829 (flags & MSG_DONTWAIT), &err); 830 831 if (!skb) 832 return err; 833 834 /* reserve space for Hardware header */ 835 skb_reserve(skb, hh_len); 836 837 /* create space for UDP/IP header */ 838 skb_put(skb, fragheaderlen + transhdrlen); 839 840 /* initialize network header pointer */ 841 skb_reset_network_header(skb); 842 843 /* initialize protocol header pointer */ 844 skb->transport_header = skb->network_header + fragheaderlen; 845 846 skb->csum = 0; 847 848 __skb_queue_tail(queue, skb); 849 } else if (skb_is_gso(skb)) { 850 goto append; 851 } 852 853 skb->ip_summed = CHECKSUM_PARTIAL; 854 /* specify the length of each IP datagram fragment */ 855 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen; 856 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 857 858 append: 859 return skb_append_datato_frags(sk, skb, getfrag, from, 860 (length - transhdrlen)); 861 } 862 863 static int __ip_append_data(struct sock *sk, 864 struct flowi4 *fl4, 865 struct sk_buff_head *queue, 866 struct inet_cork *cork, 867 struct page_frag *pfrag, 868 int getfrag(void *from, char *to, int offset, 869 int len, int odd, struct sk_buff *skb), 870 void *from, int length, int transhdrlen, 871 unsigned int flags) 872 { 873 struct inet_sock *inet = inet_sk(sk); 874 struct sk_buff *skb; 875 876 struct ip_options *opt = cork->opt; 877 int hh_len; 878 int exthdrlen; 879 int mtu; 880 int copy; 881 int err; 882 int offset = 0; 883 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 884 int csummode = CHECKSUM_NONE; 885 struct rtable *rt = (struct rtable *)cork->dst; 886 u32 tskey = 0; 887 888 skb = skb_peek_tail(queue); 889 890 exthdrlen = !skb ? rt->dst.header_len : 0; 891 mtu = cork->fragsize; 892 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 893 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 894 tskey = sk->sk_tskey++; 895 896 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 897 898 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 899 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 900 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 901 902 if (cork->length + length > maxnonfragsize - fragheaderlen) { 903 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 904 mtu - (opt ? opt->optlen : 0)); 905 return -EMSGSIZE; 906 } 907 908 /* 909 * transhdrlen > 0 means that this is the first fragment and we wish 910 * it won't be fragmented in the future. 911 */ 912 if (transhdrlen && 913 length + fragheaderlen <= mtu && 914 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 915 !(flags & MSG_MORE) && 916 !exthdrlen) 917 csummode = CHECKSUM_PARTIAL; 918 919 cork->length += length; 920 if (((length > mtu) || (skb && skb_is_gso(skb))) && 921 (sk->sk_protocol == IPPROTO_UDP) && 922 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len && 923 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) { 924 err = ip_ufo_append_data(sk, queue, getfrag, from, length, 925 hh_len, fragheaderlen, transhdrlen, 926 maxfraglen, flags); 927 if (err) 928 goto error; 929 return 0; 930 } 931 932 /* So, what's going on in the loop below? 933 * 934 * We use calculated fragment length to generate chained skb, 935 * each of segments is IP fragment ready for sending to network after 936 * adding appropriate IP header. 