xref: /openbmc/linux/net/ipv4/ip_output.c (revision 64c70b1c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Version:	$Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Donald Becker, <becker@super.org>
13  *		Alan Cox, <Alan.Cox@linux.org>
14  *		Richard Underwood
15  *		Stefan Becker, <stefanb@yello.ping.de>
16  *		Jorge Cwik, <jorge@laser.satlink.net>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Hirokazu Takahashi, <taka@valinux.co.jp>
19  *
20  *	See ip_input.c for original log
21  *
22  *	Fixes:
23  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
24  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
25  *		Bradford Johnson:	Fix faulty handling of some frames when
26  *					no route is found.
27  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
28  *					(in case if packet not accepted by
29  *					output firewall rules)
30  *		Mike McLagan	:	Routing by source
31  *		Alexey Kuznetsov:	use new route cache
32  *		Andi Kleen:		Fix broken PMTU recovery and remove
33  *					some redundant tests.
34  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
35  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
36  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
37  *					for decreased register pressure on x86
38  *					and more readibility.
39  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
40  *					silently drop skb instead of failing with -EPERM.
41  *		Detlev Wengorz	:	Copy protocol for fragments.
42  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
43  *					datagrams.
44  *		Hirokazu Takahashi:	sendfile() on UDP works now.
45  */
46 
47 #include <asm/uaccess.h>
48 #include <asm/system.h>
49 #include <linux/module.h>
50 #include <linux/types.h>
51 #include <linux/kernel.h>
52 #include <linux/mm.h>
53 #include <linux/string.h>
54 #include <linux/errno.h>
55 #include <linux/highmem.h>
56 
57 #include <linux/socket.h>
58 #include <linux/sockios.h>
59 #include <linux/in.h>
60 #include <linux/inet.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/stat.h>
65 #include <linux/init.h>
66 
67 #include <net/snmp.h>
68 #include <net/ip.h>
69 #include <net/protocol.h>
70 #include <net/route.h>
71 #include <net/xfrm.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <net/arp.h>
75 #include <net/icmp.h>
76 #include <net/checksum.h>
77 #include <net/inetpeer.h>
78 #include <net/checksum.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/mroute.h>
83 #include <linux/netlink.h>
84 #include <linux/tcp.h>
85 
86 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
87 
88 /* Generate a checksum for an outgoing IP datagram. */
89 __inline__ void ip_send_check(struct iphdr *iph)
90 {
91 	iph->check = 0;
92 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
93 }
94 
95 /* dev_loopback_xmit for use with netfilter. */
96 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
97 {
98 	skb_reset_mac_header(newskb);
99 	__skb_pull(newskb, skb_network_offset(newskb));
100 	newskb->pkt_type = PACKET_LOOPBACK;
101 	newskb->ip_summed = CHECKSUM_UNNECESSARY;
102 	BUG_TRAP(newskb->dst);
103 	netif_rx(newskb);
104 	return 0;
105 }
106 
107 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
108 {
109 	int ttl = inet->uc_ttl;
110 
111 	if (ttl < 0)
112 		ttl = dst_metric(dst, RTAX_HOPLIMIT);
113 	return ttl;
114 }
115 
116 /*
117  *		Add an ip header to a skbuff and send it out.
118  *
119  */
120 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
121 			  __be32 saddr, __be32 daddr, struct ip_options *opt)
122 {
123 	struct inet_sock *inet = inet_sk(sk);
124 	struct rtable *rt = (struct rtable *)skb->dst;
125 	struct iphdr *iph;
126 
127 	/* Build the IP header. */
128 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
129 	skb_reset_network_header(skb);
130 	iph = ip_hdr(skb);
131 	iph->version  = 4;
132 	iph->ihl      = 5;
133 	iph->tos      = inet->tos;
134 	if (ip_dont_fragment(sk, &rt->u.dst))
135 		iph->frag_off = htons(IP_DF);
136 	else
137 		iph->frag_off = 0;
138 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
139 	iph->daddr    = rt->rt_dst;
140 	iph->saddr    = rt->rt_src;
141 	iph->protocol = sk->sk_protocol;
142 	iph->tot_len  = htons(skb->len);
143 	ip_select_ident(iph, &rt->u.dst, sk);
144 
145 	if (opt && opt->optlen) {
146 		iph->ihl += opt->optlen>>2;
147 		ip_options_build(skb, opt, daddr, rt, 0);
148 	}
149 	ip_send_check(iph);
150 
151 	skb->priority = sk->sk_priority;
152 
153 	/* Send it out. */
154 	return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
155 		       dst_output);
156 }
157 
158 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
159 
160 static inline int ip_finish_output2(struct sk_buff *skb)
161 {
162 	struct dst_entry *dst = skb->dst;
163 	struct rtable *rt = (struct rtable *)dst;
164 	struct net_device *dev = dst->dev;
165 	int hh_len = LL_RESERVED_SPACE(dev);
166 
167 	if (rt->rt_type == RTN_MULTICAST)
168 		IP_INC_STATS(IPSTATS_MIB_OUTMCASTPKTS);
169 	else if (rt->rt_type == RTN_BROADCAST)
170 		IP_INC_STATS(IPSTATS_MIB_OUTBCASTPKTS);
171 
172 	/* Be paranoid, rather than too clever. */
173 	if (unlikely(skb_headroom(skb) < hh_len && dev->hard_header)) {
174 		struct sk_buff *skb2;
175 
176 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
177 		if (skb2 == NULL) {
178 			kfree_skb(skb);
179 			return -ENOMEM;
180 		}
181 		if (skb->sk)
182 			skb_set_owner_w(skb2, skb->sk);
183 		kfree_skb(skb);
184 		skb = skb2;
185 	}
186 
187 	if (dst->hh)
188 		return neigh_hh_output(dst->hh, skb);
189 	else if (dst->neighbour)
190 		return dst->neighbour->output(skb);
191 
192 	if (net_ratelimit())
193 		printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
194 	kfree_skb(skb);
195 	return -EINVAL;
196 }
197 
198 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
199 {
200 	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
201 
202 	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
203 	       skb->dst->dev->mtu : dst_mtu(skb->dst);
204 }
205 
206 static inline int ip_finish_output(struct sk_buff *skb)
207 {
208 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
209 	/* Policy lookup after SNAT yielded a new policy */
210 	if (skb->dst->xfrm != NULL) {
211 		IPCB(skb)->flags |= IPSKB_REROUTED;
212 		return dst_output(skb);
213 	}
214 #endif
215 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
216 		return ip_fragment(skb, ip_finish_output2);
217 	else
218 		return ip_finish_output2(skb);
219 }
220 
221 int ip_mc_output(struct sk_buff *skb)
222 {
223 	struct sock *sk = skb->sk;
224 	struct rtable *rt = (struct rtable*)skb->dst;
225 	struct net_device *dev = rt->u.dst.dev;
226 
227 	/*
228 	 *	If the indicated interface is up and running, send the packet.