937 */ 938 939 if (!skb) 940 goto alloc_new_skb; 941 942 while (length > 0) { 943 /* Check if the remaining data fits into current packet. */ 944 copy = mtu - skb->len; 945 if (copy < length) 946 copy = maxfraglen - skb->len; 947 if (copy <= 0) { 948 char *data; 949 unsigned int datalen; 950 unsigned int fraglen; 951 unsigned int fraggap; 952 unsigned int alloclen; 953 struct sk_buff *skb_prev; 954 alloc_new_skb: 955 skb_prev = skb; 956 if (skb_prev) 957 fraggap = skb_prev->len - maxfraglen; 958 else 959 fraggap = 0; 960 961 /* 962 * If remaining data exceeds the mtu, 963 * we know we need more fragment(s). 964 */ 965 datalen = length + fraggap; 966 if (datalen > mtu - fragheaderlen) 967 datalen = maxfraglen - fragheaderlen; 968 fraglen = datalen + fragheaderlen; 969 970 if ((flags & MSG_MORE) && 971 !(rt->dst.dev->features&NETIF_F_SG)) 972 alloclen = mtu; 973 else 974 alloclen = fraglen; 975 976 alloclen += exthdrlen; 977 978 /* The last fragment gets additional space at tail. 979 * Note, with MSG_MORE we overallocate on fragments, 980 * because we have no idea what fragment will be 981 * the last. 982 */ 983 if (datalen == length + fraggap) 984 alloclen += rt->dst.trailer_len; 985 986 if (transhdrlen) { 987 skb = sock_alloc_send_skb(sk, 988 alloclen + hh_len + 15, 989 (flags & MSG_DONTWAIT), &err); 990 } else { 991 skb = NULL; 992 if (atomic_read(&sk->sk_wmem_alloc) <= 993 2 * sk->sk_sndbuf) 994 skb = sock_wmalloc(sk, 995 alloclen + hh_len + 15, 1, 996 sk->sk_allocation); 997 if (unlikely(!skb)) 998 err = -ENOBUFS; 999 } 1000 if (!skb) 1001 goto error; 1002 1003 /* 1004 * Fill in the control structures 1005 */ 1006 skb->ip_summed = csummode; 1007 skb->csum = 0; 1008 skb_reserve(skb, hh_len); 1009 1010 /* only the initial fragment is time stamped */ 1011 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1012 cork->tx_flags = 0; 1013 skb_shinfo(skb)->tskey = tskey; 1014 tskey = 0; 1015 1016 /* 1017 * Find where to start putting bytes. 1018 */ 1019 data = skb_put(skb, fraglen + exthdrlen); 1020 skb_set_network_header(skb, exthdrlen); 1021 skb->transport_header = (skb->network_header + 1022 fragheaderlen); 1023 data += fragheaderlen + exthdrlen; 1024 1025 if (fraggap) { 1026 skb->csum = skb_copy_and_csum_bits( 1027 skb_prev, maxfraglen, 1028 data + transhdrlen, fraggap, 0); 1029 skb_prev->csum = csum_sub(skb_prev->csum, 1030 skb->csum); 1031 data += fraggap; 1032 pskb_trim_unique(skb_prev, maxfraglen); 1033 } 1034 1035 copy = datalen - transhdrlen - fraggap; 1036 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1037 err = -EFAULT; 1038 kfree_skb(skb); 1039 goto error; 1040 } 1041 1042 offset += copy; 1043 length -= datalen - fraggap; 1044 transhdrlen = 0; 1045 exthdrlen = 0; 1046 csummode = CHECKSUM_NONE; 1047 1048 /* 1049 * Put the packet on the pending queue. 1050 */ 1051 __skb_queue_tail(queue, skb); 1052 continue; 1053 } 1054 1055 if (copy > length) 1056 copy = length; 1057 1058 if (!(rt->dst.dev->features&NETIF_F_SG)) { 1059 unsigned int off; 1060 1061 off = skb->len; 1062 if (getfrag(from, skb_put(skb, copy), 1063 offset, copy, off, skb) < 0) { 1064 __skb_trim(skb, off); 1065 err = -EFAULT; 1066 goto error; 1067 } 1068 } else { 1069 int i = skb_shinfo(skb)->nr_frags; 1070 1071 err = -ENOMEM; 1072 if (!sk_page_frag_refill(sk, pfrag)) 1073 goto error; 1074 1075 if (!skb_can_coalesce(skb, i, pfrag->page, 1076 pfrag->offset)) { 1077 err = -EMSGSIZE; 1078 if (i == MAX_SKB_FRAGS) 1079 goto error; 1080 1081 __skb_fill_page_desc(skb, i, pfrag->page, 1082 pfrag->offset, 0); 1083 skb_shinfo(skb)->nr_frags = ++i; 1084 get_page(pfrag->page); 1085 } 1086 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1087 if (getfrag(from, 1088 page_address(pfrag->page) + pfrag->offset, 1089 offset, copy, skb->len, skb) < 0) 1090 goto error_efault; 1091 1092 pfrag->offset += copy; 1093 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1094 skb->len += copy; 1095 skb->data_len += copy; 1096 skb->truesize += copy; 1097 atomic_add(copy, &sk->sk_wmem_alloc); 1098 } 1099 offset += copy; 1100 length -= copy; 1101 } 1102 1103 return 0; 1104 1105 error_efault: 1106 err = -EFAULT; 1107 error: 1108 cork->length -= length; 1109 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1110 return err; 1111 } 1112 1113 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1114 struct ipcm_cookie *ipc, struct rtable **rtp) 1115 { 1116 struct ip_options_rcu *opt; 1117 struct rtable *rt; 1118 1119 /* 1120 * setup for corking. 1121 */ 1122 opt = ipc->opt; 1123 if (opt) { 1124 if (!cork->opt) { 1125 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1126 sk->sk_allocation); 1127 if (unlikely(!cork->opt)) 1128 return -ENOBUFS; 1129 } 1130 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1131 cork->flags |= IPCORK_OPT; 1132 cork->addr = ipc->addr; 1133 } 1134 rt = *rtp; 1135 if (unlikely(!rt)) 1136 return -EFAULT; 1137 /* 1138 * We steal reference to this route, caller should not release it 1139 */ 1140 *rtp = NULL; 1141 cork->fragsize = ip_sk_use_pmtu(sk) ? 1142 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1143 cork->dst = &rt->dst; 1144 cork->length = 0; 1145 cork->ttl = ipc->ttl; 1146 cork->tos = ipc->tos; 1147 cork->priority = ipc->priority; 1148 cork->tx_flags = ipc->tx_flags; 1149 1150 return 0; 1151 } 1152 1153 /* 1154 * ip_append_data() and ip_append_page() can make one large IP datagram 1155 * from many pieces of data. Each pieces will be holded on the socket 1156 * until ip_push_pending_frames() is called. Each piece can be a page 1157 * or non-page data. 1158 * 1159 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1160 * this interface potentially. 1161 * 1162 * LATER: length must be adjusted by pad at tail, when it is required. 1163 */ 1164 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1165 int getfrag(void *from, char *to, int offset, int len, 1166 int odd, struct sk_buff *skb), 1167 void *from, int length, int transhdrlen, 1168 struct ipcm_cookie *ipc, struct rtable **rtp, 1169 unsigned int flags) 1170 { 1171 struct inet_sock *inet = inet_sk(sk); 1172 int err; 1173 1174 if (flags&MSG_PROBE) 1175 return 0; 1176 1177 if (skb_queue_empty(&sk->sk_write_queue)) { 1178 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1179 if (err) 1180 return err; 1181 } else { 1182 transhdrlen = 0; 1183 } 1184 1185 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1186 sk_page_frag(sk), getfrag, 1187 from, length, transhdrlen, flags); 1188 } 1189 1190 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1191 int offset, size_t size, int flags) 1192 { 1193 struct inet_sock *inet = inet_sk(sk); 1194 struct sk_buff *skb; 1195 struct rtable *rt; 1196 struct ip_options *opt = NULL; 1197 struct inet_cork *cork; 1198 int hh_len; 1199 int mtu; 1200 int len; 1201 int err; 1202 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1203 1204 if (inet->hdrincl) 1205 return -EPERM; 1206 1207 if (flags&MSG_PROBE) 1208 return 0; 1209 1210 if (skb_queue_empty(&sk->sk_write_queue)) 1211 return -EINVAL; 1212 1213 cork = &inet->cork.base; 1214 rt = (struct rtable *)cork->dst; 1215 if (cork->flags & IPCORK_OPT) 1216 opt = cork->opt; 1217 1218 if (!