229 	 */
230 	IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
231 
232 	skb->dev = dev;
233 	skb->protocol = htons(ETH_P_IP);
234 
235 	/*
236 	 *	Multicasts are looped back for other local users
237 	 */
238 
239 	if (rt->rt_flags&RTCF_MULTICAST) {
240 		if ((!sk || inet_sk(sk)->mc_loop)
241 #ifdef CONFIG_IP_MROUTE
242 		/* Small optimization: do not loopback not local frames,
243 		   which returned after forwarding; they will be  dropped
244 		   by ip_mr_input in any case.
245 		   Note, that local frames are looped back to be delivered
246 		   to local recipients.
247 
248 		   This check is duplicated in ip_mr_input at the moment.
249 		 */
250 		    && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
251 #endif
252 		) {
253 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
254 			if (newskb)
255 				NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
256 					newskb->dev,
257 					ip_dev_loopback_xmit);
258 		}
259 
260 		/* Multicasts with ttl 0 must not go beyond the host */
261 
262 		if (ip_hdr(skb)->ttl == 0) {
263 			kfree_skb(skb);
264 			return 0;
265 		}
266 	}
267 
268 	if (rt->rt_flags&RTCF_BROADCAST) {
269 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
270 		if (newskb)
271 			NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
272 				newskb->dev, ip_dev_loopback_xmit);
273 	}
274 
275 	return NF_HOOK_COND(PF_INET, NF_IP_POST_ROUTING, skb, NULL, skb->dev,
276 			    ip_finish_output,
277 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
278 }
279 
280 int ip_output(struct sk_buff *skb)
281 {
282 	struct net_device *dev = skb->dst->dev;
283 
284 	IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
285 
286 	skb->dev = dev;
287 	skb->protocol = htons(ETH_P_IP);
288 
289 	return NF_HOOK_COND(PF_INET, NF_IP_POST_ROUTING, skb, NULL, dev,
290 			    ip_finish_output,
291 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
292 }
293 
294 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
295 {
296 	struct sock *sk = skb->sk;
297 	struct inet_sock *inet = inet_sk(sk);
298 	struct ip_options *opt = inet->opt;
299 	struct rtable *rt;
300 	struct iphdr *iph;
301 
302 	/* Skip all of this if the packet is already routed,
303 	 * f.e. by something like SCTP.
304 	 */
305 	rt = (struct rtable *) skb->dst;
306 	if (rt != NULL)
307 		goto packet_routed;
308 
309 	/* Make sure we can route this packet. */
310 	rt = (struct rtable *)__sk_dst_check(sk, 0);
311 	if (rt == NULL) {
312 		__be32 daddr;
313 
314 		/* Use correct destination address if we have options. */
315 		daddr = inet->daddr;
316 		if(opt && opt->srr)
317 			daddr = opt->faddr;
318 
319 		{
320 			struct flowi fl = { .oif = sk->sk_bound_dev_if,
321 					    .nl_u = { .ip4_u =
322 						      { .daddr = daddr,
323 							.saddr = inet->saddr,
324 							.tos = RT_CONN_FLAGS(sk) } },
325 					    .proto = sk->sk_protocol,
326 					    .uli_u = { .ports =
327 						       { .sport = inet->sport,
328 							 .dport = inet->dport } } };
329 
330 			/* If this fails, retransmit mechanism of transport layer will
331 			 * keep trying until route appears or the connection times
332 			 * itself out.
333 			 */
334 			security_sk_classify_flow(sk, &fl);
335 			if (ip_route_output_flow(&rt, &fl, sk, 0))
336 				goto no_route;
337 		}
338 		sk_setup_caps(sk, &rt->u.dst);
339 	}
340 	skb->dst = dst_clone(&rt->u.dst);
341 
342 packet_routed:
343 	if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
344 		goto no_route;
345 
346 	/* OK, we know where to send it, allocate and build IP header. */
347 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
348 	skb_reset_network_header(skb);
349 	iph = ip_hdr(skb);
350 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
351 	iph->tot_len = htons(skb->len);
352 	if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
353 		iph->frag_off = htons(IP_DF);
354 	else
355 		iph->frag_off = 0;
356 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
357 	iph->protocol = sk->sk_protocol;
358 	iph->saddr    = rt->rt_src;
359 	iph->daddr    = rt->rt_dst;
360 	/* Transport layer set skb->h.foo itself. */
361 
362 	if (opt && opt->optlen) {
363 		iph->ihl += opt->optlen >> 2;
364 		ip_options_build(skb, opt, inet->daddr, rt, 0);
365 	}
366 
367 	ip_select_ident_more(iph, &rt->u.dst, sk,
368 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
369 
370 	/* Add an IP checksum. */
371 	ip_send_check(iph);
372 
373 	skb->priority = sk->sk_priority;
374 
375 	return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
376 		       dst_output);
377 
378 no_route:
379 	IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
380 	kfree_skb(skb);
381 	return -EHOSTUNREACH;
382 }
383 
384 
385 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
386 {
387 	to->pkt_type = from->pkt_type;
388 	to->priority = from->priority;
389 	to->protocol = from->protocol;
390 	dst_release(to->dst);
391 	to->dst = dst_clone(from->dst);
392 	to->dev = from->dev;
393 	to->mark = from->mark;
394 
395 	/* Copy the flags to each fragment. */
396 	IPCB(to)->flags = IPCB(from)->flags;
397 
398 #ifdef CONFIG_NET_SCHED
399 	to->tc_index = from->tc_index;
400 #endif
401 	nf_copy(to, from);
402 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
403 	to->ipvs_property = from->ipvs_property;
404 #endif
405 	skb_copy_secmark(to, from);
406 }
407 
408 /*
409  *	This IP datagram is too large to be sent in one piece.  Break it up into
410  *	smaller pieces (each of size equal to IP header plus
411  *	a block of the data of the original IP data part) that will yet fit in a
412  *	single device frame, and queue such a frame for sending.
413  */
414 
415 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
416 {
417 	struct iphdr *iph;
418 	int raw = 0;
419 	int ptr;
420 	struct net_device *dev;
421 	struct sk_buff *skb2;
422 	unsigned int mtu, hlen, left, len, ll_rs, pad;
423 	int offset;
424 	__be16 not_last_frag;
425 	struct rtable *rt = (struct rtable*)skb->dst;
426 	int err = 0;
427 
428 	dev = rt->u.dst.dev;
429 
430 	/*
431 	 *	Point into the IP datagram header.
432 	 */
433 
434 	iph = ip_hdr(skb);
435 
436 	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
437 		IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
438 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
439 			  htonl(ip_skb_dst_mtu(skb)));
440 		kfree_skb(skb);
441 		return -EMSGSIZE;
442 	}
443 
444 	/*
445 	 *	Setup starting values.
446 	 */
447 
448 	hlen = iph->ihl * 4;
449 	mtu = dst_mtu(&rt->u.dst) - hlen;	/* Size of data space */
450 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
451 
452 	/* When frag_list is given, use it. First, check its validity:
453 	 * some transformers could create wrong frag_list or break existing
454 	 * one, it is not prohibited. In this case fall back to copying.
455 	 *
456 	 * LATER: this step can be merged to real generation of fragments,
457 	 * we can switch to copy when see the first bad fragment.
458 	 */
459 	if (skb_shinfo(skb)->frag_list) {
460 		struct sk_buff *frag;
461 		int first_len = skb_pagelen(skb);
462 
463 		if (first_len - hlen > mtu ||
464 		    ((first_len - hlen) & 7) ||
465 		    (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
466 		    skb_cloned(skb))
467 			goto slow_path;
468 
469 		for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
470 			/* Correct geometry. */
471 			if (frag->len > mtu ||
472 			    ((frag->len & 7) && frag->next) ||
473 			    skb_headroom(frag) < hlen)
474 			    goto slow_path;
475 
476 			/* Partially cloned skb? */
477 			if (skb_shared(frag))
478 				goto slow_path;
479 
480 			BUG_ON(frag->sk);
481 			if (skb->sk) {
482 				sock_hold(skb->sk);
483 				frag->sk = skb->sk;
484 				frag->destructor = sock_wfree;
485 				skb->truesize -= frag->truesize;
486 			}
487 		}
488 
489 		/* Everything is OK. Generate! */
490 
491 		err = 0;
492 		offset = 0;
493 		frag = skb_shinfo(skb)->frag_list;
494 		skb_shinfo(skb)->frag_list = NULL;
495 		skb->data_len = first_len - skb_headlen(skb);
496 		skb->len = first_len;
497 		iph->tot_len = htons(first_len);
498 		iph->frag_off = htons(IP_MF);
499 		ip_send_check(iph);
500 
501 		for (;;) {
502 			/* Prepare header of the next frame,
503 			 * before previous one went down. */
504 			if (frag) {
505 				frag->ip_summed = CHECKSUM_NONE;
506 				skb_reset_transport_header(frag);
507 				__skb_push(frag, hlen);
508 				skb_reset_network_header(frag);
509 				memcpy(skb_network_header(frag), iph, hlen);
510 				iph = ip_hdr(frag);
511 				iph->tot_len = htons(frag->len);
512 				ip_copy_metadata(frag, skb);
513 				if (offset == 0)
514 					ip_options_fragment(frag);
515 				offset += skb->len - hlen;
516 				iph->frag_off = htons(offset>>3);
517 				if (frag->next != NULL)
518 					iph->frag_off |= htons(IP_MF);
519 				/* Ready, complete checksum */
520 				ip_send_check(iph);
521 			}
522 
523 			err = output(skb);
524 
525 			if (!err)
526 				IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
527 			if (err || !frag)
528 				break;
529 
530 			skb = frag;
531 			frag = skb->next;
532 			skb->next = NULL;
533 		}
534 
535 		if (err == 0) {
536 			IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
537 			return 0;
538 		}
539 
540 		while (frag) {
541 			skb = frag->next;
542 			kfree_skb(frag);
543 			frag = skb;
544 		}
545 		IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
546 		return err;
547 	}
548 
549 slow_path:
550 	left = skb->len - hlen;		/* Space per frame */
551 	ptr = raw + hlen;		/* Where to start from */
552 
553 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
554 	 * we need to make room for the encapsulating header
555 	 */
556 	pad = nf_bridge_pad(skb);
557 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
558 	mtu -= pad;
559 
560 	/*
561 	 *	Fragment the datagram.