(rt->dst.dev->features&NETIF_F_SG)) 1219 return -EOPNOTSUPP; 1220 1221 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1222 mtu = cork->fragsize; 1223 1224 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1225 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1226 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1227 1228 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1229 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1230 mtu - (opt ? opt->optlen : 0)); 1231 return -EMSGSIZE; 1232 } 1233 1234 skb = skb_peek_tail(&sk->sk_write_queue); 1235 if (!skb) 1236 return -EINVAL; 1237 1238 if ((size + skb->len > mtu) && 1239 (sk->sk_protocol == IPPROTO_UDP) && 1240 (rt->dst.dev->features & NETIF_F_UFO)) { 1241 if (skb->ip_summed != CHECKSUM_PARTIAL) 1242 return -EOPNOTSUPP; 1243 1244 skb_shinfo(skb)->gso_size = mtu - fragheaderlen; 1245 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 1246 } 1247 cork->length += size; 1248 1249 while (size > 0) { 1250 if (skb_is_gso(skb)) { 1251 len = size; 1252 } else { 1253 1254 /* Check if the remaining data fits into current packet. */ 1255 len = mtu - skb->len; 1256 if (len < size) 1257 len = maxfraglen - skb->len; 1258 } 1259 if (len <= 0) { 1260 struct sk_buff *skb_prev; 1261 int alloclen; 1262 1263 skb_prev = skb; 1264 fraggap = skb_prev->len - maxfraglen; 1265 1266 alloclen = fragheaderlen + hh_len + fraggap + 15; 1267 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1268 if (unlikely(!skb)) { 1269 err = -ENOBUFS; 1270 goto error; 1271 } 1272 1273 /* 1274 * Fill in the control structures 1275 */ 1276 skb->ip_summed = CHECKSUM_NONE; 1277 skb->csum = 0; 1278 skb_reserve(skb, hh_len); 1279 1280 /* 1281 * Find where to start putting bytes. 1282 */ 1283 skb_put(skb, fragheaderlen + fraggap); 1284 skb_reset_network_header(skb); 1285 skb->transport_header = (skb->network_header + 1286 fragheaderlen); 1287 if (fraggap) { 1288 skb->csum = skb_copy_and_csum_bits(skb_prev, 1289 maxfraglen, 1290 skb_transport_header(skb), 1291 fraggap, 0); 1292 skb_prev->csum = csum_sub(skb_prev->csum, 1293 skb->csum); 1294 pskb_trim_unique(skb_prev, maxfraglen); 1295 } 1296 1297 /* 1298 * Put the packet on the pending queue. 1299 */ 1300 __skb_queue_tail(&sk->sk_write_queue, skb); 1301 continue; 1302 } 1303 1304 if (len > size) 1305 len = size; 1306 1307 if (skb_append_pagefrags(skb, page, offset, len)) { 1308 err = -EMSGSIZE; 1309 goto error; 1310 } 1311 1312 if (skb->ip_summed == CHECKSUM_NONE) { 1313 __wsum csum; 1314 csum = csum_page(page, offset, len); 1315 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1316 } 1317 1318 skb->len += len; 1319 skb->data_len += len; 1320 skb->truesize += len; 1321 atomic_add(len, &sk->sk_wmem_alloc); 1322 offset += len; 1323 size -= len; 1324 } 1325 return 0; 1326 1327 error: 1328 cork->length -= size; 1329 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1330 return err; 1331 } 1332 1333 static void ip_cork_release(struct inet_cork *cork) 1334 { 1335 cork->flags &= ~IPCORK_OPT; 1336 kfree(cork->opt); 1337 cork->opt = NULL; 1338 dst_release(cork->dst); 1339 cork->dst = NULL; 1340 } 1341 1342 /* 1343 * Combined all pending IP fragments on the socket as one IP datagram 1344 * and push them out. 1345 */ 1346 struct sk_buff *__ip_make_skb(struct sock *sk, 1347 struct flowi4 *fl4, 1348 struct sk_buff_head *queue, 1349 struct inet_cork *cork) 1350 { 1351 struct sk_buff *skb, *tmp_skb; 1352 struct sk_buff **tail_skb; 1353 struct inet_sock *inet = inet_sk(sk); 1354 struct net *net = sock_net(sk); 1355 struct ip_options *opt = NULL; 1356 struct rtable *rt = (struct rtable *)cork->dst; 1357 struct iphdr *iph; 1358 __be16 df = 0; 1359 __u8 ttl; 1360 1361 skb = __skb_dequeue(queue); 1362 if (!skb) 1363 goto out; 1364 tail_skb = &(skb_shinfo(skb)->frag_list); 1365 1366 /* move skb->data to ip header from ext header */ 1367 if (skb->data < skb_network_header(skb)) 1368 __skb_pull(skb, skb_network_offset(skb)); 1369 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1370 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1371 *tail_skb = tmp_skb; 1372 tail_skb = &(tmp_skb->next); 1373 skb->len += tmp_skb->len; 1374 skb->data_len += tmp_skb->len; 1375 skb->truesize += tmp_skb->truesize; 1376 tmp_skb->destructor = NULL; 1377 tmp_skb->sk = NULL; 1378 } 1379 1380 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1381 * to fragment the frame generated here. No matter, what transforms 1382 * how transforms change size of the packet, it will come out. 1383 */ 1384 skb->ignore_df = ip_sk_ignore_df(sk); 1385 1386 /* DF bit is set when we want to see DF on outgoing frames. 1387 * If ignore_df is set too, we still allow to fragment this frame 1388 * locally. */ 1389 if (inet->pmtudisc == IP_PMTUDISC_DO || 1390 inet->pmtudisc == IP_PMTUDISC_PROBE || 1391 (skb->len <= dst_mtu(&rt->dst) && 1392 ip_dont_fragment(sk, &rt->dst))) 1393 df = htons(IP_DF); 1394 1395 if (cork->flags & IPCORK_OPT) 1396 opt = cork->opt; 1397 1398 if (cork->ttl != 0) 1399 ttl = cork->ttl; 1400 else if (rt->rt_type == RTN_MULTICAST) 1401 ttl = inet->mc_ttl; 1402 else 1403 ttl = ip_select_ttl(inet, &rt->dst); 1404 1405 iph = ip_hdr(skb); 1406 iph->version = 4; 1407 iph->ihl = 5; 1408 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1409 iph->frag_off = df; 1410 iph->ttl = ttl; 1411 iph->protocol = sk->sk_protocol; 1412 ip_copy_addrs(iph, fl4); 1413 ip_select_ident(net, skb, sk); 1414 1415 if (opt) { 1416 iph->ihl += opt->optlen>>2; 1417 ip_options_build(skb, opt, cork->addr, rt, 0); 1418 } 1419 1420 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1421 skb->mark = sk->sk_mark; 1422 /* 1423 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1424 * on dst refcount 1425 */ 1426 cork->dst = NULL; 1427 skb_dst_set(skb, &rt->dst); 1428 1429 if (iph->protocol == IPPROTO_ICMP) 1430 icmp_out_count(net, ((struct icmphdr *) 1431 skb_transport_header(skb))->type); 1432 1433 ip_cork_release(cork); 1434 out: 1435 return skb; 1436 } 1437 1438 int ip_send_skb(struct net *net, struct sk_buff *skb) 1439 { 1440 int err; 1441 1442 err = ip_local_out(net, skb->sk, skb); 1443 if (err) { 1444 if (err > 0) 1445 err = net_xmit_errno(err); 1446 if (err) 1447 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1448 } 1449 1450 return err; 1451 } 1452 1453 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1454 { 1455 struct sk_buff *skb; 1456 1457 skb = ip_finish_skb(sk, fl4); 1458 if (!skb) 1459 return 0; 1460 1461 /* Netfilter gets whole the not fragmented skb. */ 1462 return ip_send_skb(sock_net(sk), skb); 1463 } 1464 1465 /* 1466 * Throw away all pending data on the socket. 