562 	 */
563 
564 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
565 	not_last_frag = iph->frag_off & htons(IP_MF);
566 
567 	/*
568 	 *	Keep copying data until we run out.
569 	 */
570 
571 	while (left > 0) {
572 		len = left;
573 		/* IF: it doesn't fit, use 'mtu' - the data space left */
574 		if (len > mtu)
575 			len = mtu;
576 		/* IF: we are not sending upto and including the packet end
577 		   then align the next start on an eight byte boundary */
578 		if (len < left)	{
579 			len &= ~7;
580 		}
581 		/*
582 		 *	Allocate buffer.
583 		 */
584 
585 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
586 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
587 			err = -ENOMEM;
588 			goto fail;
589 		}
590 
591 		/*
592 		 *	Set up data on packet
593 		 */
594 
595 		ip_copy_metadata(skb2, skb);
596 		skb_reserve(skb2, ll_rs);
597 		skb_put(skb2, len + hlen);
598 		skb_reset_network_header(skb2);
599 		skb2->transport_header = skb2->network_header + hlen;
600 
601 		/*
602 		 *	Charge the memory for the fragment to any owner
603 		 *	it might possess
604 		 */
605 
606 		if (skb->sk)
607 			skb_set_owner_w(skb2, skb->sk);
608 
609 		/*
610 		 *	Copy the packet header into the new buffer.
611 		 */
612 
613 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
614 
615 		/*
616 		 *	Copy a block of the IP datagram.
617 		 */
618 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
619 			BUG();
620 		left -= len;
621 
622 		/*
623 		 *	Fill in the new header fields.
624 		 */
625 		iph = ip_hdr(skb2);
626 		iph->frag_off = htons((offset >> 3));
627 
628 		/* ANK: dirty, but effective trick. Upgrade options only if
629 		 * the segment to be fragmented was THE FIRST (otherwise,
630 		 * options are already fixed) and make it ONCE
631 		 * on the initial skb, so that all the following fragments
632 		 * will inherit fixed options.
633 		 */
634 		if (offset == 0)
635 			ip_options_fragment(skb);
636 
637 		/*
638 		 *	Added AC : If we are fragmenting a fragment that's not the
639 		 *		   last fragment then keep MF on each bit
640 		 */
641 		if (left > 0 || not_last_frag)
642 			iph->frag_off |= htons(IP_MF);
643 		ptr += len;
644 		offset += len;
645 
646 		/*
647 		 *	Put this fragment into the sending queue.
648 		 */
649 		iph->tot_len = htons(len + hlen);
650 
651 		ip_send_check(iph);
652 
653 		err = output(skb2);
654 		if (err)
655 			goto fail;
656 
657 		IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
658 	}
659 	kfree_skb(skb);
660 	IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
661 	return err;
662 
663 fail:
664 	kfree_skb(skb);
665 	IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
666 	return err;
667 }
668 
669 EXPORT_SYMBOL(ip_fragment);
670 
671 int
672 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
673 {
674 	struct iovec *iov = from;
675 
676 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
677 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
678 			return -EFAULT;
679 	} else {
680 		__wsum csum = 0;
681 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
682 			return -EFAULT;
683 		skb->csum = csum_block_add(skb->csum, csum, odd);
684 	}
685 	return 0;
686 }
687 
688 static inline __wsum
689 csum_page(struct page *page, int offset, int copy)
690 {
691 	char *kaddr;
692 	__wsum csum;
693 	kaddr = kmap(page);
694 	csum = csum_partial(kaddr + offset, copy, 0);
695 	kunmap(page);
696 	return csum;
697 }
698 
699 static inline int ip_ufo_append_data(struct sock *sk,
700 			int getfrag(void *from, char *to, int offset, int len,
701 			       int odd, struct sk_buff *skb),
702 			void *from, int length, int hh_len, int fragheaderlen,
703 			int transhdrlen, int mtu,unsigned int flags)
704 {
705 	struct sk_buff *skb;
706 	int err;
707 
708 	/* There is support for UDP fragmentation offload by network
709 	 * device, so create one single skb packet containing complete
710 	 * udp datagram
711 	 */
712 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
713 		skb = sock_alloc_send_skb(sk,
714 			hh_len + fragheaderlen + transhdrlen + 20,
715 			(flags & MSG_DONTWAIT), &err);
716 
717 		if (skb == NULL)
718 			return err;
719 
720 		/* reserve space for Hardware header */
721 		skb_reserve(skb, hh_len);
722 
723 		/* create space for UDP/IP header */
724 		skb_put(skb,fragheaderlen + transhdrlen);
725 
726 		/* initialize network header pointer */
727 		skb_reset_network_header(skb);
728 
729 		/* initialize protocol header pointer */
730 		skb->transport_header = skb->network_header + fragheaderlen;
731 
732 		skb->ip_summed = CHECKSUM_PARTIAL;
733 		skb->csum = 0;
734 		sk->sk_sndmsg_off = 0;
735 	}
736 
737 	err = skb_append_datato_frags(sk,skb, getfrag, from,
738 			       (length - transhdrlen));
739 	if (!err) {
740 		/* specify the length of each IP datagram fragment*/
741 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
742 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
743 		__skb_queue_tail(&sk->sk_write_queue, skb);
744 
745 		return 0;
746 	}
747 	/* There is not enough support do UFO ,
748 	 * so follow normal path
749 	 */
750 	kfree_skb(skb);
751 	return err;
752 }
753 
754 /*
755  *	ip_append_data() and ip_append_page() can make one large IP datagram
756  *	from many pieces of data. Each pieces will be holded on the socket
757  *	until ip_push_pending_frames() is called. Each piece can be a page
758  *	or non-page data.