1467 */ 1468 static void __ip_flush_pending_frames(struct sock *sk, 1469 struct sk_buff_head *queue, 1470 struct inet_cork *cork) 1471 { 1472 struct sk_buff *skb; 1473 1474 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1475 kfree_skb(skb); 1476 1477 ip_cork_release(cork); 1478 } 1479 1480 void ip_flush_pending_frames(struct sock *sk) 1481 { 1482 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1483 } 1484 1485 struct sk_buff *ip_make_skb(struct sock *sk, 1486 struct flowi4 *fl4, 1487 int getfrag(void *from, char *to, int offset, 1488 int len, int odd, struct sk_buff *skb), 1489 void *from, int length, int transhdrlen, 1490 struct ipcm_cookie *ipc, struct rtable **rtp, 1491 unsigned int flags) 1492 { 1493 struct inet_cork cork; 1494 struct sk_buff_head queue; 1495 int err; 1496 1497 if (flags & MSG_PROBE) 1498 return NULL; 1499 1500 __skb_queue_head_init(&queue); 1501 1502 cork.flags = 0; 1503 cork.addr = 0; 1504 cork.opt = NULL; 1505 err = ip_setup_cork(sk, &cork, ipc, rtp); 1506 if (err) 1507 return ERR_PTR(err); 1508 1509 err = __ip_append_data(sk, fl4, &queue, &cork, 1510 ¤t->task_frag, getfrag, 1511 from, length, transhdrlen, flags); 1512 if (err) { 1513 __ip_flush_pending_frames(sk, &queue, &cork); 1514 return ERR_PTR(err); 1515 } 1516 1517 return __ip_make_skb(sk, fl4, &queue, &cork); 1518 } 1519 1520 /* 1521 * Fetch data from kernel space and fill in checksum if needed. 1522 */ 1523 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1524 int len, int odd, struct sk_buff *skb) 1525 { 1526 __wsum csum; 1527 1528 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1529 skb->csum = csum_block_add(skb->csum, csum, odd); 1530 return 0; 1531 } 1532 1533 /* 1534 * Generic function to send a packet as reply to another packet. 1535 * Used to send some TCP resets/acks so far. 1536 */ 1537 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1538 const struct ip_options *sopt, 1539 __be32 daddr, __be32 saddr, 1540 const struct ip_reply_arg *arg, 1541 unsigned int len) 1542 { 1543 struct ip_options_data replyopts; 1544 struct ipcm_cookie ipc; 1545 struct flowi4 fl4; 1546 struct rtable *rt = skb_rtable(skb); 1547 struct net *net = sock_net(sk); 1548 struct sk_buff *nskb; 1549 int err; 1550 int oif; 1551 1552 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt)) 1553 return; 1554 1555 ipc.addr = daddr; 1556 ipc.opt = NULL; 1557 ipc.tx_flags = 0; 1558 ipc.ttl = 0; 1559 ipc.tos = -1; 1560 1561 if (replyopts.opt.opt.optlen) { 1562 ipc.opt = &replyopts.opt; 1563 1564 if (replyopts.opt.opt.srr) 1565 daddr = replyopts.opt.opt.faddr; 1566 } 1567 1568 oif = arg->bound_dev_if; 1569 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1570 oif = skb->skb_iif; 1571 1572 flowi4_init_output(&fl4, oif, 1573 IP4_REPLY_MARK(net, skb->mark), 1574 RT_TOS(arg->tos), 1575 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1576 ip_reply_arg_flowi_flags(arg), 1577 daddr, saddr, 1578 tcp_hdr(skb)->source, tcp_hdr(skb)->dest); 1579 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1580 rt = ip_route_output_key(net, &fl4); 1581 if (IS_ERR(rt)) 1582 return; 1583 1584 inet_sk(sk)->tos = arg->tos; 1585 1586 sk->sk_priority = skb->priority; 1587 sk->sk_protocol = ip_hdr(skb)->protocol; 1588 sk->sk_bound_dev_if = arg->bound_dev_if; 1589 sk->sk_sndbuf = sysctl_wmem_default; 1590 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1591 len, 0, &ipc, &rt, MSG_DONTWAIT); 1592 if (unlikely(err)) { 1593 ip_flush_pending_frames(sk); 1594 goto out; 1595 } 1596 1597 nskb = skb_peek(&sk->sk_write_queue); 1598 if (nskb) { 1599 if (arg->csumoffset >= 0) 1600 *((__sum16 *)skb_transport_header(nskb) + 1601 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1602 arg->csum)); 1603 nskb->ip_summed = CHECKSUM_NONE; 1604 ip_push_pending_frames(sk, &fl4); 1605 } 1606 out: 1607 ip_rt_put(rt); 1608 } 1609 1610 void __init ip_init(void) 1611 { 1612 ip_rt_init(); 1613 inet_initpeers(); 1614 1615 #if defined(CONFIG_IP_MULTICAST) 1616 igmp_mc_init(); 1617 #endif 1618 } 1619