759  *
760  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
761  *	this interface potentially.
762  *
763  *	LATER: length must be adjusted by pad at tail, when it is required.
764  */
765 int ip_append_data(struct sock *sk,
766 		   int getfrag(void *from, char *to, int offset, int len,
767 			       int odd, struct sk_buff *skb),
768 		   void *from, int length, int transhdrlen,
769 		   struct ipcm_cookie *ipc, struct rtable *rt,
770 		   unsigned int flags)
771 {
772 	struct inet_sock *inet = inet_sk(sk);
773 	struct sk_buff *skb;
774 
775 	struct ip_options *opt = NULL;
776 	int hh_len;
777 	int exthdrlen;
778 	int mtu;
779 	int copy;
780 	int err;
781 	int offset = 0;
782 	unsigned int maxfraglen, fragheaderlen;
783 	int csummode = CHECKSUM_NONE;
784 
785 	if (flags&MSG_PROBE)
786 		return 0;
787 
788 	if (skb_queue_empty(&sk->sk_write_queue)) {
789 		/*
790 		 * setup for corking.
791 		 */
792 		opt = ipc->opt;
793 		if (opt) {
794 			if (inet->cork.opt == NULL) {
795 				inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
796 				if (unlikely(inet->cork.opt == NULL))
797 					return -ENOBUFS;
798 			}
799 			memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
800 			inet->cork.flags |= IPCORK_OPT;
801 			inet->cork.addr = ipc->addr;
802 		}
803 		dst_hold(&rt->u.dst);
804 		inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
805 					    rt->u.dst.dev->mtu :
806 					    dst_mtu(rt->u.dst.path);
807 		inet->cork.rt = rt;
808 		inet->cork.length = 0;
809 		sk->sk_sndmsg_page = NULL;
810 		sk->sk_sndmsg_off = 0;
811 		if ((exthdrlen = rt->u.dst.header_len) != 0) {
812 			length += exthdrlen;
813 			transhdrlen += exthdrlen;
814 		}
815 	} else {
816 		rt = inet->cork.rt;
817 		if (inet->cork.flags & IPCORK_OPT)
818 			opt = inet->cork.opt;
819 
820 		transhdrlen = 0;
821 		exthdrlen = 0;
822 		mtu = inet->cork.fragsize;
823 	}
824 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
825 
826 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
827 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
828 
829 	if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
830 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
831 		return -EMSGSIZE;
832 	}
833 
834 	/*
835 	 * transhdrlen > 0 means that this is the first fragment and we wish
836 	 * it won't be fragmented in the future.
837 	 */
838 	if (transhdrlen &&
839 	    length + fragheaderlen <= mtu &&
840 	    rt->u.dst.dev->features & NETIF_F_ALL_CSUM &&
841 	    !exthdrlen)
842 		csummode = CHECKSUM_PARTIAL;
843 
844 	inet->cork.length += length;
845 	if (((length > mtu) && (sk->sk_protocol == IPPROTO_UDP)) &&
846 			(rt->u.dst.dev->features & NETIF_F_UFO)) {
847 
848 		err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
849 					 fragheaderlen, transhdrlen, mtu,
850 					 flags);
851 		if (err)
852 			goto error;
853 		return 0;
854 	}
855 
856 	/* So, what's going on in the loop below?
857 	 *
858 	 * We use calculated fragment length to generate chained skb,
859 	 * each of segments is IP fragment ready for sending to network after
860 	 * adding appropriate IP header.
861 	 */
862 
863 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
864 		goto alloc_new_skb;
865 
866 	while (length > 0) {
867 		/* Check if the remaining data fits into current packet. */
868 		copy = mtu - skb->len;
869 		if (copy < length)
870 			copy = maxfraglen - skb->len;
871 		if (copy <= 0) {
872 			char *data;
873 			unsigned int datalen;
874 			unsigned int fraglen;
875 			unsigned int fraggap;
876 			unsigned int alloclen;
877 			struct sk_buff *skb_prev;
878 alloc_new_skb:
879 			skb_prev = skb;
880 			if (skb_prev)
881 				fraggap = skb_prev->len - maxfraglen;
882 			else
883 				fraggap = 0;
884 
885 			/*
886 			 * If remaining data exceeds the mtu,
887 			 * we know we need more fragment(s).
888 			 */
889 			datalen = length + fraggap;
890 			if (datalen > mtu - fragheaderlen)
891 				datalen = maxfraglen - fragheaderlen;
892 			fraglen = datalen + fragheaderlen;
893 
894 			if ((flags & MSG_MORE) &&
895 			    !(rt->u.dst.dev->features&NETIF_F_SG))
896 				alloclen = mtu;
897 			else
898 				alloclen = datalen + fragheaderlen;
899 
900 			/* The last fragment gets additional space at tail.
901 			 * Note, with MSG_MORE we overallocate on fragments,
902 			 * because we have no idea what fragment will be
903 			 * the last.
904 			 */
905 			if (datalen == length + fraggap)
906 				alloclen += rt->u.dst.trailer_len;
907 
908 			if (transhdrlen) {
909 				skb = sock_alloc_send_skb(sk,
910 						alloclen + hh_len + 15,
911 						(flags & MSG_DONTWAIT), &err);
912 			} else {
913 				skb = NULL;
914 				if (atomic_read(&sk->sk_wmem_alloc) <=
915 				    2 * sk->sk_sndbuf)
916 					skb = sock_wmalloc(sk,
917 							   alloclen + hh_len + 15, 1,
918 							   sk->sk_allocation);
919 				if (unlikely(skb == NULL))
920 					err = -ENOBUFS;
921 			}
922 			if (skb == NULL)
923 				goto error;
924 
925 			/*
926 			 *	Fill in the control structures
927 			 */
928 			skb->ip_summed = csummode;
929 			skb->csum = 0;
930 			skb_reserve(skb, hh_len);
931 
932 			/*
933 			 *	Find where to start putting bytes.
934 			 */
935 			data = skb_put(skb, fraglen);
936 			skb_set_network_header(skb, exthdrlen);
937 			skb->transport_header = (skb->network_header +
938 						 fragheaderlen);
939 			data += fragheaderlen;
940 
941 			if (fraggap) {
942 				skb->csum = skb_copy_and_csum_bits(
943 					skb_prev, maxfraglen,
944 					data + transhdrlen, fraggap, 0);
945 				skb_prev->csum = csum_sub(skb_prev->csum,
946 							  skb->csum);
947 				data += fraggap;
948 				pskb_trim_unique(skb_prev, maxfraglen);
949 			}
950 
951 			copy = datalen - transhdrlen - fraggap;
952 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
953 				err = -EFAULT;
954 				kfree_skb(skb);
955 				goto error;
956 			}
957 
958 			offset += copy;
959 			length -= datalen - fraggap;
960 			transhdrlen = 0;
961 			exthdrlen = 0;
962 			csummode = CHECKSUM_NONE;
963 
964 			/*
965 			 * Put the packet on the pending queue.
966 			 */
967 			__skb_queue_tail(&sk->sk_write_queue, skb);
968 			continue;
969 		}
970 
971 		if (copy > length)
972 			copy = length;
973 
974 		if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
975 			unsigned int off;
976 
977 			off = skb->len;
978 			if (getfrag(from, skb_put(skb, copy),
979 					offset, copy, off, skb) < 0) {
980 				__skb_trim(skb, off);
981 				err = -EFAULT;
982 				goto error;
983 			}
984 		} else {
985 			int i = skb_shinfo(skb)->nr_frags;
986 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
987 			struct page *page = sk->sk_sndmsg_page;
988 			int off = sk->sk_sndmsg_off;
989 			unsigned int left;
990 
991 			if (page && (left = PAGE_SIZE - off) > 0) {
992 				if (copy >= left)
993 					copy = left;
994 				if (page != frag->page) {
995 					if (i == MAX_SKB_FRAGS) {
996 						err = -EMSGSIZE;
997 						goto error;
998 					}
999 					get_page(page);
1000 					skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1001 					frag = &skb_shinfo(skb)->frags[i];
1002 				}
1003 			} else if (i < MAX_SKB_FRAGS) {
1004 				if (copy > PAGE_SIZE)
1005 					copy = PAGE_SIZE;
1006 				page = alloc_pages(sk->sk_allocation, 0);
1007 				if (page == NULL)  {
1008 					err = -ENOMEM;
1009 					goto error;
1010 				}
1011 				sk->sk_sndmsg_page = page;
1012 				sk->sk_sndmsg_off = 0;
1013 
1014 				skb_fill_page_desc(skb, i, page, 0, 0);
1015 				frag = &skb_shinfo(skb)->frags[i];
1016 				skb->truesize += PAGE_SIZE;
1017 				atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1018 			} else {
1019 				err = -EMSGSIZE;
1020 				goto error;
1021 			}
1022 			if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1023 				err = -EFAULT;
1024 				goto error;
1025 			}
1026 			sk->sk_sndmsg_off += copy;
1027 			frag->size += copy;
1028 			skb->len += copy;
1029 			skb->data_len += copy;
1030 		}
1031 		offset += copy;
1032 		length -= copy;
1033 	}
1034 
1035 	return 0;
1036 
1037 error:
1038 	inet->cork.length -= length;
1039 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1040 	return err;
1041 }
1042 
1043 ssize_t	ip_append_page(struct sock *sk, struct page *page,
1044 		       int offset, size_t size, int flags)
1045 {
1046 	struct inet_sock *inet = inet_sk(sk);
1047 	struct sk_buff *skb;
1048 	struct rtable *rt;
1049 	struct ip_options *opt = NULL;
1050 	int hh_len;
1051 	int mtu;
1052 	int len;
1053 	int err;
1054 	unsigned int maxfraglen, fragheaderlen, fraggap;
1055 
1056 	if (inet->hdrincl)
1057 		return -EPERM;
1058 
1059 	if (flags&MSG_PROBE)
1060 		return 0;
1061 
1062 	if (skb_queue_empty(&sk->sk_write_queue))
1063 		return -EINVAL;
1064 
1065 	rt = inet->cork.rt;
1066 	if (inet->cork.flags & IPCORK_OPT)
1067 		opt = inet->cork.opt;
1068 
1069 	if (!(rt->u.dst.dev->features&NETIF_F_SG))
1070 		return -EOPNOTSUPP;
1071 
1072 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1073 	mtu = inet->cork.fragsize;
1074 
1075 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1076 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1077 
1078 	if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1079 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1080 		return -EMSGSIZE;
1081 	}
1082 
1083 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1084 		return -EINVAL;
1085 
1086 	inet->cork.length += size;
1087 	if ((sk->sk_protocol == IPPROTO_UDP) &&
1088 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
1089 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1090 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1091 	}
1092 
1093 
1094 	while (size > 0) {
1095 		int i;
1096 
1097 		if (skb_is_gso(skb))
1098 			len = size;
1099 		else {
1100 
1101 			/* Check if the remaining data fits into current packet. */
1102 			len = mtu - skb->len;
1103 			if (len < size)
1104 				len = maxfraglen - skb->len;
1105 		}
1106 		if (len <= 0) {
1107 			struct sk_buff *skb_prev;
1108 			int alloclen;
1109 
1110 			skb_prev = skb;
1111 			fraggap = skb_prev->len - maxfraglen;
1112 
1113 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1114 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1115 			if (unlikely(!skb)) {
1116 				err = -ENOBUFS;
1117 				goto error;
1118 			}
1119 
1120 			/*
1121 			 *	Fill in the control structures
1122 			 */
1123 			skb->ip_summed = CHECKSUM_NONE;
1124 			skb->csum = 0;
1125 			skb_reserve(skb, hh_len);
1126 
1127 			/*
1128 			 *	Find where to start putting bytes.
1129 			 */
1130 			skb_put(skb, fragheaderlen + fraggap);
1131 			skb_reset_network_header(skb);
1132 			skb->transport_header = (skb->network_header +
1133 						 fragheaderlen);
1134 			if (fraggap) {
1135 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1136 								   maxfraglen,
1137 						    skb_transport_header(skb),
1138 								   fraggap, 0);
1139 				skb_prev->csum = csum_sub(skb_prev->csum,
1140 							  skb->csum);
1141 				pskb_trim_unique(skb_prev, maxfraglen);
1142 			}
1143 
1144 			/*
1145 			 * Put the packet on the pending queue.
1146 			 */
1147 			__skb_queue_tail(&sk->sk_write_queue, skb);
1148 			continue;
1149 		}
1150 
1151 		i = skb_shinfo(skb)->nr_frags;
1152 		if (len > size)
1153 			len = size;
1154 		if (skb_can_coalesce(skb, i, page, offset)) {
1155 			skb_shinfo(skb)->frags[i-1].size += len;
1156 		} else if (i < MAX_SKB_FRAGS) {
1157 			get_page(page);
1158 			skb_fill_page_desc(skb, i, page, offset, len);
1159 		} else {
1160 			err = -EMSGSIZE;
1161 			goto error;
1162 		}
1163 
1164 		if (skb->ip_summed == CHECKSUM_NONE) {
1165 			__wsum csum;
1166 			csum = csum_page(page, offset, len);
1167 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1168 		}
1169 
1170 		skb->len += len;
1171 		skb->data_len += len;
1172 		offset += len;
1173 		size -= len;
1174 	}
1175 	return 0;
1176 
1177 error:
1178 	inet->cork.length -= size;
1179 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1180 	return err;
1181 }
1182 
1183 /*
1184  *	Combined all pending IP fragments on the socket as one IP datagram
1185  *	and push them out.
1186  */
1187 int ip_push_pending_frames(struct sock *sk)
1188 {
1189 	struct sk_buff *skb, *tmp_skb;
1190 	struct sk_buff **tail_skb;
1191 	struct inet_sock *inet = inet_sk(sk);
1192 	struct ip_options *opt = NULL;
1193 	struct rtable *rt = inet->cork.rt;
1194 	struct iphdr *iph;
1195 	__be16 df = 0;
1196 	__u8 ttl;
1197 	int err = 0;
1198 
1199 	if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1200 		goto out;
1201 	tail_skb = &(skb_shinfo(skb)->frag_list);
1202 
1203 	/* move skb->data to ip header from ext header */
1204 	if (skb->data < skb_network_header(skb))
1205 		__skb_pull(skb, skb_network_offset(skb));
1206 	while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1207 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1208 		*tail_skb = tmp_skb;
1209 		tail_skb = &(tmp_skb->next);
1210 		skb->len += tmp_skb->len;
1211 		skb->data_len += tmp_skb->len;
1212 		skb->truesize += tmp_skb->truesize;
1213 		__sock_put(tmp_skb->sk);
1214 		tmp_skb->destructor = NULL;
1215 		tmp_skb->sk = NULL;
1216 	}
1217 
1218 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1219 	 * to fragment the frame generated here. No matter, what transforms
1220 	 * how transforms change size of the packet, it will come out.
1221 	 */
1222 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1223 		skb->local_df = 1;
1224 
1225 	/* DF bit is set when we want to see DF on outgoing frames.
1226 	 * If local_df is set too, we still allow to fragment this frame
1227 	 * locally. */
1228 	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1229 	    (skb->len <= dst_mtu(&rt->u.dst) &&
1230 	     ip_dont_fragment(sk, &rt->u.dst)))
1231 		df = htons(IP_DF);
1232 
1233 	if (inet->cork.flags & IPCORK_OPT)
1234 		opt = inet->cork.opt;
1235 
1236 	if (rt->rt_type == RTN_MULTICAST)
1237 		ttl = inet->mc_ttl;
1238 	else
1239 		ttl = ip_select_ttl(inet, &rt->u.dst);
1240 
1241 	iph = (struct iphdr *)skb->data;
1242 	iph->version = 4;
1243 	iph->ihl = 5;
1244 	if (opt) {
1245 		iph->ihl += opt->optlen>>2;
1246 		ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1247 	}
1248 	iph->tos = inet->tos;
1249 	iph->tot_len = htons(skb->len);
1250 	iph->frag_off = df;
1251 	ip_select_ident(iph, &rt->u.dst, sk);
1252 	iph->ttl = ttl;
1253 	iph->protocol = sk->sk_protocol;
1254 	iph->saddr = rt->rt_src;
1255 	iph->daddr = rt->rt_dst;
1256 	ip_send_check(iph);
1257 
1258 	skb->priority = sk->sk_priority;
1259 	skb->dst = dst_clone(&rt->u.dst);
1260 
1261 	/* Netfilter gets whole the not fragmented skb. */
1262 	err = NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL,
1263 		      skb->dst->dev, dst_output);
1264 	if (err) {
1265 		if (err > 0)
1266 			err = inet->recverr ? net_xmit_errno(err) : 0;
1267 		if (err)
1268 			goto error;
1269 	}
1270 
1271 out:
1272 	inet->cork.flags &= ~IPCORK_OPT;
1273 	kfree(inet->cork.opt);
1274 	inet->cork.opt = NULL;
1275 	if (inet->cork.rt) {
1276 		ip_rt_put(inet->cork.rt);
1277 		inet->cork.rt = NULL;
1278 	}
1279 	return err;
1280 
1281 error:
1282 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1283 	goto out;
1284 }
1285 
1286 /*
1287  *	Throw away all pending data on the socket.
1288  */
1289 void ip_flush_pending_frames(struct sock *sk)
1290 {
1291 	struct inet_sock *inet = inet_sk(sk);
1292 	struct sk_buff *skb;
1293 
1294 	while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1295 		kfree_skb(skb);
1296 
1297 	inet->cork.flags &= ~IPCORK_OPT;
1298 	kfree(inet->cork.opt);
1299 	inet->cork.opt = NULL;
1300 	if (inet->cork.rt) {
1301 		ip_rt_put(inet->cork.rt);
1302 		inet->cork.rt = NULL;
1303 	}
1304 }
1305 
1306 
1307 /*
1308  *	Fetch data from kernel space and fill in checksum if needed.
1309  */
1310 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1311 			      int len, int odd, struct sk_buff *skb)
1312 {
1313 	__wsum csum;
1314 
1315 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1316 	skb->csum = csum_block_add(skb->csum, csum, odd);
1317 	return 0;
1318 }
1319 
1320 /*
1321  *	Generic function to send a packet as reply to another packet.
1322  *	Used to send TCP resets so far. ICMP should use this function too.
1323  *
1324  *	Should run single threaded per socket because it uses the sock
1325  *     	structure to pass arguments.
1326  *
1327  *	LATER: switch from ip_build_xmit to ip_append_*
1328  */
1329 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1330 		   unsigned int len)
1331 {
1332 	struct inet_sock *inet = inet_sk(sk);
1333 	struct {
1334 		struct ip_options	opt;
1335 		char			data[40];
1336 	} replyopts;
1337 	struct ipcm_cookie ipc;
1338 	__be32 daddr;
1339 	struct rtable *rt = (struct rtable*)skb->dst;
1340 
1341 	if (ip_options_echo(&replyopts.opt, skb))
1342 		return;
1343 
1344 	daddr = ipc.addr = rt->rt_src;
1345 	ipc.opt = NULL;
1346 
1347 	if (replyopts.opt.optlen) {
1348 		ipc.opt = &replyopts.opt;
1349 
1350 		if (ipc.opt->srr)
1351 			daddr = replyopts.opt.faddr;
1352 	}
1353 
1354 	{
1355 		struct flowi fl = { .oif = arg->bound_dev_if,
1356 				    .nl_u = { .ip4_u =
1357 					      { .daddr = daddr,
1358 						.saddr = rt->rt_spec_dst,
1359 						.tos = RT_TOS(ip_hdr(skb)->tos) } },
1360 				    /* Not quite clean, but right. */
1361 				    .uli_u = { .ports =
1362 					       { .sport = tcp_hdr(skb)->dest,
1363 						 .dport = tcp_hdr(skb)->source } },
1364 				    .proto = sk->sk_protocol };
1365 		security_skb_classify_flow(skb, &fl);
1366 		if (ip_route_output_key(&rt, &fl))
1367 			return;
1368 	}
1369 
1370 	/* And let IP do all the hard work.
1371 
1372 	   This chunk is not reenterable, hence spinlock.
1373 	   Note that it uses the fact, that this function is called
1374 	   with locally disabled BH and that sk cannot be already spinlocked.
1375 	 */
1376 	bh_lock_sock(sk);
1377 	inet->tos = ip_hdr(skb)->tos;
1378 	sk->sk_priority = skb->priority;
1379 	sk->sk_protocol = ip_hdr(skb)->protocol;
1380 	sk->sk_bound_dev_if = arg->bound_dev_if;
1381 	ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1382 		       &ipc, rt, MSG_DONTWAIT);
1383 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1384 		if (arg->csumoffset >= 0)
1385 			*((__sum16 *)skb_transport_header(skb) +
1386 			  arg->csumoffset) = csum_fold(csum_add(skb->csum,
1387 								arg->csum));
1388 		skb->ip_summed = CHECKSUM_NONE;
1389 		ip_push_pending_frames(sk);
1390 	}
1391 
1392 	bh_unlock_sock(sk);
1393 
1394 	ip_rt_put(rt);
1395 }
1396 
1397 void __init ip_init(void)
1398 {
1399 	ip_rt_init();
1400 	inet_initpeers();
1401 
1402 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1403 	igmp_mc_proc_init();
1404 #endif
1405 }
1406 
1407 EXPORT_SYMBOL(ip_generic_getfrag);
1408 EXPORT_SYMBOL(ip_queue_xmit);
1409 EXPORT_SYMBOL(ip_send_check);
1410